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Preface 

One of the central themes of current research in 
mathematical system theory is the use of invariant 
theoretic-techniques to shed light on certain struc- 
tural issues. The theory of invariants has been em- 
ployed to characterize minimal-parameter canonical 
forms for constant, finite-dimensional linear systems. 
The objective of the present paper is to extend these 
basic results to the case in which a quadratic cost 
functional is adjoined. A complete, independent set 
of invariants is found for the so-called "linear- 
quadratic-gaussian" (LQG) problem. 





Invariant Theory, the Riccati Group, 

and Linear Control Problems 

Abstract 

The classical algebraic theory of invariants 
is applied to the linear-quadratic-gaussian control 
problem to derive a canonical form under a certain 
matrix transformation group. The particular group 
of transformations, termed here the "Riccati group," 
is induced from the matrix Riccati equation charac- 
terizing the LQG problem solution. 

Examples of the invariant-theoretic approach are 
given along with a discussion of topics meriting 
further study, including geometric interpretation of 
the group orbits, extension of the Riccati group, and 
connections with the generalized X-Y functions. 

Introduction 

One of the principal themes of nineteenth-century mathematics 

was the theory of invariants of transformation groups. This 

theory, developed to a high degree of sophistication by Hilbert, 

Cayley, Sylvester, Gordan, Dickson, and other, has been more 

or less relegated to the backwaters of mathematical activity 

until rather recently. A fascinating account of the rise and 

fall of the theory from the sociological point of view is given 

in [1,2]. 

In connection with renewed interest in invariant theory on 

the part of modern algebraists, there has been a corresponding 

interest in the use of invariant theoretic-techniques to shed 

light on certain algebraic issues arising in system theory. 

Since 1970, a number of papers have appeared [cf. 3-71 in which 

the general techniques developed by the nineteenth-century alge- 

braists have been employed to characterize certain minimal-para- 



systems. This work has been an outgrowth of one of the central 

themes of current research in mathematical system theory, namely, 

the use of madern algebra and differential geometry as tools to 

explore 5;gstern-th~oretic issues. This point of view, pioneered 

by Kalman, Hermann, Arbib, Brockett, and others, has developed 

from an offshoot cf mathematical control and filtering theory to 

a legitimate branch of applied mathematics during the past decade. 

A good account of the current state of affairs may be found in 

[ 8 1 .  

Broadly speaking, past use of invariant theory in linear 

system problems has been confined to the following general set-up: 

a system C is given by the dynamics 

and the output 

where x, u, and y are n, m, and p-dimensional vectors, respecti1 

with F, G I  H beinq constant matrices of appropriate sizes. Thus 

L is charactel'zed by the matrix triple (F,G,H). In addition, a 

certair, group (25 of transformations is given which acts on the 
- - -  

triple (F,G,H) to produce a new system (F,G,H) , i.e., 

In essence (details later), the theory of invariants is used to 

find a set of polynomials in the components of F, GI H which 

remain "invariant" under application of transformations from 9 

to C .  A principle objective is to use the transformations from 

.Gin such a way that assumes a "simpler" form than C. Usaally, 

"simpler" has been interpreted to mean thet C contains a mlnimal 
numl~er ~f ~cameters, ~clnsistcnt with the group 9. 

In the classical t~rminology, a collection of polynomials 

{pbl! ,  a E A (A an ind-jx set), forming a set 0' ?variants under 

is callec?: 



i) i n d e p e n d e n t  i f  no a l g e b r a i c  r e l a t i o n s  e x i s t  among t h e  

p o l y n o m i a l s ;  

ii) comple t e  i f  p  ( q )  = p , ( q t )  f o r  a l l  IY, E A i m p l i e s  q  = g q '  
CI 

f o r  some g  E 9. 

The b a s i c  work c i t e d  above h a s  been d e v o t e d  t o  t h e  d e t e r m i n a t i o n  

o f  a  c o m p l e t e ,  i n d e p e n d e n t  se t  o f  i n v a r i a n t s  and  t h e  a s s o c i a t e d  

c a n o n i c a l  forms f o r  t h e  l i n e a r  sys t em 1 u s i n g  v a r i o u s  c h o i c e s  

o f  t h e  g roup  9. 

