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Abstract

Growth – the change in number or size – and adaptation – the change in quality or
structure – are key attributes of global processes in natural communities, society and
economics (see, e.g., Hofbauer and Sigmund, 1988; Freedman, 1991; Young, 1993).
In this paper we describe a model with explicit growth-adaptation feedbacks. We
treat it in the form of an economic model of competition of two firms (with several
departments) on the market. Their size is measured by their capital, and their
quality by their productive power (production complexity). It is assumed that the
production complexity of a department or firm is a simple function (that is more
general than the one considered in Kryazhimskii and Stoer, 1999) of its capital. The
model works on both the firm level (competition among the departments) and the
market level (competition among the firms).

The model shows some empirically observable phenomena. Typically, one of the
firms will finally cover the market. The winner is not necessarily the firm with
the potentially higher maximum productivity. A long-term coexistence of firms
may arise in exceptional situations occurring only when the maximum potential
productivities (not the actual productivities) are equal. The analysis is also based
on the concept of central paths from the interior point optimization theory (see
Sonnevend, 1985; and, e.g., Ye, 1997).
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Central Path Dynamics and a Model of

Competition. II

Arkadii Kryazhimskii
Josef Stoer

Introduction

This paper continues Kryazhimskii and Stoer, 1999, where a two-level growth-
adaptation ODE model has been analyzed. Here we study a more general model.
The main qualitative results remain the same. For convenience, we reproduce the
introduction to the above paper in the next two paragraphs.

Growth – the change in number – and adaptation – the change in structure – are
key attributes of global processes in natural communities, society and economics.
The idea of the interplay between growth and adaptation has given rise to game-
evolutionary models of bioevolution (Hofbauer and Sigmund, 1988). Restructuring
of a biological population (its adaptation) is driven by the abilities of the pheno-
types to produce offsprings (thus, ensuring the population’s growth). Similar views
have led to several models of evolutionary processes in economics (see, e.g., Freed-
man, 1991; Young, 1993). Game-evolutionary modeling implies a focus on inner
interactions, restructuring and adaptation. In contrast, the theory of endogenous
economic growth concentrates on the dynamics of growth for constantly-structurized
countries, firms, etc. (see, e.g., Grossman and Helpman, 1991).

In this paper we suggest an ODE model with explicit growth-adaptation feed-
backs. We treat it as a model of competition of two firms on the market. The model
works on both the firm and market levels. To win on the market through a better
productivity each firm is dynamically restructuring. In turn, the shares of firms’
products on the market determine proportions in firms’ capitals, and – via them
– the relative speeds of firms’ restructuring. The model shows some empirically
observable phenomena. Typically, one of the firms covers the whole market and the
other dies out. A winner is not necessarily the firm with a potentially higher maxi-
mum productivity. The long-term coexistence of the firms on the market may arise
in exceptional situations implying, in particular, the equality of the firms’ maximum
productivities. The analysis is essentially based on the method of central paths from
the interior point optimization theory (see Sonnevend, 1985; and, e.g., Ye, 1997).

1 Model of firm

Let us imagine a firm working on new products. Let p(t) be the firm’s capital at
time t, and r(t) the total output produced by the firm up to time t (we set t ≥ 0).
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Assuming that the price for a unit of the output is 1, we set r(t) = p(t). Let the firm
consist of n structural units, departments. We number them 1, . . . , n. Let pi(t) be
the capital of department i at time t and ri(t) the total output of department i up
to time t. We define the production complexity of department i as a monotonically
increasing function of its capital, σ(pi(t)), positive for pi(t) > 0. For example,
σ(pi(t)) can be the number of all interconnections between the researchers. If the
number of researchers is proportional to pi(t), then σ(pi(t)) is proportional to

pi(t)(pi(t)− 1)

2
= (pi(t)− 1) + (pi(t)− 2) + · · ·+ 1

or, approximately (for pi(t) large), p2
i (t)/2.

We assume that the production rate of department i, ṙi(t), is proportional to its
current complexity,

ṙi(t) = aiσ(pi(t)); (1.1)

here ai is a positive productivity coefficient of department i. The sum

ṙ(t) =
n∑
k=1

ṙk(t) =
n∑
k=1

akσ(pk(t))

gives the total production rate of the firm.
The ratio

ρi(t) =
σ(pi(t))∑n
k=1 σ(pk(t))

represents the relative complexity of department i in the firm, and ρi(t)ṙ(t) the
expected production rate of department i. The difference

hi(t) = ṙi(t)− ρi(t)ṙ(t),

showing for how much the actual production rate of department i is higher than the
expected one, estimates the relative efficiency of department i in the firm. We call
hi(t) the relative efficiency of department i. Let

xi(t) =
pi(t)

p(t)

be the current share of the capital of department i in the firm. A fair distribution
of the incoming capital among the departments implies that the share of the capital
of department i grows proportionally to its relative efficiency,

ẋi(t) = µhi(t);

here µ is a positive coefficient. We call this regulation rule the fairness principle.
Note that the fairness principle is feasible. Indeed, due to the fairness principle

n∑
i=1

ẋi(t) = µ
n∑
i=1

hi(t) = µ
n∑
i=1

[ṙi(t)− ρi(t)ṙ(t)] = µ
n∑
i=1

ṙi(t)− µ
n∑
i=1

ρi(t)
n∑
k=1

ṙk(t) = 0,

hence, the sum of the capital shares,
∑n
i=1 xi(t), is always 1. In what follows we

assume that the fairness principle is adopted.
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We specify the fairness principle as follows:

ẋi(t) = µ(ṙi(t)− ρi(t)ṙ(t))

= µ

(
aiσ(pi(t))−

σ(pi(t))∑n
k=1 σ(pk(t))

n∑
k=1

akσ(pk(t))

)

= µσ(pi(t))

(
ai −

∑n
k=1 akσ(pk(t))∑n
k=1 σ(pk(t))

)

= µσ(xi(t)p(t))

(
ai −

ϕ(x(t), p(t))

ϕ0(x(t), p(t))

)
,

where

ϕ(x(t), p(t)) =

∑n
k=1 akσ(xk(t)p(t))

σ(p(t))
, (1.2)

ϕ0(x(t), p(t)) =

∑n
k=1 σ(xk(t)p(t))

σ(p(t))
. (1.3)

Here and in what follows, x(t) stands for an n-dimensional vector with the coordi-
nates x1(t), . . . , xn(t); x(t) characterizes the distribution of the firm’s capital among
the departments. For the rate of the firm’s capital, we have

ṗ(t) = ṙ(t) =
n∑
k=1

ṙk(t) =
n∑
k=1

akσ(pk(t)) =
n∑
k=1

ak
σ(pk(t))

σ(p(t))
σ(p(t)) = ϕ(x(t), p(t))σ(p(t)).

We arrive at a system of differential equations,

ẋi(t) = µσ(xi(t)p(t))

(
ai −

ϕ(x(t), p(t))

ϕ0(x(t), p(t))

)
(i = 1, . . . n), (1.4)

ṗ(t) = ϕ(x(t), p(t))σ(p(t)). (1.5)

Equation (1.4) describes the dynamics of the capital shares within the firm and
equation (1.5) the growth of the firm’s total capital, or the firm’s total output on
the market. Note that σ(p(t)) is the complexity of the firm, and recall that the
productivity rate of the firm, ṙ(t), equals ṗ(t). Thus, equation (1.5) shows that the
productivity rate of the firm, ṙ(t), is proportional to its complexity, σ(p(t)) with the
productivity coefficient ϕ(x(t), p(t)),

ṙ(t) = ϕ(x(t), p(t))σ(p(t)).

