

International Institute for
Applied Systems Analysis
Schlossplatz 1
A-2361 Laxenburg, Austria

Tel: +43 2236 807 342
Fax: +43 2236 71313

E-mail: publications@iiasa.ac.at
Web: www.iiasa.ac.at

Interim Reports on work of the International Institute for Applied Systems Analysis receive only
limited review. Views or opinions expressed herein do not necessarily represent those of the
Institute, its National Member Organizations, or other organizations supporting the work.

Interim Report IR-01-045

Image Restoration from Multiple Sources
Elena Moltchanova (elena.moltchanova@ktl.fi)

Approved by

Sten Nilsson
Leader, Forestry Project

5 October 2001

 ii

Contents

1 INTRODUCTION 1
1.1 Notation 2

2 EXISTING APPROACHES: BR AND AWS; NAÏVE SMOOTHING 2
2.1 Bayesian Approach (BR) 2

2.1.1 General notes on the Bayesian approach 2
2.1.2 Bayesian image restoration: Total probability formula 3
2.1.4 Example 4
2.1.5 Notes 6

2.2 Adaptive Weights Smoothing (AWS) 6
2.2.1 General description 6
2.2.2 Notes 8

2.3 Naïve Smoothing 8

3 ACCURACY OF THE EXISTING SOLUTIONS 9
3.1 Summarizing the Source Accuracy 9
3.2 BR Sensitivity 9

3.2.1 Accuracy as a function of p(x) and P(x) 10
3.2.2 Accuracy as a function of source errors E and Z 11
3.2.3 Prior elicitation 13

3.3 AWS Sensitivity 14
3.3.1 Moran’s I 14
3.3.2 Accuracy vs. homogeneity and source precision 15

3.4 NS Accuracy 15

4 PROPOSED APPROACH 17
4.1 AWS-BR and BR-AWS 17

5 APPLICATIONS 18
5.1 Application 1: Binary Data From Three Observation Sources 18
5.2 Application 2: Multi-class Image with Three Sources of Observation 22

6 DISCUSSION 25

REFERENCES 26

APPENDIX 1: R-FUNCTIONS DESCRIPTION 27

APPENDIX 2: R-FUNCTIONS LISTINGS 44

 iii

Abstract

This paper proposes a new method of image restoration. The proposed method allows to
combine information from several sources, taking the perceived credibility of each into
account. It is applicable to both ordinal (e.g., gray level image) and non-ordinal (e.g.,
classified forest map) categorized images. The accuracy checks have shown the method
to be robust with respect to the prior information and the accuracy of the sources. Two
application examples are provided.

 iv

Acknowledgments

My profound gratitude extends to those who made my participation in the IIASA’s 2001
YSSP possible. I am also grateful to the participants of the Forestry Project’s Siberia-II
study and to the members of the Institute of Surveying, Remote Sensing and Land
Information of the University of Agricultural Sciences in Vienna for their many helpful
comments and interest in my work. Finally, my sincere thanks to the YSSPers who
made my summer at IIASA so enjoyable, to the members of the Forestry project for
their support and the creative atmosphere, and my special thanks to Michael Obersteiner
for his creative ideas, unwavering support, and helpful supervision.

 v

About the Author

Elena Moltchanova received her M.Sc. degree from the University of Helsinki, Finland,
in 2000. She is currently working on her Ph.D. thesis in the National Public Health
Institute of Helsinki, applying Bayesian statistics in the field of spatial epidemiology.

 1

Image Restoration from Multiple Sources
Elena V. Moltchanova

1 Introduction

Image recognition in general and the satellite image analysis in particular has been an
area of intense interest for a long time. Currently, this is a wide field with many
accepted approaches, and new methods and modifications being continuously
suggested. Among the existing accepted approaches are neural networks (Krell et al.,
1996), fuzzy logic (Mascarilla, 1997), semantic networks (Kunz et al., 1997), Bayesian
CAR models (Besag et al., 1991), and Adaptive Weights Smoothing (Polzehl and
Spokoiny, 2000; Divino et al., 1999; Kitano and Takagi, 1999). Most of the existing
methods were developed to analyze a single observed pattern at one time. However,
there are virtually no tools available that integrate multiple sources despite the fact that
during the last decade increasingly large amounts of geo-referenced data have become
available. In such a situation, it is certainly more efficient and economic to take all the
available sources of information into account and to gather new information conditional
on what is already available. The latter is of particular importance for the design of new
satellite sensors. Of the methods mentioned above, Bayesian analysis (Gelman et al.,
1995), which may be considered as a special case of the Dempster-Shafer theory
(Shafer, 1976), is well suited for combining different data sources. The CAR model is
currently widely applied in epidemiology, in particular, for the production of cancer
atlases (Osnes and Aalen, 1999). However, this model tends to over-smooth and is thus
not applicable, for example, to vegetation maps where the categories or gray levels may
interchange abruptly introducing the edge estimation problem.

In this paper a new image recognition method is proposed, which is a combination of
the two existing methods, namely (1) Bayesian analysis (henceforth denoted BR), and
(2) Adaptive Weights Smoothing (AWS) or naïve smoothing (NS). It thus combines the
superior ability of Bayesian inference to combine multiple information sources with the
good performance of AWS or NS in image restoration and edge estimation.

This paper begins by describing BR, AWS and NS approaches and providing examples
of their application in Section 2. Section 3 investigates the estimation accuracy of these
methods. Since the corresponding accuracy functions are too complex to study
analytically and in full, only some aspects are studied with the aid of simulations. These
studies are sufficient to provide a general overview of the performance accuracy and
sensitivity. The suggested new approach is described in Section 4 and examples of the
applications are provided in Section 5. In conclusion, the possible significance of the
proposed method is discussed together with the future work to be done (Section 6).

 2

Since the method is computationally intensive and there is no ready-made software, a
list of functions written in R-language along with their listings is provided in
Appendices 1 and 2, respectively.

1.1 Notation

In order to make the report more readable a general notation adhered to throughout the
paper is introduced here.

I = total number of cells in the analysis,
C = number of classes, c = 1,2,…,C,
N = number of sources,
i = cell of grid, i = 1,…,I,
Xi = true level at cell, i, and
Yni = observation at cell i by source n.

MODEL)(Bayesian source of matrix error perceived

)(s.t. source of matrix error

21

22221

11211

21

22221

11211

n=



















=

====



















=

nCCnCnC

Cnnn

Cnnn

n

nxyini

nCCnCnC

Cnnn

Cnnn

n

Z

exXyYPn

eee

eee

eee

E

ζζζ

ζζζ
ζζζ

L

MOMM

L

L

L

MOMM

L

L

P(X) = true distribution of X,
p(X) = perceived distribution of X (Bayesian prior).

2 Existing Approaches: BR and AWS; Naïve Smoothing

2.1 Bayesian Approach (BR)

2.1.1 General notes on the Bayesian approach

Bayesian statistics was named after Rev. Thomas Bayes who, in his famous essay, has
proposed a solution to the problem of estimating an unknown proportion. He thus
arrived at the result that became known as the Total Probability Formula. For two

events A and B and a partition of A such that AA
I

i
i =

=
U

1

 and jiAA ji ≠∀Ο=I

the following holds:

 3

()
[]∑

=

=
I

i
ii

ii
i

APABP

APABP
BAP

1

)()(

)()(
 .

The formula can be extended to deal with probability distributions. Thus, if we denote
the observations x and the parameter θ then the following is true:

)(

)()(
)(

xp

pxp
xp

θθ
θ = .

The above formula cannot always be solved analytically. However, with recent
developments in computers this is no longer a problem, since Bayesian inference is
mostly done using computer-intensive iterative MCMC techniques.

Bayesian statistics is not just the new way to make estimates or predictions ― it is a
way of thinking that is markedly different from that of classical statistics. Whereas in
classical frequentist statistics parameters are viewed as fixed but unknown quantities
and the data are considered to be the result of a repeatable experiment, in the Bayesian
inference each experiment is thought to be unique. Conclusions about the parameters,
on the other hand, are made in terms of probability statements. Thus, the parameters are
assigned a priori distribution, which is supposedly based on the experience of the
analyst or, perhaps, on the expert’s opinion. In the case that no prior information is
available at all, a non-informal prior may be assigned. The analysis results in a
posteriori distribution for the parameters, on which the inference is then based.

The Bayesian inference still remains an object of controversy. One of the more
notorious points of discussion is the supposed subjectivity of the analysis, which arises
as a result of the prior distribution choice. However, it is often pointed out that this
assignment is either done using the available information or the non-informative prior is
then assigned. On the other hand, once such information is available, why should it be
discarded? The Bayesian framework removes the need for restrictive classical
assumptions of independent identical distribution and normality. Overall, it is an
extremely flexible approach, which allows taking into account information from several
different sources simultaneously and to make probabilistic statements about the
estimates produced. It is this feature of allowing different sources to be accommodated
that makes the Bayesian approach attractive in the solution of the particular problem of
image restoration, when multiple sources of information on the same object are
available.

2.1.2 Bayesian image restoration: Total probability formula

Let us now apply the Bayes’ rule to the problem of image restoration. Using the
notation described in the beginning and applying the Total Probability Formula we get
the following:

 4

∑ ∏

∏

= =

=











=====

C

x

N

n
yxn

N

n
yxn

niniii

xp

xp

yYyYyYxXP

1 1
,,

1
,,

2211

)(

)(

),,,(

1

1

ζ

ζ
K .