Our o b j e c t i v e  i n  t h i s  r e p o r t  i s  t o  e x t e n d  t h e  b a s i c  r e s u l t s  

o b t a i n e d  f o r  t h e  l i n e a r  sys t em C t o  t h e  c a s e  i n  which a  q u a d r a t i c  

c o s t  f u n c t i o n a l  

T  

J = /  [ ( x t Q x )  + 2 ( x . 5 ~ )  + (u1Ru)  I d s  + ( x ( T )  , P o ~ ( T 1 )  , 
t 

w i t h  Q = Q', R > O ,  Po = Pb, i s  a d j o i n e d .  Thus,  w e  d e a l  w i t h  t h e  

q u e s t i o n  o f  d e t e r m i n i n g  a  c o m p l e t e ,  i n d e p e n d e n t  s e t  o f  i n v a r i a n t s  

f o r  t h e  s o - c a l l e d  "linear-quadratic-gaussian" (LQG) problem.  I t  

w i l l  be  shown t h a t  c h o o s i n g  !9 t o  b e  what w e  t e r m  t h e  " R i c c a t i  g r o u p " ,  

such  a  s e t  o f  i n v a r i a n t s  may b e  o b t a i n e d  f o r  t h e  LQG problem. 

The g e n e r a l  p l a n  o f  t h e  pape r  i s  t o  p r e s e n t ,  t l r s t  o f  a l l ,  

a  b r i e f  r e v i e w  o f  t h e  b a s i c  i d e a s  o f  i n v a r i a n t  t h e o r y  w i t h  

s p e c i a l  emphas i s  on t h e i r  u s e  i n  l i n e a r  sys t em p rob lems .  W e  

t h e n  g i v e  a  f o r m u l a t i o n  o f  t h e  LQG problem which i s  p a r t i c u l a r l y  

s u i t a b l e  f o r  o u r  p u r p o s e s  and d e f i n e  t h e  t r a n s f o r m a t i o n s  com- 

p r i s i n a  t h e  " R i c c a t i "  g roup .  The n e x t  s e c t i o n  c o n t a i n s  t h e  main 

r e s u l t s  o f  t h e  p a p e r ,  namely a  c o m p l e t e ,  i n d e p e n d e n t  s e t  o f  i n -  

v a r i a n t s  and t h e  a s s o c i a t e d  c a n o n i c a l  form f o r  t h e  LQG problem. 

The pape r  c o n c l u d e s  w i t h  a  d i s c u s s i o n  o f  u n r e s o l v e d  i s s u e s ,  a s  

w e l l  a s  t h e  c o n n e c t i o n s  o f  t h e  c u r r e n t  r e s u l t s  w i t h  t h e  g e n e r a l -  

i z e d  X-Y f u n c t i o n s  i n t r o d u c e d  i n  [ 9 - 1 1 1 .  

I n v a r i a n t  Theory and L i n e a r  Systems* 

I n  g e n e r a l  terms, i n v a r i a n t  t h e o r y  a d d r e s s e s  t h e  f o l l o w i n g  

s i t u a t i o n :  a  f i x e d  g r o u p  9 a c t s  on c e r t a i n  m a t h e m a t i c a l  "quan- 

t i t i e s "  q .  An ( a b s o l u t e )  a l g e b r a i c  i n v a r i a n t  o f  q w i t h  r e s p e c t  

* A more comple t e  t r e a t m e n t  o f  t h e s e  m a t t e r s  i s  g i v e n  i n  [ 2 2 ] .  



to $ is a polynomial p E k[zl, ..., zN] in the N "variables" con- 
stituting q such that p(q) = p(gq) for all g E 3 (here k repre- 

sents an arbitrary, but fixed coefficient field). If p is an 

integer-val~~ed function of q having the same property, then we 

call p an arithmetic invariant. If p(gq) = (det cg) p is 

called a projective invariant of weight - w, in the case where9 

is a matrix group (or a matrix representation of an abstract group). 

A simple example of the foregoing set-up is the classical 

Grassmann variety of algebraic geometry which, following [12], 

can be expressed in the following manner. Let q correspond to 

rectangular matrices of size nxm over a field k(m>n). - Let% be 

the general linear group GL(~"), which acts on q by left multi- 

plication, i.e., q + Tq, T E $9. 

