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Abstract 

The paper presents an overview of various modeling paradigms applicable to the analysis of complex decision­
making problems that can be represented by large non-linear models. Such paradigms are illustrated by their 
application to the analysis of a model that helps to identify and analyze various cost-effective policy options aimed at 
improving European air quality. Also presented is the application of this model to support intergovernmental 
negotiations. © 2000 Elsevier Science B.V. All rights reserved. 
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I. Introduction 

Recent developments in Operations Research 
(OR) provide better opportunities to support var­
ious stages of decision-making processes that re­
quire the analysis of a complex problem that can be 
represented by a mathematical model. However, 
such opportunities can easily be misused, especially 
in cases of an analysis of a complex large-scale 
problem. Therefore, it is important to discuss a 
number of methodological and technical issues 
pertaining to the specification and analysis of large-

Tel +43-2236-8070; fax: +43-2236-71-313. 
E-mail address: marek@iiasa.ac.at (M. Makowski); 
URL: http://www.iiasa.ac.at 

scale complex models - which are of a broader 
interest to OR practitioners - and to illustrate them 
using a relevant real-world problem. Such a prob­
lem is provided by the Transboundary Air Pollu­
tion (TAP) Project at llASA, which has over 
several years developed the RAINS models used to 
support international negotiations. The models 
help to identify cost effective measures aimed at 
improving the air quality assessed by several indi­
cators at approximately 600 receptors throughout 
Europe. The resulting models are large (over 
25,000 variables) and non-linear. Moreover, sup­
porting international negotiations requires various 
types of analysis of a complex model, as well as 
interaction with its users. Both help to determine 
the requirements for the model-based decision 
support methods applicable in this case. The first 
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requirement is the domain of the developers, who 
have to design and implement a mathematical 
model, relevant data bases and software tools for 
various types of model analysis. The second in­
volves making the model specification acceptable 
to the users and the results of various analysis 
comprehensible to them, as well. Both these do­
mains are closely related. However, due to space 
limitations and the complexity of the problems 
related to the second domain, this paper will focus 
only on the issues pertaining to the first domain. 

The paper is organized in the following way. 
Section 2 provides a descriptive summary of the 
problem of analyzing cost-effective policies aimed 
at improving European air quality. Section 3 
summarizes basic concepts of model-based deci­
sion support. An overview of various modeling 
paradigms that pertain to the model specification 
and analysis is presented in Section 4. A more 
formal discussion of the RAINS core model spec­
ification is presented in Section 5. Various prob­
lems of a more general interest, and related to 
model generation and preprocessing are discussed 
in Section 6. Section 7 illustrates the application of 
selected methods of model analysis discussed in 
Sections 3 and 4 to the RAINS model. Finally, 
Section 8 presents an overview of the role of 
the RAINS model for supporting international 
negotiations . 

2. Problem description 

The interest in the air quality has intensified in 
recent years because of the increasing evidence 
that acidification, eutrophication and ground-level 
ozone can have adverse effects on crops, trees, 
materials and human health. Moreover, substan­
tial progress has been made in quantifying the 
environmental sensitivities of various ecosystems. 
The corresponding threshold values have been 
determined on a European scale, focusing on 
acidification and eutrophication, as well as on 
vegetation damage from tropospheric ozone. In 
many parts of Europe, the critical levels/loads of 
air pollution indicators are exceeded, thus requir­
ing measures to improve the air quality in these 
areas to help protect the relevant ecosystems. 

Several international agreements have been 
reached in Europe over the last decade to reduce 
emissions. Most of the current agreements deter­
mine the required abatement measures solely in 
relation to the technical and economic character­
istics of the sources of emissions, such as the 
available abatement technologies, costs, historic 
emission levels, etc. However, to achieve an overall 
cost-effectiveness of strategies, the environmental 
benefits of the proposed measures must also be 
taken into account. To this end the Transboundary 
Air Pollution (TAP) Project at IIASA has for 
several years been developing - in collaboration 
with several European institutions - the RAINS 
models that have been used to support the negoti­
ations of international agreements on controlling 
air pollution in Europe. The RAINS model helps to 
identify cost effective emission control policies 
aimed at keeping the values of the previously 
mentioned indices below levels determined for each 
of approximately 600 receptors across Europe. 

The structure of the current version of the 
RAINS model is outlined in Fig. I. The decision 
variables are composed of the levels of emissions 
of NH3 (ammonia), SO, (sulphur oxides), NO., 
(nitrogen oxides) and voe (volatile organic 
compounds) in each country, which imply the 
corresponding emission control policies. Each type 
of emission has for each country an associated cost 
function that relates the emission level with the 
corresponding cost of reducing the emission to a 
certain level. Therefore, cost-effective measures 
can be calculated by a minimization of the cost 
function that corresponds to the sum of costs re­
lated to reductions of all types of considered 
emissions in all countries. In order to determine 
the corresponding environmental impact, emission 
levels are used as inputs to the three dispersion 
submodels and to the ozone formation submode!. 
Studies of the impact of ozone, acidification and 
eutrophication have resulted in the establishment 
of critical levels for various air-quality indicators 
in order to protect agricultural crops and forests. 
These are determined using a long-term exposure 
measure, called the accumulated excess. Conse­
quently, nine such exposure indices (six for ozone, 
two for acidification and one for eutrophication) 
has been defined for each of approximately 600 
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Fig. I. The structure of the RAINS model of acidification and tropospheric ozone. 

grids in Europe, and accumulated excess PWL 
(piece-wise linear functions) are defined for each 
grid and for each type of acidification and eutro­
phication excess. 

The atmospheric dispersion processes over 
Europe for NH3 , SO,, NO, and VOC compounds 
are modeled using results of the European EMEP 
model , developed at the Norwegian Meteorologi­
cal Institute and described e.g. by Olendrzyriski 
et al. (2000). However, the EMEP model is far too 
complex to be used for optimization, or even for 
many scenario analyses. Therefore, an essential 
requirement of an integrated assessment of the 
RAINS model is a simplified but reliable descrip­
tion of the dispersion processes in order to repre­
sent the source-receptor relationships involved. It 
is possible to envisage several ways of condensing 
the results of more complex models to achieve this. 
One approach is to use statistical techniques to 
build a simplified model based on the results ob­
tained from a complex mathematical model for a 
large number of emission reduction scenarios. 
Such an approach has been implemented for, and 
is currently used by, the RAINS model (cf. Eq. 10, 
p. 232) . Another approach to the specification of a 

simplified ozone model is based on using fuzzy­
rules generation methodology and is presented by 
Ryoke et al. (2000). Of course, using simplified 
source-receptor relationships between the precur­
sor emissions and the various thresholds of cor­
responding levels/loads results in a lesser accuracy 
than that assured by the EMEP photo-oxidants 
model. Therefore, selected results obtained from 
the simplified model are compared with results 
from the EMEP model. This is done by running 
the EMEP model for the emissions obtained from 
the RAINS model, and comparing the levels/loads 
values provided by both models. 

The outline presented above illustrates the 
challenges created by the problem. The corre­
sponding model is complex, large and non-linear. 
Its implementation triggers a number of method­
ological and technical issues related to the speci­
fication and analysis of such models. In particular: 
• In order to adequately meet the requirements 

for model analysis, a problem-specific generator 
has been developed and coupled with three non­
linear solvers. An object-oriented programming 
approach to model generation and analysis has 
been applied. 
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• The generation of the model requires processing 
a large amount of data coming from various 
sources. For efficient and portable handling of 
data, the public domain library HDF, developed 
by the National Center for Supercomputing Ap­
plications, Illinois, USA (URL: http:// 
hdf. ncsa . uiuc. edu/HDF5), has been 
applied. 

• A representation of environmental targets by 
hard constraints would result in the recommen­
dation of expensive solutions, hence soft con­
straints (with compensation for the violation 
of original targets) are specified. 

• The resulting optimization problem typically 
has non-unique solutions. More exactly, it has 
many very different solutions with almost the 
same value of the original goal function. These 
correspond to various instances of the mathe­
matical programming problem that differ very 
little. Therefore, a technique called regulariza­
tion was applied to provide a suboptimal solu­
tion which has additional properties specified 
by a user. 

• A minimization of costs related to measures 
needed for improvement of air quality is a main 
goal; however, other objectives - such as robust­
ness of a solution, trade-offs between costs and 
violations of environmental standards - are also 
important. Therefore, a multi-criteria model 
analysis has been applied to this case study. 

• Some instances of the model contain over 
25,000 variables and constraints, therefore its 
preprocessing is essential for a substantial re­
duction of computation time. Section 6.4 shows 
how much one can gain by a proper reformula­
tion and preprocessing of a large non-linear 
model. 
These issues are related to various modeling 

paradigms, and therefore are of a broader interest 
to OR practitioners. 