Using the mode estimation in each cell, we choose the value of x for which the posterior
probability is highest. To illustrate:

Let,

C = 3,
p(x) = (..5,.3,.2),
N = 2,
















=Ζ
















=Ζ

6.0.4.

0.7.3.

1.1.8.

and

6.2.2.

2.6.2.

2.2.6.

21 .

Assume further that in a single cell the values observed from the two sources are:
21 =Y and 32 =Y . Then the estimation would proceed as follows. First, we would

calculate the posterior probability distribution of X:

7059.
034.

024.

2.*6.*2*.3.*0.*6.5.*1.*2.

2.*6.*2.

)(

)3(
)3,23(

0000.
034.

000.

2.*6.*2*.3.*0.*6.5.*1.*2.

3.*0.*6.

)(

)2(
)3,22(

2941.
034.

010.

2.*6.*2*.3.*0.*6.5.*1.*2.

5.*1.*2.

)(

)1(
)3,21(

3

1
3,,22,,1

3,3,22,3,1
21

3

1
3,,22,,1

3,2,22,2,1
21

3

1
3,,22,,1

3,1,22,1,1
21

==
++

=====

==
++

=====

==
++

=====

∑

∑

∑

=

=

=

x
xx

x
xx

x
xx

xp

p
YYXP

xp

p
YYXP

xp

p
YYXP

ζζ

ζζ

ζζ

ζζ

ζζ

ζζ

Using this mode estimation X=3 is the most likely estimate, whereas X=2 is an
impossible choice.

2.1.4 Example

To give a fuller impression of the described image restoration method, here is an
example of the restoration of a 15x15 field with three sources and three classes each.

 5

The parameters are:

() ()















=Ζ=
















=Ζ=
















=Ζ

=
=
=

9.1.0.

9.1.0.

0.1.9.

8.1.1.

1.8.1.

1.1.8.

6.2.2.

2.6.2.

2.2.6.

15

3

3

32211 EE

I

N

C

and the analysis is illustrated in Figure 1.

Figure 1: An example of Baysian image restoration.

 6

2.1.5 Notes

The Bayesian total probability formula allows to take several different sources of
observations as well as possible external information (prior) into account. However, as
such, it makes no allowances for the existence of spatial correlation, which are certainly
necessary in the image analysis. A Bayesian approach for image analysis has been
developed by Besag et al. (1991). Since then, various developments have occurred.
Currently, the CAR model is widely used in epidemiology, in particular in the creation
of cancer atlases. However, the CAR model tends to over-smooth and is therefore not
applicable to, for example, land-cover maps where a residential area can be abruptly
changed by a river. In the next serction, I will describe a deterministic image restoration
method, which deals with this so-called ‘edge estimation’ problem.

2.2 Adaptive Weights Smoothing (AWS)

2.2.1 General description

The AWS approach is described in detail by Polzehl and Spokoiny (2000). It is a
method of non-parametric estimation, which is based on locally constant smoothing
with an adaptive choice of weights for every pair of data points. Here, I will briefly
describe the algorithm.

The model is described as:

))var(,0 ,)(22 σεε ==ℜ∈+= iiiiii)E(ε,XXfY ,

where X are design points (e.g., cells of the grid) and the errors are assumed to be
independent and identically distributed zero-mean random variables with unknown
distribution.

The regression function f is the piecewise constant. This means that the spatial region
(grid) can be split into disjoint regions MAAA ,,, 21 K , and

{ }∑
=

∈=
M

m
Mm Axaxf

1

1)(,

where Maa ,,1 K are some numbers; in our case they are the classes so that each

{ }Cam ,,1 K∈ . The technical details of the procedure can then be described in the form

of the iterative algorithm below.

We start by estimating the variance of residuals:

∑
=

=
n

i
ie

n 1

22 ˆ1σ̂ .

Another important element is the specification of an increasing sequence of
neighborhoods around each design point. For each design point x, it is assumed that we

 7

are given a sequence of neighborhoods ∞= ,,1,0),(KkxUk with)()(1 xUxU kk +⊂

containing x. An example of such neighborhoods may be circles of increasing radii
around each point.

We should also choose a univariate kernel K, which is a symmetric smooth function
with the maximum at zero, non-increasing on the positive semi-axis, and integrable.

(a) Initialization: for each point iX , the initial estimates of)(iXf and { })(ˆvar iXf as:

1set

)(

ˆ
)(ˆ

)(

1
)(ˆ

0

2
2

)(0
0

0

0

=

=

∑
∈

k

XN
Xs

Y
XN

Xf

i
i

XUX
j

i
i

ij

σ

(b) Adaptation: compute weights),(jik XXw as:











 −

=
−

−−
)(ˆ

)(ˆ)(ˆ
),(

1

11

ik

jkik
jik Xs

XfXf
KXXw

λ

for all points jX in)(ik XU and compute new estimates of)(ik Xf and [])(ˆvar ik Xf

as:

∑

∑

∈

∈
=

)(

)(

),(

),(

)(ˆ

ikj

ikj

XUX
jik

XUX
jjik

ik XXw

YXXw

Xf

2

)(

)(

22

2

),(

),(

)(ˆ













=

∑

∑

∈

∈

ikj

ikj

XUX
jik

XUX
jik

ik

XXw

XXw

Xs

σ)

for all iX .

(c) Control: after the estimate)(ˆ
ik Xf has been computed we compare it with the

previous estimates)(ˆ
' ik Xf at the same point kkXi <' all for . If there is at least one

index kk <' such that:

 8

)(ˆ)(ˆ)(ˆ
'' ikikik XsXfXf η>− ,

then we do not accept)(ˆ
ik Xf and keep the estimates)(ˆ

1 ik Xf − from the preceding
iteration.

(d) Stopping: stop if *kk = or if iXfXf ikik all for)(ˆ)(ˆ
1−= ; otherwise increase k by 1

and continue with the adaptation step.

For the purposes of our analyses the estimates of the stepwise regression function are
rounded to the closest integers, because the permissible values are categories. As can be
seen from the above description, the outcomes of the analysis are affected by four
parameters:

λ affects the smoothness of the resulting image and so does k*, which describes
how far the design points influence each other, i.e., the degree of locality.

η is involved in the control step, which prevents the algorithm from losing
previously detected discontinuities.

Finally, the choice of kernel clearly affects the results as well.

The parameters of the procedure can be tuned using the bootstrap method. Another
important point concerns the applicability of the method. Clearly, the region should be
homogeneous enough. However, how can this homogeneity be measured and how much
of it is needed? This question is addressed to some degree in Section 3 where the
accuracy of the above method is discussed.

2.2.2 Notes

AWS is a good method for pattern restoration in the case of a reasonably homogeneous
area. However, it only takes one source or one set of observations into account. It is also
very computer intensive, since neighborhood and weight matrices as well as all the
estimated values of the previous iterations should be kept in the memory.

2.3 Naïve Smoothing

AWS assumes that the data are aligned on an ordinal scale, i.e., the classes may be
ordered so that class 1 < class 2 < class 3 and so on. Thus, roughly speaking, a point
between classes 1 and 9 would be interpreted by AWS as class 5. However, the
classified images do not always correspond to this assumption. For example, on a land-
cover map there is no way to order “forest”, “river”, and “residence”. In such situations,
a naïve smoothing method would be more appropriate. Here, for each cell, we find a
statistical mode in its neighborhood (the neighborhood may include the cell itself) and
assign the value to the cell. From here on, this method will be denoted NSr-i, where NS
is naïve smoothing, r is the neighborhood radius, and i is the number of iterations. In the
work associated with this paper NS1-1 has mainly been used.

We now move on to examine the accuracy of the described methods in more detail.

 9

3 Accuracy of the Existing Solutions

In this section some aspects of the sensitivity of the two image restoration methods
presented above, namely the Bayesian total probability formula (BR) and adaptive
weights smoothing (AWS) as well as that of naïve smoothing (NS) are researched.
Since the phenomena are too complex to be examined analytically, only the simulation
results and some general guidelines are supplied.

3.1 Summarizing the Source Accuracy

As described at the outset, the accuracy of each source is described by a C*C matrix,
where C is the number of categories in the classification. For the purposes of the
analysis, it is convenient, however, to be able to describe the source error more
concisely, e.g., through the expected value and variation of the overall accuracy. Using
the standard notation of Part 0 we say that the observation is accurate if the value
observed by the source is exactly the true value:

{ }isisi XYacc ==1 ,

i.e., accs is a binary variable with the expected value and variance respectively:

2

111

)()()(and)()(











−== ∑∑∑

===

C

z
szz

C

z
szzs

C

z
zsss zPezPeaccVarzPeaccE .

In order to describe all the sources by two numbers weights can be used. Let ws describe
the weight assigned to the source s then we have:

()i

S

s

S

s
ssi

S

s
s

S

s
ss accVarwwAccVarwaccEwAccE ∑ ∑∑∑

= ===










==

1 111

)(and)()(.

3.2 BR Sensitivity

The expected accuracy of the BR may be calculated according to the definition as:

∑ ∑ ∑ ∏
∑ ∏

∏

= = = =

= =

=

























≥












=

C

x

C

y

C

y

N

n
yxnC

x

N

n
yxn

N

n
yxn

N

n

n

n

xPe

xp

xp

accE
1 1 1 1

,,

1 1
,,

1
,,

1

)(5.