Let {qi} denote the columns of q and let det(q. ,.e.,qi ) be " 1 n 
the determinant formed from exactly n (not necessarily distinct) 

columns of q. Consider the case det(ql, ...,qn) # 0.  By left 

multiplication by the inverse of the matrix ( q , ,  ... ) ,  q becomes ' qn 
a matrix in which the block of first n columns is the identity 

matrix. Moreover, the remaining elements of q are then given 

(through Cramer's rule) by determinants of the type discussed 

above divided by det(ql, ...,q n). These ratios are easily seen to 
n 

bc absolute invariants of GL(k ) .  Each such transformed matrix 

is in a can\~nical form and corresponds to a single orbit with 

respect to the Zariski neighborhood det(ql, ...,q n) # 0 .  Over 

other neighborhoods, say, det(q2,...,qIl+l ) # 0,  a similar con- 

struction of a canonical form can be carried out. Thus, the 

global structure is obtained by "piecing together" local canon- 

leal forms determined by different Zariski neighborhoods. 

By considering the Pltlcker map q + (det(ql, ...,qn),..., 

det(qm-,+,,~-.,qm)), one can look at the orbits as a point set in 

a projective space of high dimension. It can be shown that this 

'pint set forms a projective variety, the so-called Gra~s~.~~3n11 

variety (see [13,141 for details). Thus, since there is a 1-1 

correspondence between the points of this variety and the n-dimen- 



sional subspace-s of m-dimensional space, we see that the ratios 

of determinants described above uniquely characterize the orbits 

generated by the group GL (kn) . 
The simplest system-theoretic example is that associated wit! 

a coordinate transformation in the state space. Let C = (F,G,H) 

denote, as usual, the internal description of a constant, linear 

dynamical system. Take q as the triple of matrices C = (F,G,H) 

and let 93 = GL(kn) act on C by a change of basis in the state 

space X = kni i.e., 

for T E GL(~"). The external properties of C are preserved under 

this action since the infinite sequence of matrices 

is fixed under $. Consequently, every element of every matrix A_. 
J 

is an algebraic invariant of (F,G,H) with respect to GL(~") . 
It can be proved that the infinite sequence .'/= ( A ~ ~ A ~ , . . . )  

may be generated in a finitary way whenever.'/' has a finite-dim- 

ensional realization; for instance, the matrices A l,...,An and 

the numbers al,...,an (the coefficients of the characteristic 

polynomical of F in any minimal realization of Y) will generate 
all the elements of ,q[cf.l5]. Furthermore, it is clear that the - 

al,... an can be expressed as rational functions of A1,...,AZn, 

and so it follows that all elements 0f.F can be aenerated bv 

algebraic operations from a finite number among them. 

Since the (absolute) invariants form a ring, the above con- 

siderations lead to the result that 



The ring of invariants of a dynamical system C with respect -- 
to the cjr-oup GL(~") can be viewed as being equivalent to the ex- 

ternal description of C .  --- 

The following foundational result, due to Hilbert, is now 

suggested. 

Hilbei-t Basis Theorem. The ring of invariants under the -- 
action of ~L(k"i has a finite basis. 

(In fact, it is believed that this result is true for almost all 

grocps, but the precise conditions are not yet known - this is 
Ailhert's 1 4th problem. ) In view of the above discussion, it 

foilows that it should be possible to analyze almost all finite- 

dimznsional systems by finitary methods, since the external de- 

scrlptlon of such systems can be presumably identified with a 

particular rlng of invariants. 

In recent years, major steps forward in pursuing the above 

progr~3.n have been made in [3,4,6] by enlarging the group of trans- 

format-ans % acting on C .  In addition to the transformation (I), 

it is interesting to consider the additional transformations 

F + F - G L  , (L = arbitary mxn matrix over k) . (3) 

The three transformations (1)-(3) together generate a group acting 

on C which is usually called the feedback group. Since this group 

is bigger than GL (kn) , C has fewer invariants. For example, the 

coefficients of the characteristic polynomial of F can be arbi- 

trarily altered by the transformation (3). It is known that i: 

(F,G) is controllable, then under the feedback group the pair 

( l? ,Gl  has only arithmetic invariants. These quantities have 

already been computed in 1890 by Kronecker during his iil-v-esti- 

gations of the much more general problem of singular pencils of 

m;t.rices i 7 6 . In the mid-1 960 ' sf invariants under various sub- 
groups of thefeedback group were computed by P9pov and are sum- 

marized in [4]. The invariant-theoretic po'-rik of view greatly 



s i m p l i f i e s  t h e  p r e c i s e  p r e s e n t a t i o n  o f  t h e s e  r e s u l t s  and was 

f i r s t  g i v e n  i n  [ 3 ] .  O t h e r  n o t a b l e  work i n  t h i s  d i r e c t i o n ,  p a r -  

t i c u l a r l y  a s  it r e l a t e s  t o  t h e  s o - c a l l e d  " d e c o u p l i n g "  problem 

o f  l i n e a r  s y s t e m s  was g i v e n  i n  t h e  e a r l y  1 9 7 0 ' s  by Wonham, Morse,  

and t h e i r  c o l l e a g u e s  [61 .  