Comparing with (1.1), we find that the total firm’s output and output of each firm’s
department grow similarly. A single difference is that the productivity coefficients
of the departments, ai, are constant (we assume this for the sake of simplicity), and
the productivity coefficient of the firm, ϕ(x(t), p(t)), depends on the distribution of
the firm’s capital among the departments.
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2 Model of competition

Now assume that two firms, firm 1 and firm 2, compete on the market. The dynamics
of firm 1 is described by the equations (1.4), (1.5), and the dynamics of firm 2 by
similar equations,

ẏi(t) = νσ(yi(t)q(t))

(
bi −

ψ(y(t), q(t))

ψ0(y(t), q(t))

)
(i = 1, . . .m), (2.1)

q̇(t) = ψ(y(t), q(t))σ(q(t)). (2.2)

Here ν is a positive coefficient, y(t) is the m-dimensional vector with the coordinates
y1(t), . . . , ym(t), which describes the distribution of the capital of firm 2 among its
departments 1, . . . ,m; bi is the productivity coefficient of department i in firm 2;

ψ(y(t), q(t)) =

∑m
k=1 bkσ(yk(t)q(t))

σ(q(t))
, (2.3)

is the productivity coefficient of firm 2;

ψ0(y(t), q(t)) =

∑n
k=1 σ(yk(t)p(t))

σ(q(t))
; (2.4)

and q(t) is the total capital/output of firm 2.
Let u(t) and v(t) be the market shares of firms 1 and 2, respectively,

u(t) =
p(t)

p(t) + q(t)
, v(t) =

q(t)

p(t) + q(t)
.

The equations (1.5) and (2.2) describe the rates of the capitals/outputs of firms 1
and 2, respectively. In section 1 we noticed that these rates are subject to the same
law as the output rates of firm’s departments. Assume that the fairness principle
holds on the market with, generally, another measure of complexity. Let τ (p(t)) and
τ (q(t)) be the market complexities of firms 1 and 2, respectively.

Then we arrive at differential equations for the market shares u(t) and v(t),
which have the same structure as the equations (1.4) and (2.1) for the departments’
shares within the firms,

u̇(t) = ρτ (u(t)(p(t) + q(t)))[ϕ(x(t), p(t))− γ(x(t), y(t), p(t), q(t), u(t), v(t))] (2.5)

v̇(t) = ρτ (u(t)(p(t) + q(t)))[ψ(y(t), q(t))− γ(x(t), y(t), p(t), q(t), u(t), v(t))] (2.6)

where
γ(x(t), y(t), p(t), q(t), u(t), v(t)) =

ϕ(x(t), p(t))τ (u(t)(p(t) + q(t))) + ψ(y(t), q(t))τ (v(t)(p(t) + q(t)))

τ (u(t)(p(t) + q(t))) + τ (v(t)(p(t) + q(t)))
,

and ρ is a positive coefficient. The entire process involving internal restructuring
(adaptation), growth in products, and external (market) competition is described
by the system of equations (1.4), (1.5), (2.1), (2.2), (2.5), (2.6).
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3 Model of competition. Specification

Let us introduce a simplifying assumption: σ(xp) = σ1(x)σ2(p) for all positive x
and p. Then necessarily σ1(x) = axc and σ2(p) = bpc for some constants a, b, and c
(see Aczél, 1966).

From now on we fix c > 1 and set σ(p) = pc. In section 1 we noticed that
c = 2 occurs when the production complexity is estimatecd as the number of all
interconnections between the researchers. This definition implies entire coperation
in production; assuming some reasonable degree of cooperation, we get c < 2. Note
that c = 1 implies no cooperation in production, and this motivates the restriction
c > 1.

We assume that the market complexity has the same form, τ (p) = pc. Thus,
there is a ”cooperation” between the units of firm’s products. This ”cooperation”
can be understood as the interdepenence of the product units whose combinations,
high-tech meta-products, go to the market. It is assumed that the degree of in-
terdependence of the product units on the market, is the same as the degree of
cooperation in production. Now (1.2), (1.3), (2.3) and (2.4) are specified as

ϕ(x(t), p(t)) = ϕ(x(t)) =
n∑
k=1

akx
c
k(t), ϕ0(x(t), p(t)) = ϕ0(x(t)) =

n∑
k=1

xck(t),

ψ(y(t), q(t)) = ψ(y(t)) =
m∑
k=1

bky
c
k(t), ψ0(y(t), q(t)) = ψ0(x(t)) =

m∑
k=1

yck(t),

and the model equations (1.4), (1.5), (2.1), (2.2), (2.5), (2.6) take the form

ẋi(t) = µxci(t)u
c(t)

(
ai −

ϕ(x(t))

ϕ0(x(t))

)
(p(t) + q(t))c (i = 1, . . . n), (3.1)

ṗ(t) = µϕ(x(t))pc(t), (3.2)

ẏi(t) = νyci (t)v
c(t)

(
bi −

ψ(y(t))

ψ0(y(t))

)
(p(t) + q(t))c (i = 1, . . .m), (3.3)

q̇(t) = νψ(y(t))qc(t), (3.4)

u̇(t) = ρuc(t)

(
ϕ(x(t))− uc(t)ϕ(x(t)) + vc(t)ψ(y(t))

uc(t) + vc(t)

)
(p(t) + q(t))c, (3.5)

v̇(t) = ρvc(t)

(
ψ(x(t))− uc(t)ϕ(x(t)) + vc(t)ψ(y(t))

uc(t) + vc(t)

)
(p(t) + q(t))c. (3.6)

Notice that
ϕ(x(t)) ≥ ε0

with a positive constant ε0. By (3.2)

ṗ(t) ≥ µε0p
c(t).

Hence, p(t) ≥ p0(t) where p0(t) solves the equation

ṗ0(t) = µε0p
c
0(t)
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with the initial condidion p0(0) = p(0). Assuming p(0) > 0 we find

pc−1
0 (t) = ((c− 1)(c0 − µε0t))

−1

where c0 = ((c− 1)pc−1(0))−1. We see that p0(t)→∞ as t→ c0/µε0. Consequently
p(t)→∞ as t→ t0 ≤ c0/µε0. Thus, the total output p(t) + q(t) approaches infinity
as t approaches a finite time. In other words, the market is saturated within a finite
period of time. Our goal is to classify admissible limit distributions of the firms’
market shares and capital shares within the firms by the time when the market is
saturated.

Note that the right hand sides in (3.1), (3.3), (3.5), and (3.6) have a common
multiplier (p(t) + q(t))c. We omit this multiplier, which is equivalent to time rescal-
ing, and reduce the system (3.1), (3.3), (3.5), (3.6) to

ẋi(t) = µxci(t)u
c(t)

(
ai −

ϕ(x(t))

ϕ0(x(t))

)
(i = 1, . . . n), (3.7)

ẏi(t) = νyci (t)v
c(t)

(
bi −

ψ(y(t))

ψ0(y(t))

)
(i = 1, . . .m), (3.8)

u̇(t) = ρuc(t)

(
ϕ(x(t))− uc(t)ϕ(x(t)) + vc(t)ψ(y(t))

uc(t) + vc(t)

)
, (3.9)

v̇(t) = ρvc(t)

(
ψ(x(t))− uc(t)ϕ(x(t)) + vc(t)ψ(y(t))

uc(t) + vc(t)

)
. (3.10)

4 Central path dynamics

The integration of the equations (3.7), (3.8), (3.9) and (3.10) yields

1

xi(t)c−1
− 1

xj(t)c−1
= (c−1)µ(aj−ai)

∫ t

0
uc(τ )dτ+

1

xi(0)c−1
− 1

xj(0)c−1
(i, j = 1 . . . , n),

(4.1)
1

yi(t)c−1
− 1

yj(t)c−1
= (c−1)ν(bj−bi)

∫ t

0
vc(τ )dτ+

1

yi(0)c−1
− 1

yj(0)c−1
(i, j = 1 . . . ,m),

(4.2)
1

u(t)c−1
− 1

v(t)c−1
= (c − 1)ρ

[∫ t

0
ψ(y(τ ))dτ −

∫ t

0
ϕ(x(τ ))dτ

]
+

1

u(0)c−1
− 1

v(0)c−1
.

(4.3)
Let us rearrange (4.1) as (i, j = 1, . . . , n)

(c−1)µai

∫ t

0
uc(τ )dτ+

1

xi(t)c−1
− 1

xi(0)c−1
= (c−1)µaj

∫ t

0
uc(τ )dτ+

1

xj(t)c−1
− 1

xj(0)c−1
.

(4.4)
Let

Φ(t, x) =
(
µ
∫ t

0
uc(τ )dτ

) n∑
k=1

akxk −
n∑
k=1

1

(c− 1)(c− 2)
x2−c
i −

n∑
k=1

1

(c− 1)

xk

xk(0)c−1
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(c 6= 2),

Φ(t, x) =
(
µ
∫ t

0
u2(τ )dτ

) n∑
k=1

akxk +
n∑
k=1

log xk −
n∑
k=1

xk

xk(0)c−1
(4.5)

(c = 2).