)(

)(

1)(

ζ

ζ
K ,

i.e., the expected value depends on both the actual and the perceived source error
matrices. Since each source error matrix for C classes is defined by C(C-1) parameters
and the multinomial vector is defined through (C-1) parameters, the accuracy depends

 10

on 2*(N*C+1)*(C-1) parameters. For example, for three sources and four multinomial
classes this amounts to 2*(3*4+1)*(4-1)=78 parameters. Clearly, this is too complex a
relationship to examine in detail. The investigation will thus be limited to two sources
with binary outcomes. The expected accuracy is then a function of 10 parameters and
can be written as:

∑ ∑ ∑
= =

−

=

−
−













≥
+−

−
=

1

0

1

0

1
,,2,,1

1

0 ,1,2,1,1,0,2,0,1

1
,,2,,1

1

21

2 2121

21)1(5.
)1(

)1(
1)(

x y

xx
yxyx

y yyyy

xx
yxyx

PPee
pp

pp
accE

ζζζζ
ζζ

 .

3.2.1 Accuracy as a function of p(x) and P(x)

To begin with, I will assume that the accuracy of the two sources is known perfectly
2,1 for ==Ζ sEss and examine the behavior of the expected accuracy for the given

source error matrices as a function of P and p.

Figure 2: BR accuracy as a function of P and p. The maximum accuracy is reached on
the line P=p. However, within a relatively narrow interval 10.±= Pp the
accuracy remains close to the optimal value. For the left-hand diagram, the
overall expected source accuracy equals .85 with std .25, and for the right-
hand diagram, the corresponding statistics are .625 and .33.

Firstly, it is a step function with five steps at most. The four jump points are calculated
as:

1,0and 1,0 for 21
11111010

1010

2121

21 ==
+

yy
yyyy

yy

ζζζζ
ζζ

 ,

 11

whereas the levels of the stepwise constant function are calculated as various linear
combinations of the terms:

{ }1,0,, for)1(21
1

21 21
∈− − yyxPPEE xx

xyxy .

Thus, the true levels of the parameters influence the levels of the function and through
them the maximum achievable accuracy whereas the modeling assumptions affect the
variability of the accuracy. Two examples are shown in Figures 3a and b.

The jump points are situated symmetrically around 5.=p if the source error matrices
are symmetric. The function itself is symmetric around 5.=p if 5.=P . As can be seen
from the diagrams and also deduced intuitively, the maximum accuracy is reached when

Pp = .

3.2.2 Accuracy as a function of source errors E and Z

In order to investigate accuracy as a function of source error matrices E and Z, the
simplest case will be considered, where:









−

−
=Ζ=Ζ








−

−
==

ζζ
ζς

1

1
and

1

1
2121 ee

ee
EE .

Figure 3a:

1.,
8.2.

2.8.
,

9.1.

1.9.
21 =








=








= PEE .

Figure 3b:

5.,
7.3.

2.8.
,

1.9.

1.9.
21 =








=








= PEE .

 12

It will also be assumed that Pp = , i.e., that we have perfect information regarding our
prior.

In the case where modeling assumptions exactly correspond to the actual situation, i.e.,
ζ=e , the maximum accuracy is reached by the method.

Figure 4: Maximum BR accuracy as a function of modeling assumptions. The potential
maximum accuracy is higher for values of prior (p and P) and modeling (e and
ζ) parameters which are further from .50.

 13

Figure 5: Maximum BR accuracy as a function of prior and modeling assumptions and
parameters. The bold black line indicates the range of values over which the
maximum accuracy is reached.

3.2.3 Prior elicitation

A question that also arises in Bayesian inference is the prior elicitation, i.e., how do we
get information on E and P expressed in Z and p? In reality, the accuracy of the source
will most likely be known quite precisely from technical specifications. Also, some
information on the proportions of areas assigned to different categories will be known.
There is, however, a theoretical formula allowing to make some inference about proper
prior and modeling assumptions:

EPP trueTobs)()(= .

 14

For example, if we know that the source accuracy is
















=

8.1.1.

2.6.2.

1.2.7.

E and the posterior

distribution of the observations is []15,.32,.53.=obsP , then

() [] []0276,.3069,.6655.

8.1.1.

2.6.2.

1.2.7.

15.32.53.

1

1 =















==

−

−EPP
Tobstrue .

3.3 AWS Sensitivity

The sensitivity of an iterative algorithm like AWS is too complex to be expressed
analytically. However, the performance of the algorithm can still be assessed through
simulations. The authors of the method have thoroughly tested it and come to the
conclusion that the method performs very well for a piecewise constant image and
provides good quality both within the homogeneous regions and near the edge (Polzehl
and Spokoiny, 2000). It is also stable with respect to increasing noise level.

Generally, it is obvious that the accuracy of the method depends on homogeneity of the
pattern as well as on the parameters of the algorithm, namely kernel function,
smoothness parameters λ and k*,η, and the neighborhood structure. The optimal
parameters can be found through the bootstrap method (Polzehl and Spokoiny, 2000).

Another important factor is the accuracy of the source. Since AWS makes no
adjustments for perceived source inaccuracy however, all that can be said on this matter
is the accuracy range for which it is applicable.

Since describing AWS sensitivity in detail is too big a task, I will only describe a few
major features here, which should be of interest in my applications.

3.3.1 Moran’s I

As mentioned above, the homogeneity of the pattern plays a big role in the accuracy of
the estimation. Intuitively, homogeneous means that grid cells with similar values tend
to stick together. Formally, various formulae exist to measure the homogeneity or
spatial correlation. I will use Moran’s I, which is defined by the formula:

()()

()∑

∑∑

∑∑
=

= =

= =
−

−−

∗=
I

i

i

j

I

i

i

I

j

ij

I

i

I

j

ij xx

xxxxW

W

I
I

1

2

1 1

1 1

 ,

 15

where W = neiborhood matrix and x are the values in grid cells.

The values of Moran’s I range from +1 meaning strong positive spatial autocorrelation
(homogeneity) to 0 meaning a random pattern to –1 indicating a strong negative spatial
autocorrelation.

3.3.2 Accuracy vs. homogeneity and source precision

In order to illustrate AWS accuracy, five patterns of different homogeneity, displayed in
Figure 6, were distorted using three different source accuracies (.95, .50, .05) ten times.
Afterwards, the patterns were estimated using AWS at optimal parameters (the
estimation results were robust with respect to parameters of the algorithms). The results
are shown in Table 1.

Table 1: AWS accuracy.

Source
accuracy

Pattern I Pattern II Pattern III Pattern IV Pattern V

.95 .4191 .5902 .8770 .9605 .9996

.50 .5094 .5023 .4797 .5035 .6258

.05 .5840 .4109 .1168 .0324 .0012
Moran’s I -.0323 .0366 .4839 .8108 -

For the high precision observations, the accuracy of the estimation grows with the
homogeneity of the source. However, for a low precision, the accuracy of the estimation
actually gets worse as the pattern becomes more homogeneous. By way of general
guidelines, it can be said that the AWS algorithm gives good results for patterns with
Moran’s I above .5 and for data observed with over 90% accuracy. In this case, the
accuracy of the estimates will be over 80%.

3.4 NS Accuracy

The accuracy of NS1-1 was tested similarly. The five patterns in Figure 6 were distorted
using the sources of different accuracy and were then restored using NS1-1. Ten
simulations were run for each case. The results of the simulations are summarized in the
Table 2.

Table 2: Naïve Smoothing (NS1-1) Accuracy.

Source
accuracy

Pattern I Pattern II Pattern III Pattern IV Pattern V

.95 .7492 .8449 .9590 .9871 .9992

.50 .4922 .4949 .4820 .4543 .4520

.05 .2734 .1695 .0438 .0086 .0000
Moran’s I -.0323 .0366 .4839 .8108 -

 16

Figure 6: Five binary patterns of different heterogeneity.

 17

4 Proposed Approach

So far, two of the existing approaches have been described and examined in terms of
their accuracy and sensitivity. To recap, the BR is best to use when several sources of
information have to be taken into account. It is especially accurate when both the
general accuracy of the sources is far from 50% (guessing) and when proportions of the
categories are unequal. Generally, accuracy is >80% and the results of the estimation
are more accurate than the observed patterns as such. However, taking into account the
information available on spatial correlation would improve this. On the other hand,
AWS seems to be one of the best-performing tools to deal with spatial correlation.
However, AWS cannot analyze several sources simultaneously. Its accuracy depends on
the general homogeneity of the area, the algorithm parameters, which can be fine-tuned
using the bootstrap method, and the accuracy of the source of observations. It is
therefore reasonable to suggest that a combination of the two methods might yield better
results than any of the methods taken separately.

4.1 AWS-BR and BR-AWS

Two logical possibilities follow. We can either apply the smoothing algorithm to all the
S samples and then use the total probability rule (this combination will be denoted
AWS-BR), or we can use the Bayesian method first and apply smoothing later (BR-
AWS). There is no logical reason a priori to prefer one combination over the other. The
conducted simulations have shown that BR-AWS gives consistently better results than
AWS-BR. It is thus BR-AWS, which is suggested as a new improved method for image
restoration when multiple sources of information are available.