The main message of this paper is to stress the 
often forgotten fact that no single modeling par­
adigm can be successfully used to analyze a com­
plex problem, especially if the results of such an 
analysis are used to support various elements of 
real decision-making processes. There is a number 
of rules that have to be observed during the 
specification of a model in order to provide useful 

results. Also, various techniques of model analysis 
should be used instead of just the classical ap­
proaches which are focused and driven either by 
simulation or optimization paradigms. 

3. Model-based decision support 

The problem outlined in Section 2 illustrates a 
situation where making a rational decision re­
quires access to, and the processing of, a large 
amounts of data and logical relations that cannot 
be replaced by intuition. Moreover, it is also 
practically impossible to examine even the possible 
range of all feasible alternatives. Therefore, in such 
situations, one develops a mathematical model 
that can adequately represent the decision problem 
and a problem specific software, conventionally 
called a Decision Support System (DSS). 

Wright et al. (1998) provide a survey of more 
than 200 modeling practitioners on the use of 
various types of models in US organizations. 
Among the four most desirable requirements, 
two are related to data processing (automated 
access to the model data, and automated error 
and consistency checking), while the other two 
(model integration and model formulation) are 
concerned with models. This justifies the need to 
develop methods and tools for model generation 
and analysis. However, in order to analyze ra­
tional approaches to model development and 
analysis, it is worth considering some funda­
mental issues pertaining to the relationship be­
tween the needs of decision-making support and 
the opportunities that can be offered by OR 
methods and tools. 

In this paper, we will consider a model-based 
DSS, which uses an underlying mathematical 
model. Such a mathematical model is built for a 
part of the Decision-Making Process (DMP), 
where it is possible to implement a mathematical 
model that is good enough to represent the avail­
able (though often quite complex) knowledge and 
experience of a user in order to support his/her 
intuition. A user is a Decision Maker (DM), 
whether an individual analyst or a group of ex­
perts that provides advises. In this paper, we will 
use the terms user and DM interchangeably. 
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Model-based decision-making support is concep­
tually distinct from the more traditional data-ori­
ented perspective of decision support. We do not 
claim that the approach discussed in this paper is 
better than this more traditional approach, rather 
we simply point out that quite often the DMP 
requires not only data processing in the traditional 
sense, but also the analysis of a large number of 
logical or analytical relations and the processing of 
- in the sense of solving an underlying mathe­
matical model - large amounts of data. The word 
sohing is used here for various approaches to the 
analysis of mathematical models. In such situa­
tions, a properly designed and implemented mod­
el-based DSS not only performs cumbersome data 
processing, but it also provides relevant informa­
tion that enables a DM to concentrate on those 
parts of the DMP that cannot be formalized . 

3. I. General concepts 

The following assumptions are typically 
adopted for a model-based DSS: 
• A well-defined part of a DMP (for which a 

DSS is to be implemented) can be represented 
in the form of a mathematical model. Decisions 
have quantitative characters and therefore can 
be represented by a set of model variables, 
hereafter referred to as decisions - for the sake 
of brevity, we often call decision variables sim­
ply decisions - x E £ ,., where £, denotes a space 
of decisions . 

• The model defines a set of feasible decisions 
Xii ~ £ " Therefore x is fea sible, iff x E X0 • The 
set X0 is usually defined implicitly by a specifica­
tion of a set of constraints that corresponds to 
logical and physical relations between the vari­
ables. The feasibility of decisions given by a 
DM should be assessed. Decisions computed 
by a DSS should be feasible, if a feasible solu­
tion exists. 

• The model can be used for predicting the conse­
quences of decisions proposed by a DM or com­
puted by a DSS. The prediction of the 
consequences is represented by a mapping 
y = f(x ) E £ .. , where Er is a space of conse­
quences (outcomes) of the decisions. 

• The consequences of different decisions x are 
evaluated by values of criteria q E Eq, where Eq 
is a space of criteria (sometimes referred to as 
outcomes, goals, objectives, performance indi­
ces, attributes, etc.). Usually £ 9 is a subspace 
of£,, that is, the DM might select some criteria 
q; between various outcomes Yi· Sometimes 
some of the decision variables x are also used 
as criteria. A partial preordering in Eq is usually 
implied by the decision problem and has ob­
vious interpretations, such as the minimization 
of costs competing with the minimization of pol­
lution. However, a complete preordering in Eq 
usually cannot be given within the context of a 
mathematical model. 
The essence of decision-making support is 

to help a DM to select the best decision among 
all feasible decisions. Such a decision is typically 
represented by a vector of variables, and is 
denoted further on by x. In the case of the 
RAINS model, it is a set of emission levels for 
each type of pollutant and for each country, 
optionally it also includes the accepted violations 
of certain environmental targets, see Section 5.2 
for details . Therefore, the key problem for an 
adequate formulation and analysis of a model 
aimed to support DMP is to understand what the 
best means to the DM who actually makes a 
decision. The problem of a rational choice of a 
decision has been extensively discussed in a 
number of publications, and even a brief sum­
mary of this discussion is beyond the scope of 
this paper. A discussion of different approaches 
to this problem can be found e.g. in Wierzbicki 
et al. (1999) 

3.2. Different vieu•s on DSS 

This section concentrates on the different views 
related to model analysis. This problem was first 
raised by Ackoff (1979), who stressed that many 
DSS are driven by optimization techniques, which 
means that the user has only partial control of the 
way in which analysis of the model is done. 

From the (traditional) OR perspective, it is 
natural to formulate a mathematical programming 
problem in the form 
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x = argmin Y-(x) 
xE.\'o 

(I) 

and solve it. A concise formulation of (I) may be 
misleading for those who do not know that, fre­
quently, solving a mathematical programming 
problem is a challenging task. One should be 
aware of both the scientific values and the re­
sources required to find and implement an algo­
rithm that can provide a (correct!) solution x from 
a set X0 that minimizes the objective Y-(x), and 
uses possibly small computer resources. 

However, a DM has a completely different 
perspective. Let us briefly summarize some ele­
ments of this perspective (typical for non-engi­
neering applications of DSS) that differs from the 
traditional OR way of formulating and solving a 
mathematical programming problem: 
• A unique specification of both a mathematical 

model and of one criterion that adequately rep­
resents a preferential structure of a DM is very 
difficult, if at all possible, for most real-life situ­
ations. Therefore, a series of cycles composed of 
an analysis of the results provided by a solution 
of the model and a modification of the preferen­
tial structure of the DM is the most typical de­
sired activity of the analysis of any complex 
problem. 

• Models are simplifications of reality, and opti­
mization is limited to models that include an 
objective that is always a simplification of a 
preferential structure of the DM. Therefore, 
the optimal (for a given representation of a 
preferential structure) solution of a model 
may not necessarily be optimal (i .e. the best) 
in reality, as perceived by a DM. It may be de­
sirable to modify an "optimal" solution, in or­
der to take into account some factors not yet 
accounted for in the underlying model (very of­
ten some are deliberately not included). More­
over, a DMP is typically composed of 
subproblems analyzed/solved independently; 
therefore, the overall optimum is usually not 
composed of optima computed separately for 
each sub-problem. 

• DSS should support various ways of learning 
about the problem, in particular an examination 
of the consequences of the implementation of 
given values of decision variables. This should 

include the possibility of fixing the values of 
variables and/or goals, modification of a set of 
goals (both treating goals as soft constraints 
and vice versa, as well as changing the defini­
tions of goals), and looking for a suboptimal 
solution with certain additional properties. 
Fixing values of decision variables should not 
be implemented as constraints; instead, the 
regulari:ation or the so-called inverse simulation 
techniques should be used. Moreover, often 
selected constraints should be optionally treated 
as so-called soft constraints and their violations 
should be considered as one of the criteria. 

• DM usually prefers to be sure that his sover­
eignty in making decisions (for which he is re­
sponsible) is not jeopardized by a computer. 
The main reason is psychological. For example, 
it is a commonly known fact that even the devel­
opers of DSSs supporting choice (out of a given 
set) of an alternative do not necessarily follow 
optimal solutions suggested by their own DSS 
when solving a personal problem. However, 
they do use the DSS to analyze of the problem. 
Therefore it is important that a DM - who rare­
ly is also a computer guru nor does he/she want 
to devote a substantial amount of time digging 
into hundreds of pages of software documenta­
tion - clearly understands all assumptions made 
for the model specification and important func­
tions of the DSS. 
In addition, it is clear that optimization in DSS 

should have quite a different role than the function 
of optimization in some engineering applications 
(especially real-time control problems) or in very 
early implementations of OR for solving well­
structured military problems. This point has been 
clearly made by Ackoff (1979). 