A ma jo r  problem r e m a i n i n g  i n  t h i s  a r e a  i s  t h e  d e t e r m i n a t i o n  

o f  a  comple t e  set  o f  i n v a r i a n t s  o f  (F,G,H) under  t h e  f eedback  

group.  I t  is  e a s y  t o  see t h a t  t h e  f u l l  f eedback  g r o u p  i s  n o t  

needed t o  o b t a i n  t h e  Kronecker  c a n o n i c a l  form f o r  ( F I G ) ;  i n  f a c t ,  

s i n c e  (FIG)  h a s  n2  + mn p a r a m e t e r s  and t h e  f eedback  g roup  h a s  

n2  + nm +m2 p a r a m e t e r s ,  e x a c t l y  m2 p a r a m e t e r s  a r e  " l e f t  o v e r "  

by means o f  which t h e  f eedback  g roup  c a n  a c t  on  H .  T h i s  a c t i o n  

i s  r a t h e r  c o m p l i c a t e d ,  however,  and it i s  n o t  a t  a l l  c l e a r  how 

t o  o b t a i n  i n v a r i a n t s  and c a n o n i c a l  forms  i n  t h i s  c a s e .  Some 

f r a g m e n t a r y  r e s u l t s  a r e  r e p o r t e d ,  though,  i n  [ I  71 . 

3. The L i n e a r - Q u a d r a t i c  Gauss i an  Problem and t h e  R i c c a t i  Group 

A s  n o t e d  i n  t h e  i n t r o d u c t o r y  s e c t i o n ,  w e  s h a l l  be  concerned  

w i t h  t h e  problem o f  min imiz ing  ( o v e r  u )  t h e  q u a d r a t i c  c r i t e r i o n  

where Q = Q ' ,  Po = Pb, R > 0,  and x and u a r e  n ,  m-dimensional 

v e c t o r s  c o n n e c t e d  by t h e  l i n e a r  e q u a t i o n s  

A l l  m a t r i c e s  a r e  assumed t o  b e  r e a l ,  c o n s t a n t  m a t r i c e s  o f  appro-  

p r i a t e  s i z e s .  

W e l l  known [ I 5 1  r e s u l t s  show t h a t  t h e  min imiz ing  c o n t r o l  

u* ( t )  i s  g i v e n  i n  f e e d b a c k  form a s  

U* ( t )  = -K ( t ) ~  ( t )  I 

where K ( t )  = R - ' ( G ' P ( ~ ) + S ' )  w i t h  P ( t )  b e i n g  t h e  s o l u t i o n  o f  t h e  

m a t r i x  R i c c a t i  e q u a t i o n  



- 1 -6 = Q + PF + F'P - (PG+S)R (PG+S)' f t < T  , 
( 6  

l\T) = P o  . 

In additio:l, the minimal value of the quadratic criterion is ex- 

pressed throuqh P as 

Thus, from an algebraic point of view, we may regard the LQG 

problem as bt:cj.ng specified by the set of matrices -9 = (F, G,Q, R, 

S,PO). Our goal will be to let a certain naturally induced group 

act on .g ar,d to calculate a compl.ete set of independent, algebraic 

invariants of 3 under this group. Simultaneously, we shall also 

obtai t l  a c:iiic?~ical form for the LQG problem. 

9 q f o ~ ~ ?  passing to the definition of the group , we make a 
short digression into the underlying theory of the LQG problem 

as the results will be essential for our subsequent development. 

If one assumes at the outset that the optimal control law -- 

u*(t) has the feedhack form u* = -K(t)x, with K(t) an unknown 

matrix function to be determined, then substitution of u* into 

the critcri.on, toqether with addition to the criterion function 

of the identity 

valid for all P (t) -- . 0, transforms the original problem to simpler 
form. The modified problem, following an integration by parts, 

is to mrliimize 



where W - > 0 is arbitrary. The minimization is over all matrix 

functions K(t), P(t). Since W - > 0 is arbitrary, it is not diffi- 

cult to see that the minimizing P and K satisfy the equations 

given above. This approach is detailed in [28,291. 