Something needs to be said about the performance of the method as well as about its
sensitivity to modeling and prior assumptions. Since it is a combination of the two
methods previously considered in detail, it is reasonable to conclude that its accuracy
follows the rules laid out earlier. Namely, its performance is better when source error is
far from 50%. It improves with the homogeneity of the area and it can be improved by
fine-tuning the parameters. However, its accuracy is still better than that of the above
methods separately, because it simultaneously takes into account both spatial correlation
and all the available information. This information includes not only the observed
patterns, but also data on source accuracy, categories distribution, etc.

To illustrate, in the next section I provide two applications of the suggested approach
and compare the results with those of the two traditional approaches described above as
well as with the BR-AWS approach.

 18

5 Applications

5.1 Application 1: Binary Data From Three Observation Sources

To illustrate the estimation processes and compare the results of different methods, I
will first consider a case of a black and white image on a 16x16 regular square grid. The
true pattern is shown in Figure 7.

Figure 7: True pattern: black and white image on a 16x16 regular square grid.

Three sources with the accuracy matrices:









=








=








=

85.15.

20.80.
,

75.25.

25.75.
,

90.10.

10.90.
321 EEE

were involved. The simulated observed patterns are shown in Figure 8.

The results of AWS are shown in Figure 9. The optimal parameters 4and 3* == λk were
found using the bootstrap method described earlier. The Bayesian estimation, BR-AWS
and AWS-BR are further shown in Figure 10. Thus, the most accurate results are achieved
through BR-AWS and AWS-BR estimations.

 19

Figure 8: Observed patterns from sources with different sensitivities.

 20

Figure 9: AWS for patterns observed by different sources.

 21

Figure 10: Results of BR, BR-AWS, and AWS-BR estimation and their accuracy.

 22

Table 3: Accuracy of various image restoration methods in the first application.

Source
accuracy
matrix

Overall
source

accuracy

Observed
source

accuracy

AWS
accuracy

BR

BR-AWS

AWS-BR









=

90.10.

10.90.
1E

.9000

.9688

.9883









=

75.25.

25.75.
2E

.7500

.8164

.9453









=

85.15.

20.80.
3E

.8250

.8594

.8828

.9723

.9922

.9883

5.2 Application 2: Multi-class Image with Three Sources of Observation

An already classified 87x111 grid cells LANDsat image of the forest area in Siberia
(Russia) has been used in this application. The true image is shown in Figure 11. The
black color stands for the missing values and the other 32 colors denote different land-
cover classes. To illustrate the attractiveness of the suggested method, three observed
images were simulated. All three sources were given a similar error matrix:



















=

50.31/50.31/50.

31/50....50.31/50.

31/50....31/50.50.

K

MOMM
E .

 Figure 11.

 23

Thus, the probability of identifying the class correctly was equal to 50% (equivalent to
guessing) and the probability of erroneously identifying it with any other class was
equal to .50/31=.0161. The three generated images are presented in Figure 12.

Figure 12: The observed (simulated) patterns.

The results of the BR application and the image resulting after naïve smoothing are
shown further in Figures 13 and 14. Note that the BR is applied assuming perfect prior
and modeling information. It is obvious that the naïve smoothing improves the estimate
considerably. A second smoothing only slightly improves the estimate further. The
accuracy of various sources and estimation methods is summarized in Table 4.

 24

Figure 13. Figure 14.

Table 4: Accuracy of the various image restoration methods in application 2.

 Stated
source

accuracy

Observed
source

accuracy

Naïve

smoothing BR

BR and
Naïve

smoothing
once

BR and
Naïve

smoothing
twice

Source I .5209 .5223 .9173
Source II .5209 .5178 .9088
Source III .5209 .5159 .9090

.6308 .9522 .9652

Thus, a combination of BR and naïve smoothing gives the best accuracy of 95%. It is a
significant improvement from the observed 50% and a useful one over the naively
smoothed 90%.

 25

6 Discussion

The suggested combination of BR and AWS performs better in image restoration than
the methods separately when multiple data sources are available. It allows to take into
account both the existence of spatial correlation and the multiple sources of differing
quality. In this, it is different from existing methods. In this paper, however, only a
rather small part of its possibilities and properties have been researched. What follows is
a discussion of possible future directions of work.

Although the accuracy and the sensitivity of the method have been studied in some
detail through simulations, more evaluation is needed. Analytical properties should be
deduced if possible.

Although the classification method was assumed to be the same among sources, such an
assumption is not necessarily realistic. More work therefore is needed on the question of
classification compatibility. Another problem may arise if the spatial grids are different
for different sources ― the case of spatial misalignment. These questions of
incompatibility should be addressed in order to make the method more practically
applicable. It may also widen its applicability. So far, the possible applications
concerned, e.g., combining satellite images made at different times to produce the most
accurate map of vegetation, or to combine maps classified by different experts. In short,
several observed samples on the same variable. But, another possible application would
be to combine information on the different characteristics from different sources to
produce a map or an image of some quantity, which is a function of those.

AWS can be described as a method of estimating a stepwise correlation function over a
spatial field. Originally, the levels of the function are not limited to any particular set
but, in order to make it applicable to the categorical situation, it has been modified to
select the levels from the set {1,2,…,C} where C is the amount of categories. The
bootstrap method for fine-tuning the AWS parameters has not been modified in any
way. Perhaps, however, the modifications taking into account that we deal with
categorical data may improve the method further.

As was shown, when the classification is not ordinal, the application of naïve smoothing
gives good results. The questions of the applicable radius and the optimal number of
iterations remain. It is suggested that the first may be deduced from the level of spatial
correlation within the image. As to the number of iterations, the accuracy benefits of
further smoothing will progressively become smaller and smaller and thus may arrive at
some kind of convergence criteria.

Finally, the technical aspect should be mentioned. The AWS algorithm is
computationally intensive. In the Appendices there is a description (Appendix 1) and
listing (Appendix 2) of the functions, in R-language, used for the analysis described in
this paper. In order to make the method more practical, it would be worthwhile to
produce software on a lower level programming language such as C++.

To conclude, the suggested method AWS-BR is a promising solution to image
restoration when data from multiple sources are available. Some research and

 26

programming, however, is still required to make it applicable to field data, such as the
data collected for the Forestry Project’s Siberia II study.

References
Besag, J., J. York and A. Mollie (1991). Bayesian Image Restoration with Two

Applications in Spatial Statistics. Annals of the Institute of Mathematical
Statistics, 43: 1–59.

Divino, F., A. Frigessi and P.J. Green (1999). Penalized Pseudo-likelihood Inference in
Spatial Interaction Models with Covariates. Downloaded from and available on
the Internet: http://www.nr.no/~frigessi/Research.html.

Gelman, A., J.B. Carlin, H.S. Stern and D.B. Rubin (1995). Bayesian Data Analysis.
Chapman and Hall.

Kitamoto, A. and M. Takagi (1999). Image Classification Using Probabilistic Models
that Reflect the Internal Structure of Mixels. Pattern Analysis and Applications, 2:
31–43.

Krell, G., A. Herzog and B. Michaelis (1996). Real-Time Image Restoration with an
Artificial Neural Network. In: Proceedings of the International Conference on
Neural Networks (ICNN) ‘96, Washington, 3–6 June 1996, pp. 1552–1557.
Downloaded from and available on the Internet: http://ipe.et.uni-
magdeburg.de/TI/research1_publ.html.

Kunz, D., K.-J. Schilling and T. Vögtle (1997). A New Approach for Satellite Image
Analysis by Means of a Semantic Network. In: SMATI 97, W. Förstner and L.
Plümer (eds.), Birkhäuser, pp. 20–36. Downloaded from and available on the
Internet: http:/www-ipf.bau-verm.uni-karlsruhe.de/.

Mascarilla, L. (1997). Fuzzy Rules Extraction and Redundancy Elimination: An
Application to Remote Sensing Image Analysis. International Journal of
Intelligent Systems, 12: 793–817.

Osnes, K. and O. Aalen (1999). Spatial Smoothing of Cancer Survival: A Bayesian
Approach. Statistics in Medicine, 18: 2087–2099.

Polzehl, J. and V.G. Spokoiny (2000). Adaptive Weights Smoothing with Applications
to Image Restoration. Journal of Royal Statistical Society, Series B, 335–354.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton University Press.

 27

APPENDIX 1: R-functions Description

R-language was used in the analyses and simulations. Information on this language as
well as the source code may be found and downloaded from http://www.R-project.org/.

LIST OF FUNCTIONS:

 rmulti()

 rmulti0()

gen.random()

br2bin.acc.px()

br()

neighbor1()

AWS.3d

source.error.sum()

AWS.3d.bootstrap()

moran.i()

neighbor()

naive1()

 28

R-FUNCTION: rmulti()

DESCRIPTION: Generates a matrix of multinomial observations.

FILE: A:/rmulti_fun.txt

FORMAT: rmulti(N,m,C,P)

PARAMETERS:

 N = number of variables (multinomial vectors) to be simulated.
 m = size of each of the above vectors (can be either constant or a vector of length N).
 C = number of classes: 1,2,…,C.
 P = vector or matrix of multinomial probabilities (equal class probabilities by default).

OUTPUT: Y = a matrix of multinomial observations.

NOTES: Uses a more basic function rmulti0().