Optimization would be better accepted outside 
the OR community if users would be able to treat 
optimization as a tool for selecting a number of 
solutions that have certain properties, and if sup­
port for comparing such solutions from various 
perspectives preferred by a DM would be widely 
available. This is, however, contrary to the tradi­
tional way of using OR methods, as characterized 
by Chapman (1992), for solving a problem in the 
following five stages: describe the problem, for­
mulate a model of the problem, solve the model, 
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test the solution, implement the solution. It is also 
contrary to another traditional OR perspective 
that implies that an optimal solution is also the 
best available solution, which in turn implies that 
there is neither much room nor need for human 
decision-making. Also, text books on DSS ad­
dressed to managers, see e.g. Emery (1987), often 
treat optimization merely as a tool for providing 
tire solution. To make the situation worse, many of 
these books still present only single-objective op­
timization, whereas multi-criteria model analysis, 
when properly used, remarkably softens this 
perspective. 

One should point out another danger related to 
generate tire best solution through a formulation of 
an optimization problem. It is obvious, that one 
can make (by adding appropriate constraints) any 
feasible solution to be optimal for a given objective 
function. Therefore, a common (mis)use of opti­
mization is to generate a sequence of problems 
based on analysis of previous solutions and to 
sequentially add constraints that try to reflect 
dissatisfaction of a user who analyzes presented 
solutions in a corresponding sequence. In this way 
the set of feasible solutions of original model is 
decreased by introducing constraints that corres­
pond to the preferential model of the user. How­
ever, such a procedure applied to a complex 
problem is likely to leave many rational solutions 
beyond analysis. 

4. Modeling paradigms 

The organization of this section is in response to 
Dolk (2000), who spells out an important obser­
vation about the paradigm-centric nature of MS/ 
OR community: Practitioners in tire MS/OR mod­
eling 1\'orld rarely i;enture outside tire particular 
paradigm in H'lriclr they were trained. Thus, once an 
opti111i::.ation person, ahrnys an optimi::.ation person. 
. . . Tire rnlue of seeing beyond one's own modeling 
discipline to problems of "modeling in tire large" does 
not yet seem to be strongly embraced. This section 
tries to link the modeling paradigms that pertain to 
model specification with two - often perceived as 
competing and exclusive - paradigms for model 
analysis, namely simulation and optimization. 

From both methodological and practical points 
of view, it is rational to discuss and implement a 
model-based DSS in two stages: 
• First, develop a core model that implicitly de­

fines a set of feasible solutions X0 • The core 
model should include all logical and physical re­
lations between variables but should not contain 
any constraints corresponding to the preferen­
tial structure of the user. 

• Second, provide a methodology and tools for 
the analysis of the model. This can be done in 
different ways, e.g. by simulation, by some ex­
tensions of single-criterion optimization, or by 
multi-criteria model analysis. 
These two stages are discussed in the following 

subsections. 

4.1. Model specification 

When a model-based DSS is desired, it can only 
be achieved for a problem that is understood well 
enough to build a mathematical model that can 
adequately represent a decision situation. A deci­
sion situation is adequately represented when a 
corresponding core model can be used for pre­
dicting and evaluating the consequences of deci­
sions. A more detailed discussion about the 
structure of a core model can be found in Wie­
rzbicki and Makowski (1992). Here, we will only 
outline the structure and basic requirements for a 
core model that implicitly defines a set of feasible 
solutions X0 (cf. Section 3.1). Such a model is 
typically composed of: 
• Decision variables that represent actual deci­

sions (alternatives, choices, options, etc.). 
• Outcome variables (often called goal functions 

or performance indices) that can be used for as­
sessing various elements, such as costs and air 
quality indices, to determine the quality of a so­
lution (i.e. consequences of implementation of 
given or computed values of decision variables) . 

• Various intermediate and parametric variables, 
such as balance and/or state variables, resources, 
external decisions, i.e. those not directly con­
trolled by the DM. 

• Constraining relations between variables 
(inequalities, equations, etc.) that indirectly 
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determine the set of feasible decisions. Some of 
the constraints may reflect the logic of handling 
events represented by variables (e.g. assuring 
that exactly one technology is selected for each 
installation). 
Building a mathematical model is a complex 

task that requires both a good understanding of 
the problem and an in-depth knowledge of model­
building methodology. Moreover, the specification 
of the model to be used in a model-based DSS 
should also meet additional requirements. Such 
requirements are discussed in more details by 
Makowski (1994b). Here we only summarize 
the key elements of an appropriate model 
specification. 

A core model implicitly defines a set X0 that 
contains all feasible solutions x. Clearly most of 
the x E X0 are not rational, therefore, only a small 
part of X0 is subject to various analyses that 
eventually lead to a selection of a small set of 
"interesting" solutions. However, this part is typ­
ically composed of a continuum of very different 
solutions. The key point of an appropriate model 
specification and analysis is to make it possible to 
analyze all "interesting" solutions. Whether a so­
lution is "interesting" or not, depends on the 
preferential structure of the user. However, many 
practical examples clearly show that such a struc­
ture changes substantially during the learning 
phase of model analysis (therefore, its adequate 
representation in the core model is hardly possi­
ble) . This is the main reason why a preferential 
structure of a user should not be included in the 
core model , because including acceptability con­
ditions or a preferential structure into a definition 
of X0 often results in implicit rejection of a large 
number of feasible solutions. Such a narrowing of 
X0 will mislead the user, because in such a case s/he 
cannot evaluate all feasible solutions. Therefore, 
the specification of a model that defines X0 should 
not include any relations that represent a prefer­
ential structure of a DM. 

A core model specification should provide the 
possibility to treat selected sets of constraints as 
so-called soft constraints. In order to illustrate this 
point, let us consider the following trade-off in the 
RAINS model , a model which helps identify and 
evaluate different policies of air pollution reduc-

tions and the related costs, as well as the corre­
sponding quality indices. It is obvious that a 
specification of constraints for air quality indices 
that represents the strict environmental standards 
for all grids leads to solutions that are too ex­
pensive. Moreover, setting values of constraints 
too tightly would result in restricting the analysis 
of the problem to a small part of feasible solutions, 
often resulting in an empty set of feasible solu­
tions. The typical advice in such situations is to 
specify two types of constraints, so-called hard and 
soft constraints which correspond to must and 
should types of conditions, respectively. For soft 
constraints, any violation of the original con­
straints is in fact controlled, and helps to deter­
mine trade-offs between costs and environment 
quality, as demonstrated by the RAINS core model 
formulation presented in Section 5.4.2. In fact, 
dealing with soft constraints can easily be done 
within multi-criteria model analysis, as described 
e.g. by Makowski (1994b). 

The specification and parameters of the core 
model must not be changed after a verification and 
validation of the model is done. Therefore, each 
instance of the mathematical programming prob­
lem generated and solved during the model anal­
ysis is conceptually composed of two parts (see 
Section 7 for details): 
• A large, constant core model. This part is devel­

oped and verified before an actual analysis of 
the problem begins. 

• A part that corresponds to the current specifica­
tion of goals and conditions set by the user. This 
specification of the preferential structure of the 
user is changed, often drastically, for each 
scenario. 
A proper implementation of such an approach 

makes it possible for the DM to analyze feasible 
solutions that correspond best to various specifi­
cations of his/her preferential structure. Changing 
this structure is the essence of model analysis and 
of model-based decision support. An additional 
bonus comes from the fact that there always exists 
a feasible solution of the underlying mathematical 
programming problem, which is a prerequisite for 
an analysis of complex models. 

Finally, we should point out that building a 
model requires collection, processing and verifi-
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cation of data. The famous saying "garbage in, 
garbage out" implies that the problem of data ac­
curacy should not be overlooked. Fortunately, the 
recently emerging data warehouse technology, see 
e.g. Dolk (2000), provides much better tools for 
properly handling data than the well-established 
DBMS. The user need not worry about the pos­
sible range of quantities (which usually have an 
impact on computational problems) because this 
should be accounted for by the DSS. However, a 
designer of a DSS should make sure that only the 
substantial elements are included in the model, and 
that all such elements are included. A more de­
tailed discussion on specification of a core model 
can be found e.g. in Makowski (l 994b ). 

The value of a mathematical model as a decision 
aid comes from its ability to adequately represent 
reality. Therefore, there is always a trade-off be­
tween the requested accuracy (realism) of the 
model and the costs (and time) required to develop 
it , along with providing the model with the data, 
and resources needed for its analysis. Hence, the 
requested accuracy of the model should be consis­
tent with the accuracy actually needed for the 
model analysis and with the quality of the available 
data . This point is well illustrated by the specifi­
cation of the RAINS model, which includes sim­
plified dispersions and ozone formation submodels 
(see Section 2). One should notice, however, that 
these simplified submodels are based on the cor­
responding detailed models, which are used for 
checking the accuracy of results obtained from the 
RAINS model (because of the resources needed for 
running the detailed models, such a comparison 
can only be made for a limited number of selected 
scenarios; however, this is not a practical limitation 
for actual application of the simplified submodels). 