What is of interest in this approach as far as the aims of 

this paper are concerned, is the matrix 

i Q + PF 9 F'P 
.,tf(P) = 

G'P + S' R pG + 
which will play an essential role in the development of our 

canonical form for the LQG problem. 

Returning to the algebraic problem, it is clear that several 

transformations can act on 2 in such a way that the effect of a 

transformation on the solution of the problem can be directly 

computed. Such transformations can be viewed as "simplifying" 

the probelm of solving ( 6 )  . 
We shall work with the following set of transformations of 

9, conviently termed the Riccati group 3: 

(I) change of basis T in the state space, 

(11) change of basis V in the control space, 

(111) application of an arbitrary feedback law L, 

(IV) addition of a constant matrix I T  to P. 

Thus, the Riccati group,% equals the feedback group plus Type IV 

transformations. 

The action of 3 on the problem data is easily calculated from 

the Riccati equation ( 6 )  (hence, the nomenclature for 9) . Ex- 

plicitly, we have 

det T # 0 , 

det V # 0 , 



L arbitrary , 

There &re a few scattered papers in the literature concerning 

the choice of the simplest canonical form for 2 under a group 

~er~erated by one or more of the transformations (I) - (IV) just 
described. For example, in [ 1 8 ]  it is shown that in the single- 

Input case (G = sinqle column matrix) exactly n parameters are 

needed t~ describe the problem and these parameters may be chosen 

to bd2 the diagonal entries of the matrix Q. In other words, all 

single-input quadratic optimization problems can be reduced to 

the solution of an n-parameter family of Riccati equations plus 

the transformations (I)-(IV). More extensive results have been 

obtarn;3d ~ezently in [ I  9 1  . 

4. Ijyvari-ants and LQG Canonical Forms 

Th? triangular factorization of the matrix - 4 P )  as 

F~i~ediately leads to the conclusion that the optimal feedback 

function K(t) is related to the triangular factors3-as 

In addition, it is easily verified that -6 = $ $ I .  Eence, solution of 

Lhe L(2G problem would be greatly simplified by using the Riccati 

grr..up to transformdi" to 3 form which facilitstes the triangular 

de~or~~~ositic?~ of .,H(P) . Since there are also d e 2 p  connections between 



the triangular factors and the "generalized X-Y" functions [20], 

such an approach will also shed new light on these important quan- 

tities. Thus, our plan is clear: we shall utilize the Riccati 

group to reduce,d(P) to a simpler form, at the same time obtain- 

ing an LQG-canonical form for the matrices comprising 9. 

We begin with the problem 

and assume that Po is not a solution of the algebraic Riccati 

equation (this assumption is only for convenience and its removal 

will be discussed later). In view of our desire to triangularly 

factor ,d(P) , we shall use the transformation group ./A to bring 6 

to a form as near diagonal as possible. 

Application of Type (I) and (11) transformations gives 

Further, use of Type (111) and (IV) transformations leads to 

"*;-rv(Po) =, $-11 (Po) 

where the Roman numeral subscripts denote the form obtained after 

application of the indicated sequence of transformations. I 
In light of (7) - ( 6 )  , we choose the Type (I) transformation I 

T such that 

T 8 -IQT-' = diag (fl) , 
P 

where the subscript p indicates that the first p positions equal 



+ I ,  the remainder being zero, p = ra-nk Q. Such a choice of T is 

always possible since I:! is symmetric [ 2 1 ] .  

Next, we select the Type (11) transformation V so that 

As with T, such a choice is possible since, by the original 

i3ssumpt.i0n, R 3 0 .  As a result. of these choices we have 

where I is the I ! L % ~ ~ I  identity matrix. m 
The feedback transformation law L is now selected in order to 

"zero out" the off-cliaqonal blocks. This involves selecting L such that 

or, since R - 
1-11 - Im' 

- 1 L = V '  (G'P +St) T - 1 
0 I- I I 

Finally, we come to the choice of the Type (IV) transfor- 

mation M. Recalling ( 8 )  and the choices of TI V, and L , for 
arbitrary M = M '  we find that 

Thus, we choose M such thac 

(i) MGI--III = 0 (this implies rank M - < n - m), 



where t h e  e n t r i e s  i n  X I  and X 2  a r e ,  i n  g e n e r a l ,  non-zero  e l e m e n t s  

d e t e r m i n e d  by M .  Such a c h o i c e  o f  M i s  c l e a r l y  p o s s i b l e  s i n c e  

o n l y  t h e  l a s t  m columns s a y ,  and m rows a r e  f i x e d  by c o n d i t i o n  

( i )  and Po i s  n o t  a  s o l u t i o n  o f  t h e  a l g e b r a i c  R i c c a t i  e q u a t i o n .  