EFFICIENCY:

EXAMPLE:

> N

[1] 5

> m

[1] 2 3 5 7 20

> C

[1] 4

> P

 [,1] [,2] [,3] [,4]

[1,] 0.7 0.1 0.1 0.1

[2,] 0.4 0.2 0.2 0.2

[3,] 0.1 0.3 0.3 0.3

[4,] 0.5 0.5 0.0 0.0

[5,] 1.0 0.0 0.0 0.0

> rmulti(N,m,C,P)

 [,1] [,2] [,3] [,4]

[1,] 2 0 0 0

[2,] 2 0 1 0

[3,] 2 2 1 0

[4,] 3 4 0 0

[5,] 20 0 0 0

>

 29

R-FUNCTION: rmulti0()

DESCRIPTION: Generates a vector of multinomial observations.

FILE: A:/rmulti0_fun.txt

FORMAT: rmulti0(m,C,P)

PARAMETERS:

 m = size of each multinomial vector.
 C = number of classes: 1,2,…,C.
 P = vector of multinomial probabilities (equal class probabilities by default).

OUTPUT: Y = a vector of multinomial observations.

NOTES: rmulti0() is a simplified version of rmulti().

EFFICIENCY:

EXAMPLE:

> rmulti0(15,7,)

[1] 0 3 6 0 3 1 2

 30

R-FUNCTION: gen.random()

DESCRIPTION: Generates multinomial random observations on a regular grid. Further
generates source observations for the simulated grid according to the supplied source
error matrices.

FILE: A:/gen_random_fun.txt

FORMAT: gen.random(size.x,size.y,C,N,E,P,pic)

PARAMETERS:

 size.x = width of the grid.
 size.y = height of the grid.
 C = number of multinomial classes.
 N = number of sources.
 E = array of source error matrices.
 P = true proportions of multinomial classes.
 pic =T/F indicates whether a picture is to be drawn (False by default).

OUTPUT:

 X = “true” situation (x,y).
 Y = array of sources observations (x,y,source).
 if pic=T then graphical output results.

NOTES:

EFFICIENCY:

EXAMPLE:

> size.x<-10

> size.y<-15

> C<-4

> N<-3

>

> P<-c(.5,.2,.2,.1)

>

> E1<-array(c(.7,.1,.1,.1,.1,.7,.1,.1,.1,.1,.7,.1,.1,.1,.1,.7),dim=c(4,4))

> E2<-array(c(.6,.2,.2,.2,.2,.6,.2,.2,.2,.2,.6,.2,.2,.2,.2,.6),dim=c(4,4))

> E3<-array(c(.5,.3,.2,.0,.3,.4,.2,.1,.2,.2,.6,.0,.0,.1,.0,.9),dim=c(4,4))

>

> E<-array(cbind(E1,E2,E3),dim=c(4,4,3))

>

> E

 31

, , 1

 [,1] [,2] [,3] [,4]

[1,] 0.7 0.1 0.1 0.1

[2,] 0.1 0.7 0.1 0.1

[3,] 0.1 0.1 0.7 0.1

[4,] 0.1 0.1 0.1 0.7

, , 2

 [,1] [,2] [,3] [,4]

[1,] 0.6 0.2 0.2 0.2

[2,] 0.2 0.6 0.2 0.2

[3,] 0.2 0.2 0.6 0.2

[4,] 0.2 0.2 0.2 0.6

, , 3

 [,1] [,2] [,3] [,4]

[1,] 0.5 0.3 0.2 0.0

[2,] 0.3 0.4 0.2 0.1

[3,] 0.2 0.2 0.6 0.0

[4,] 0.0 0.1 0.0 0.9

>
> gen.random(size.x,size.y,C,N,E,P,T)

…

 32

GRAPHICAL OUTPUT:

 33

R-FUNCTION: br2bin.acc.px()

DESCRIPTION: Calculates expected accuracy of the Bayesian Image Restoration
applied to two sources in a binary case as a function of prior probability p.

FILE: H:/R-routines/br2bin_acc_px_fun.txt

FORMAT: br2bin.acc.px(E1,E2,e1,e2,P,pic)

PARAMETERS:

 E1 = 2*2 primary source error matrix.
 E2 = 2*2 secondary source error matrix.
 e1 = 2*2 perceived primary source error matrix (equal to E1 by default).
 e2 = 2*2 perceived secondary source error matrix (equal to E2 by default).
 P = true 0-1 proportion.
 pic =T/F depending on whether or not a graph is wanted (False by default).

OUTPUT:

 JP.order = jump points of the step function sorted in ascending order.
 levelf = corresponding levels of the step function.
 max.f = maximum expected accuracy.
 Jlength.max = the length of the interval containing the maximum expected accuracy.

NOTES: The function is useful for preliminary investigation of BR accuracy.

EFFICIENCY:

EXAMPLE:

> E1
 [,1] [,2]
[1,] 0.4 0.6
[2,] 0.8 0.2
> E2
 [,1] [,2]
[1,] 0.9 0.1
[2,] 0.3 0.7
> br2bin.acc.px(E1,E2,,,P=.7,pic=T)
$JP.order
[1] 0.06666667 0.30000000 0.60000000 0.90000000

$levelf
[1] 0.30 0.68 0.76 0.82 0.70

$max.f
[1] 0.82

$Jlength.max
[1] 0.3

>

 34

R-FUNCTION: br()

DESCRIPTION: Performs image restoration from a combination of different sources
and prior information using Bayesian Total Probability formula and mode estimation.

FILE: A:/br_fun.txt

FORMAT: br(Y,C,e,p,pic)

PARAMETERS:

 Y = array of observations from different sources (size.x, size.y, sources).
 C = number of multinomial classes.
 e = perceived source error matrices (C, C, sources).
 p = prior information on multinomial probability vector.
 pic =T/F depending on whether a graph is wanted.

OUTPUT:

 Y.est = array of estimated values (size.x,size.y).
 P.post = array of posterior multinomial probabilities for each grid cell (size.x, size.y, C).

NOTES: The estimation is done using the Bayesian total probability formula:

[]

[]∑ ∏

∏

= =

=

=






 ==

=






 ==

====
C

x
i

S

s
isisi

i

S

s
isisi

SiSiiii

xXPxXyYP

xXPxXyYP

yYyYxXP

1 1

1
11

)((

)((

)...,(

where S = the number of sources and C = the number of classes.

The mode estimation was used, i.e., the class with the largest posterior probability was
chosen. In the case of multi-modality, one of the modes is chosen randomly.

EFFICIENCY:

EXAMPLE:

> size.x<-15
> size.y<-15
> C<-4
> N<-2
> P<-c(.4,.3,.2,.1)
>
> E1<-array(c(.7,.1,.1,.1,.2,.6,.2,.2,.1,.3,.3,.3,.0,.0,.6,.4),dim=c(4,4))
> E2<-array(c(.3,.3,.2,.2,.4,.5,.1,.0,.0,.1,.6,.3,.3,.1,.1,.5),dim=c(4,4))
>
> E1
 [,1] [,2] [,3] [,4]
[1,] 0.7 0.2 0.1 0.0
[2,] 0.1 0.6 0.3 0.0
[3,] 0.1 0.2 0.3 0.6
[4,] 0.1 0.2 0.3 0.4
>

 35

> E2
 [,1] [,2] [,3] [,4]
[1,] 0.3 0.4 0.0 0.3
[2,] 0.3 0.5 0.1 0.1
[3,] 0.2 0.1 0.6 0.1
[4,] 0.2 0.0 0.3 0.5
>
> E<-array(cbind(E1,E2),dim=c(4,4,2))
>
> source("H:/R-routines/gf/gen_random_fun.txt")
> GEN<-gen.random(size.x,size.y,C,N,E,P,F)
>
> source("H:/R-routines/gf/br_fun.txt")
> br(GEN$Y,C,E,P,pic=T)$Y.est
…
GRAPHICAL OUTPUT:

 36

R-FUNCTION: neighbor1()

DESCRIPTION: Calculates neighborhood matrix of radius 1 for the user-defined grid
according to the chosen method.

FILE: A:/neighbor1_fun.txt

FORMAT: neighbor(size.x, size.y, method=“king”)

PARAMETERS:

 size.x = width of the grid.
 size.y = height of the grid.

method = contiguity definition. There are three methods to choose from: “rook”,
“bishop”, and “king” as follows:

Rook Bishop King
0 1 0 1 0 1 1 1 1
1 x 1 0 x 0 1 x 1
0 1 0 1 0 1 1 1 1

 The default method is “king”.

OUTPUT: A neighborhood binary matrix with 1 standing for neighborhood and 0 for
lack thereof. The dimensions of the output matrix are (size.x*size.y,size.x*size.y).

NOTES:

EFFICIENCY:

EXAMPLE:

> source("H:/R-routines/gf/neighbor1_fun.txt")

> neighbor1(2,2,"rook")

 [,1] [,2] [,3] [,4]

[1,] 0 1 1 0

[2,] 1 0 0 1

[3,] 1 0 0 1

[4,] 0 1 1 0

>

 37

R-FUNCTION: AWS.3d()

DESCRIPTION: Performs adaptive weights smoothing for categorical data on a 2D grid.

