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Abstract

The paper addresses the issue of optimal investments in innovations with strong long-term
aftereffects. As an example, investments in the construction of gas pipelines are considered.
The most sensible part of a gas pipeline project is the choice of the commercialization time,
i.e., the time of finalizing the construction of the pipeline. If several projects compete for
a gas market, the choices of the commercialization times determine the future structure
of the market and thus become especially important. Rational decisions in this respect
can be associated with Nash equilibria in a game between the projects. In this game, the
total benefits gained during the pipelines’ life periods act as payoffs and commercialization
times as strategies. The goal of this paper is to characterize multiequilibria in this game
of timing. The case of two players is studied in detail. A key point in the analysis is
the observation that all player’s best response commercialization times concentrate at two
instants that are fixed in advance. This reduces decisionmaking to choosing between two
fixed investment policies, “fast” and “slow”, with the prescribed commercialization times.
A description of a simple algorithm that finds all the Nash equilibria composed of “fast”
and “slow” scenarios concludes the paper.
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Competition of Gas Pipeline Projects:

Game of Timing

Ger Klaassen (klaassen@iiasa.ac.at)
Arkadii Kryazhimskii * (kryazhim@iiasa.ac.at, kryazhim@mi.ras.ru)
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Introduction

The present paper is motivated by [Klaassen, et. al., 2000] where a new mathematical
model of operation of large-scale gas pipeline projects has been suggested. This model
constructed on the basis of classical micro and macro patterns of mathematical economics
(see [Arrow and Kurz, 1970], [Intriligator, 1971]) provides a macroeconomic tool for the
analysis of future gas infrastructures (see, e.g., [Klaassen, et. al., 2001]). It comprises four
microeconomic levels of optimization: assessment of the market of potential innovations,
selection of innovation scenarios, regulation of the future supply and optimization of the
current investments. In each level, the model is optimized using appropriate techniques
of theory of optimal control and theory of differential games (see [Pontryagin, et. al.,
1962], [Krasovskii and Subbotin, 1988]). If several gas pipeline projects compete for a
gas market, the choices of the commercialization times, i.e., the times of finalizing the
construction of the pipelines, determine the future structure of the market and thus become
especially important. Accordingly, the choice of the commercialization times is the most
sensible part of the model. In [Klaassen, et. al., 2000] rational commercialization times
for the pipeline projects competing for the Turkey gas market have been presented. A
methodology for numerical finding commercialization times via simulating the process
of their mutual adaptation during the construction period has been suggested; the best
reply dynamic adaptation principle widely used in applications of theory of evolutionary
games (see [Hofbauer and Sigmund, 1988], [Friedman, 1991], [Kaniovski, et. al., 2000],
[Kryazhimskii and Osipov, 1995], [Kryazhimskii, et. al., 2001], [Tarasyev, 1999]) has been
utilized.

Rational choices of the commercialization times can be viewed as Nash equilibria in
a game between the projects. The goal of the present paper is to study the structure of
this game. Background in the analysis of problems of optimal timing (see [Barzel, 1968],
[Tarasyev and Watanabe, 2001]) is employed. In order to make the model easily tractable
in terms of game theory (see, e.g., [Basar, Olsder, 1982], [Vorobyev, 1985]), we introduce
several simplifying assumptions, in particular, we reduce the number of competing projects
to 2 (the analysis of the multi-agent game will be the next stage of research).

*The author was partially supported by the Russian Fund for Fundamental Research 00-01-00682, and
Fujitsu Research Institute (FRI) under IIASA-FRI contract 00-117.
**The author was partially supported by the Russian Fund for Fundamental Research under grants

99-01-00146, 00-15-96057, and Fujitsu Research Institute (FRI) under IIASA-FRI contract 00-117.
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The simplified model takes into account the stages of construction and exploitation
of the pipelines. At the stage of exploitation, as gas supply policies compete on mar-
ket, decisionmaking is relatively clear: the competitors search for an equilibrium supply
at any instant. We focus, therefore, on the stage of construction, at which investment
policies compete and decisionmaking is concerned with strong long-term aftereffects. The
competitors interact through choosing their commercialization times. A proper individual
choice is the best response to the choices of the other competitors. Therefore, a collection
of commercialization times is suitable to every competitor if and only if the commercial-
ization time of every competitor responds best to the commercialization times of the other
competitors. Such situations constitute Nash equilibria in the game under consideration.
In this game, the total benefits gained during the pipelines’ life periods act as payoffs and
commercialization times as strategies. Our goal is to characterize the equilibria in this
game, which will further be referred to as the game of timing.

In section 1, we describe the general two-player game of timing, in which the cost and
benefit functions determining the players’ payoffs are not specified. We also introduce
several natural assumptions.

In section 2, we find the Nash equilibria in the game. A key point in the analysis is
the observation that all player’s best response commercialization times concentrate at two
instants that are fixed in advance. This reduces decisionmaking to choosing between two
fixed investment policies, “fast” and “slow”, with the prescribed commercialization times.

In section 3, we describe an algorithm that finds all the Nash equilibria in the game of
timing.

In section 4, we study the game of timing for the model described in [Klaassen, et. al.,
2000].

Section 5, the Appendix, contains the proves of the propositions formulated in section
4.

1 Game of Timing

In this section, we construct a game-theoretic model of competition of two gas pipeline
projects. We call it the game of timing. The pipelines are expected to operate at the
same market. We associate players 1 and 2 with the investors/managers of projects 1 and
2, respectively. Assuming that the starting time for making investments is 0, we consider
“virtual” positive commercialization times of projects 1 and 2 (i.e., the final times of the
construction of the pipelines), t1 and t2. Given a (“virtual”) commercialization time,
ti, player i (i = 1, 2) can estimate the cost, Ci(ti), for finalizing project i at time ti.
The positive-valued cost functions Ci(ti) (i = 1, 2) are therefore defined on the positive
half-axis. The following assumption will simplify our analysis.

Assumption 1.1 For each player, i, the cost function, Ci(ti), is smooth (continuously
differentiable), monotonically decreasing and convex.

A formal interpretation of Assumption 1.1 is that the derivative C′i(ti) = dCi(ti)/dti
is negative and increasing. A substantial interpretation is that the cost of the project falls
down as the project’s commercialization period is prolonged; moreover, the longer is the
commercialization period, the less sensitive, with respect to its prolongations, is the rate
of cost reduction. In what follows, the rate of cost reduction for player i is understood as
the positive-valued monotonically decreasing function

ai(ti) = −C′i(ti) (1.1)
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Let us argue for player 1 as the manager of pipeline 1. At any time t > 0, the price
of gas and costs for extraction and transportation of gas determine the benefit rate of
player 1, b1(t) (note that this benefit rate is “virtual” because t may precede the actual
commercialization time of project 1). The costs for extraction and transportation of gas
do not depend on the state of project 2, whereas the price of gas depends on the presence
(absence) of player 2 on the marketplace. In the situation where both players operate
on market, the price of gas should obviously be smaller compared to the situation where
player 1 occupies market solely. Hence, the benefit rate b1(t) may take two values, b11(t)
and b12(t),

b11(t) > b12(t) (1.2)

We call b11(t) the upper benefit rate and b12(t) the lower benefit rate of player 1 at time
t. At time t (which “virtually” follows the commercialization time of player 1), player
1 (“virtually”) gets b11(t) if player 2 does not operate on market, and b12(t) if player 2
operates on market. Similarly, we introduce the upper and lower benefit rates of player 2
at time t, b21(t) and b22(t),

b21(t) > b22(t) (1.3)

At time t player 2 gets b21(t) if player 1 does not operate on market, and b22(t) other-
wise. We assume that the positive-valued upper and lower benefit rates bi1(t) and bi2(t)
(i = 1, 2) are continuous functions defined on the positive half-axis. We also introduce the
following assumption.