4.2. Model analysis 

One typically distinguishes two types of model­
analysis methods, which are conventionally called 
simulation and optimization. The simulation and 
optimization methods can be characterized as 
follows: 
• In simulation, decision variables are inputs and 

goals are outcomes. Therefore this technique is 

good for exploring the intuition of a DM, not 
only for verification of the model, but also for 
providing a DM with information about the 
consequences - typically represented by values 
of goals and constraints - of applying certain 
decisions. One can also consider simulation 
as an alternative-focused method of analysis 
that is oriented towards examining given 
alternatives. 

• Optimization can be considered as a goal-orient­
ed (value-focused) approach that is directed to­
wards creating alternatives. Optimization is 
driven by formulating a single objective in sin­
gle-criterion optimization, or several objectives 
in multi-criteria optimization, and looking for 
values of decision variables that optimize the 
value of the specified objective(s). Therefore, 
goals are the driving force and the values of de­
cision variables are the outcomes. 
Traditional approaches to model analysis have 

been based either on simulation or on classical 
formulations of single-criterion optimization. A 
summary of these approaches and their limitations 
is helpful for understanding the advantages of 
modern decision-support methods which extend 
and combine these approaches. Therefore, the re­
maining part of this section is devoted to sum­
marizing the following topics (which are discussed 
in the following order): 
• Relations between descriptive and prescriptive 

decision support methods and simulation­
and optimization-based model analysis meth­
ods. 

• Basic limitations of model analysis methods 
based on single-criterion optimization. 

• Two types of extensions of classical single-crite­
rion optimization approaches that are helpful in 
model-based decision support. 

• The combined use of simulation and optimiza­
tion for model analysis. 

4.2.1. Descriptive and prescriptive decision support 
There is a general agreement, see e.g. Simon 

(1990), that model-based DSS are generally of two 
types that correspond to the two ways to analyze a 
model : 
• Descriptive (sometimes called predictive), which 

are used for prediction of the modeled system's 
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behavior without an attempt to determine de­
sired values of control variables (which in man­
agerial situations are called decisions). For the 
descriptive type of DSS, the values of decision 
(or control) variables are defined by the user. 
The expected consequences of implementing 
such decisions are evaluated by selected vari­
ables, conventionally called outcome variables 
(or performance indices or objectives or 
criteria) . 

• Prescriptive (normative), which are aimed at 
identifying the values of decision variables that 
can result in the desired behavior of the mod­
eled system. This desired behavior is usually 
evaluated with the help of goals (objective val­
ues, performance indices, etc.). For the pre­
scriptive type of DSS, optimization techniques 
are widely considered to be good tools for se­
lecting a solution from an admissible set that 
is considered the best. The term best corre­
sponds to the solution that provides the best 
value of a performance index (goal function , 
objective, criterion). 
In other words, a descriptive DSS helps to an­

swer questions such as "11•hat ll'ould happen if", 
whereas a prescriptive DSS supports answers for 
questions like " irhat decisions are likely to be the 
best" . 

A given mathematical model can be considered 
the kernel of a model-based DSS that is either 
descriptive or prescriptive, depending on the way 
the model is analyzed . Obviously, it is desirable to 
analyze a model in both (i .e. descriptive and pre­
scriptive) ways interchangeably. For example, be­
fore even trying to find prescriptions, one should 
verify the model in the descriptive mode. The 
model should not only conform to the formal 
specification, but also all discrepancies must be 
resolved between the intuitive judgment of the DM 
and the analytic results obtained from the model. 
Such inconsistencies show that either the model 
(the assumptions, specification, data) or the DM's 
intuition is wrong. Any conflicts between results 
provided by the model and what is perceived as 
correct by the DM must be resolved before the 
DM will trust the model, which is obviously a 
necessary but often neglected condition for the 
actual use of a DSS. 

4.2.2. Limitations of single-criterion optimi=ation 
for a model analysis 

Model analysis methods based on single-crite­
rion optimization are very appealing because they 
are simple and have been widely taught, typically 
using examples that are both simple and well­
structured. However, these methods have serious 
limitations when applied to the analysis of com­
plex problems. For such problems, in a typical 
decision situation, it is necessary to evaluate the 
consequences of a decision by more than one cri­
terion. There are two main classical approaches to 
applying a single-criterion optimization paradigm 
to the analysis of models that represent multi-cri­
teria decision-making problems: 
• Since the classical formulation of optimization 

problems allows for dealing with only one crite­
rion (or goal function), one objective is selected 
as the goal function, while the other objectives 
are converted into constraints whose values are 
treated as parameters. Although parametric op­
timization and sensitivity analysis are sound 
ideas for OR-oriented users, in practical appli­
cations - especially those dealing with large 
complex models - they are hardly applicable . 

• All criteria are aggregated into one goal func­
tion which is composed of a weighted sum of 
criteria. This quite popular approach has serious 
but seldom recognized deficiencies, which are 
discussed in details e.g. in Wierzbicki et al. 
( 1999). 
This brief summary shows that the specification 

of a single-objective function that adequately re­
flects the preferences of a model user will remain 
the major unresolved difficulty in formulating 
many practical problems into a relevant single­
criterion optimization problem. A more detailed 
discussion of various extensions of the traditional 
single-criteria optimization useful for model anal­
ysis (still within the framework of single-criterion 
optimization) is presented by Makowski (I 994a) . 
Fortunately, multi-criteria model analysis ap­
proaches offer attractive alternatives, particularly 
if they allow for an interactive redefinition of user 
preferences. The availability of modular tools, 
such as ISAAP by Granat and Makowski (2000), 
makes the implementation of such an analysis 
much easier. 
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4.2.3. Regulari=ation and soft simulation 
A large optimization problem typically has a 

non-unique optimal solution. Although this is 
theoretically rare, in practice, many problems ac­
tually have a large set of widely varying solutions 
for which the objective values differ very little, see 
e.g. Makowski and Sosnowski (1989). In most 
cases, the optimization algorithm stops when a 
current solution is recognized as optimal for a 
given set of tolerances. For problems with a non­
unique optimum, the first optimal solution found 
is accepted, so one may not even be aware of the 
non-uniqueness of the solution reported as opti­
mal. Thus, in practical applications, we are faced 
with the problem of choosing an optimal (or, in 
most cases, to be more accurate, a suboptimal) 
solution that possesses certain additional proper­
ties desired by the user. 

In the RAINS model, the stabilization of a 
solution is an important feature of the model, 
which is typical for many real-world problems. 
Namely, for problems that have (practically) 
non-unique optimal solutions, a small perturba­
tion of parameters results typically in a small 
change in the value of the goal function (or cri­
teria for multi-criteria model analysis). However, 
the new solution also tends to differ substantially 
from that of the non-perturbed problem. The 
practical implications of this are discussed in 
Section 7. 

This problem may be overcome by applying an 
approach called regulari=ation. We apply Tikho­
nov's type regularization which provides the 
(sub)optimal solution having either a minimum 
norm or a minimum distance from a given refer­
ence point. This can be achieved by adding to a 
minimized goal function the term 

(2) 

where £ is a small pos1t1ve number, = a vector 
composed of a subset of variables and z a vector 
composed of the corresponding desired values of 
these variables . The choice of z depends on the 
desired properties of the solution. If one knows the 
desired values of decision variables, then those 
values should be used for defining the vector z. If 
such values are not know, then one can set z = 0, 

which implies a preference for the minimum norm 
solution. 

One should note that the term (2) with larger 
values of the parameter £ can be used for various 
simulation techniques. For example, by using a 
large value of£ (i.e. one that dominates the other 
terms of the goal function) and setting z equal to 
desired values of decision variables, one can find a 
solution that is closest to such values. If these 
values are feasible, then a solution composed of 
these values will be found. If they are not feasible, 
than the closest feasible solution will be found. 
Note, that in the latter case, a traditional simula­
tion will simply report "infeasible problem" . Fi­
nally, one should point out that for such an 
approach to soft simulation the original goal 
function takes the role of the regularizing term. 

4.2.4. Simulation and optimi=ation for model anal­
ysis 

Simulation- and optimization-based approach­
es, as defined in Section 4 .2, are in fact comple­
mentary. For simulation, one needs to provide 
values for all decision variables. For this purpose, 
one may use random values for variables (as pro­
posed by Goodwin and Wright (1991), who pres­
ent various techniques and examples), or assign 
values based either on the DMs intuition or on a 
heuristic (possibly based on information from a 
knowledge base). For models having hundreds or 
even more variables, a specification of values for 
all decision variables based on intuition is practi­
cally unrealistic. However, even for a large model, 
simulation can be useful for 11'/zat if type of anal­
ysis, e.g. for comparing the results from optimi­
zations with the outcomes from values of decision 
variables set by the user. Of course, there is no way 
to assure that a given specification of the values of 
decision variables will result in a feasible solution . 