FILE: A:/AWS_3d_fun.txt

FORMAT: AWS.3d(Y,Cl,lambda,nu,k.max,kernel,method,U,res.m,sigma.m,pic)

PARAMETERS:

 Y = 2D matrix of observations on the grid.
 Cl = number of multinomial classes.
 lambda = AWS algorithm smoothness parameter (see Section 2.2 for a detailed

description).
 k.max = maximum number of iterations.
 nu = AWS algorithm control parameter (see Section 2.2 for a detailed description).
 kernel = describes the type of kernel used in AWS. Three options currently

implemented are:

 “exp” exponential
2xe−

 “uni” uniform { }11 ≤x

 “tri” triangular




≥−
<

2if5.1

2if0

xx

x

 method = contiguity definition. Available options are:

 “given”, in which case the neighborhood matrix U should be supplied, and

 “king” “rook” “bishop”
 1 1 1 0 1 0 1 0 1
 1 x 1 1 x 1 0 x 0
 1 1 1 0 1 0 1 0 1

 U = neighborhood matrix if available, in which case method = “given”

 res.m = method by which pseudoresiduals are to be calculated:

 method.r = 1: () 6/2ˆ 1,,1,, 21212121 ++ −−= iiiiiiii YYYe

 method.r = 2: ()() 20/4ˆ 1,1,,1,1,, 212121212121 −+−+ +++−= iiiiiiiiiiii YYYYYe

 It is set to 1 by default.

 sigma.m = method by which noise variance estimate is to be obtained:

 sigma.m = “s”: ∑
=

=
n

i
ie

n 1

22 ˆ
1σ̂

 sigma.m = “t”: 35.1)(ˆ %25%75
2 tt −=σ

 It is set to “s” by default.

 pic = T/F depending on whether the graphical output wanted or not. F by default.

OUTPUT:

 Y.est = the matrix of estimated values.
 W = weights used in the final estimation. Used in bootstrap fine-tuning.

 38

NOTES: The algorithm is very computationally intensive. It also uses large amounts of
memory. For an array of size L with k* being the maximum amount of iterations, the
amount of parameters grows to)3(2 * ++ kLL .

EFFICIENCY:

EXAMPLE:

 39

R-FUNCTION: source.error.sum()

DESCRIPTION: Calculates summary statistics (expected values and variances) for the
source accuracy matrices.

FILE: A:/source_error_sum_fun.txt

FORMAT: source.error.sum(E,P,w)

PARAMETERS:

 E = C*C*S array of source error matrices with C = number of categories and S =
number of sources.

 P = a multinomial probability vector of length C. All equal probabilities by default.
 w = vector of (unnormalized) weights of length C. All equal to 1 by default.

OUTPUT:

 E.acc.s = a vector of expected source accuracy for each source (length S).
 V.acc.s = a vector of source accuracy variances for each source (length S).
 E.acc.o = overall expected accuracy.
 V.acc.o = variance of the overall accuracy.

NOTES:

EFFICIENCY:

EXAMPLE:

> E
, , 1

 [,1] [,2]
[1,] 0.9 0.1
[2,] 0.1 0.9

, , 2

 [,1] [,2]
[1,] 0.8 0.2
[2,] 0.2 0.8

> source.error.sum(E,c(.1,.9),)
$E.acc.s
[1] 0.9 0.8

$V.acc.s
[1] 0.09 0.16

$E.acc.o
[1] 0.85

$V.acc.o
[1] 0.0625

>

 40

R-FUNCTION: AWS.3d.bootstrap()

DESCRIPTION: A bootstrap method assisting in the choice of optimal parameters for
the AWS procedure.

FILE: A:/AWS_3d_bootstrap_fun.txt

FORMAT: AWS.3d.bootstrap(Y,Cl,l.v,k.v,kernel,method,U,res.m,sigma.m,M,k.def,l.def).

PARAMETERS:

 Y = a 2D array of observed levels.
 Cl = number of levels.
 l.v = vector of lambda values out of which the optimal value is to be chosen.
 k.v = vector of k values out of which the optimal value is to be chosen.
 kernel = type of kernel to use. “exp”, “uni” and “tri” types are implemented. See

description of AWS.3d() function for details.
 method = contiguity definition. See description of AWS.3d() for definition.
 U = neighborhood matrix supplied if method = “given”.
 res.m = residuals definition. See description of AWS.3d() for definition.
 sigma.m = method of residual variance calculation. See description of AWS.3d() for

definition.
 M = number of bootstrap iterations.
 k.def and l.def = values of k* and lambda to be used as default. I.e. the loss function

is calculated with respect to the estimates for those parameters.
k* = 19 and lambda = 4 by default.

OUTPUT: A matrix of (quadratic) loss function values for different lambda*k
combinations. The combination with the smallest values is recommended.

NOTES:

EFFICIENCY:

EXAMPLE:

 41

R-FUNCTION: moran.i()

DESCRIPTION: Calculates Moran’s I, a spatial heterogeneity measure for a user
defined process according to the desired method.

FILE: A:/moran_i_fun.txt

FORMAT: moran.i(Y,method,U)

PARAMETERS:

 Y = the spatial process.
 method = contiguity definition. “king” by default. If a neighborhood matrix can be

provided, method = “given”. See description of the neighbor1() for more
information on available contiguity definitions.

 U = neighborhood matrix if provided; undefined otherwise.

OUTPUT: Moran’s I calculated for the given field and neighborhood structure. The
value ranges from –1 to 0 to 1 indicating strong negative correlation, random pattern
and strong positive correlation respectively.

NOTES: Supplied neighborhood matrix enables faster calculations, for example, in the
case of loops.

EFFICIENCY:

EXAMPLE:

 42

R-FUNCTION: neighbor()

DESCRIPTION: Calculates neighborhood matrix for the given regular square grid with
the specified measure of locality (radius).

FILE: A:/neighbor_fun.txt

FORMAT: neighbor(size.x,size.y,radius)

PARAMETERS:

 size.x = width of the grid.
 size.y = width of the grid.
 radius = radius of neighborhood.

OUTPUT: Neighborhood matrix for the area of the dimensions (size.x*size.y,size.x*size.y).

NOTES:

EFFICIENCY:

EXAMPLE:

 43

R-FUNCTION: naive1()

DESCRIPTION: Performs naïve mode smoothing.

FILE: A:/naive1_fun.txt

FORMAT: neighbor(Y,mv,radius=1)

PARAMETERS:

 Y = array, describing an image to smooth.
 mv = missing value marker or class.
 radius = radius of neighborhood, equal to 1 by default. Varying radia not

implemented yet!

OUTPUT: Smoothed image: a matrix with the same dimensions as Y.

NOTES:

EFFICIENCY:

EXAMPLE:

 44

Appendix 2: R-functions Listings

LIST OF FUNCTIONS:

 rmulti()

 rmulti0()

gen.random()

br2bin.acc.px()

br()

neighbor1()

AWS.3d

source.error.sum()

AWS.3d.bootstrap()

moran.i()

neighbor()

naive1

 45

rmulti<-function(N,m,C,P=rep(1/C,C)){

GENERATES OBSERVATIONS FROM MULTINOMIAL DISTRIBUTION

##############

02.08.2001 #

##############

by Elena Moltchanova

#INPUT:

N = size of the output array

C = number of multinomial categories

P = multinomial probability matrix (N*C) or vector (C)

m = size of output vector (vector or scalar)

source("A:/rmulti0_fun.txt")

#setting up output array

Y<-array(dim=c(N,C))

if (length(m)==1){m<-rep(m,N)}

if (length(dim(P))==0){P<-t(array(rep(P,N),dim=c(C,N)))}

for (n in 1:N){

Y[n,]<-rmulti0(m[n],C,c(P[n,]))

}

return(Y)

}

 46

rmulti0<-function(m,C,P=rep(1/C,C)){

GENERATES SINGE OBSERVATION VECTOR FROM MULTINOMIAL DISTRIBUTION

##############

03.08.2001 #

##############

by Elena Moltchanova

INPUT:

C = number of classes

P = multinomial probability vector or matrix

m = size of output vector

calculating cumulative probabilities

cp<-round(cumsum(P),8)

#lower border

cp.low<-array(rep(c(0,cp[-length(cp)]),m),dim=c(C,m))

cp.upp<-array(rep(cp,m),dim=c(C,m))

#random numbers

rp<-array(rep(runif(m,0,1),rep(C,m)),dim=c(C,m))

class belonging

Y<-apply((rp>cp.low)*(rp<=cp.upp),1,sum)

return(Y)

}

 47

gen.random<-function(size.x,size.y,C,N,E=array(dim=c(C,C,N)),P=rep(1/C,C),pic=F){

GENERATING RANDOM OBSERVATIONS ON A RECTANGULAR GRID

C classes

N sources

##############

02.08.2001 #

##############

by Elena Moltchanova

reading in additional functions

source("A:/rmulti_fun.txt")

#true category vector

X<-(rmulti(size.x*size.y,1,C,P))%*%c(1:C)

#sources

Y<-array(dim=c(size.x*size.y,N))

for (source in 1:N){

Y[,source]<-rmulti(size.x*size.y,1,C,t(E[,X,source]))%*%c(1:C)

}

X<-array(X,dim=c(size.x,size.y))
Y<-array(Y,dim=c(size.x,size.y,N))

if (pic==T){
#PLOT

#dividing the plotting area into a suitable number of screens:

x.fig<-ceiling(sqrt(N))
par(mfcol=c(x.fig,x.fig+1))

#plotting true source
image(c(0:size.x),c(0:size.y),X,main="True",xlab="x",ylab="y",col=terrain.colors(C))