Notice that the left- and right-hand sides in (4.4) represent, respectively, the ith
and jth coordinates of gradxΦ(t, x(t)), the gradient of Φ, with respect to x at point
x(t). The relation (4.4) shows that gradxΦ(t, x(t)) is orthogonal to the affine hull of
the n-dimensional simplex

Sn = {x ∈ Rn : x1 ≥ 0, . . . , xn ≥ 0, x1 + . . .+ xn = 1}.

This orthogonality condition, together with the fact that Φ(t, ·) is strictly con-
cave, imply that if x̄(t), a (unique) maximizer of Φ(t, ·) in Sn is not on the boundary
of Sn, then x̄(t) = x(t), or

x(t) = argmax{Φ(t, x) : x ∈ Sn}. (4.6)

If c ≥ 2, then Φ(t, x)→ −∞ as x approaches the boundary of Sn. If c < 2, then
for any point ξ on the boundary of Sn we have ξi = 0 for some i, and ∂Φ(t, x)/∂xi→
∞ as x→ ξ. Hence, the maximizer x̄(t) cannot lie on the boundary of Sn, and (4.6)
holds true.

Referring to (4.2), we similarly find that

y(t) = argmax{Ψ(t, y) : y ∈ Sm}, (4.7)

where

Ψ(t, y) =
(
ν
∫ t

0
vc(τ )dτ

) m∑
k=1

bkyk −
m∑
k=1

1

(c− 1)(c− 2)
y2−c
i −

n∑
k=1

1

(c− 1)

yk

yk(0)c−1

(c 6= 2),

Ψ(t, y) =
(
ν
∫ t

0
v2(τ )dτ

) m∑
k=1

bkyk +
m∑
k=1

log yk −
n∑
k=1

yk

yk(0)
, (4.8)

(c = 2),

and
Sm = {y ∈ Rm : y1 ≥ 0, . . . , ym ≥ 0, y1 + . . . + ym = 1}.

Finally, (4.3) yields

(u(t), v(t)) = argmax{W (t, u, v) : (u, v) ∈ S2}, (4.9)

where

W (t, u, v) = ρu
∫ t

0
ϕ(x(τ ))dτ + ρv

∫ t

0
ψ(x(τ ))dτ

− 1

(c− 1)(c − 2)
(u2−c + v2−c)− 1

(c− 1)

(
u

u(0)c−1
+

v

v(0)c−1

)
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(c 6= 2),

W (t, u, v) = ρu
∫ t

0
ϕ(x(τ ))dτ + ρv

∫ t

0
ψ(x(τ ))dτ

− log u+ log v −
(

u

u(0)
+

v

v(0)

)

(c = 2),

and
S2 = {(u, v) ∈ R2 : u ≥ 0, v ≥ 0, u+ v = 1}.

Relations of the type (4.6), (4.7) and (4.9) lie in the base of the central path ho-
motopy methods for problems of convex optimization (see, e.g., Ye, 1997). The
differential equations (3.7), (3.8), (3.9), (3.10) are counterparts of the central path
equations describing optimum-approaching trajectories.

5 Limit distributions within firms

In what follows, I+ is the set of all maximally productive departments in firm 1,
i.e., the set of all i ∈ {1, . . . , n} such that ai = a+ where

a+ = max{ai : i = 1, . . . n}.

Similarly, J+ is the set of all maximally productive departments in firm 2, i.e., the
set of all j ∈ {1, . . . ,m} such that bj = b+ where

b+ = max{bj : j = 1, . . . n}.

We assume that not all departments are equally productive in firms 1 and 2,

I+ 6= {1, . . . n}, J+ 6= {1, . . .m}. (5.1)

We set

X+ = {x ∈ Sn : xi = 0 for all i 6∈ I+}, Y + = {y ∈ Sm : yj = 0 for all j 6∈ J+}.

Obviously, firms 1 and 2 reach their maximal productivities at the distributions from
X+ and Y +, respectively:

ϕ(x) = ϕ+ iff x ∈ X+, ψ(y) = ψ+ iff y ∈ Y +,

where

ϕ+ = max{ϕ(x) : x ∈ Sn} = a+, ψ+ = max{ψ(x) : y ∈ Sm} = b+.

Let (x(·), y(·), u(·), v(·)) be a solution to (3.7) – (3.10), which starts from a point
(x0, y0, u0, v0) with nonzero coordinates:

x0i = xi(0) > 0 (i = 1, . . . n),
y0j = yj(0) > 0 (j = 1, . . .m),
u0 = u(0) > 0,
v0 = v(0) > 0.

(5.2)



– 9 –

We will use the notations

η(t) =
∫ t

0
uc(τ )dτ, η∗ =

∫ ∞
0

uc(τ )dτ,

ζ(t) =
∫ t

0
vc(τ )dτ, ζ∗ =

∫ ∞
0

vc(τ )dτ.

dist(x(t), X+) = min{|x(t)−x+| : x+ ∈ X+}, dist(y(t), Y +) = min{|y(t)−y+| : y+ ∈ Y +};
here | · | stands for the Euclidean norm.

Lemma 5.1 1. If η∗ <∞, then there is a limit

x∗ = lim
t→∞

x(t),

and x∗ 6∈ X+.
2. If η∗ =∞, then

lim
t→∞

dist(x(t), X+) = 0. (5.3)

Lemma 5.2 1. If ζ∗ <∞, then there is a limit

y∗ = lim
t→∞

x(t),

and y∗ 6∈ Y +.
2. If ζ∗ =∞, then

lim
t→∞

dist(y(t), Y +) = 0.

We prove Lemma 5.1 only.

Proof of Lemma 5.1. 1. Let ξ(t) be a solution to the equation (3.7) from
which the multiplier uc(t) is removed,

ξ̇i(t) = µξci (t)

(
ai −

ϕ(ξ(t))

ϕ0(ξ(t))

)
(i = 1, . . . n),

and ξ(0) = x(0). Obviously,

x(t) = ξ

(∫ t

0
uc(τ )dτ

)
. (5.4)

Let η∗ <∞. By (5.4)
lim
t→∞

x(t) = ξ(η∗) = x∗.

Due to the central path equality (4.6) and the definition of the function Φ(t, x) (see
(4.5)) x∗ maximizes for c 6= 2

lim
t→∞

Φ(t, x)

η(t)
= µ

n∑
k=1

akxk −
1

η∗

n∑
k=1

1

(c− 1)(c− 2)
x2−c
i − 1

η∗

n∑
k=1

1

(c− 1)

xk

xk(0)c−1
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over Sn, and for c = 2

lim
t→∞

Φ(t, x)

η(t)
= µ

n∑
k=1

akxk +
1

η∗

n∑
k=1

log xk −
1

η∗

n∑
k=1

xk
xk(0)

.

Arguing as in section 4, we find that all coordinates of x∗ are positive. Since x∗i > 0
for i 6∈ I+ (which exists by (5.1)), we have x∗ 6∈ X+.

2. Let η∗ =∞. By (4.6) x(t) maximizes for c 6= 2

Φ(t, x)

η(t)
= µ

n∑
k=1

akxk −
1

η(t)

n∑
k=1

1

(c− 1)(c− 2)
x2−c
i − 1

η(t)

n∑
k=1

1

(c− 1)

xk

xk(0)c−1

over Sn, and for c = 2

Φ(t, x)

η(t)
= µ

n∑
k=1

akxk +
1

η(t)

n∑
k=1

log xk −
1

η(t)

n∑
k=1

xk

xk(0)
.

Since limt→∞ η(t) =∞, we have (5.3). 2

Lemmas 5.1 and 5.2 imply the next statements.

Lemma 5.3 1. There are limits

ϕ∗ = lim
t→∞

ϕ(x(t)) ≤ ϕ+, ψ∗ = lim
t→∞

ψ(y(t)) ≤ ψ+.