Assumption 1.2 For every player i (i = 1, 2), the graph of the rate of cost reduction,
ai(t), intersects the graph of the upper benefit rate, bi1(t), from above at the unique point
t−i > 0, and stays below it afterwards; similarly, the graph of ai(t) intersects the graph
of bi2(t) from above at the unique point t+i > 0, and stays below it afterwards; more
accurately,

ai(t) > bi1(t) for 0 < t < t−i , ai(t
−
i ) = bi1(t

−
i ), ai(t) < bi1(t) for t > t−i , (1.4)

ai(t) > bi2(t) for 0 < t < t+i , ai(t
+
i ) = bi2(t

+
i ), ai(t) < bi2(t) for t > t+i . (1.5)

Remark 1.1 Assumption 1.2 implies in particular that if t > 0 is sufficiently small, the
rate of cost reduction, ai(t), is greater than the upper benefit rate, bi1(t), and if t > 0 is
sufficiently large, the rate of cost reduction, ai(t), is smaller than the lower benefit rate,
bi1(t).

Remark 1.2 Since ai(t) is decreasing and bi1(t) > bi2(t) (see (1.2) and (1.3)), we have

t−i < t+i (1.6)

The relations between the graph of the rate of cost reduction, ai(t), and the graphs of
the and upper and lower benefit rates, bi1(t) and bi2(t), are shown schematically in Fig. 1.
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Fig 1.
The rate of cost reduction, ai(t), and

the upper and lower benefit rates, bi1(t) and bi2(t).

The fact that t2 is the commercialization time of player 2 implies that player 2 does
not operate on market at any time t < t2 and operates on market at every time t ≥ t2.
Accordingly, the benefit rate of player 1, b1(t), equals b11(t) for t < t2 and equals b12(t) for
t ≥ t2. We stress the dependence of b1(t) on t2 and write b1(t|t2) instead of b1(t). Thus,
given a commercialization time t2 of project 2, the benefit rate of player 1 is found as

b1(t|t2) =
{

b11(t) if t < t2,

b12(t) if t ≥ t2
(1.7)

Similarly, a commercialization time t1 of project 1 determines the benefit rate of player 2
as

b2(t|t1) =
{

b21(t) if t < t1,

b22(t) if t ≥ t1.

The graphs of the benefit rates b1(t|t2) and b2(t|t1) are shown schematically in Fig. 2.
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Fig. 2.
(a) The benefit rate of player 1, b1(t|t2)
(project 2 commercialized at time t2).
(b) The benefit rate of player 2, b2(t|t1)
(project 1 commercialized at time t1).

Given a commercialization time of player 1, t1, and a commercialization time of player
2, t2, the total benefits of players 1 and 2 are represented by the integrals

B1(t1, t2) =
∫ ∞
t1

b1(t|t2)dt (1.8)

and

B2(t1, t2) =

∫ ∞
t2

b2(t|t1)dt, (1.9)

respectively. We make the following natural assumption.

Assumption 1.3 For every positive t1 and every positive t2 the integrals B1(t1, t2) and
B2(t1, t2) are finite.

Remark 1.3 Assumption 1.3 is equivalent to the following: for every positive t1 and
every positive t2 the integrals

∫∞
t2

b12(t)dt and
∫∞
t1

b22(t)dt are finite.

Given a commercialization time of player 1, t1, and a commercialization time of player
2, t2, the total profit of player i is defined as

Pi(t1, t2) = −Ci(ti) +Bi(t1, t2). (1.10)
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We are ready to define the game of timing for players 1 and 2 in line with the standards
of game theory (see, e.g., [Vorobyev, 1985]). In the game of timing, the strategies of player
i (i = 1, 2) are the positive (“virtual”) commercialization times, ti, for project i, and the
payoff to player i, thanks to strategies t1 and t2 of players 1 and 2, respectively, is the
total profit Pi(t1, t2).

2 Nash Equilibria

Let us focus on the game of timing. According to the standard terminology of game theory,
a strategy t∗1 of player 1 is said to be a best response of player 1 to a strategy t2 of player
2 if t∗1 maximizes the payoff to player 1, P1(t1, t2), over the set of all strategies of player
1, t1:

P1(t
∗
1, t2) = max

t1>0
P1(t1, t2)

Similarly, a strategy t∗2 of player 2 is said to be a best response of player 2 to a strategy
t1 of player 1 if t∗2 maximizes the payoff to player 2, P2(t1, t2), over the set of all strategies
of player 2, t2:

P2(t1, t
∗
2) = max

t2>0
P2(t1, t2).

The pair (t∗1, t
∗
2), where t

∗
1 is a strategy of player 1 and t∗2 a strategy of player 2, is said

to be a Nash equilibrium in the game of timing if t∗1 is a best response of player 1 to t∗2
and t∗2 is a best response of player 2 to t∗1. Our goal is to characterize the Nash equilibria
in the game of timing.

We start with a simple observation concerned with the dependence of the player’s
payoff on the strategy of the other player. Let us consider, for example, the payoff to
player 1, P1(t1, t2). The differentiation of P1(t1, t2) with respect to t1 yields

∂P1(t1, t2)

∂t1
= a1(t1)− b1(t1|t2)

=

{
a1(t1)− b11(t1) if t1 < t2,

a1(t1)− b12(t1) if t1 > t2
(2.1)

here we have used (1.10), (1.1), (1.8) and (1.7). Note that the above partial derivative
exists and is continuous at any t1 > 0 except for t1 = t2. Geometrically, (2.1) means that
P1(t1, t2) grows in t1 on the intervals where the graph of a1(t1) lies above the graph of
b1(t1|t2) and declines in t1 on the intervals where the graph of a1(t1) lies below the graph
of b1(t1|t2).

Let us take two arbitrary strategies of player 2, t21 and t22 > t21. As (2.1) shows,

∂P1(t1, t22)

∂t1
=

∂P1(t1, t21)

∂t1

for t1 < t21 and for t1 > t22, and

∂P1(t1, t22)

∂t1
=

∂P1(t1, t22)

∂t1
− (b11(t1)− b12(t1))

for t21 < t1 < t22. Recall that b11(t1)−b12(t1) > 0 (see (1.2)). We have stated that beyond
the time interval located between t21 and t22, P1(t1, t22) and P1(t1, t21) have the same rate
in t1, and within this interval P1(t1, t22) declines in t1 faster than P1(t1, t21). Thanks to
(1.8) and (1.7) P1(t1, t22) = P1(t1, t21) for t1 ≥ t22. Therefore, P1(t1, t22) > P1(t1, t21) for
t1 < t22.