#plotting legend
plot(0,0,xlim=c(0,5),ylim=c(0,(2*C+1)),xlab="",ylab="",main="legend",ty="n")
for (cl in 1:C){
polygon(c(1,2,2,1),c(2*cl,2*cl,2*cl+1,2*cl+1),col=terrain.colors(C)[cl])
text(3,2*cl+.5,cl)
}

#plotting observation sources
for (n in 1:N){
image(c(0:size.x),c(0:size.y),Y[,,n],main=c("source=",n),xlab="x",ylab="y",col=terrain.colors(C))
}
}

return(X,Y)
}

 48

br2bin.acc.px<-function(E1=array(c(.5,.5,.5,.5),dim=c(2,2)),E2=array(c(.5,.5,.5,.5),
dim=c(2,2)),e1=E1,e2=E2,P=.5,pic=FALSE){

##############
24.07.2001 #
##############

#Evaluates theoretical accuracy of the Bayesian image restoration as a function of p

#calculate jump points

JP<-vector(length=4)

JP[1]<-e1[1,1]*e2[1,1]/(e1[1,1]*e2[1,1]+e1[2,1]*e2[2,1])

JP[2]<-e1[1,2]*e2[1,1]/(e1[1,2]*e2[1,1]+e1[2,2]*e2[2,1])

JP[3]<-e1[1,1]*e2[1,2]/(e1[1,1]*e2[1,2]+e1[2,1]*e2[2,2])

JP[4]<-e1[1,2]*e2[1,2]/(e1[1,2]*e2[1,2]+e1[2,2]*e2[2,2])

#eliminating doubles

JP<-JP[!is.na(JP)]

JP.order<-sort(JP)

#unit levels

U0<-vector(length=4)

U1<-vector(length=4)

U0[1]<-E1[1,1]*E2[1,1]*(1-P)

U0[2]<-E1[1,2]*E2[1,1]*(1-P)

U0[3]<-E1[1,1]*E2[1,2]*(1-P)

U0[4]<-E1[1,2]*E2[1,2]*(1-P)

U1[1]<-E1[2,1]*E2[2,1]*P

U1[2]<-E1[2,2]*E2[2,1]*P

U1[3]<-E1[2,1]*E2[2,2]*P

U1[4]<-E1[2,2]*E2[2,2]*P

#sorting U0 and U1 by JP

o<-order(JP)

U0<-U0[o]

U1<-U1[o]

levelf<-vector(length=5)

 49

levelf[5]<-sum(U1[1:4])

levelf[4]<-sum(U1[1:3],U0[4])

levelf[3]<-sum(U1[1:2],U0[3:4])

levelf[2]<-sum(U1[1],U0[2:4])

levelf[1]<-sum(U0[1:4])

#maximum of the function

max.f<-max(levelf)

#the width of the interval for which maximum is reached

Jlength<-c(JP.order,1)-c(0,JP.order)

Jlength.max<-sum(Jlength[levelf==max(levelf)])

if(pic==TRUE){

#plot

plot(c(0:1),c(0:1),ty="n",xlim=c(0,1),ylim=c(0,1),xlab="prior probability p(x)",

ylab="accuracy", main="Expected Bayes Rule Accuracy")

segments(0,levelf[1],JP.order[1],levelf[1],lwd=2,col="darkgreen")

for (ss in 1:3){

segments(JP.order[ss],levelf[ss+1],JP.order[ss+1],levelf[ss+1],lwd=2,col="darkgreen")

}

segments(JP.order[4],levelf[5],1,levelf[5],lwd=2,col="darkgreen")

for (ss in 1:4){

segments(JP.order[ss],levelf[ss],JP.order[ss],levelf[ss+1],lwd=1,lty=2,col="darkgreen")

}}

return(JP.order,levelf,max.f,Jlength.max)

}

 50

br<-function(Y1,C,e,p,pic=F){

##############

01.08.2001 #

##############

by Elena Moltchanova

####################################

USING BAYESIAN TOTAL PROBABILITY FORMULA FOR IMAGE RESTORATION #

####################################

size.x<-dim(Y1)[1]

size.y<-dim(Y1)[2]

Y<-array(Y1,dim=c(size.x*size.y,dim(Y1)[3]))

* NOTATION * #

C=number of classes (1,...,C) #

N=number of sources #

Y[1:L,1:N]=array of observations #

E[1:C,1:C,1:N]=array of source errors #

P[1:C,1:I]=vector of prior probabilities #

#L number of observations

L<-dim(Y)[1]

N<-dim(Y)[2]

Ee<-array(dim=c(N,C,L))

for (n in 1:N){

Ee[n,,]<-E[,Y[,n],n]

}

Ee.sum<-exp(apply(log(Ee[1:N,,]),c(2,3),sum))

Ee.sumx<-apply(Ee.sum[1:C,],2,sum)

#array of posterior probabilities

P.post<-t(t(Ee.sum)/Ee.sumx)

#mode estimation

P.post.max<-t(t(P.post)==apply(P.post,2,max))

 51

#dealing with multimodality

source("A:/rmulti_fun.txt")

PP<-t(P.post.max)/apply(P.post.max,2,sum)

Y.est<-rmulti(L,1,C,PP)%*%c(1:C)

Y.est<-array(Y.est,dim=dim(Y1)[1:2])

if (pic==TRUE){

#PLOT

#dividing the plotting area into a suitable number of screens:

x.fig<-ceiling(sqrt(N))

par(mfcol=c(x.fig,x.fig+1))

#plotting observation sources

for (n in 1:N){

image(c(0:size.x),c(0:size.y),Y1[,,n],main=c("source=",n),xlab="x",ylab="y",col=terrain.colors(C),

zlim=c(.5,C+.5))

}

#plotting estimated values

image(c(0:size.x),c(0:size.y),Y.est,main=c("BR Estimated pattern"),xlab="x",ylab="y",

col=terrain.colors(C),zlim=c(.5,C+.5))

#plotting legend

plot(0,0,xlim=c(0,5),ylim=c(0,(2*C+1)),xlab="",ylab="",main="legend",ty="n")

for (cl in 1:C){

polygon(c(1,2,2,1),c(2*cl,2*cl,2*cl+1,2*cl+1),col=terrain.colors(C)[cl])

text(3,2*cl+.5,cl)

}

}

P.post<-array(P.post,dim=c(dim(Y1)[1:2],C))

return(Y.est,P.post)

}

 52

neighbor1<-function(size.x,size.y,method="king"){

##############

25.07.2001 #

################################

by Elena Moltchanova #

creating a neighborhood matrix #

################################

x.coord<-rep(c(1:size.x),rep(size.y,size.x))

y.coord<-rep(c(1:size.y),size.x)

I<-size.x*size.y

U<-array(dim=c(I,I))

if (method=="king"){

U<-(abs(x.coord[col(U)]-x.coord[row(U)])<=1)*(abs(y.coord[col(U)]-y.coord[row(U)])<=1)*

(((x.coord[col(U)]==x.coord[row(U)])*(y.coord[col(U)]==y.coord[row(U)]))==0)

}

else if (method=="rook")

{

U<-(x.coord[col(U)]==x.coord[row(U)])*(abs(y.coord[col(U)]-y.coord[row(U)])==1)+

(abs(x.coord[col(U)]-x.coord[row(U)])==1)*(y.coord[col(U)]==y.coord[row(U)])

}

else if (method=="bishop")

{

U<-(abs(x.coord[col(U)]-x.coord[row(U)])==1)*(abs(y.coord[col(U)]-y.coord[row(U)])==1)

}

U<-array(U,dim=c(I,I))

return(U)

}

 53

AWS.3d<-function(Y,Cl,lambda,nu,k.max,kernel,method,U,res.m=1,sigma.m="s",pic=F){

##############
06.08.2001 #
########################
by Elena Moltchanova #

AWS FUNCTION FOR 3D MULTINOMIAL SPACE #

GENERALIZED

size.x<-dim(Y)[1]
size.y<-dim(Y)[2]
L<-length(Y)

source("A:/neighbor_fun.txt")

k.max<-k.max+1

Y1<-c(Y)

#neighborhood

if (method!="given"){
source("A:/neighbor1_fun.txt")
U<-neighbor1(size.x,size.y,method)
}

#residuals:
res.w<-array(rep(0,size.x*size.y),dim=c(size.x,size.y))

if(res.m==1){
res<-c((2*Y-cbind(Y[,2:size.y],rep(0,size.x))-rbind(Y[2:size.x,],rep(0,size.y)))/
sqrt(res.w+6-(col(res.w)==size.x)-(col(res.w)==size.y)))
} else
{
res<-c((4*Y-(rbind(Y[2:size.x,],rep(0,size.y))+rbind(rep(0,size.y),Y[1:(size.x-1),])+
cbind(Y[,2:size.y],rep(0,size.x))+cbind(rep(0,size.x),Y[,1:(size.y-1)])))/
sqrt(res.w+20-(col(res.w)==1)-(col(res.w)==size.y)-(row(res.w)==1)-(row(res.w)==size.x)))
}

rm(res.w)

sigma

if (sigma.m=="s"){
sigma<-c(res%*%res/length(res))
} else
{
t-range estimation

 54

sigma<-c((sort(res)[ceiling(length(res)*.75)]-sort(res)[floor(length(res)*.25)])/1.35)
}

(a) Initialization

#weights matrics
W<-array(rep(1,L*L),dim=c(L,L))

f<-array(dim=c(k.max,L))
s<-array(dim=c(k.max,L))

f[1,]<-(U*W)%*%Y1/((U*W)%*%(rep(1,L)))