Thus,  t h e  f i n a l  form f o r .  t-? i s  

where t h e  f i r s t  d i a g o n a l  m a t r i x  h a s  p  non-zero  e n t r i e s ,  t h e  

second  h a s  n-m non-ze ro  e n t r i e s .  

The i n v a r i a n t s  o f  3 unde r  t h e  a c t i o n  o f  t h e  R i c c a t i  g r o u p  1 
scan now b e  s e e n  t o  b e  

a )  t h e  e n t r i e s  o f  t h e  m a t r i c e s  X 1  and X 2 ,  

and  

b )  t h e  e n t r i e s  o f  t h e  m a t r i x  ( P o )  I - IV ,  i . e . ,  t h e  numbers 
- 

T I  ' P ~ T - '  + M. 

T h i s  i s  i n  c o m p l e t e  ag reemen t  w i t h  a  c o u n t  o f  t h e  number o f  I 
" d e g r e e s  o f  f reedom" i n  g v e r s u s  t h a t  i n . 9 ,  i . e . ,  t h e  e n t r i e s  i n  

9 r e p r e s e n t  N1 = n 2  + nm + n ( n + 1 ) / 2  + m(m+1)/2 +mn + n ( n + 1 ) / 2  i n d e -  

p e n d e n t  q u a n t i t i e s  w h i l e  i n  9 t h e r e  a r e  M 2  = n2 + rx2 + mn + n  (n+1)  /2 

numbers t o  b e  c h o s e n  i n  t h e  t r a n s f o r m a t i o n s  ( I ) - ( I V ) .  Thus ,  

N1 - N2 = m(m+l ) /2  + rnn - m2 + n ( n + 1 ) / 2 ,  p r e c i s e l y  t h e  number o f  



entries in the matrices XI, X2, and (PO) Thus, the fore- 

going choices of TI V, L, and M have removed as many degrees of 

freedom as possible from the problem 9. 

Since the transformations (I)-(IV) above are determined 

only by the original problem data.9, it is manifestly clear that 

the elements X1, X2, and (Po)I-IV form a complete set of invariants 

for 9 under 9, i.e., any two problems g1 and Q2 leading to the 

same set of invariants lie on the same 9orbit. It only remains 

to verify that this set of invariants is independent, i.e., that 

some z? can be reconstructed given the elements of X1, x2, 

(Po) I-IV and a set of transformations from 9. 

Determination of 9 is carried out in the following steps: 

1. Choose arbitrary, but fixed elements T, V, L such that 

det T # 0, det V # 0. Also, select M = M' such that rank !1 - < n - m. 
2. Determine Po from the invariants (Po) I-IV and the trans- 

formations M and T; explicitly, 

3. Determine Q from diag (+I) and T, i.e., 
P 

4.  Using the invariants X1 and X2, determine F from MI T, 

L, Po, and diag (31) by solving the equation 
P 



Here w e  h a v e  made u s e  o f  t h e  r e q u i r e m e n t  t h a t  M G I - I I I  = 0 i n  

o r d e r  t o  remove G f rom t h e  c o e f f i c i e n t  o f  M.  The a b o v e  e q u a t i o n  

i s  u n i q u e l y  s o l v e d  a s  a  l i n e a r  s y s t e m  f o r  t h e  components  o f  F .  

5. Dete rmine  t h e  p r e c i s e  e n t r i e s  i n  G I - I I I  by  s o l v i n g  t h e  

s y s t e m  

( R e ~ a l l  t h a t  s t e p  4 was c a r r i e d  o u t  knowing o n l y  t h a t  t h e  columns 

Of G ~ - ~ ~ ~  
a r e  c o n t a i n e d  i n  t h e  k e r n e l  o f  M.  The s econd  e q u a t i o n  

above  u n i q u e l y  d e t e r m i n e s  t h e s e  co lumns . )  Knowing G 1-111' 
w e  

c a l c u l a t e  G a s  

6 .  De te rmine  R a s  

R = V ' V  . 