For a single-criterion optimization, one has to 
specify a goal function, and the values of the de­
cision variables that optimize this function are 
computed. While the simplicity of this approach is 
appealing, it has also limitations that have been 
summarized in Section 4.2.2. Actually, the devel­
opment of multi-criteria model analysis (MCMA) 
methods have been motivated by the needs 
of model analyses that can neither be met by 
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simulation nor by traditional optimization para­
digms. A more detailed discussion of MCMA 
methods is beyond the scope of this paper, but 
their methodological background and various ap­
plications can be found e.g. in Wierzbicki et al. 
(1999). Here, we will only outline one of MCMA 
methods that has been applied to the RAINS 
model analysis described in Section 7. 

So-called softly constrained inverse simulation, 
described e.g. in Wierzbicki et al. ( 1999), is a very 
useful technique for examining the trade-offs be­
tween the optimized criteria and the desire for 
having values of (possibly only a subset of) deci­
sion variables close to the given, corresponding 
values. This can be implemented by applying in­
termediate values (i.e. one that is neither small nor 
large) of the parameter e in (2). Obviously, a 
mixture of both classical and inverse simulation 
techniques can be used for two sets of variables 
(i .e. variables whose values are fixed/simulated and 
those that are subject to further optimization). 
Note that the concept of stabilized criteria imple­
mented in ISAAP (Granat and Makowski, 2000) 
provides an easy way for the soft fixing of a vari­
able and it is conceptually close to the regulariza­
tion mechanism implemented with a large 
regularizing coefficient. Finally, one should point 
out that various simulation techniques applied in 
the descriptive mode may provide information not 
only for model verification, but also may lead the 
DM to modify the selected constraints or goals. 

The arguments summarized above show that 
simulation and optimization are complementary 
paradigms for model analysis. Therefore, model­
based decision support should take advantages of 
a complementary usage of both methods . 

5. RAINS core model definition 

This section provides a specification of the 
RAINS model. Due to space limitations this spec­
ification has been simplified and is, therefore, not 
complete. A complete specification of RAINS 
can be found at www.iiasa.ac . at/-marek/ 
pubs/ prepub . html. 

We should distinguish first between a set I of 
sources of various types of air pollution, and a set 

J of areas for which various air quality indicators 
are assessed. Conventionally, the names emitter 
and receptor are used for the elements of such sets . 

5.1. Notation 

The model definition requires the use of the 
following indices: 
• Index i E I corresponds to the emitters. The 

numbers of elements in I corresponds to a num­
ber of countries (about 40). 

• Index is E S; corresponds to a sector that emits 
either NOx or VOC or a linear combination of 
them; S; is a set of sectors in the i-th country. 
Sets S; may have up to five elements. 

• Index j E J corresponds to the receptors. The 
number of elements in J corresponds to the 
number of grids (about 600). 

• Index I E L corresponds to a combination of 
ozone thresholds and a given year. The set L 
may have up to six elements. 

• Index m E M corresponds to a set of receptors 
for which the balancing of violations and sur­
pluses of targets is defined . 

5.1.1. Emission sectors 
Emissions are analyzed for sets of emitters lo­

cated in a certain area, which is typically a coun­
try. However, sets of NOx and VOC emitters are 
further subdivided into subsets, called sectors, in 
order to account for measures that can be applied 
to the emitters that belong to a particular sector. 
The emitters that belong to a particular sector emit 
either NOx or VOC, or a linear combination of 
them. In the latter case, the relation between the 
amount of VOC emission and the corresponding 
emission of NO" is defined by 

(3) 

where the parameters i.;5 and /1;
5 

are given. 

5.2. Decision variables 

The main decision variables are the annual 
emissions of the following four types of primary 
air pollutants from either sectors or countries: 
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• n;, - annual emission of NOx (nitrogen oxides), 
• V;, - annual emission of voes (Volatile Organic 

Compounds), 
• a; - annual emission of NH3 (ammonia), 
• s; - annual emission of S02 (sulphur dioxide). 

Additionally, optional decision variables are 
considered for scenarios which allow for limited 
violations of air quality targets . For such scenarios 
variables corresponding to each type of the con­
sidered air quality targets are defined for each re­
ceptor. Each variable represents a violation of a 
given environmental standard. Optionally, viola­
tions of targets can be balanced with surpluses 
(understood as the difference between a target and 
a corresponding actual concentration/deposition). 
For efficiency reasons, one variable is used both 
for violations of targets and for surpluses (positive 
values represent violations while negative values 
correspond to the part of a surplus that is used to 
balance violations of targets). 

Therefore, the following decision variables are 
optionally defined: 
• y,1 - violation of ozone exposure targets (surplus 

if YIJ < 0), 
• ya1 - violation of acidification targets (surplus, if 

)'Gj < 0), 
• ye1 - violation of eutrophication targets (sur­

plus, if ye1 < 0). 

5.3. Outcome rariables 

The consequences of the application of com­
puted values of decision variables are evaluated by 
the values of the outcome variables. However, 
several auxiliary variables needed for the defini­
tions of outcome variables have to be specified 
first. 

5.3.1. Auxiliary variables 
n; - the annual emission of NOx (nitrogen ox­

ides) defined by 

11 ; = Lnis· 
i.\t;:.51 

(4) 

r; - the annual em1ss10n of VOCs (Volatile 
Organic Compounds) defined by 

(5) 

enlJ - the mean effective emissions of NOx ex­
perienced at }th receptor is given by 

enlJ = L e1un; + enn11 , 

iE I 

(6) 

where ennlJ are given effective natural emissions of 
NO'" 

11/vlJ - the representation of another non-linear 
term defining ozone exposure at }th receptor is 
defined by 

(7) 

5.3.2. Definition of outcome variables 
One outcome variable represents the sum of the 

costs of reducing emissions; four sets of other 
outcome variables correspond to various indices of 
air quality. 

Annual costs related to the reduction of a cor­
responding emission to a certain level are given by 
a convex piece-wise linear (PWL) function for each 
type of emission and for each emitter. Formally, 
the following PWL functions define the annual 
costs related to reducing the level of the emission 
to a level given by argument(s) of the functions: 
ca;(a;) for a;, cs;(s;) for s;, c;(n;, v;) for 11; and v;. 
The term c;(n;, v;) is defined by 

c;(n;, v;) = L c,(-), 
sES, 

(8) 

where c,(-) is a cost function for NO, or for VOC 
or for a joint reduction of NOx and VOC. 

For the sake of brevity, the sum of costs is 
defined by 

cost= L(ca;(a;) + cs;(s;) + c;(n;, v;)). 
iE/ 

(9) 

Such a function is continuous and convex but not 
smooth. Therefore, it has to be represented by 
another function that meets typical requirements 
of non-linear solvers. Such a modification is out­
lined in Section 6.3 . 
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For each receptor, the following (I+ 3) out­
come variables correspond to various indices of air 
quality: 
• aot11 - the long term ozone exposure of /-th type: 

+ {J11en11n!vlJ + kfJ, 

• ac 11 - acidification of type 1: 

acl J = tns1 ( L tn;/1; + L taua; + kn1) 
iE/ iE/ 

+ L ts;1s; + ks1, 
iE/ 

• ac21 - acidification of type 2: 

ac21 = L tn;/1; + L ta,1a; 
iE/ iE/ 

• eu1 - eutrophication: 

eu1 = L tll;/ 1; + L ta;1a; + kn1, 
iEI iE/ 

(10) 

( 11) 

(12) 

(13) 

where tn,1, tau, ts,1 are transfer coefficients for NO,., 
NH.1 and S02, respectively; k111 and ks_; are con­
stants for nitrogen and sulphur background de­
posi tions; t11S0 , tssu are scaling coefficients that 
convert acidification coefficients of one type into 
acidification coefficients of another type, for NO, 
and NH» and for S02, respectively. The method­
ological background for modeling ozone exposure, 
and loads of acidification and eutrophication is 
summarized by Amann and Makowski (1999) . 

Environmental effects caused by the two types 
of acidification and by eutrophication are evalu­
ated at each receptor by a Piece-Wise Linear 
function (PWL), which represents an accumulated 
excess of each type of the air quality index: 
• aacl1 - accumulated excess of acidification of 

type 1: 

(14) 

• aac2_; - accumulated excess of acidification of 
type 2: 

aac21 = PWLr(ac21) , (15) 

• aeu_; - accumulated excess of eutrophication: 

(16) 

5.4. Constraints 

5.4.1. Bounds 
Each of the decision variables declared in Sec­

tion 5.2 for i E I or for is E S; is implicitly bounded 
by a corresponding definition of the domain of the 
corresponding cost function, which represents 
costs associated with the reduction of the emission, 
as outlined in Section 5.3.2. This domain may be 
restricted by specifying the optional bounds. 