2. One has ϕ∗ = ϕ+ if and only if η∗ =∞.
3. One has ψ∗ = ψ+ if and only if ζ∗ =∞.

Proof. Statement 1 follows from Lemmas 5.1 and 5.2 straightforwardly. If η∗ <∞
then by 5.1, 1, x∗ 6∈ X+; hence, ϕ∗ = ϕ(x∗) < ϕ+. If η∗ = ∞, then by 5.1, 2,
we have (5.3); hence, ϕ∗ = ϕ+. This proves statement 2. Statement 3 is proved
similarly. 2

The values ϕ∗ and ψ∗ characterize the limit productivities of the firms.

6 Limit distributions of market shares

Let us characterize the admissible limit distributions of the market shares, u(t) and
v(t). We consider three basic relations between the limit productivities of the firms,
ϕ∗ > ψ∗, ϕ∗ < ψ∗, and ϕ∗ = ψ∗.

Theorem 6.1 Let ϕ∗ > ψ∗. Then

lim
t→∞

u(t) = 1, lim
t→∞

v(t) = 0,

and ϕ∗ = ϕ+.

Theorem 6.2 Let ϕ∗ < ψ∗. Then

lim
t→∞

u(t) = 0, lim
t→∞

v(t) = 1,

and ψ∗ = ψ+.
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We prove Theorem 6.1 only.

Proof of Theorem 6.1. The inequality ϕ∗ > ψ∗ implies that the right-hand
side in (4.3) approaches −∞ as t→∞. Then (4.3) implies limt→∞ v(t) = 0. Hence,
limt→∞ u(t) = 1. Therefore, η∗ =∞. By Lemma 5.3, 2, ϕ∗ = ϕ+. 2

We study the case ϕ∗ = ψ∗ under the assumption that the maximal productivities
of firms 1 and 2, ϕ+ = a+ and ψ+ = b+, are different. To be particular, assume
a+ > b+.

Theorem 6.3 Let a+ > b+ and ϕ∗ = ψ∗. Then

lim
t→∞

u(t) = 0, lim
t→∞

v(t) = 1,

and ψ∗ = ψ+.

Proof. Since ϕ+ = a+ > b+ = ψ+ and ϕ∗ = ψ∗ ≤ ψ+, we have ϕ∗ < ϕ+. Then by
Lemma 5.3, 2, η∗ <∞. It is sufficient to show that u(t)→ 0 as t→ 0. Assume this
is not so. Then u(ξk) > δ for some δ > 0 and some ξk → ∞. Note that η∗ < ∞
implies u(tk) → 0 for some tk → ∞. With no loss of generality, assume tk < ξk.
Next, we consider only large i, for which u(tk) < δ/2 and u(ξk) > δ. Let

τk = max{t ∈ [tk, ξk] : u(t) ≤ δ/2}.

We have u(τk) = δ/2 and u(t) ≥ δ/2 for all t ∈ [τk, ξk]. The right-hand side of the
equation (3.9) is bounded. Hence, there is c0 > 0 such that |u̇(t)| < c0 for all t ≥ 0.
Therefore ξk − τk ≥ δ/2c0. Consequently,

η∗ ≥
∞∑
i=1

∫ ξk

τk

uc(t)dt ≥
∞∑
i=1

(
δ

2

)c
(ξk − τk) ≥

∞∑
i=1

(
δ

2

)c
δ

2c0
.

Thus, η∗ =∞. We arrived at a contradiction. The theorem is proved. 2

Theorems 6.1 – 6.3 show that only three types of solutions, (x(·), y(·), u(·), v(·)),
of the equations (3.7) – (3.10) may exist. We call the solutions described in Theorem
6.1 favourable for firm 1, solutions described in Theorem 6.2 favourable for firm
2, and solutions which are favourable neither for firm 1, nor for firm 2, critical.
The critical solutions are characterized in Theorem 6.3 under the assumption that
a+ > b+ (a symmetric characterization holds if a+ < b+). For the case a+ = b+ the
critical solutions will be studied in section 7.

7 Feasibility of limit distributions

In this section we prove the existence of the solutions of all three types under the
assumption that a+ > b− and7.te a− < b+, where

a− = min{ai : i = 1, . . . n}, b− = min{bj : j = 1, . . . n}.

Let

σ1 = min
x∈Sn

∑n
k=1 akx

2c−1
k∑n

k=1 x
c
k

, σ2 = min
y∈Sm

∑m
k=1 bky

2c−1
k∑m

k=1 y
c
k

.

Obviously, σ1 and σ2 are positive.
We base our analysis on the next technical lemmas.
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Lemma 7.1 Let t0 ≥ 0, α > 0, δ > 0, β > 0,∑
i∈I+

xci(t0) > 1− α,

ψ(y(t0)) + 2δ < a+(1− α),(
ψ(y(t0))−

(b+)2

σ2

)
e−cνσ2β +

(b+)2

σ2
< ψ(y(t0)) + δ,

(c− 1)v(t0)

δ(1− v(t0))c
<
β

2
.

Then the solution (x(·), y(·), u(·), v(·)) is favourable for firm 1.

Lemma 7.2 Let t0 ≥ 0, α > 0, δ > 0, β > 0,∑
j∈J+

ycj(t0) > 1− α, (7.1)

ϕ(x(t0)) + 2δ < b+(1− α), (7.2)(
ϕ(x(t0))−

(a+)2

σ1

)
e−cµσ1β +

(a+)2

σ1
< ϕ(x(t0)) + δ, (7.3)

(c− 1)u(t0)

δ(1− u(t0))c
<
β

2
. (7.4)

Then the solution (x(·), y(·), u(·), v(·)) is favourable for firm 2.

We prove Lemma 7.2 only.

Proof of Lemma 7.2. Let us estimate the derivative of

ϕ(t) = ϕ(x(t)) =
n∑
k=1

akx
c
k(t).

We have

ϕ̇(t) = c
n∑
k=1

akx
c−1
k (t)ẋk(t) = c

n∑
k=1

akx
c−1
k (t)µuc(t)xck(t)

(
ak −

ϕ(t)

ϕ0(x(t))

)

= cµ
n∑
k=1

aku
c(t)x2c−1

k (t)

(
ak −

ϕ(t)

ϕ0(x(t))

)

= cµuc(t)

(
n∑
k=1

a2
kx

2c−1
k −

∑n
k=1 akx

2c−1
k (t)∑n

k=1 x
c
k(t)

ϕ(t)

)
≤ cµuc(t)((a+)2 − σ1ϕ(t)).

Let ϕ̄(t) solve the Cauchy problem

˙̄ϕ(t) = cµ((a+)2 − σ1ϕ̄(t)), ϕ̄(t0) = ϕ(t0).

Evidently,

ϕ(t) ≤ ϕ̄

(∫ t

t0
uc(τ )dτ

)
= ϕ̄(η(t)− η(t0)). (7.5)
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We have

ϕ̄(t) = e−cµσ1(t−t0)ϕ(t0) +
∫ t

t0
e−cµσ1(t−s)cµ(a+)2ds

= e−cµσ1(t−t0)ϕ(t0) + e−cµσ1t
∫ t

t0

ecµσ1scµ(a+)2ds

= e−cµσ1(t−t0)ϕ(t0) +
(a+)2

σ1

e−cµσ1t
(
ecµσ1t − ecµσ1t0

)
= e−cµσ1(t−t0)ϕ(t0) +

(a+)2

σ1

(
1− e−cµσ1(t−t0)

)
=

(
ϕ(t0)− (a+)2

σ1

)
e−cµσ1(t−t0) +

(a+)2

σ1
.

Hence, by (7.5)

ϕ(t) ≤
(
ϕ(t0)−

(a+)2

σ1

)
e−cµσ1(η(t)−η(t0)) +

(a+)2

σ1
. (7.6)

Note that by the definition of σ1

σ1 ≤
∑n
k=1 akx

2c−1
k (t0)∑n

k=1 x
c
k(t0)

.

Hence,

ϕ(t0)−
(a+)2

σ1
=

n∑
k=1

akx
2c−1
k (t0)−

(a+)2

σ1

≤
n∑
k=1

akx
c
k(t0)− (a+)2

∑n
k=1 x

c
k(t0)∑n

k=1 akx
2c−1
k (t0)

≤ a+
n∑
k=1

xck(t0)

(
1− a+∑n

k=1 akx
2c−1
k (t0)

)
(7.7)

≤ 0 (7.8)

because of
∑n
k=1 akx

2c−1
k (t0) ≤ a+. Due to (3.8)∑

j∈J+

ẏj(t) > 0.