Let us sum up.
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Proposition 2.1 For every t1 > 0, the payoff to player 1, P1(t1, t2), increases in t2;
moreover, given a t21 > 0 and a t22 > t21, one has P1(t1, t22) = P1(t1, t21) for t1 ≥ t22,
and P1(t1, t22) > P1(t1, t21) for t1 < t22

The graphs of P1(t1, t2) for t2 = t21 and t2 = t22 > t21 are shown in Fig. 3.

Fig. 3.
Payoff P1(t1, t2) for t2 = t21 and t2 = t22 > t21

A symmetric argument leads to a similar observation for player 2.

Proposition 2.2 For every t2 > 0, the payoff to player 2, P2(t1, t2), increases in t1;
moreover, given a t11 > 0 and a t12 > t11, one has P2(t12, t2) = P2(t11, t2) for t2 ≥ t12,
and P2(t12, t2) > P2(t11, t2) for t2 < t21.

REMARK P12

Remark 2.1 The fact stated in Propositions 2.1 and 2.2 is intuitively clear: for the
investor/manager of a gas pipeline project, any prolongation of the commercialization
period of the competing project is profitable.

Now let us find the best responses of player 1 to a given strategy, t2, of player 2.
It is easy enough to identify the intervals of growth and decline of the payoff P1(t1, t2)

as a function of t1. We use formula (2.1) and refer to the points t−1 and t+1 , at which the
graph of a1(t), intersects the graphs of b11(t) and b12(t) (see (1.4), (1.5) and Fig. 2).

Assume, first, that t2 ≤ t−1 ; recall that t
−
1 < t+1 (see (1.6)). Then, as (1.4), (1.5) and

Fig. 2 show, the graph of a1(t1) lies above the graph of b1(t1|t2) for t1 < t+1 and lies below
it for t1 > t+1 ; at t1 = t+1 the graphs intersect. Fig. 4, (a), illustrates the relations between
the graphs.
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Fig. 4.
(a) a1(t1) and b1(t|t2) for t2 ≤ t−1 .
(b) a1(t1) and b1(t|t2) for t2 ≥ t+1 .

(c) a1(t1) and b1(t|t2) for t−1 ≤ t2 ≤ t+1 .

Due to (2.1), ∂P1(t1, t2)/∂t1 is positive for t1 < t+1 (t1 �= t2) and negative for t1 > t+1 .
Therefore, t1 = t+1 is the unique maximizer of P1(t1, t2) in the set of all positive t1; in
other words, t+1 is the single best response of player 1 to strategy t2 of player 2.

Let us assume that t2 ≥ t+1 . Then (1.4), (1.5) and Fig. 2 show that the graph of a1(t1)
lies above the graph of b1(t1|t2) for t1 < t−1 , and lies below it for t1 > t−1 ; at t1 = t+1 the
graphs intersect. Fig. 4, (b), illustrates the relations between the graphs. Due to (2.1),
∂P1(t1, t2)/∂t1 is positive for t1 < t−1 and negative for t1 > t−1 (t1 �= t2). Hence, t1 = t−1
is the unique maximizer of P1(t1, t2) in the set of all positive t1, i.e., t

−
1 is the single best

response of player 1 to t2.
Now let t2 lie in the interval [t−1 , t

+
1 ]. Then (1.4), (1.5) and Fig. 2 show that the graph

of a1(t1) lies above the graph of b1(t1|t2) for t1 < t−1 , lies below it for t−1 < t1 < t2, lies
again above the graph of b1(t1|t2) for t2 < t1 < t+1 and again below it for t1 > t+1 . Fig.
4, (c), illustrates the relations between the graphs. Thanks to (2.1) we conclude that,
P1(t1, t2), as a function of t1, strictly increases on the interval (0, t−1 ), strictly decreases
on the interval (t−1 , t2), strictly increases on the interval (t2, t

+
1 ), and strictly decreases on

the interval (t+1 ,∞). Therefore, the maximizers of P1(t1, t2) in the set of all positive t1,
i.e., the best responses of player 1 to t2, are restricted to the two-element set {t−1 , t+1 }.

Let us identify the actual maximizers in this set. We refer to Proposition 2.1. Suppose
t2 < t+1 . Set t1 = t+1 , t21 = t2 and t22 = t+1 . We see that t1 = t22 > t21. By Proposition
2.1 P1(t1, t22) = P1(t1, t21), or

P1(t
+
1 , t

+
1 ) = P1(t

+
1 , t2) (2.2)
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Since P1(t
+
1 , t2) is continuous in t2, (2.2) holds for t2 = t+1 as well. Now we take

arbitrary t21 and t22 > t21 in the interval [t−1 , t
+
1 ]. By Proposition 2.1 P1(t

−
1 , t22) >

P1(t
−
1 , t21). Therefore, P1(t

−
1 , t2) strictly increases in t2 on [t+1 , t

+
2 ]. Consider the function

p(t2) = P1(t
−
1 , t2)− P1(t

+
1 , t2) (2.3)

defined on [t−1 , t
+
1 ]. By (2.2) we have

p(t2) = P1(t
−
1 , t2)− P1(t

+
1 , t

+
1 )

for all t2 in the interval [t+1 , t
+
2 ]. As long as P1(t

−
1 , t2) strictly increases in t2 on [t−1 , t

+
1 ],

p(t2) strictly increases on [t
+
1 , t
+
2 ]. Earlier, we have stated that t

+
1 is the single best response

of player 1 to any t2 ≤ t−1 ; this holds, in particular, for t2 = t−1 , i.e.,

P1(t
+
1 , t

−
1 ) > P1(t

+
1 , t

+
1 )

Hence,
p(t−1 ) = P1(t

−
1 , t
−
1 )− P1(t

+
1 , t
−
1 ) < 0

Earlier, we have stated that t−1 is the single best response of player 1 to any t2 ≥ t+1 ; this
holds, in particular, for t2 = t+1 , i.e.,

P1(t
−
1 , t

+
1 ) > P1(t

+
1 , t

+
1 )

Hence,
p(t+1 ) = P1(t

−
1 , t
+
1 )− P1(t

+
1 , t
+
1 ) > 0

We have found that p(t2) takes a negative value at the left end point of the interval [t−1 , t
+
1 ]

and a positive value at the right end point of this interval. Since p(t2) is continuous, there
exists a t̂2 in the interior of [t+1 , t

+
2 ], for which p(t̂2) = 0. The fact that p(t2) strictly

increases on [t−1 , t
+
1 ] implies that the point t̂2 is unique, i.e., p(t2) < 0 for t−1 ≤ t2 < t̂2 and

p(t2) > 0 for t+1 ≥ t2 > t̂2. By the definition of p(t12), (2.3), we have

P1(t
−
1 , t̂2) = P1(t

+
1 , t̂2)

P1(t
−
1 , t2) < P1(t

+
1 , t2) for t−1 ≤ t2 < t̂2

P1(t
−
1 , t2) < P1(t

+
1 , t2) for t+1 ≥ t2 > t̂2

Earlier, we have stated that all the best responses of player 1 to t2 lie in the two-element
set {t−1 , t+1 }. Therefore, we conclude that if t2 = t̂2, player 1 has two best responses, t−1
and t+1 , to t2; if t−1 ≤ t2 < t̂2, the unique best response of player 1 to t2 is t+1 ; and
if t+1 ≥ t2 > t̂2, the unique best response of player 1 to t2 is t−1 . Recall that the best
response of player 1 to t2 is t

+
1 if t2 < t−1 , and t−1 if t2 > t+1 .