7 .  De te rmine  S f rom t h e  r e l a t i o n  

which ,  a f t e r  a mino r  c a l c u l a t i o n ,  y i e l d s  

The f i n a l  p o i n t  t o  c o n s i d e r  i n  c o n n e c t i o n  w i t h  t h e  i n v a r i a n t s  

g i v e n  above  i s  t h e  c a s e  i n  which  P i s  a  s o l u t i o n  o f  t h e  a l g e b r a i c  0 - 
R i c c a t i  e q u a t i o n  

Upon e x a m i n a t i o n  o f  t h e  s t e p s  l e a d i n g  f rom t h e  o r i g i n a l  p rob l em 

Q t o  t h e  c a n o n i c a l  fo rm o f , d ,  it is  e a s i l y  v e r i f i e d  t h a t  t h e  

c h o i c e  o f  L i n d i c a t e d  above  l e a d s  t o  t h e  r e s u l t  



Thus, if Po solves the algebraic Riccati equation ( 9 ) ,  

If the pair (FIG) is controllable, then we choose 'M E 0 to 

zero out the upper left block (since controllability plus the 

particular choice of L implies F 1-111 is a stability matrix, 

i.e., the equation MF 1-111 + F;-lll M = 0 has no nontrivial sol- 

ution M). Finally, we see that this leads to 

i.e., Po being a solution of the algebraic Riccati equation implies 

that the invariants X1 and X2 vanish identically. The converse, 

namely that X1 = 0, X2 = 0, M = 0 implies Po is a solution of 

the algebraic Riccati equation, is also easily established. 

In summary, we have established the following basic result. 

Algebraic Invariant Theorem for the LQG Problem. Given the 

LQG problem data .a = (F,G,Q,R,S,P,), with Po not a solution of 
V 

the algebraic Riccati equation (9), a complete, independent set 

of algebraic invariants of % under the Riccati group2 is given 

by the m(m+1) /2 + mn - m2 + n (n+1) /2 elements of the three 
matrices X1&2, and (PO1l-IVf where X1 and X2 appear in the 

canonical matrix 



If Po is a solution of the algebraic Riccati equation ( 9 ) ,  - 

then the -- i-nvariants X I  and X vanish identically and the only 2 -- 

non-fixed invariants are the elements of (POII-IvL 

5. An Examnle: A Lur'e-Lefschetz-Letov Svstem 

In his book on the Lur'e problem [23], Letov made extensive 

use of the properties of the following completely controllable 

system 

where the J i  are all non-zero and distinct. I.?e shall compute the 

system iavariants with a quadratic cost functional having 

the system dynaaics being in the Lur'e-Lefschetz-Letov form aiven 

above. 

Following the steps given in Section 4, we first note that 

the special forms of Q and R imply that the type (I) and (11) ' 

transformations T and V may be chosen as arbitrary orthogonal 

matrices. In our case, we choose them so as to simplify the 

calcu1at:ions. Thus, for the sake of definiteness, we take 



In view of the fact that there is no terminal cost term 

(Po = 0) and no cross-coupling in the problem (S=O), the type 

I11 transformation L is 

Following selection of the type (IV) transformation M I  we 

will have 

where, since L = 0, T = I, V = I, 

We now show that it is possible to select M such that 

where the vector XI and the scalar X 2  will be the non-zero in- 

variants of the problem. 

Upon partitioning M as 



where M is the size (n-1) x (n-1) , while M12 is (n-1) xl, and 1 1  
M22 = scalar, we have 

where the size of G is (n-l)xl, and G2 is the scalar 1. Thus, 1 
the vector PIl2 and the scalar PI22 will be fixed by the orthogonality 

condition (1 0) , leaving M free. Letting 1 1  

we desire to choose PIl such that 

It is easily checked that 

The orthogonality condition (10) then yields immediately 



F i n a l l y ,  f rom t h e  r e p r e s e n t a t i o n  

w e  o b t a i n  t h e  i n v a r i a n t s  a s  

- 1  + X 2 = M  A 
22  n  + 'n"22 

Hence, 

A s  a  r e s u l t ,  w e  see t h a t  t h e  a l g e b r a i c  i n v a r i a n t s  o f  t h e  

problem a r e  t h e  e n t r i e s  o f  X 1  and  X 2 ,  t o g e t h e r  w i t h  t h e  e n t r i e s  o f  

(Po) 1-11, = T I - ~ P ~ T - '  + M 

The f i n a l  c a n o n i c a l  form f o r . & i s  



Knowing T, V, L, and M I  it is also now a simple matter to work 

out the induced canonical forms for F, G, Q, R, S, and P 0 ' 

6. Discussion 

Several points surrounding the foregoing results suggest 

themselves for further investigations which, regrettably, require 

a development beyond the confines of this paper. We briefly 

touch on a selection of topics which seem particularly pertinent. 