Hence, for t > t0

ψ(t) = ψ(y(t)) ≥
∑
j∈J+

b+ycj(t) > b+
∑
j∈J+

ycj(t0) > b+(1− α) > ϕ(t0) + 2δ. (7.9)

The last two inequalities hold due to (7.1) and (7.2). Sequentially using (7.6), (7.8),
(7.3) and (7.9), we obtain the next estimates for all t ≥ t0 such that η(t)−η(t0) < β:

ϕ(t) ≤
(
ϕ(t0)− (a+)2

σ1

)
e−2µσ1(η(t)−η(t0)) +

(a+)2

σ1

≤
(
ϕ(t0)− (a+)2

σ1

)
e−2µσ1β +

(a+)2

σ1

≤ ϕ(t0) + δ

≤ ψ(t)− δ.
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Let
ξ = sup{t > t0 : η(t)− η(t0) < β}. (7.10)

We will show that ξ =∞. For all t ∈ [t0, ξ) due to (3.9) we have

u̇(t) =
uc(t)vc(t)

uc(t) + vc(t)
(ϕ(t)− ψ(t)) ≤ −δ uc(t)vc(t)

uc(t) + vc(t)
≤ −δuc(t)vc(t)

= −δuc(t)(1− u(t))c.

Hence, for t ∈ [t0, ξ), u̇(t) < 0, which implies

u̇(t) ≤ −δ0u
c(t)

where
δ0 = δ(1− u(t0))

c.

Then for t ∈ [t0, ξ)
u(t) ≤ ū(t)

where ū(t) solves the Cauchy problem

˙̄u(t) = −δ0ū
c(t), ū(t0) = u(t0).

We have
˙̄u(t)

ūc(t)
= −δ0,

− 1

(c− 1)ūc−1(t)
= −δ0(t− t0)− c0, c0 =

1

(c− 1)uc−1(t0)
,

ū(t) =
( 1

(c− 1)(δ0(t− t0) + c0)

)1/(c−1)
.

Thus,

u(t) ≤ α
(

1

δ0(t− t0) + c0

)1/(c−1)

, where α := (c− 1)−1/(c−1),

for t ∈ [t0, ξ). Then for t ∈ [t0, ξ)

η(t)− η(t0) =
∫ t

t0
uc(τ )dτ ≤ α

∫ t

t0

dτ

(δ0(τ − t0) + c0)c/(c−1)

= α
∫ t−t0

0

dτ

(δ0τ + c0)c/(c−1)

= −α(c− 1)
1

δ0

(
1

(δ0τ + c0)c/(c−1)−1
|t−t00

)

≤ α(c − 1)

δ0c
1/(c−1)
0

=
(c− 1)u(t0)

δ(1− u(t0))c
<
β

2

because of c0 = (uc−1(t0)(c− 1))−1.
The last inequality follows from (7.4). If we assume ξ <∞, we get

η(ξ) − η(t0) ≤
β

2
,



– 15 –

whereas (7.10) implies
η(ξ)− η(t0) = β.

Hence, ξ = ∞, i.e., η(t) − η(t0) < β for all t ≥ t0. Then, as stated above, ϕ(t) <
ψ(t)− δ for all t ≥ t0. Consequently,

ϕ∗ = lim
t→∞

(ϕ(t)) < lim
t→∞

(ψ(t)) = ψ∗.

By definition (see also Theorem 6.2) the solution x(t), y(t), u(t), v(t) is favourable
for firm 2. 2

In what follows, we denote Z0 the set of all initial points (x0, y0, u0, v0) ∈ Sn ×
Sm × S2 satisfying (5.2). We denote Z0

1 the set of all initial states from Z0 such
that the solution originating from this state is favourable for firm 1. Symmetrically,
we denote Z0

2 the set of all initial states from Z0 such that the solution originating
from this state is favourable for firm 2.

Lemmas 7.1 and 7.2 yield the following.

Lemma 7.3 The sets Z0
1 and Z0

2 are open.

Proof. We prove the openness of Z0
2 only. Let (x0, y0, u0, v0) ∈ Z0

2 and (x(·), y(·), u(·), v(·))
be the solution with the initial condition (5.2). Since it is favourable for firm 2, by
Theorem 6.2 we have ϕ∗ < ψ∗ = ψ+ = b+ and

lim
t→∞

u(t) = 0 (7.11)

By Lemma 5.3, 3, ζ∗ =∞ and hence, by Lemma 5.2, 2, for all large t0 the relation
(7.1) holds. Take positive α and δ so that for all large t0 the relation (7.2) holds.
Such a choice is possible due to the inequality ϕ∗ < b+. Let β > 0 be such that for all
large t0 (7.3) is satisfied. By (7.11) for all large t0 the inequality (7.4) holds. Thus,
there is a (large) t0 for which the estimates (7.1) – (7.4) of Lemma 7.2 are satisfied.
Then (7.1) – (7.4) hold if point x(t0), y(t0), u(t0), v(t0) is replaced by an arbitrary
point from certain neighborhood, V , of x(t0), y(t0), u(t0), v(t0). Let Ẑ be the set of
all solutions (x̂(·), ŷ(·), û(·), v̂(·)) such that (x̂(t0), ŷ(t0), û(t0), v̂(t0)) ∈ V . By Lemma
7.2 all solutions from Z are favourable for firm 2. Let Ẑ = {(x̂(0), ŷ(0), û(0), v̂(0)) :
(x̂(·), ŷ(·), û(·), v̂(·)) ∈ Ẑ}. The set Ẑ obviously contains a neighborhood of the
point (x0, y0, u0, v0). Thus, Z0

2 is open. 2

Theorem 7.1 If b− < a+, then there exist a solution favourable for firm 1. If
a− < b+, then there exist a solution favourable for firm 2.

Proof. We prove the second statement only. Let t0 = 0. In view of a− < b+, there
exists an initial point (5.2) in Z0 such that the relations (7.1) – (7.4) hold with some
positive α, δ and β. Then by Lemma 7.2 the solution originating from this initial
state is favourable for firm 2. 2

Theorem 7.2 There exists a critical solution.

Proof. Let I be a segment with the endpoints in Z0
1 and Z0

2 . We have I ⊂ Z0

due to the convexity of Z0. By definition the sets Z0
1 and Z0

2 do not intersect. By
Lemma 7.3 they are open. Then I cannot be covered by the union of Z0

1 and Z0
2 .

Therefore the set Z = Z0 \ (Z0
1 ∪ Z0

2 ) is nonempty. A solution originating from a
point in Z is favourable neither for firm 1, nor for firm 2. By definition this solution
is critical. 2
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8 Firms with equal maximal productivities: ex-

istence of balanced solutions

In section 6 we showed that if the firms have different maximal productivities, say,
a+ > b+, then every critical solution is such that the limit market share of the
firm, which has the higher maximal productivity (firm 1), is 0, and that of the firm,
which has the lower maximal productivity (firm 2), is 1 (Theorem 6.3). Thus, a
single chance for the firms to coexist in the long run, i.e., to have nonzero limits of
their market shares as time apprioaches infinity, arises when the firms have equal
maximal productivities, a+ = b+.

In this section we assume that a+ = b+. We shall call a solution (x(·), y(·), u(·), v(·))
to (3.7) – (3.10), (5.2) balanced if there are nonzero limits limt→∞ u(t) and limt→∞ v(t).
Note that a balanced solution is necessarily critical. In this section we focus on a
simplest situation where each firm has only two departments, which are not equal
in productivity.

Theorem 8.1 Let 0 < c ≤ 2, m = n = 2, a+ = b+, a− < a+, and b− < b+. Then
there exists a balanced solution.

In this section, when writing out differential equations, we, for brievity, omit the
time argument in the notation of the sought functions. A proof of Theorem 8.1 is
given in the end of this section. It is based on the next theorem.