Violations of targets are constrained at each 
receptor by corresponding lower and upper limits 
specified for each target type and for each grid: 

(17) 

(18) 

( 19) 

5.4.2. Complex constraints 
The accumulative excess of long-term ozone 

exposure of /-th type is constrained at each re­
ceptor by 

aot!J - YtJ ~ aot7]"'', (20) 

where aot11 is defined by (10) and aot7J'" is a given 
maximum ozone exposure for the /-th threshold at 
the j-th receptor. 

Constraint (20) without the term - y1_; represents 
a so-called hard constraint for accumulated excess 
of ozone exposure. Such a formulation is typically 
used in a traditional formulation of optimization 
problems. It can also be used in the presented 
model by selecting an option that does not allow 
for the generation of variables y11 • However, an 
assumption of the hard constraints for air quality 
targets results in forcing more expensive solutions 
that are caused by constraints active in only one or 
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two receptors. The introduction of the term -y11 

converts a hard constraint into a so-called soft 
constraint. This allows a violation of the target air 
quality. Such a violation is: 
• constrained by upper bounds on variables y/J; 
• compensated by surpluses (i .e. differences be­

tween actual exposure and the corresponding 
target) in other receptors belonging to the same 
set of receptors (e.g. located in the same country 
or region); 

• controllable by a trade-off between the violation 
of targets and corresponding costs of reducing 
em1ss10ns. 
Constraints for the accumulated excess of the 

two types of acidification and of eutrophication 
are defined in a similar way: 

aac 11 - ya1 ( aac7"' , (21) 

(22) 

(23) 

Optionally, violations of targets can be bal­
anced with surpluses of targets over sets of re­
ceptors denoted in the following constraints by J,,,, 
where /11 E M is the index of a set of receptors. 
Obviously, lower bounds in conditions (17)-(19) 
have to be negative in such a case. The balances 
are represented by the following constraints: 

L iro1,,,1y11 ( tbo1,,,, I = 0, 
;<E. Jm 

l L 

2: 2: ll ·o,,,,1ylj ( 2: rbo,,,, . 
/= I j'OJ,,, /= I 

L lt 'G 111 ;)'G; ~ tba 111 , 

J;: J,, , 

L H'e111_;)'eJ ~ tbe,,, ~ 
.fE.Jm 

(24) 

(25) 

(26) 

(27) 

\\'here ll'o,,,,1, H'a ,,,1, ire,,,1 are given weighting coeffi­
cients, J,,,, 111 EM, are sets of receptors, and 
tbo1,,,. tba,,,, tbe,,, are the target balances for them-th 

set of receptors for the /-th type of ozone exposure, 
for acidification, and for eutrophication, respec­
tively. The sets J,,, are defined implicitly by non­
zero elements of sparse matrices wo1, 11·a and we, 
respectively. 

6. Model generation and preprocessing 

The user of a model is typically not interested in 
issues related to the generation, preprocessing or 
solving of the model. However, OR specialists, who 
design and implement large and complex models, 
will certainly agree that the generation and man­
agement of the RAINS model is a challenging task 
from the operations research point of view. 
Therefore, several methodological and technical 
issues of a broader interest to the OR community 
are discussed in the subsequent subsections. 

6.1. Generation and solution of the model 

There are basically two approaches to the 
generation and analysis of a mathematical pro­
gramming problem. These either develop a prob­
lem-specific generator or use a modeling system 
(such as GAMS, AMPL, AIMMS). The following 
issues should be considered when selecting one of 
these approaches: 
• A modeling system greatly simplifies the task of 

model specification, especially if compared with 
the amount of resources needed for the develop­
ment of a model generator using traditional pro­
cedural programming languages like Fortran or 
C. However, the use of C++ substantially 
reduces this difference, especially with the Stan­
dard Template Library (recently included in the 
C++ standard), and with other class libraries 
supporting implementations of mathematical 
programming type of problems. 

• A model generator is more efficient in processing 
the input data needed for model specification. It 
is also preferred when a more sophisticated 
check of data consistency is desired . 

• A modeling system has limited possibilities 
for efficient preprocessing of optimization 
problems. This is not a serious problem for lin­
ear models because preprocessing is a standard 
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feature of any good LP solver. However, the 
preprocessing of non-linear models is much 
more difficult, as demonstrated e.g. by Drud 
(1997). A model generator can generate a non­
linear problem that is much easier to solve than 
a model generated by a modeling system. There­
fore, it might be a better choice for large non­
linear problems, where solution time becomes 
an important issue. 

• For a large problem, a good starting point 
might dramatically decrease the computation 
time. A computation of such a point is much 
easier for a problem-specific generator. 

• A modeling system typically does not exploit the 
possibilities of an optimization algorithm used 
by a solver. This is not an important issue as 
long as the optimization problem is of a moder­
ate size, but for large problems the exploitation 
of the problem structure may be necessary for 
reducing optimization time. In such cases, a 
modeling system must be augmented by a soft­
ware tool, e.g. by Fragniere et al. (1997), for ex­
ploiting the structure of optimization problems 
generated by a modeling language. A model 
generator can easily be adapted for generating 
a model in a form that allows the solver to ex­
ploit the model structure. 

• A modeling system greatly simplifies model 
analysis within the paradigm specific to a given 
system. However, using different paradigms -
such as soft and/or inverse simulation, regular­
ization, soft constraints, multi-criteria model 
analysis - typically require much additional ef­
fort if the particular paradigm is not included 
into a given modeling system. 

• A modeling system releases a modeler from the 
complex task of providing code for computing 
the values of non-linear constraints and the 
non-linear elements of the Jacobian. The latter 
especially used to require substantial develop­
ment time. However, recently tools are available 
that substantially ease this task, see e.g. Bischof 
et al. (1992). A typical non-linear problem has 
only a few formulas for the non-linear part. 
Therefore, one can use, e.g. Mathematica (Wol­
fram, 1996) for generating C language code for 
formulas of the Jacobian and for the values of 
constraints, and then include this code in a 

C++ class that provides values for particular el­
ements of the Jacobian and for the constraints. 

• Finally, for models that are not only run on var­
ious platforms but are also widely distributed, a 
problem-specific generator substantially de­
creases costs for the users (typically, the cost 
of a solver plugged into the problem-specific 
software is a small fraction of the cost of the 
run-time license for a modeling system). 
The decision about an approach to the imple­

mentation of the RAINS model has primarily been 
based on the following issues, which are the most 
important for this case study: 
• Implementation of the RAINS model using the 

available modeling systems (in a way that would 
provide the required analyses) would be diffi­
cult, if not impossible. 

• The resulting optimization problem is computa­
tionally very demanding. Therefore, the optimi­
zation problems have to be well preprocessed 
and scaled in a problem specific way (see subse­
quent subsections) . Moreover, a task-specific 
setting of parameters for non-linear solvers is 
also required. 

• The software for the analysis of the RAINS 
model should be distributable, also for users 
who cannot afford even run-time licenses for a 
modeling system. 
Taking into account the above summarized 

points, the problem generator of the RAINS model 
has been implemented as a problem-specific C++ 
classes that use a C++ template class library sup­
porting the generation of mathematical program­
ming problems. The generator is linked with non­
linear solvers. Therefore, a user can run only one 
executable program (corresponding to a selected 
solver) to solve a given scenario, see Section 7 for 
more details. 

A commonly accepted rule of thumb for the 
generation and optimization based analysis of 
large non-linear models is to generate the model in 
such a way that various solvers can be tried . For 
the RAINS model, three solvers, namely CFSQP 
(Lawrence et al., 1996), CONOPT (Drud, 1996) 
and MINOS (Murtagh and Saunders, 1987) are 
used to solve the resulting optimization problem. 
The task of implementing software that uses 
several non-linear solvers is interesting from the 



M. Makowski I European Journal of Operational Research 122 (2000) 219-241 235 

software engineering point of view. Each solver 
has a different way to specify an optimization 
problem. However, most of the software compo­
nents are common to all the solvers. Therefore, an 
object-oriented programming approach is a natu­
ral choice because it greatly simplifies software 
development by handling common parts in base 
classes and by providing solver-specific interfaces 
through inherited classes. 

The approach is conceptually very simple. Each 
of the above mentioned solvers is available as a 
library of Fortran subroutines. The generator has 
C++ classes that are specific for each solver. These 
classes are inherited from the base classes that 
handle a common part of the generator. A prob­
lem specific report writer processes the results into 
a form that eases their interpretations. Another 
class supports a portable interface between C++ 
and Fortran. Hence, three versions of executables 
can easily be produced, each composed of the 
generator, preprocessor, postprocessor and one of 
the solvers. 