We summarize as follows.

Proposition 2.3 In the interval (t−1 , t
+
1 ), there exists the unique point t̂2 such that

P1(t
−
1 , t̂2) = P1(t

+
1 , t̂2) (2.4)

The set of all best responses of player 1 to t̂2 is {t−1 , t+1 }. If 0 < t2 < t̂2, then the
unique best response of player 1 to t2 is t+1 . If t2 > t̂2, then the unique best response of
player 1 to t2 is t−1 .
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We call t−1 the fast choice of player 1 and t+1 the slow choice of player 1. Proposition
2.3 claims that the slow choice of player 1 is the best response of player 1 to all “fast”
strategies, t2, of player 2, namely, those satisfying t2 < t̂2, and the fast choice of player 1 is
the best response of player 1 all “slow” strategies, t2, of player 2, namely, those satisfying
t2 > t̂2; finally, both fast and slow choices of player 1 respond best to t2 = t̂2. We call t̂2
the switch point for player 1.

Let us consider the function that associates to each strategy, t2, of player 2 the set of
all best responses of player 1 to t2; we call it the best response function of player 1. The
graph of the best response function of player 1 is shown in Fig. 5, (a). It consists of the
horizontal segment located strictly above the segment (0, t̂2] on the t2 - axis at level t

+
1 ,

and the unbounded horizontal segment located strictly above the segment [t̂2,∞) on the
t2-axis at level t

−
1 . Points (t

+
1 , t̂2) and (t−1 , t̂2) lie on the graph.

Fig. 5.
(a) The best response function of player 1.
(b) The best response function of player 2.

A symmetric argument leads to a similar characterization of the best responses of
player 1.

Proposition 2.4 In the interval (t−2 , t
+
2 ), there exists the unique point t̂1 such that

P2(t̂1, t
−
2 ) = P1(t̂1, t

+
2 ) (2.5)

The set of all best responses of player 2 to t̂1 is {t−2 , t+2 }. If 0 < t1 < t̂1, then the
unique best response of player 2 to t1 is t+2 . If t1 > t̂1, then the unique best response of
player 2 to t1 is t−2 .
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We call t−2 the fast choice of player 2, t+2 the slow choice of player 2, and t̂2 the switch
point for player 2. We also introduce the best response function of player 2, which associates
to each strategy, t1, of player 1 the set of all best responses of player 1 to t1. The graph
of the best response function of player 2 is shown in Fig. 5, (b). Here, the independent
variable, t1, is shown on the vertical axis, and the best responses of player 2 are located
on the horizontal axis. The graph of the best response function of player 2 consists of the
vertical segment located to the right of the segment (0, t̂1] on the t1 - axis at distance t

+
2 ,

and the unbounded vertical segment located to the right of the segment [t̂1,∞) on the t1
- axis at distance t−2 . Points (t̂1, t

+
2 ) and (t̂1, t

−
2 ) lie on the graph.

Now we recall the definition of a Nash equilibrium and easily find that a strategy pair
(t∗1, t

∗
2) is a Nash equilibrium if and only if the point (t∗1, t

∗
2) belongs to the intersection of

the graphs of the best response functions of players 1 and 2. Fig. 5 shows that the graphs
necessarily intersect. Fig. 6 gives an example of the intersection.

Fig. 6.
The intersection of the graphs of the best response functions

of players 1 and 2 (example).

For each intersection point, i.e., each Nash equilibrium, (t∗1, t
∗
2), point t

∗
1 is the fast or

slow choice of player 1, and point t∗2 is the fast or slow choice of player 2. In case t∗1 is the
fast choice of player 1 and t∗2 the slow choice of player 2, we call (t∗1, t

∗
2), the fast-slow Nash

equilibrium; similarly, we define the slow-fast, fast-fast and slow-slow Nash equilibria.
Nash equilibria of different types arise under different relations between the players’

fast and slow choices and the switch points of their rivals. The list of all admissible cases
is as follows:

t̂2 ≥ t+2 , t̂1 < t+1 (2.6)

t̂2 ≥ t+2 , t−1 < t̂1 < t+1 (2.7)
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t̂2 ≤ t−2 , t−1 < t̂1 < t+1 (2.8)

t−2 ≤ t̂2 < t+2 , t−1 < t̂1 ≤ t+1 (2.9)

t−2 < t̂2 ≤ t+2 , t−1 ≤ t̂1 < t+1 (2.10)

t−2 < t̂2 < t+2 , t̂1 ≤ t−1 (2.11)

t−2 < t̂2 < t+2 , t̂1 ≥ t+1 (2.12)

t̂2 < t−2 , t̂1 ≥ t+1 (2.13)

An elementary analysis in the spirit of Fig. 6 leads to the full classification of the Nash
equilibria in the game of timing.

Proposition 2.5 In cases (2.6), (2.7) and (2.11) the unique Nash equilibrium is slow-
fast, (t−1 , t

+
2 ) (Fig. 7, (a), (b), (c)). In cases (2.8), (2.12) and (2.13) the unique Nash

equilibrium is fast-slow, (t+1 , t
−
2 ) (Fig. 7, (d), (e), (f)). In cases (2.9) and (2.10) the game

of timing has precisely two Nash equilibria, fast-slow, (t−1 , t
+
2 ), and slow-fast, (t+1 , t

−
2 ) (Fig.

7, (g)).

Remark 2.2 Proposition 2.1 shows that the game of timing admits fast-slow and slow-
fast equilibria only.

Let us consider in more detail the most interesting situation where the game of timing
has two Nash equilibria, fast-slow and slow-fast, i.e., (2.9) or (2.10) holds (Fig. 7, (g)). By
Proposition 2.1 and due to the inequalities t−1 < t̂2 ≤ t+2 we have

P1(t
−
1 , t

+
2 ) ≥ P1(t

−
1 , t̂2)

moreover, the inequality is strict if and only if t̂2 < t+2 . Using equality (2.4), Proposition
2.1 and the inequalities t+1 > t̂2 ≥ t−2 , we transform the right hand side as follows:

P1(t
−
1 , t̂2) = P1(t

+
1 , t̂2) = P1(t

+
1 , t

−
2 )

Thus, for the fast-slow and slow-fast equilibria, (t−1 , t
+
2 ) and (t+1 , t

−
2 ), we have

P1(t
−
1 , t

+
2 ) ≥ P1(t

+
1 , t

−
2 )

more over, the inequality is strict if t̂2 < t+2 . If this is so, player 1 prefers the fast-slow
equilibrium; otherwise, the fast-slow and slow-fast equilibria are equivalent for this player.
Similarly, we state that if t̂1 < t+1 , player 2 prefers the slow-fast equilibrium; otherwise,
the equilibria are equivalent for this player. Thus, each player, generally, prefers his “fast”
equilibrium.
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Fig. 7.
(a) One equilibrium, slow-fast (t̂1 > t+1 , t̂2 > t+2 ).