#rounding within the class boundaries
f[1,]<-apply(rbind(apply(rbind(round(f[1,]),rep(1,L)),2,max),rep(Cl,L)),2,min)

s[1,]<-sigma*(U*W)%*%t(W)%*%rep(1,L)/((U*W)%*%rep(1,L))^2

#correction for zero sigma
s[1,]<-s[1,]+.0001*(s[1,]==0)

#defining kernel function
if (kernel=="exp"){
kernel.fun<-function(x){
y<-exp(-x^2)
return(y)
}
} else{
if (kernel=="uni"){
kernel.fun<-function(x){
y<-(abs(x)<=1)
return(y)
}
} else{
if (kernel=="tri"){
kernel.fun<-function(x){
y<-(abs(x)<2)*(1-.5*x*sign(x))
return(y)
}}}}

if(k.max>1){
(b) Adaptation

for (k in 1:(k.max-1)){

U<-neighbor(size.x,size.y,k+1)

#weights matrix

 55

W<-array(kernel.fun((f[k,row(W)]-f[k,col(W)])/(lambda*sqrt(s[k,col(W)]))),dim=c(L,L))

f[k+1,]<-(U*W)%*%Y1/((U*W)%*%(rep(1,L)))
s[k+1,]<-sigma*(U*W)%*%t(W)%*%rep(1,L)/((U*W)%*%rep(1,L))^2

#note: estimates are rounded within class limits

f[k+1,]<-apply(rbind(apply(rbind(round(f[k+1,]),rep(1,L)),2,max),rep(Cl,L)),2,min)

#coorection for zero s
s[k+1,]<-s[k+1,]+.0001*(s[k+1,]==0)

(c) Control

c.check<-sign(apply(t((-t(f[1:k,])+f[k+1,])/s[k+1,])>nu,2,sum))
f[k+1,]<-f[k,]*c.check+f[k+1,]*(1-c.check)

(d) Stopping

if (sum(c.check[])==L){break}
}

#RESULTS

Y.est<-array(f[k+1,],dim=c(size.x,size.y))
}
else
{Y.est<-array(f[1,],dim=c(size.x,size.y))}
if (pic==T){
#PLOT
par(mfcol=c(2,2))

#plotting input data
image(c(0:size.x),c(0:size.y),Y,xlab="x",ylab="y",main="Input",col=terrain.colors(Cl),
zlim=c(.5,Cl+.5))

#plotting smoothed image
image(c(0:size.x),c(0:size.y),Y.est,xlab="x",ylab="y",main="AWS result",col=terrain.colors(Cl),
zlim=c(.5,Cl+.5))

#legend
plot(0,0,xlim=c(0,5),ylim=c(0,(2*Cl+1)),xlab="",ylab="",main="legend",ty="n")
for (cl in 1:Cl){
polygon(c(1,2,2,1),c(2*cl,2*cl,2*cl+1,2*cl+1),col=terrain.colors(Cl)[cl])
text(3,2*cl+.5,cl)
}}

return(Y.est,W)
}

 56

source.error.sum<-function(E,P=rep(1/dim(E)[3],dim(E)[3]),w=rep(1,dim(E)[3]))

{

08.08.2001

by Elena Moltchanova

Summary statistics for source error matrices

#normalizing weights

w<-w/sum(w)

#calculating number of sources

S<-dim(E)[3]

#Calculating expected accuracy by source

E.acc.s<-vector(length=S)

for (s in 1:S){

E.acc.s[s]<-diag(E[,,s])%*%P[]

}

#variance by source

V.acc.s<-E.acc.s-E.acc.s^2

#overall expected source accuracy

E.acc.o<-sum(w*E.acc.s)

V.acc.o<-sum(w^2*V.acc.s)

return(E.acc.s,V.acc.s,E.acc.o,V.acc.o)

}

 57

AWS.3d.bootstrap<-
function(Y,Cl,l.v,k.v,kernel,method,U,res.m=2,sigma.m="t",M,k.def=19,l.def=3){

##############
09.08.2001 #
##############
By Elena Moltchanova

Y1<-c(Y)

sources

source("A:/neighbor1_fun.txt")
source("A:/AWS_3d_fun.txt")

neighborhood matrix

if(method!="given"){
U<-neighbor1(dim(Y)[1],dim(Y)[2],method)
}

Fine-tunes AWS parameters through bootstrap

(a) weights with default parameters
W<-AWS.3d(Y,Cl,l.def,4,k.def,kernel,method="given",U,res.m,sigma.m)$W
W1<-apply(W,1,sum)
W2<-apply(W^2,1,sum)

(b) variance estimation on the basis of f

ff<-c(W%*%Y1/W1)
sig2<-c((Y1-ff)^2)%*%c(W1^2/(W2+W1^2-2*W1))/length(Y1)

setting up arrays

f.boot<-array(dim=c(M,length(Y1)))
ksi<-array(dim=c(length(l.v),length(k.v)))

for (l.i in 1:length(l.v)){
for (k.i in 1:length(k.v)){
for (m in 1:M){
(c) resampling

Y1<-ff+sqrt(sig2)*rnorm(ff,0,1)
Y1<-array(Y1,dim=dim(Y))

(d) Parameter optimization

f.boot[m,]<-AWS.3d(Y,Cl,l.v[l.i],4,k.v[k.i],kernel,method="given",U,res.m,sigma.m)$Y.est
}

loss function

ksi[l.i,k.i]<-sum((t(-t(f.boot[,])+ff))^2)/M
}}
return(ksi)
}

 58

##############

23.07.2001 #

##############

by Elena Moltchanova

Calculating Moran's I to measure autocorrelation

moran.i<-function(Y,method="king",U){

where

Y = the data matrix, containing values

method="king", "rook" or "bishop" describes the neighborhood

method="given" allows to use externally calculated neighborhood matrix

#calculating the weight matrix:

if (method!="given"){

source("H:/r-routines/neighbor1_fun.txt")

U<-neighbor1(dim(Y)[1],dim(Y)[2],method)

}

x<-c(Y)-mean(Y)

W<-array(U,dim=c(length(Y),length(Y)))

I<-(t(x)%*%W%*%x)/(t(x)%*%x)*length(x)/sum(W)

return(I)

}

 59

neighbor<-function(size.x,size.y,radius=1){

Y<-array(dim=c(size.x,size.y))

x.coord<-array(rep(c(col(Y)),size.x*size.y),dim=c(size.x*size.y,size.x*size.y))

y.coord<-array(rep(c(row(Y)),size.x*size.y),dim=c(size.x*size.y,size.x*size.y))

U<-(abs(x.coord-t(x.coord))<=radius)*(abs(y.coord-t(y.coord))<=radius)*(1-

(x.coord==t(x.coord))*

(y.coord==t(y.coord)))

return(U)

}

 60

naive1<-function(Y,mv=1,radius=1){
27.08.2001
by Elena Moltchanova

naive smoothing
I<-dim(Y)[1]
J<-dim(Y)[2]

W<-array(rep(0,I*J),dim=dim(Y))
#statistical mode function:
statmod<-function(x){
statmod0 <- function(x) {
 z <- table(as.vector(x))
 names(z)[z == max(z)]
}
Z<-as.numeric(statmod0(x))

return(Z)
}

W<-array(dim=dim(W))

for (i in 2:(I-1)){
for (j in 2:(J-1)){
xx<-c(Y[(i-1):(i+1),(j-1):(j+1)])
if(length(xx[xx!=mv])>0){W[i,j]<-statmod(xx[xx!=mv])[1]}else{W[i,j]<-mv}
}}

#borders
for (i in 2:(I-1)){
xx<-c(Y[(i-1):(i+1),1:2])
if(length(xx[xx!=mv])>0){W[i,1]<-statmod(xx[xx!=mv])[1]}else{W[i,1]<-mv}
xx<-c(Y[(i-1):(i+1),(J-1):J])
if(length(xx[xx!=mv])>0){W[i,J]<-statmod(xx[xx!=mv])[1]}else{W[i,J]<-mv}
}

for (j in 2:(J-1)){
xx<-c(Y[1:2,(j-1):(j+1)])
if(length(xx[xx!=mv])>0){W[1,j]<-statmod(xx[xx!=mv])[1]}else{W[1,j]<-mv}
xx<-c(Y[(I-1):I,(j-1):(j+1)])
if(length(xx[xx!=mv])>0){W[I,j]<-statmod(xx[xx!=mv])[1]}else{W[I,j]<-mv}
}

#corners
xx<-c(Y[1:2,1:2])
if(length(xx[xx!=mv])>0){W[1,1]<-statmod(xx[xx!=mv])[1]}else{W[1,1]<-mv}
xx<-c(Y[(I-1):I,1:2])
if(length(xx[xx!=mv])>0){W[I,1]<-statmod(xx[xx!=mv])[1]}else{W[I,1]<-mv}
xx<-c(Y[1:2,(J-1):J])

 61

if(length(xx[xx!=mv])>0){W[1,J]<-statmod(xx[xx!=mv])[1]}else{W[1,J]<-mv}
xx<-c(Y[(I-1):I,(J-1):J])
if(length(xx[xx!=mv])>0){W[I,J]<-statmod(xx[xx!=mv])[1]}else{W[I,J]<-mv}

#missing stay missing
W<-W*(Y!=mv)+mv*(Y==mv)

return(W)

}