A non-linear solver requires routines that 
compute values as well as elements of the Jacobian 
of the non-linear constraints and the goal function. 
A large part of the total computation time is used 
for the execution of these functions, therefore the 
efficiency of their implementation is important. 
The code for the Jacobian has been generated by 
Marhe111atica (Wolfram, 1996) with a prior use of 
the F11!/Si111plify operator, which simplifies the 
formulas substantially. This is an easy way to 
generate an efficient and bug-free code. 

Finally, one should notice that the dimensions 
of the model are not fixed. For some scenarios a 
part of the constraints and/or variables does not 
need to be generated. Moreover, the dimensions of 
the matrices and vectors used in the model defi­
nition vary substantially for various types of 
analysis. Fortunately, constructors of C++ tem­
plate classes handle such problems in a natural and 
efficient way. 

6.2. Data handling 

The model has a large number of parameters, 
but this would not be a problem in itself. The 

challenge comes from the fact that various parts of 
the parameters are provided as a result of data 
processing that is performed on various comput­
ers. Data handling for the model has to meet the 
following requirements: 
• efficient handling of a large amount of data; 
• binary compatibility, at least for Unix and NT; 
• easy handling of basic data structures (the 

sparse and dense matrices having elements of 
the types used in this application); 

• no royalties fees . 
The HDF (Hierarchical Data Format) public 

domain software by Koziol and Matzke (1998) is 
used for handling the data in this model. The basic 
data structures are handled by a collection of well­
tested template C++ classes that are also used for 
the LP-DIT. A C++ interface class has been im­
plemented for an easy and efficient handling of the 
used data structures by the HDF library. 

6.3. Colll:ersion of PWLfunctions 

Costs of emission reductions, discussed in Sec­
tion 5.3.2, are given as PWL (Piece-Wise-Linear) 
functions of the corresponding emission levels. 
PWL functions are not smooth. Therefore, in or­
der to be able to use efficient non-linear solvers 
(which require smooth functions), the PWL cost 
functions are represented by corresponding 
smooth functions . However, the PWL functions 
((14), (15), (16)) are replaced by sets of inequalities. 
Due to space limitations , these conversions are not 
presented here; however, they are described by 
Amann and Makowski (1999). 

6.4. Preprocessing of the optimi::ation problem 

The preprocessing of an optimization problem 
is aimed at generating another problem that has 
the same goal function value as the original 
problem and fulfills its constraints, but is easier to 
solve. It is a commonly known fact that the 
preprocessing of a large optimization problem can 
dramatically reduce computation time and 
memory requirements . Preprocessing is a standard 
feature of any good LP solver. However, 
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preprocessing of non-linear models is a much more 
difficult task, see e.g. Drud (1997). Generally, 
preprocessing of an optimization problem in a 
problem generator is much more efficient than an 
attempt to preprocess a non-linear problem by a 
solver. Some instances of the model presented in 
this paper contain over 25,000 variables and con­
straints, which makes preprocessing essential. 

Preprocessing in the generator is composed of 
the following elements: 
• Outcome variables defined by Eqs. (8)-(16) are 

not generated. The affected constraints are re­
formulated to equivalent forms without using 
these outcome variables (auxiliary functions 
are implemented to provide values of outcome 
variables for the report writer). 

• The variables en1 and nlv1 and Eqs. (6) and (7) 
are eliminated and Eq. (10) is modified accord­
ingly. 

• All linear constraints are combined into the LP­
DIT format by Makowski (1999), and the pre­
processing implemented in LP-DIT - which is 
similar to that implemented by Gondzio (1997) 
- is applied to these constraints. Only those pre­
processing methods based on the analysis of the 
primal problem can be applied (because of the 
non-linear goal function) . Nevertheless, for 
many types of scenarios even a majority of lin­
ear constraints can be removed from the optimi­
zation problem. 
Preprocessing substantially reduces the com­

putation time and memory requirements needed 
for solving an instance of the model. This confirms 
theoretical expectations. 

RAINS 
core model 

data 

Scenario 
specification 

data 

Various 
reports 

...-----J 
'--------"' 

Data 
preparation 

Report 
writers 

6.5. Scaling 

Scaling of non-linear models is an important 
element of model preprocessing. Experiences from 
the earlier stages of the RAINS model development 
show that a badly scaled model creates numerical 
problems for all the solvers that are used (one 
should mention that CONOPT provides very 
helpful diagnostics based on an analysis of the 
Jacobian and Hessian that also traces improper 
scaling). A detailed discussion of the scaling im­
plemented in the RAINS model is far beyond the 
scope of this paper. Therefore, we only mention 
that each instance of the optimization problem is 
scaled in the generator in such a way that: 
• absolute values of the elements of the Jacobian 

and Hessian are smaller than I 05; 

• an attempt is also made to achieve a smallest 
(non-zero) absolute value of the Jacobian to be 
"not too small". 

7. RAINS model analysis 

The RAINS model is used extensively for vari­
ous types of analysis that are needed for support­
ing international negotiations, as outlined in 
Section 8. Due to space constraints, we have lim­
ited this section to presenting the structure of one 
cycle of analysis followed by a summary of the 
implementation of a composite goal function for 
the RAINS model analysis. 

The structure of one cycle of the RAINS model 
analysis is outlined in Fig. 2. Prior to analysis, a 

Optimization 
options 

HOF 
data 

Solution 
data 

__ ....... ______ , 
; Generator . I 

preprocessor c 
postprocessor I 

! 
l 

NLP solver 

Fig. 2. The structure of one cycle of the RAINS model analysis. 
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data file is prepared that contains all parameters of 
the RAINS core model described in Section 5. 
Another data file with a definition of the param­
eters for a particular scenario is prepared by 
specialized software. These two data sets are 
converted by another specialized program into the 
HDF format file. Additionally, a user has 
the possibility to select various options and specify 
the corresponding parameters (for example, of the 
composite goal function discussed below) and 
options (e.g. allowing for soft constraints, re­
questing the balancing of violations with surplus­
es) that overwrite the default selections and are 
used for a definition of a particular instance of the 
non-linear optimization problem. Such options 
and parameters are stored in a specification file. 
Both the HOF data file and the specification file 
define an instance of the optimization problem. 

The optimization problem is generated and 
solved by the problem specific model generator 
linked with a selected non-linear solver library. 
The generator (which functions are described in 
Section 6) creates the necessary data structures, 
which are kept in-core and are used for functions 
that are required by each of the used solvers. Such 
an approach allows for the efficient generation and 
solution of the corresponding large non-linear 
optimization problem. After an optimal solution is 
found , a postprocessor converts the solution to a 
form that is convenient for analysis (by "undoing" 
the actions of the preprocessor and by computing 
values of variables, which were not generated). 

A solution provided by the postprocessor is 
processed by a specialized report-writer program, 
which provides various types of information 
needed for the analysis of a solution. Afterwards, 
another scenario is designed based on this analysis 
and on requests from users. This scenario is used 
as an input to a new cycle of the analysis. 

A particular scenario is defined by many pa­
rameters. However, we will limit our discussion to 
the composite goal function (28), which is applied 
to support the analysis of trade-offs between the 
following three criteria: 
• the minimization of total costs of emissions re­

duction; 
• the minimization of violations of the environ­

mental standards; 

• the robustness of solutions. 
The first two components have already been 

discussed; therefore, only the last one requires 
justification. 

A typical problem with the application of opti­
mization techniques for decision support is caused 
by very different solutions (with almost the same 
value of the original goal function) corresponding 
to various instances of a mathematical program­
ming problem that differ very little. The quality of a 
solution is assessed from the optimization point of 
view primarily through the value of a goal function; 
therefore, solutions of slightly perturbed problems 
may differ substantially. However, from an appli­
cation point of view, an equally important indica­
tion of a solution's robustness is some measure of 
the closeness of solutions of perturbed problems. 
Consider, for the sake of illustration, two instances 
of the RAINS model that differ very little. The 
values of the goal function for such solutions are 
typically almost the same. However, it often hap­
pens that the optimal solution of the first instance 
has a high reduction of the emission in country A 
and a low reduction in country B, while the optimal 
solution for the second instance has a low reduc­
tion in country A and a high reduction in country 
B. Such solutions would hardly be acceptable . In 
order to deal with this problem, a technique called 
regularization, see Section 4.2.3 for a more detailed 
discussion, is applied. 

In order to support the analysis of the above 
mentioned trade-offs, the criterion function is de­
fined by 

goaLfunction =cost+ e + 'l' , (28) 

where the cost term corresponds to the sum of the 
costs of emission reductions and is defined by (9); 
the regularizing term e and the penalty term 'l' 
(which also plays a role in regularization) are de­
fined as follows. 