Theorem 8.2 [Hartman, 1964, p. 294]. Let
(i) a system of finite-dimensional differential equations have the form

p′ = Pp + F1(τ, p, q), q′ = Qq + F2(τ, p, q), (8.1)

(ii) the real parts of all eigenvalues of the matrix P be not greater than ω, and
the real parts of all eigenvalues of the matrix Q be strictly greater than ω,

(iii) the function F = (F1, F2) be continuous and

|F (τ, ξ)| ≤ l(τ )|ξ| (ξ = (p, q)) (8.2)

hold for all τ ≥ 0 and all ξ from a neighborhood of the origin,
(iv) l be continuous and

lim
τ→∞

sup
s≥τ

1

1 + s− τ

∫ s

τ
l(ζ)dζ = 0. (8.3)

Then there exist τ∗ ≥ 0 and δ1 > 0 such that for every τ0 ≥ τ∗ and every p0

satisfying |p0| < δ1 there is a q0 with the property that the Cauchy problem for
the system (8.1) with the initial condition p(τ0) = p0, q(τ0) = q0 has a solution
ξ(·) = ((p(·), q(·)) on [τ0,∞), which satisfies either (p(·), q(·)) = 0 or p(τ ) 6= 0 for
all τ ≥ τ0, and

|q(τ )| = o(|p(τ )|) as τ →∞,

lim sup
τ→∞

log |ξ(τ )|
τ

≤ ω.
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We shall use the next corollary of Theorem 8.2.

Corollary 8.1 Let
(i) a finite-dimensional differential equation have the form

r′ =
h1(s, r)

s
+ h2(s, r), (8.4)

(ii) h1 and h2 be differentiable at a point (0, r∗) satisfying h1(0, r∗) = 0, and
there be K > 0 and d > 1 such that∣∣∣∣∣h1(s, r) −

(
∂h1

∂s
(0, r∗)s+

∂h1

∂r
(0, r∗)(r − r∗)

)∣∣∣∣∣ ≤ K(|s|+ |r − r∗|)d,

∣∣∣∣∣sh2(s, r)− s∂h2

∂r
(0, r∗)(r − r∗)

∣∣∣∣∣ ≤ K(|s|+ |r − r∗|)d

for all (s, r) from a neighborhood of (0, r∗),
(iii) the matrix

H =

( −1 0

−
[
∂h1

∂s
(0, r∗) + h2(0, r∗)

]
−∂h1

∂r
(0, r∗)

)
(8.5)

have an eigenvector (s̄, r̄) with the eigenvalue −1, for which s̄ 6= 0.
Then for some δ > 0 the equation (8.4) has a solution r(·) defined on (0, δ)

satisfying lims→+0 r(s) = r∗.

Proof. Without loss of generality assume r∗ = 0. Introduce a new independent
variable, τ = − log s. Then s = e−τ , s′ = −s, and the equation (8.4) takes the form

s′ = −s, r′ = −h1(s, r)− sh2(s, r). (8.6)

It is sufficient to prove that (8.6) has a solution (s(·), r(·)) on [τ̄1,∞), τ̄1 > 0, such
that s(τ ) > 0 for all τ ≥ τ̄1 and

lim
τ→∞

r(τ ) = 0. (8.7)

Setting y = (s, r), we represent (8.6) as

y′ = Hy +G(y), (8.8)

where H is given in (8.5) and G is continuous and

|G(y)| ≤ K|y|d

for all y from a neigborhood of 0.
We shall make two linear transformations of the state variables, which will bring

H to a (P,Q)-block form indicated in Theorem 8.2. The first linear transformation,
z = T1y, corresponds to passing from the original basis, e1, e2, . . . , ek+1, in the
((k+1)-dimensional) state space of the system (8.8) (here ei is the ith unit coordinate
vector) to the basis ȳ, e2, . . . , ek+1, where ȳ = (s̄, r̄) (see (iii) in the formulation of
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the Corollary). Since s̄ 6= 0, the system ȳ, e2, . . . , ek+1 is a basis indeed. The matrix
H is transformed into the two-block matrix

H1 = T1HT
−1
1 =

(
−1 0
0 H̄1

)
.

Let z = (z1, η
(1)), η(1) = (z2, . . . , zk+1). The second linear transformation, ξ = T2z,

does not involve z1, so, ξ = (z1, η
(2)) and

T2 =

(
1 0
0 T̄2

)
.

The transformation η(2) = T̄2η
(1) transforms the matrix H̄1 to

H̄2 = T2H̄1T
−1
2 =

(
D1 0
0 D2

)
,

where the real parts of all eigenvalues of D1 are not greater than −1, and the real
parts of all eigenvalues of D2 are strictly greater than −1 (see Hirsch and Smale,
1974, p. 129); with no loss of generality we assume that H̄1 has an eigenvalue whose
real part is strictly greater than −1 (one can always extend H̄1 for an extra zero
row and an extra zero column). The resulting transformation, ξ = Ty = T2T1y,
transforms the original matrix H to

E = THT−1 =

 −1 0 0
0 D1 0
0 0 D2

 =

(
P 0
0 Q

)
,

where

P =

(
−1 0
0 D1

)
(8.9)

and Q = D2. The real parts of all eigenvalues of P are not greater than −1 and the
real parts of all eigenvalues of Q are strictly greater than −1.

Note that for any vector ξ with ξ1 6= 0 its preimage y = (s, r) = T−1ξ = T−1
2 T−1

1 ξ
satisfies s 6= 0. Indeed, due to the block structure of T2 for z = T1y = T−1

2 ξ we have
z1 = ξ1 6= 0. Recall that the first transformation of the variables, which is given
by the matrix T1, corresponds to passing from the original basis e1, e2, . . . , ek+1, to
the basis ȳ, e2, . . . , ek+1, where ȳ = (s̄, r̄). Therefore, z1 is the first coefficient, λ1,
in the (unique) representation y = λ1ȳ + λ2e2 + . . . + λk+1ek+1. The projection of
this equality to the first coordinate gives s = λ1s̄. Since λ1 6= 0 and s̄ 6= 0 (see the
assumptions of the Corollary), we get s 6= 0.

Let ξ = (p, q), where p = (ξ1, . . . , ξk1), q = (ξk1+1, . . . , ξk+1), and k1 and k+1−k1

are the dimensions of the matrices P and Q, respectively. With respect to the
variables p and q, the equation (8.8) has the form

p′ = Pp +G∗1(p, q), q′ = Qq +G∗2(p, q), (8.10)

where G∗ = (G∗1, G
∗
2)T is continuous and satisfies

|G∗(ξ)| ≤ K|ξ|d (ξ = (p, q))
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for all ξ from a neighborhood of the origin (without loss of generality we assume that
G∗ is defined and continuous on the whole (k + 1)-dimensional Euclidean space).
Let G∗1 = (G∗11, . . . , G

∗
1k1

). The evolution of the first coordinate, ξ1 = p1, of ξ (or p)
will play an exceptional role. In this context we introduce a modified system,

p′ = Pp+G∗∗1 (p, q), q′ = Qq +G∗∗2 (p, q). (8.11)

Here
G∗∗2 = G∗2, G∗∗1 = (G∗∗11, G

∗
12, . . . , G

∗
1k1

)T , (8.12)

and
G∗∗11(p, q) = min {|G∗11(p, q)|, |εp1|} sign G∗11(p, q). (8.13)

A positive ε is chosen so that there is δ > 0 such that

δd > 1 + ε, δ < 1. (8.14)

Obviously, G∗∗ = (G∗∗1 , G
∗∗
2 ) is continuous and satisfies

|G∗∗(ξ)| ≤ K|ξ|d (ξ = (p, q)) (8.15)

for all ξ from a neighborhood of the origin.
Set

F (τ, ξ) = min{|ξ|d−1, e−ετ}G
∗∗(ξ)

|ξ|d−1
. (8.16)

Obviously, F is continuous, and (8.2) holds with l(τ ) = Ke−ετ for all τ ≥ 0 and all
ξ from a neighborhood of the origin. Clearly, l(·) satisfies (8.3). Thus, the system
(8.1) with (F1, F2) = F meets all the assumptions of Theorem 8.2 for ω = −1. By
Theorem 8.2 there exist τ0 > 0 and δ1 > 0 such that for p0 = (π, 0, . . . , 0) with
0 < |π| < δ1 there is q0 with the property that the Cauchy problem for the system
(8.1) with the initial condition p(τ0) = p0, q(τ0) = q0 has a solution ξ(·) = ((p(·), q(·))
on [τ0,∞), for which

lim sup
τ→∞

log |ξ(τ )|
τ

≤ −1. (8.17)

Since π 6= 0, the preimage of ξ0 = (p0, q0), y0 = (s0, r0) = T−1ξ0, satisfies s0 6= 0.
We choose the sign of π so that s0 > 0. Assume that π > 0 (the opposite case is
treated similarly).