1 j  Connections with Generalized X-Y Functions 

The matrix,d(P) has been studied elsewhere [20] in ccnnection 

with its role in the development of "low-dimensional" algorithms 

for computing the optimal feedback gain function for the LQG pro- 

blem. In particular, when the system data 2 consists of constant 

matrices, it has been shown [20] that by factoring ,& into its 

symmetric triangular factors, i.e., 

it is possible to identify (modulo an orthogonal transformation) 

the entries @ and r with the generalized X and Y functions dis- 
cussed in [9-111. In fact, it was this identification which, 

by a rather tortuous route, led to the study of.4in connection 

with the problem of invariants. 

It would be of interest to pursue this matter further, at 

least to the extent of explicitly calculating the associated 

"canonical" X-Y system with an eye toward further simplification 

of the LQG problem. 



2) Geometrf~c - Structure of :2 -- 

As pointed out in [22], it is somewhat naive to confine in- 

variant-theorctic studies of system problems solely to obtaining 

the invariants and the associated canonical form. Such an approach 

details only the algebraic side of the picture; however, there 

is also a geometric side which must be pinned down. A complete 

understanding of the geometric structure of the orbits of : '  

under ,#will be essential to any hope of obtaining a global theory 

of the LQG problem. 

The above point is already made clear by analogy with the 

far simpler problem of classifying the orbits of the set of 

nxnm matrices under the group consisting of left multiplication 

by a nonsingular matrix. We have seen that, in this case, the 

orbits have the geometric structure of a quasipro jective variety, 

the so-called Grassmann variety. A similar type of geometric 

structure must be established for the orbits of 2 under.&. 

Enlargement of 9 

The canonical form presented above for the LQG problem was 

derived by using up all allowable actions of the Riccati group,%. 

The only way to obtain a "simpler" form (i.e., one with fewer 

parameters) is to enlarge the transformation group to include 

more operations. Unfortunately, it is not at all clear how to 

meaningfully carry out this prescription. Presumably, whatever 

additional transformations are employed will have physical sig- 

nificance in the context of the LQG set-up and, consequently, 

must leave the Riccati equation invariant. This is clearly a 

problem meriting additional study. 

4) Applications to Other Areas 

The theory presented here is, in actuality, not so much an 

algebraic theory of control processes but rather it is an algebraic 

theory of the matrix Riccati equation. Clearly, given any matrix 

Riccati equation 

= A + BR + RC -k RDR , R(a) = F , 



w i t h  A = A ' ,  B = C ' ,  D = D l ,  F  = F ' ,  w e  c a n  form a  c o r r e s p o n d i n g  

LQG problem.  

However, t h e r e  a r e  many a r e a s  o f  m a t h e m a t i c a l  p h y s i c s  and 

e n g i n e e r i n g  i n  which  a  m a t r i x  R i c c a t i  e q u a t i o n  w i t h o u t  t h e  above  

symmetry p r o p e r t i e s  p l a y s  t h e  c e n t r a l  r o l e .  W e  n o t e  t h e  t h e o r i e s  

o f  n e u t r o n  t r a n s p o r t  and a t m o s p h e r i c  r a d i a t i v e  t r a n s f e r  a s  p a r -  

t i c u l a r  examples  i n  t h i s  r e g a r d  [ 2 3 - 2 7 1 .  I n  a d d i t i o n ,  numerous 

m a t h e m a t i c a l  q u e s t i o n s  r e g a r d i n g  two-po in t  boundary  v a l u e  problems 

and Fredholm i n t e g r a l  e q u a t i o n s  i n v o l v e  a  s i m i l a r  R i c c a t i  e q u a t i o n  

a s  a  v i t a l  p a r t  o f  t h e  problem f o r m u l a t i o n .  

I n  summary, t h e  a l g e b r a i c  r e s u l t s  p r e s e n t e d  h e r e  g i v e  t h e  

p o s s i b i l i t y  f o r  c l a s s i f y i n g  a  wide  v a r i e t y  o f  p rob lems  i n  mathe- 

m a t i c s  and p h y s i c s  and  f o r  s t u d y i n g  t h e i r  i n h e r e n t  a l g e b r a i c  and 

g e o m e t r i c  s t r u c t u r e .  
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