The regularizing term e is defined by 

(29) 

where £ is a given positive (not necessarily small) 
number, : denotes a vector composed of decision 
variables that correspond to emissions, and z is a 
given vector composed of desired (reference) 
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values of emissions. The role of the term e is 
twofold. First, it helps to avoid large variations of 
solutions (with almost the same value of the 
original goal function) for problems that differ 
very little. Second, it substantially improves the 
numerical stability of the optimization problem. 
Additionally, for large values of the parameter c:, 
the term e can be used for the technique called 
softly constrained inverse simulation that is out­
lined in Section 4.2.4. Thus, it is possible to ana­
lyze trade-offs between minimization of costs and 
solutions that correspond closely to various given 
patterns of emissions defined by z. 

The role of the term 'l' is also twofold . First, it 
serves as a penalty term for optional variables y ,ya 
and ye. Second, it provides regularization for these 
decision variables, which are not covered by the e 
term. The term 'l' is defined by 

/EL jEJ 

+ L i/J (ya,, Pa, O'a) + L i/l(ye1, p., , cr.,), (30) 
jEJ jEJ 

where p0 , Pa• p.,, cro, cr,,, cr, are given positive pa­
rameters, and the function i/J(-) is defined by 

{

-p<Tx - p<T2 / 2 
i/J (x, p, a) = p/ 2'<2 

pcrx - pcr2 /2 

for x < -cr, 
for I x I ~ cr , 
for x > cr . 

(31) 

Note that i/J(x. p , a) is a smooth function that, 
depending on the parameters p and cr, can be used 
for both purposes that correspond to the role of 
the term 'l' outlined above . First , it plays a role of 
a classical quadratic penalty function, if large 
values of the parameters p , cr are selected. Such a 
function can be used to examine the trade-offs 
between violations of air quality standards and 
minimization of costs. Second, it may not be de­
sirable to apply any penalty function for some 
scenarios in which the balances between violations 
of environmental targets and surpluses - given by 
Eqs. (24)-(27) - are accounted for. However, in 
such cases, it is still necessary to apply regular­
ization in order to deal correctly with the soft 
constraints optionally defined by introduction of 

variables YIJ ,ya1,ye1 into constraints Eqs. (20)-(23). 
A quadratic function may not be suitable for this 
purpose because often violations and surpluses 
take small values in some grids and large values in 
other grids; therefore, it is not possible to find a 
value of the parameter p such that it would allow 
for large values of violations/surpluses in some 
grids, while serving as a regularizing term for grids 
where violations/surpluses may be three orders of 
magnitude smaller. Therefore, when used for reg­
ularization purposes alone, the function ijJ is de­
fined using small values of both parameters p, a, 
which implies using a flat piece-wise linear func­
tion with a small quadratic segment needed to 
make such a function smooth. 

We summarize the discussion on the form of 
the goal function (28) by stressing the fact that a 
properly defined goal function is the key element 
for achieving two goals, namely providing a tool 
for a comprehensive problem analysis and assur­
ing possibly good numerical properties of the 
corresponding optimization problems. The specific 
form of this model - in particular, the penalty 
terms for soft constraint violations, the regulariz­
ing terms - make it very similar to a multi-objec­
tive formulation , as applied e.g. to softly 
constrained inverse scenario analysis, see Wie­
rzbicki et al. ( 1999) for more details. 

8. RAINS in supporting international negotiations 

The short summary of the use of the RAI NS 
model presented in this section is based on a more 
detailed description of its role in international 
negotiations, which is provided in the Summer'98 
issue of IIASA Options (available from URL: 
www.iiasa.ac. at) . A more technical discus­
sion and examples of interpretations of illustrative 
results from the RAINS model is given by Amann 
and Makowski (1999) . 

Modern efforts to control air pollution in 
Europe began in the 1970s, prompted by concerns 
over acid rain. The convention on Long-Range 
Transboundary Air Pollution was signed by all 
European states, USA and Canada in 1979. The 
convention was negotiated through the United 
Nations Economic Commission for Europe (UN-
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ECE), and this convention has become a frame­
work for subsequent efforts to improve air quality 
in Europe. In 1989, when the sulphur protocol was 
due for renegotiation, the UN-ECE accepted the 
RAINS model for use in the negotiations. Most 
probably, this was the first time when all parties to 
a major international negotiation accepted one 
computer model as a key tool in their negotiations. 
Currently, the RAINS model is used not only by 
UN-ECE, but also by the Council of EU Envi­
ronment Ministers . There is also a version of 
RAINS developed for Asia. 

However, the acceptance of the model was just 
the beginning. The negotiators had to trust the 
model results and to understand how the model 
works. The scientists had to understand the polit­
ical realities and modify the model in order to re­
spond better to the requests of the negotiators. In 
order to illustrate just one element of this process, 
let us consider an interpretation of the optimality 
of a solution. From the scientific perspective, a 
rational optimality criteria is a minimization of the 
sum of costs of emission reductions subject to 
constraints on values of the air quality indices. 
However, this obviously results in solutions that 
would oblige some countries and/or industries to 
make larger emission reductions (which also im­
plies substantial costs) than others. Acceptance of 
such a solution would certainly distort competi­
tion; therefore, negotiators cannot accept such so­
lutions. On the other hand, the RAINS model 
clearly demonstrates that uniform reductions 
(which are a sound idea from a political point of 
view) would not only be much more expensive but 
also would not result in achieving the desired air 
quality. Another example of this mutual learning 
process undertaken by the negotiators and scien­
tists is illustrated by the evolution of the under­
standing of what the desired air quality should be . 
For example, the results of extensive research have 
shown that the critical acid loads should vary 
substantially between various ecosystems. There­
fore, there is no justification to apply uniform en­
vironmental requirements for all grids in Europe. 

From the methodological point of view, the 
RAINS model of I 989 (which was a small LP 
model that dealt only with acidification) can be 
considered as a small pilot prototype of the current 

version of RAINS described in this paper. The 
development of several versions of RAINS made in 
those IO years were driven by the needs of the 
negotiators. The first version of RAINS was used 
for negotiating the sulphur protocol; therefore, it 
dealt only with a single pollutant. However, it has 
become clear that a multi-pollutant, multi-effect 
approach offers substantial environmental and fi­
nancial advantages. Therefore, to respond to these 
needs, RAINS has been extended and gradually 
modified to its current form. 

Obviously, RAINS does not provide any "best" 
solutions. This is simply because, there is a number 
of problems and trade-offs that are both moral and 
social. For example: 
• Which is more important, protecting forests 

from acid rain or limiting human exposure to 
harmful tropospheric ozone? 

• Should we put more resources into improving 
the situation in worst-affected areas, or should 
we try to spread benefits evenly? 

• How do we balance the interests of agriculture 
versus transport versus electricity production? 
No model can actually answer such questions . 

This remains the domain of negotiations. How­
ever, models can help the negotiators to concen­
trate on those parts of the negotiations that should 
not be represented by a mathematical model. This 
assistance is provided by various unbiased ana­
lyses, such as computation of the consequences of 
given policies of emission reductions, or advising 
the values of emission levels that correspond best 
to given criteria and constraints. 

9. Conclusions 

The paper summarizes selected issues of model­
based decision-making support and illustrates var­
ious modeling paradigms by their application to the 
generation and analysis of large non-linear models, 
which are applied to the identification and exami­
nation of various policy options aimed at improv­
ing air quality in Europe. Various extensions of 
traditional OR methods that enhance the usefulness 
of model-based decision support for policy analysis 
have been presented and illustrated by their 
application to this complex problem. Software 
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engineering issues pertinent to the generation and 
analysis of complex and large non-linear models 
have also been discussed. Finally, a summary of 
experiences learned from using the RAINS model 
for supporting international negotiations illustrates 
both the complexity and usefulness of an applica­
tion of advanced modeling methods to support the 
processes of policy-making. 

The paper shows that no single modeling par­
adigm alone is sufficiently good enough to identify 
and analyze various cost-effective policy options 
aimed at improving European air quality. Rather, 
an integration of various modeling methods and 
tools is needed to provide the best available sup­
port possible to analyze this complex problem. 
Such a conclusion has a more general value. In­
deed, the analysis of any complex problem calls for 
application of various methods and tools to help 
identify a variety of different policy options and 
provide ways to compare the consequences of their 
implementations. Focusing on a particular mod­
eling paradigm considered to be the most appro­
priate for a given problem was previously justified 
by limited hardware and software capabilities. 
However, lessons learned from the applications of 
various modeling paradigms to very different types 
of real-world problems, and the recent abundance 
of computing hardware and software tools makes 
it possible to integrate several methods of a model 
specification and analysis, and to apply them to 
large and complex problems. Such an integration 
calls for a collaboration of specialists, who have 
been concentrated - and therefore have substantial 
experience - in a particular method . Fortunately, 
recent developments in both research culture and 
in hardware that supports cooperative work over 
the Internet has made such a collaboration sub­
stantially easier. Therefore, one should expect that 
various integrations of different modeling para­
digms will be used more broadly to improve de­
cision-making support in a wide range of practical 
problems. 
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