(b) One equilibrium, slow-fast (t̂1 < t−1 , t
−
2 < t̂2 < t+2 ).

(c) One equilibrium, slow-fast (t−1 < t̂1 < t+1 , t̂2 > t+2 ).
(d) One equilibrium, fast-slow (t−1 < t̂1 < t+1 , t̂2 < t−2 ).
(e) One equilibrium, fast-slow (t̂1 > t+1 , t

−
2 < t̂2 < t+2 ).

(f) One equilibrium, fast-slow (t̂1 < t−1 , t̂2 < t−2 ).
(g) Two equilibria, fast-slow and slow-fast (t−1 < t̂1 ≤ t+1 , t

−
2 ≤ t̂2 < t+2 ,

or t−1 ≤ t̂1 < t+1 t−2 < t̂2 ≤ t+2 ).

Let us give an exact formulation.

Proposition 2.6 Let the game of timing have two Nash equilibria, i.e., (2.9) or (2.10)
hold. Then

(i) P1(t
−
1 , t

+
2 ) ≥ P1(t

+
1 , t

−
2 ), moreover, the inequality is strict if and only if t̂2 < t+2 ;

(ii) P2(t
−
1 , t

+
2 ) ≥ P2(t

+
1 , t

−
2 ) moreover, the inequality is strict if and only if t̂1 < t+1 .

Remark 2.3 Let the game have two equilibria (i.e., (2.9) or (2.10) holds). Assume that
the fast-slow and slow-fast equilibria are equivalent to player 1, i.e., P1(t

−
1 , t
+
2 ) = P1(t

+
1 , t

−
2 ).

Then, by Proposition 2.6, (i), t̂2 ≥ t+2 . As (2.9), (2.10) show, we actually have t̂2 = t+2 ,
which is an exceptional situation for the case of two equilibria. Hence, t̂1 < t+2 ≤ t̂2 < t+1 .
By Proposition 2.6, (ii), P2(t

−
1 , t
+
2 ) > P2(t

+
1 , t

−
2 ). In other words, the slow-fast equilibrium

is strictly preferable for player 2. In the symmetric case where the fast-slow and slow-fast
equilibria are equivalent to player 2, i.e., P1(t

−
1 , t
+
2 ) = P1(t

+
1 , t
−
2 ), we find similarly that the

fast-slow equilibrium is strictly preferable for player 1. Thus, in those exceptional cases
where one of the plyers has no preferences in choosing an equilibrium, the other player
strictly prefers his “fast” equilibrium.

Remark 2.4 Let us assume that the parameters of projects 1 and 2 are identical, i.e.,
C1(t) = C2(t) and B1(t, s) = B2(s, t) for all positive t and s. Then the game of timing
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takes a symmetric form. The players have the same fast and slow choices and switch times,
t−1 = t−2 , t

+
1 = t+2 , t̂2 = t̂1. Hence, (2.9) and (2.10) hold. By Proposition 2.5 the game of

timing has the fast-slow and slow-fast equilibria. The inequality t̂2 < t+2 is equivalent to
t̂2 < t+1 which hold trivially (see (1.6)). By Proposition 2.6 we conclude that P1(t

−
1 , t

+
2 ) >

P1(t
+
1 , t

−
2 ). Similarly, we find that P2(t

−
1 , t
+
2 ) > P2(t

+
1 , t
−
2 ). Thus, in the symmetric game

of timing, player 1 prefers the fast-slow equilibrium, and player 2 prefers the slow-fast
equilibrium. Obviously, the situation does not change if the parameters of projects 1 and
2 are sufficiently close to each other. The question of a practical choice of an equilibrium
in the case where the players have different preferences arises. Here, we do not argue on
this; we note only that game theory does not provide any clear recommendations in this
respect.

3 Solution Algorithm

For convenience, we represent the obtained classification of the Nash equilibria in a table
form.

Case Number of equilibria Types of equilibria Notation

t̂1 < t−1 1 slow-fast (t+1 , t
+
2 )

t̂2 ≥ t+2
t−1 < t̂1 < t+1 1 slow-fast (t+1 , t

−
2 )

t̂2 ≥ t+2
t−1 < t̂1 < t+1 1 fast-slow (t−1 , t

+
2 )

t̂2 ≤ t−2
t−1 < t̂1 ≤ t+1 2 fast-slow (t−1 , t

+
2 )

t−2 ≤ t̂2 < t+2 slow-fast (t+1 , t
−
2 )

t−1 ≤ t̂1 < t+1 2 fast-slow (t−1 , t
+
2 )

t−2 < t̂2 ≤ t+2 slow-fast (t+1 , t
−
2 )

t̂1 ≤ t−1 1 slow-fast (t+1 , t
−
2 )

t−2 < t̂2 < t+2
t̂1 ≥ t+1 1 fast-slow (t−1 , t

+
2 )

t−2 < t̂2 < t+2
t̂1 ≥ t+1 1 fast-slow (t−1 , t

−
2 )

t̂2 < t−2

Table 1.
Classification of Nash equilibria in the game of timing

(a table form of Proposition 2.5).

We conclude the general part of our study with the description of an algorithm that
finds the Nash equilibria in the game of timing. The algorithm refers to the definitions of
the players’ fast and slow choices, t−i , t

+
i (i = 1, 2), players’ switch times, t̂i (i = 1, 2), and

Table 1.

Solution algorithm.
Step 1. Use definitions (1.4) and (1.5) for finding the players’ fast and slow choices,

t−i , t
+
2 (i = 1, 2).
Step 2. Use definitions (2.4) and (2.5) for finding the players’ switch times, t̂i (i = 1, 2).
Step 3. Use Table 1 for identifying the Nash equilibria.
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4 Gas Pipeline Game

In this section, we apply the suggested solution method to a model described in [Klaassen,
Roehrl, Tarasyev, 2000]. Wishing to demonstrate a clear analytic result, we consider a
simplified version of the model. Namely, we eliminate the price of liquid natural gas, which
acts as an upper bound for the price of gas in the original model; we do not introduce the
upper bounds for the rates of supply, or pipelines’ capacities; we assume that the costs
for extraction and transportation of gas are functions of time only; finally, we analyze
competition of two pipeline projects (as our theory prescribes).