The relation (8.17) and the second inequality in (8.14) imply

|ξ(τ )| ≤ e−δτ (8.18)

for all sufficiently large τ . Therefore, for all sufficiently large τ we have F (τ, ξ(τ )) =
G∗∗(ξ(τ )) (see (8.16)). Hence, there is τ̄ > 0 such that ξ(·) solves (8.11) on [τ̄ ,∞).
On [τ̄ ,∞), due to (8.12), q(·) satisfies the second equation in (8.10), and in the first
(vector) equation in (8.10), the scalar equations for the coordinates 2, . . . , k1 are
satisfied by p2(·), . . . , pk1 (·). We shall prove that in a neighborhood of infinity p1(·)
satisfies the first coordinate equation in (8.10), which, as (8.9) shows, has the form

p′1 = −p1 +G∗11(p, q). (8.19)
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First, however, we shall state that p1(τ ) > 0 for all τ ≥ τ0. For all τ > τ0 we
have (see (8.16))

p′1(τ ) = −p1(τ ) + λ(τ )G∗∗11(p(τ ), q(τ )),

where

λ(τ ) = min

{
1,

e−ετ

|ξ(τ )|d−1

}
.

Due to (8.13)
p′1(τ ) ≥ −λ(τ )(1 + ε)p1(τ )

for all τ > τ0. Since p1(τ0) = π > 0,

p1(τ ) ≥ πe
−(1+ε)

∫ τ
τ0
λ(r)dr

> 0

for all τ ≥ τ0.
Recall that for all τ ≥ τ̄

p′1(τ ) = −p1(τ ) +G∗∗11(p(τ ), q(τ )) ≥ −(1 + ε)p1(τ )

(the inequality follows from (8.13)), and hence

p1(τ ) ≥ p1(τ̄ )e−(1+ε)(τ−τ̄).

By (8.18) and (8.15)
|G∗∗11(p(τ ), q(τ ))| ≤ Ke−δdτ

for all large τ . Due to the first inequality in (8.14) there is τ̄1 > τ0 such that

|G∗∗11(p(τ ), q(τ ))| ≤ |εp1(τ )|

for all τ ≥ τ̄1 > 0. Then by (8.13) for all τ ≥ τ̄1 > 0

G∗∗11(p(τ ), q(τ )) = G∗11(p(τ ), q(τ )).

We stated that p1(·) satisfies (8.19) on [τ̄1,∞). Thus, ξ(·) = (p(·), q(·)) is a solution
to (8.11) on [τ̄1,∞). The preimage of ξ(·), τ 7→ y(τ ) = (s(τ ), r(τ )) = T−1ξ(τ ),
solves the original equation (8.6) on [τ̄1,∞). As soon as p1(τ ) = ξ1(τ ) 6= 0 for all
τ ≥ τ0, we have s(τ ) 6= 0 for all τ ≥ τ0; since s(τ0) > 0, we find that s(τ ) > 0 for all
τ ≥ τ0. Finally, (8.18) implies (8.7). 2 Proof of Theorem 8.1. 1. With no loss

of generality assume a1 = a+ and b1 = b+ = a+. Set x(t) = x1(t) and y(t) = y1(t).
The system of equations (3.7) – (3.10) is reduced to

ẋ = αuc
xc(1− x)c

xc + (1− x)c
, (8.20)

ẏ = β(1− u)c
yc(1− y)c

yc + (1− y)c
, (8.21)

u̇ = λ(u)[a+(xc − yc) + a−(1− x)c − b−(1− y)c] (8.22)
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with

α = µ(a+ − a−), β = ν(a+ − b−), λ(u) = ρ
uc(1− u)c

uc + (1− u)c
. (8.23)

Our goal is to show that there is a solution (x(·), y(·), u(·)) to (8.20) – (8.22) such
that

x(t) ∈ (0, 1), y(t) ∈ (0, 1), u(t) ∈ (0, 1) (t ≥ 0) (8.24)

and
u∗ = lim

t→∞
u(t) ∈ (0, 1). (8.25)

Introduce new time and state variables,

sc−1 =
1

t
, w =

sc−1

(1− x)c−1
, z =

sc−1

(1− y)c−1
.

We have

w′ =
(c− 1)sc−2

(1− x)c−1
+

(c− 1)sc−1

(1− x)c
x′

=
(c− 1)w

s
+

(c− 1)wc/(c−1)

s

(
−αuc xc(1− x)c

xc + (1− x)c

)
c− 1

sc

= (c− 1)
w

s
− (c− 1)2w

c/(c−1)

sc+1
αuc

(1− s/w1/(c−1))c(s/w1/(c−1))c

(1− s/w1/(c−1))c + (s/w1/(c−1))c

= (c− 1)
w

s
− (c− 1)2w

c/(c−1)

sc+1
αuc

(w1/(c−1) − s)csc/w2c/(c−1)

[(w1/(c−1) − s)c + sc]/wc/(c−1)

= (c− 1)
w

s
− (c− 1)2αu

c

s

(w1/(c−1) − s)c
(w1/(c−1) − s)c + sc

.

Thus,

w′ =
c − 1

s

[
w − (c− 1)αuc

(
1− sc

(w1/(c−1) − s)c + sc

)]
. (8.26)

Similarly, we get a differential equation for z:

z′ =
c− 1

s

[
z − (c− 1)β(1− u)c

(
1− sc

(z1/(c−1) − s)c + sc

)]
. (8.27)

Using (8.22), we find:

u′ = −(c− 1)
λ(u)

sc
[a+(xc − yc) + a−(1− x)c − b−(1− y)c]

= −(c− 1)
λ(u)

sc
[a+(x− y)c−1g(x, y) + a−(1− x)c − b−(1− y)c]

= −(c− 1)
λ(u)

sc
[a+((1− y)− (1− x))c−1g(x, y) + a−(1− x)c − b−(1− y)c],

where

g(x, y) = g0(s, w, z) =
xc − yc

(x− y)c−1
. (8.28)
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Continue as follows:

u′ = −(c− 1)
λ(u)a+

sc

(
s

z1/(c−1)
− s

w1/(c−1)

)c−1

g0(s, w, z)

−(c− 1)
λ(u)a+

sc

[
a−
(

s

w1/(c−1)

)c
− b−

(
s

z1/(c−1)

)c]
= −1

s
(c− 1)

λ(u)a+g0(s, w, z)(w1/(c−1) − z1/(c−1))c−1

zw

−(c− 1)λ(u)a+

(
a−

wc/(c−1)
− b−

zc/(c−1)

)
.

Hence the differential equation for u takes the form

u′ = −1

s
(c− 1)

λ(u)a+g0(s, w, z)(w1/(c−1) − z1/(c−1))c−1

zw

−(c− 1)λ(u)a+

(
a−

wc/(c−1)
− b−

zc/(c−1)

)
. (8.29)

Rewrite (8.26) – (8.29) as

w′ = (c− 1)
w − (c− 1)αucf(s, w)

s
, (8.30)

z′ = (c− 1)
z − (c− 1)β(1− u)cf(s, z)

s
, (8.31)

u′ =
g1(s, w, z, u)

s
+ g2(w, z, u), (8.32)

where

f(s, p) = 1− sc

(p1/(c−1) − s)c + sc
,

g1(s, w, z, u) = −(c− 1)
λ(u)a+g0(s, w, z)(w1/(c−1) − z1/(c−1))c−1

zw
, (8.33)

g2(w, z, u) = −(c− 1)λ(u)a+

(
a−

wc/(c−1)
− b−

zc/(c−1)

)
.