The model is as follows.
The cost for finalizing the construction of pipeline i (i = 1, 2) at time ti, Ci(ti), is

defined to be the minimum of the integral investment

Ii(ri) =
∫ ti

0
e−λtri(t)dt

here λ is a positive discount. The minimum is taken over all admissible open-loop invest-
ment strategies, ri(t), of player i. An admissible open-loop investment strategy of player
i (for a commercialization time ti) is modeled as an integrable control function,

ri(t) > 0 (4.1)

that brings the accumulated investment, xi(t), from 0 to the prescribed commercialization
level x̄i > 0 at time ti. Thus, for the initial and final values of the accumulated investment
we have

xi(0) = 0, xi(ti) = x̄i (4.2)

The dynamics of xi(t) is modeled as

ẋi(t) = −σxi(t) + rγi (t) (4.3)

here σ is a positive obsolescence coefficient and γ located strictly between 0 and 1 is a
delay parameter. In terminology of control theory ([Pontryagin, et., al., 1969]), the cost
Ci(ti) is defined to be the optimal value in the problem of minimizing the performance
index Ii(ri) for the control system (4.3), (4.1) subject to the boundary constraints (4.2).

The upper and lower benefit rates, bi1(t) and bi2(t), for player i at time t > 0 are found
as equilibrium payoffs in the static supply game modeling the instantaneous gas market.
In the supply game arising at time t, the strategies of player i are nonnegative rates of
supply, yi, and the payoff to player i is defined as

pi(y1, y2|t) = e−λt(π(t, y)− ci(t))yi (4.4)

here y is the total rate of supply, π(t, y) the price of gas and ci(t) > 0 the cost for extraction
and transportation of gas for player i. The price of gas is modeled as

π(y|t) =
(
g(t)

y

)β

where g(t) > 0 is the consumer’s GDP at time t and β the inverse to the price elasticity
of gas demand; we have

0 < β < 1

The total supply, y, equals yi if player i occupies market solely and equals y1 + y2 if
both players operate on market.

The next proposition gives expressions for the costs, Ci(ti), rates of cost reduction,
ai(ti), and upper and lower benefit rates, bi1(ti) and bi2(ti) (i = 1, 2). We need, however,
the following assumption.
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Assumption 4.4 It holds that

1− (2− β)ci(t)

c1(t) + c2(t)
> 0 (i = 1, 2). (4.5)

Remark 4.1 Condition (4.5) implies that the costs c1(t) and c2(t) are relatively close to
each other. Indeed, in the extremal case where c1(t) = c2(t) = c(t) (4.5) is equivalent to
the trivial inequality β > 0. Another interpretation of condition (4.5) is that β is close to
1. Indeed, in the limit case where β = 1 (4.5) is equivalent to the trivial inequality

1− ci(t)

c1(t) + c2(t)
> 0

Proposition 4.1 For player i (i = 1, 2) the following formulas hold.
1. The cost, Ci(ti), is given by

Ci(ti) = ρα−1
e−λti x̄αi

(1− e−ρti)α−1
(4.6)

where

α =
1

γ
, ρ =

ασ + λ

α− 1
(4.7)

2. The rate of cost reduction, ai(ti), is given by

ai(t) = ρα−1x̄αi
e−λt(λ+ νe−ρt)

(1− e−ρt)α
(4.8)

where
ν = ασ (4.9)

3. The upper benefit rate, bi1(ti), is given by

bi1(t) = e−λt(1− β)1/β−1
g(t)

c
1/β−1
i (t)

. (4.10)

4. If Assumption 4.4 holds, then the lower benefit rate, bi2(ti), is given by

bi2(t) = e−λt(2− β)1/β−1
(
1− (2− β)ci(t)

c1(t) + c2(t)

)2 g(t)

(c1(t) + c2(t))1/β−1
. (4.11)

5. Under Assumption 4.4,
bi1(t) > bi2(t) (4.12)

(see (1.2) and (1.3)).

In what follows, we assume that ci(t) (i = 1, 2) and g(t) are defined on the positive
half-axis and are continuous. We also fix the functions described in Proposition 4.1 and
introduce the next assumption.

Assumption 4.5 For i = 1, 2, the functions

hi1(t) =
g(t)

ci(t)1/β−1
, hi2(t) =

(
1− (2− β)ci(t)

c1(t) + c2(t)

)2 g(t)

(c1(t) + c2(t))1/β−1
(4.13)

(t > 0) increase and tend to infinity as t tends to infinity, and the integral
∫∞
0 e−λthi1(t)dt

is finite.
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Remark 4.2 Assumption 4.5 holds if the consumer’s GDP, g(t), and costs ci(t) grow
exponentially,

g(t) = g0eζt, ci(t) = c01e
ωt (i = 1, 2) (4.14)

(ζ and ω are nonnegative), and
0 < κ < λ (4.15)

where

κ = ζ −
(
1

β
− 1

)
ω (4.16)

Note that g0 is the consumer’s GDP at time 0, and c0i is the cost for transportation and
extraction for player i at time 0.

The theory described earlier for the general case is applicable for the considered model.
Namely, the following is true.

Proposition 4.2 Let Assumptions 4.4 and 4.5 hold. Then Assumptions 1.1 and 1.2 hold.
Moreover, the fast choice, t−i , of player i (i = 1, 2) is the unique solution of the algebraic
equation

ρα−1x̄αi
(1− β)1/β−1

=
(1− e−ρt)α

λ+ νe−ρt
hi1(t) (4.17)

and the slow choice, t+i , of player i is the unique solution of the algebraic equation

ρα−1x̄αi
(2− β)1/β−1

=
(1− e−ρt)α

λ+ νe−ρt
hi2(t) (4.18)

Thus, under Assumptions 4.4 and 4.5, the general algorithm for the resolution of the
game of timing (see section 3) is specified as follows.

Solution algorithm.
Step 1. Solve equations (4.17) and (4.18) for finding the players’ fast and slow choices,

t−i and t+2 , respectively (i = 1, 2).
Step 2. Use equalities (2.4) and (2.5) for finding the players’ switch times, t̂i (i = 1, 2).
Step 3. Use Table 1 for identifying the Nash equilibria in the game of timing.

As a specific example, let us consider the case described in Remark 4.2. Thus, in what
follows, we assume that g(t) and ci(t) (i = 1, 2) are given by (4.14) and inequality (4.15)
is satisfied. Formulas (4.10) and (4.11) for bi1(t) and bi2(t) are specified as

bi1(t) = b0i1e
−ψt, bi2(t) = b0i2e

−ψt

where
ψ = λ− κ

b0i1 = (1− β)1/β−1
g0

(c0i )
1/β−1

b0i2 = (2− β)1/β−1
(
1− (2− β)c0i

c01 + c0i

)2
g0

(c01 + c02)
1/β−1
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Using the definition of the total benefit, Bi(t1, t2), of player i (see (1.8) and (1.9)) and
expression (4.6) for cost Ci(ti), we find an explicit formula for the total profit, Pi(t1, t2),
(1.10) of player i, which is determined by player’s strategies t1 and t2. We have

P1(t1, t2) = −ρα−1 e−λt1x̄α1
(1− e−ρt1)α−1

+




b011e
−ψt1

ψ +
(b012−b011)e−ψt2

ψ if t1 ≤ t2,
b012e

−ψt1

ψ if t1 ≥ t2,
(4.19)

P2(t1, t2) = −ρα−1 e−λt2x̄α2
(1− e−ρt2)α−1

+




b021e
−ψt1

ψ +
(b022−b021)e−ψt1

ψ if t2 ≤ t1,
b022e

−ψt2

ψ if t2 ≥ t1.

Fig. 8 shows the Maple-simulated landscape of P1(t1, t2) (α = 1.5, λ = 0.3, σ + 0.3,
g0 = 3.5, x̄1 = 0.7, β = 0.5, c01 = c02 = 0.2).

Fig 8.
Payoff landscape for player 1: (a) for large t2 the fast choice, t

−
1 , replies best;

(a) for small t2 the slow choice, t+1 , replies best.

Recall that by Proposition 2.3 the critical points t̂2 and t̂1 needed for the identification
of the type of the equilibria in the game of timing (see Table 1) are found from the
equalities P1(t

−
1 , t̂2) = P1(t

+
1 , t̂2) and P1(t̂1, t

−
2 ) = P1(t̂1, t

+
2 ), respectively. In the situation

considered now the critical points are given explicitly. The next proposition is true.

Proposition 4.3 For i = 1, 2 we have

t̂i = −
1

ψ
log

(
ψGi

b0i2 − b0i1

)
(4.20)

where

Gi = −
ρα−1e−λt

+
i x̄α1

(1− e−ρt
+
1 )α−1

+
b0i2e

−ψt+1

ψ
+

ρα−1eλt
−
i x̄α1

(1− e−ρt
−
i )α−1

− b0i1e
−ψt−i

ψ
(4.21)
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The next proposition specifies Proposition 4.2.

Proposition 4.4 Let g(t) and ci(t) (i = 1, 2) be given by (4.14), and inequality (4.15) be
satisfied. Then for every player i (i = 1, 2) the following assertions hold.

1. The fast choice, t−i , of player i is the unique solution of the algebraic equation

liwi =
eκt(1− e−ρt)α

λ+ νe−ρt
(4.22)

where

li =
ρα−1

(1− β)1/β−1g0
, (4.23)

wi = x̄αi (c
0
i )
1/β−1

(4.24)

2. The slow choice, t+i , of player i is the unique solution of the algebraic equation

lizi =
eκt(1− e−ρt)α

λ+ νe−ρt
(4.25)

where li is defined by (4.23) and

zi =
x̄αi (c

0
1 + c02)

1/β−1(
1− (2−β)c

0
i

c01+c
0
2

)2 (4.26)

Thus, under assumptions of Remark 4.2 the suggested solution algorithm for the game
of timing (section 3) takes the following form.

Solution algorithm.
Step 1. Solve equations (4.22) and (4.25), for finding the players’ fast and slow choices,

t−i and t+i , respectively, (i = 1, 2).
Step 2. Use formula (4.20) for finding the players’ switch times, t̂i (i = 1, 2).
Step 3. Use Table 1 for identifying the Nash equilibria in the game of timing.

Fig. 9 shows the Maple-simulated graphs of the fast choice, t−1 , and slow choice, t+1 , of
player 1 as functions of x̄1 and c01 = c02 for different values of β (α = 1.5, λ = 0.3, σ = 0.3,
g0 = 3.5).
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Fig 9.
The graphs of the fast choice, t−1 , and slow choice, t+1 ,

of player 1 as functions of x̄1 and c01:
(a) β = 0.97; (b) β = 0.75; (c) β = 0.5.

5 Appendix: Proves of the Main Results

Here we prove Propositions 4.1, 4.2, 4.3, and 4.4.

Proof of Proposition 4.1.
1. Formula (4.6) was obtained in [Tarasyev, Watanabe, 2000].
2. The differentiation of (4.6) gives

C′i(ti) = ρα−1
−λe−λtix̄αi (1− e−ρti)α−1 − e−λtix̄αi (α− 1)(1− e−ρti)α−2ρe−ρti

(1− e−ρti)2α−2

=
ρα−1e−λti x̄αi (1− e−ρti)α−2

(1− e−ρti)2α−2

[
−λ(1− e−ρti)− (α− 1)ρe−ρti

]

= −ρα−1x̄αi
e−λti

(1− e−ρti)α

[
λ(1− e−ρti) + (α− 1)ρe−ρti

]

= −ρα−1 e−λtix̄αi
(1− e−ρti)α

[
λ+ (ρ(α− 1)− λ)e−ρti

]

= −ρα−1 e
−λtix̄αi (λ+ νe−ρti)

(1− e−ρti)α
(5.1)

for the last transformation we have used the equality ρ(α − 1) −λ = ασ following from
(4.7) and notation (4.9). For ai(ti) = −C′i(ti) (see (1.1)) we have (4.8).

3. Assume that player i occupies market solely. Then the price is given by

π(y|t) =
(
g(t)

yi

)β
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and the payoff to player i, pi(y1, y2|t), equals

pi(yi|t) = e−λt[g(t)βy1−βi − ci(t)yi] (5.2)

The supply game is reduced to an optimization problem, and bi1(t) is found as the maxi-
mum of pi(yi|t) over all positive yi. Since pi(yi|t) is strictly concave in yi, its maximum is
reached at the unique point yi(t) > 0 such that

dpi(yi(t)|t)
dyi

= e−λtg(t)β[(1− β)y−βi (t)− ci(t)] = 0

Hence,

yi(t) =
g(t)

ci(t)1/β
(1− β)1/β

Recall that bi1(t) = pi(yi(t)|t) and substitute yi = yi(t) into (5.2). We get

bi1(t) = e−λt
[
gβ(t)

yβi
− ci(t)

]
yi(t)

= e−λt
[
ci(t)

1− β
− ci(t)

]
g(t)

ci(t)1/β
(1− β)1/β

and, finally,

bi1(t) = e−λtβ(1− β)1/β−1
g(t)

c
1/β−1
i (t)

i.e. (4.10) holds.
4. Now let Assumption 4.4 hold and both players operate on market. Then

π(y|t) =
(

g(t)

y1 + y2

)β

and for the payoff to player i, we have

pi(y1, y2|t) = e−λt
[

g(t)βyi
(y1 + y2)β

− ci(t)yi

]
, (5.3)

Let us show that the instantaneous supply game has the unique Nash equilibrium under
Assumption 4.4.