Note that
∂f(s, p)

∂s
(0, p) = 0,

∂f(s, p)

∂p
(0, p) = 0. (8.34)

If the system of equations (8.30) – (8.32) has a solution (w(·), z(·), u(·)) defined on
(0, δ), where δ > 0, and satisfying

lim
s→+0

w(s) = w∗, lim
s→+0

z(s) = z∗, lim
s→+0

u(s) = u∗ (8.35)

with w∗ > 0, z∗ > 0, and u∗ ∈ (0, 1), then the system of equations (8.20) – (8.22)
has a solution (x(·), y(·), u(·)) defined on [0,∞) and satisfying (8.24) and (8.25), and
Theorem 8.1 is proved.
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Fix positive w∗ and z∗ and u∗ ∈ (0, 1) such that the numerators of the singular
ratios in the right hand sides of (8.30) – (8.32) vanish at (0, w∗, z∗, u∗):

w∗ = (c− 1)αuc∗ = (c− 1)β(1− u∗)c = z∗. (8.36)

We consider the cases c = 2 and c < 2 separately.

2. Let c = 2. Then

f(s, p) = 1− s2

(p− s)2 + s2
,

g0(s, w, z) = x+ y = 2− s

w
− s

z

(see (8.28)), g1 is given by (8.33), and

g2(w, z, u) = −λ(u)a+

(
a−

w2
− b−

z2

)
.

The functions (s, w, z, u)→ f(s, w), (s, w, z, u)→ f(s, z), (s, w, z, u)→ g1(s, w, z, u),
and (s, w, z, u)→ g2(w, z, u) are twice continuously differentiable in a neighborhood
of (0, w∗, z∗, u∗). The system of equations (8.30) – (8.32) satisfies conditions (i) and
(ii) of Corollary 8.1 with d = 2. Taking into account (8.34), we find that the matrix
(8.5) has the form

H =


−1 0 0 0
0 −1 0 2αu∗
0 0 −1 −2β(1− u∗)
−g2∗ −g1∗ g1∗ 0

 ;

here

g1∗ = 2
a+λ(u∗)

w∗z∗
> 0

and g2∗ = g2(w∗, z∗, u∗). For the matrix H the eigenvectors (s, w, z, u) with the
eigenvalue −1 are the solutions to

−s = −s,

−w + 2αu∗u = −w,
−z − 2β(1− u∗)u = −z,
−g2∗s− g1∗(w − z) = u.

The first coordinate, s̄, of the eigenvector (s̄, w̄, z̄, ū) = (1,−g2∗/g1∗, 0, 0) is nonzero.
Condition (iii) of Corollary 8.1 is satisfied. By Corollary 8.1 the system of equations
(8.30) – (8.32) has a solution (w(·), z(·), u(·)) defined on (0, δ), where δ > 0, and
satisfying (8.35).

3. Let c < 2. In the original variables (x, y, u) the point (w∗, z∗, u∗) has the
coordinates (1, 1, u∗). Since the function p 7→ pc is Lipschitzian in a neighborhood
of 1, (8.28) implies

|g0(s, w, z)| = |g(x, y)| ≤ K1|x− y|2−c
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for all x, y from a neighborhood of 1 with certain constant K1. Since

x = 1− s

w1/(c−1)
, y = 1− s

z1/(c−1)
,

we have

|g0(s, w, z)| ≤ K1s
2−c |w1/(c−1) − z1/(c−1)|2−c

w(2−c)/(c−1)z(2−c)/(c−1)
.

Then by (8.33)

|g1(s, w, z, u)| ≤ K2s
2−c|w1/(c−1) − z1/(c−1)|2−c|w1/(c−1) − z1/(c−1)|c−1

= K2s
2−c|w1/(c−1) − z1/(c−1)|

for all (s, w, z, u) from a neighborhood of (0, w∗, z∗, u∗) with certain constant K2.
Since the function p 7→ p1/(c−1) is Lipschitzian in a neighborhood of w∗ = z∗, we find
that

|g1(s, w, z, u)| ≤ Ks2−c(|w − w∗|+ |z − z∗|) (8.37)

for all (s, w, z, u) from a neighborhood of (0, w∗, z∗, u∗) with certain constant K.
Hence,

∂g1

∂s
(0, w∗, z∗, u∗) =

∂g1

∂w
(0, w∗, z∗, u∗) =

∂g1

∂z
(0, w∗, z∗, u∗) =

∂g1

∂u
(0, w∗, z∗, u∗) = 0.

(8.38)
Let us show that g1 is differentiable at (0, w∗, z∗, u∗), moreover, there is a d > 1 such
that

|g1(s, w, z, u)| ≤ (s+ |w − w∗|+ |z − z∗|)d (8.39)

for all (s, w, z, u) from a neighborhood of (0, w∗, z∗, u∗). Let

γ = 2− c, d = 1 + γ/2. (8.40)

Suppose there is no neighborhood of (0, w∗, z∗, u∗) such that for all its elements
(s, w, z, u) (8.39) holds. Then one can find a sequence (si, wi, zi, ui)→ (0, w∗, z∗, u∗)
such that

|g1(si, wi, zi, ui)| > (si + |wi −w∗|+ |zi − z∗|)d (i = 1, 2, . . .).

In view of (8.37)

si > 0, pi = |wi −w∗|+ |zi − z∗| > 0 (i = 1, 2, . . .)

and
Ks2−c

i pi > (si + pi)
d (i = 1, 2, . . .),

or, in notations (8.40),

Ksγi pi > (si + pi)
1+γ/2 (i = 1, 2, . . .).

Then

lim inf
sγi pi

(si + pi)1+γ/2
≥ 1

K
. (8.41)
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With no loss of generality, we assume that there is the limit

lim
pi

s
1+γ/2
i

= a.

Let a <∞. Then

sγi pi

(si + pi)1+γ/2
=

sγi

(si + pi)1+γ/2s
−(1+γ/2)
i

pi

s
1+γ/2
i

=
sγi

(1 + pi/si)1+γ/2

pi

s
1+γ/2
i

≤ sγi
pi

s
1+γ/2
i

→ 0,

which contradicts (8.41). Let a =∞. Then

lim
s

(1+γ/2)γ/2
i

p
γ/2
i

= 0.

Since γ/2 < 1 (see (8.40)), we have

ζ = γ − (1 + γ/2)γ/2 > 0,

lim
sγi

p
γ/2
i

= lim sζi lim
s

(1+γ/2)γ/2
i

p
γ/2
i

= 0.

Hence,
sγi pi

(si + pi)1+γ/2
≤ sγi pi

p
1+γ/2
i

=
sγi

p
γ/2
i

→ 0,

which again contradicts (8.41). The contradictions prove that the estimate (8.39)
holds for all (s, w, z, u) from a neighborhood of (0, w∗, z∗, u∗). The estimate (8.39)
and equalities (8.38) imply the differentiability of g1 at (0, w∗, z∗, u∗). Taking into ac-
count that the functions (s, w, z, u)→ f(s, w), (s, w, z, u)→ f(s, z), and (s, w, z, u)→
g2(w, z, u) are twice continuously differentiable in a neighborhood of (0, w∗, z∗, u∗),
we find that the system of equations (8.30) – (8.32) satisfies conditions (i) and (ii)
of Corollary 8.1 with d given in (8.40). Using (8.34), we arrive at the next form of
the matrix (8.5):

H =


−1 0 0 0
0 −(c− 1) 0 c(c− 1)αuc−1

∗
0 0 −(c− 1) −c(c− 1)β(1− u∗)c−1

−g2∗ 0 0 0

 ,

where g∗2 = g2(w∗, z∗, u∗). For the matrix H the eigenvectors (s, w, z, u) with the
eigenvalue −1 are the solutions to

−s = −s,

(1− c)w + c(c− 1)αuc−1
∗ u = −w,
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(1− c)z − c(c− 1)β(1− u∗)c−1u = −z,
−g2∗s = −u,

or
(2− c)w = −c(c− 1)αuc−1

∗ u,

(2− c)z = c(c− 1)β(1− u∗)c−1u,

g2∗s = u,

The first coordinate, s̄, of the eigenvector (s̄, w̄, z̄, ū),

s̄ = 1, w̄ = −c(c− 1)αuc−1
∗ g2∗

2− c , z̄ =
c(c− 1)β(1− u∗)c−1g2∗

2− c , ū = g2∗,

is nonzero. Condition (iii) of Corollary 8.1 is satisfied. By Corollary 8.1 the system
of equations (8.30) – (8.32) has a solution (w(·), z(·), u(·)) defined on (0, δ), where
δ > 0, and satisfying (8.35). 2
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