Since pi(y1, y2|t) (i = 1, 2) is strictly concave in yi, a point (y1, y2) is a Nash equilibrium
if and only if

∂pi(y1, y2|t)
∂yi

= 0 (5.4)

or, explicitly,
gβ(t)

yβ
− βgβ(t)yi

yβ+1
− ci(t) = 0 (5.5)

Here, as above, y = y1 + y2 . For the sum of the left hand sides for i = 1, 2, we have

2
gβ(t)

yβ
− βgβ(t)

yβ
− (c1(t) + c2(t)) = 0

Hence,
(2− β)gβ(t) = (c1(t) + c2(t))y

β
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and

yβ = (2− β)
gβ(t)

c1(t) + c2(t)
(5.6)

Rewriting (5.5) as
βgβ(t)yi = gβ(t)y − ci(t)y

β+1

and using (5.6), we get

yi =
y

βgβ(t)
(gβ(t)− ci(t)y

β)

=
y

βgβ(t)

(
gβ(t)− (2− β)ci(t)

c1(t) + c2(t)
gβ(t)

)

=

(
(2− β)

gβ(t)

c1(t) + c2(t)

)1/β
1

β

(
1− (2− β)ci(t)

c1(t) + c2(t)

)

=
(2− β)1/β

β

(
1− (2− β)ci(t)

c1(t) + c2(t)

)
g(t)

(c1(t) + c2(t))1/β
(5.7)

The latter is necessary for (y1, y2) to be a Nash equilibrium in the supply game. Hence,
if the Nash equilibrium exists, it is unique. Point (y1, y2) given by (5.7) has positive
components due to Assumption 4.4 (see (4.5)). Moreover, (y1, y2) satisfies (5.5), where
y = y1+y2, which is equivalent to (5.4). Hence, (y1, y2) is the Nash equilibrium. We have
stated that the unique Nash equilibrium exists. Denote it (y1(t), y2(t)). By (5.7)

yi(t) =
(2− β)1/β

β

(
1− (2− β)ci(t)

c1(t) + c2(t)

)
g(t)

(c1(t) + c2(t))1/β

By definition bi2(t) = pi(y1(t), y2(t)|t). Substituting yi = yi(t) (i = 1, 2) into (5.3) and
noticing that y = y1(t) + y2(t) is given by (5.6), we get

bi2(t) = e−λt
[
gβ(t)

yβ
− ci(t)

]
yi(t) =

e−λt
[
c1(t) + c2(t)

2− β
− ci(t)

]
yi(t) =

e−λt
c1(t) + c2(t)

2− β

(
1− (2− β)ci(t)

c1(t) + c2(t)

)
(2− β)1/β

β
×

(
1− (2− β)ci(t)

c1(t) + c2(t)

)
g(t)

(c1(t) + c2(t))1/β

and, finally,

bi2(t) = e−λt(2− β)1/β−1
(
1− (2− β)ci(t)

c1(t) + c2(t)

)2 g(t)

(c1(t) + c2(t))1/β−1

Formula (4.11) is proved.
5. By definition

bi2(t) = pi(y1(t), y2(t)|t)
= e−λt(π(t, y1(t) + y2(t))− ci(t))yi(t)

=

(
g(t)

y1(t) + y2(t)

)β
yi(t)− ci(t)yi(t)
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<

(
g(t)

yi(t)

)β
yi(t)− ci(t)yi(t)

≤ sup
yi>0

[(
g(t)

yi

)β
yi − ci(t)yi

]

= bi1(t)

Inequality (4.12) is stated. Proposition 4.1 is proved.

Proof of Proposition 4.2.
Let us check Assumption 1.1. Function Ci(ti) (4.6) is continuously differentiable.

Expression (5.1) for C′i(t) shows that C
′
i(t) < 0. Hence, Ci(t) is monotonically decreasing.

Consider the ratio in the right hand side. The numerator, e−λtix̄i, decreases in ti and
denominator, (1−e−ρti)α increases in ti. Hence, the ratio decreases in ti. Since the square
bracket decreases in ti, its product with the ratio decreases in ti. As a result, we conclude
that C′i(ti) increases in ti. We have shown that Assumption 1.1 is satisfied.

Let us turn to Assumption 1.2. For the rate of cost reduction we have expression (4.8)
whose denominator tends to 0 when t approaches 0. Hence, ai(t) tends to infinity as t
approaches 0. Therefore, for all t > 0 sufficiently small, we have

ai(t) > bi1(t) > bi2(t)

The expressions for ai(t) and bi2(t) (see (4.11)) show that bi2(t)/ai(t) = h0(t)hi2(t) where
hi2(t) is given in (4.13) and h0(t) is such that for some τ > 0 and ε > 0 the lower bound
inf t≥τ h0(t) > ε holds. By Assumption 4.5 h(t) tends to infinity as t tends to infinity.
Therefore, for all t sufficiently large we have

bi1(t) > bi2(t) > ai(t).

Since functions ai(t), bi1(t) and bi2(t) are continuous, there exist a t
−
i > 0 that solves the

equation
ai(t) = bi1(t) (5.8)

and a t+i > 0 that solves the equation

ai(t) = bi2(t) (5.9)

In order to state that Assumption 1.2 holds, it is now sufficient to show that t−i and t+i
are unique. We specify equation (5.8) by substituting the expressions for ai(t) and bi1(t)
(see (4.8) and (4.10)). We get

ρα−1x̄αi
e−λt(λ+ νx̄αi e

−ρt)

(1− e−ρt)α
= e−λt(1− β)1/β−1

g(t)

c
1/β−1
i (t)

Cancelling e−λt and using the definition of hi1(t) (see (4.13)) we arrive at equation (4.17).
The right hand side (4.17) strictly increases in t due to Assumption 4.5. Hence, equation
(5.8) has the unique root, t−i .

For equation (5.9) we argue similarly. Specify (5.9) by substituting the expressions for
ai(t) and bi1(t) (see (4.8) and (4.11)). We get

ρα−1x̄αi
e−λt(λ+ νe−ρt)

(1− e−ρt)α
= e−λt(2− β)1/β−1

(
1− (2− β)ci(t)

c1(t) + c2(t)

)2 g(t)

(c1(t) + c2(t))1/β−1
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Using the definition of hi2(t) (see (4.13)) we arrive at equation (4.18). The right hand
side of (4.18) strictly increases in t due to Assumption 4.5. Hence, equation (5.9) has the
unique root, t+i .

Proposition 4.2 is proved.

Proof of Proposition 4.3.
Let i = 1 (for i = 2 the argument is similar). Using formula (4.20) for P1(t1, t2) and

taking into account that t̂2 lies between t−1 and t+1 (see Proposition 2.3) we specify the
equality P1(t

−
1 , t̂2) = P1(t

+
1 , t̂2) into

− ρα−1e−λt
−
1 x̄α1

(1− e−ρt
−
1 )α−1

+
b011e

−ψt−1

ψ
+

(b012− b011)e
−ψt̂2

ψ
= − ρα−1e−λt

+
1 x̄α1

(1− e−ρt
+
1 )α−1

+
b012e

−ψt+1

ψ

Resolving with respect to t̂2, we get

(b012 − b011)e
−ψt̂2

ψ
= − ρα−1e−λt

+
1 x̄α1

(1− e−ρt
+
1 )α−1

+
b012e

−ψt+1

ψ
+

ρα−1e−λt
−
1 x̄α1

(1− e−ρt
−
1 )α−1

− b011e
−ψt−1

ψ

or

t̂2 = −
1

ψ
log

(
ψG1

b012 − b011

)

where

G1 = −
ρα−1e−λt

+
1 x̄α1

(1− e−ρt
+
1 )α−1

+
b012e

−ψt+1

ψ
+

ρα−1e−λt
−
1 x̄α1

(1− e−ρt
−
1 )α−1

− b011e
−ψt−1

ψ
.

Representation (4.20), (4.21) is stated.

Proof of Proposition 4.4.
1. Due to the form of g(t) and ci(t) (see (4.14)) equation (4.17), which determines the

fast choice, t−i , of player i, is specified as

ρα−1x̄αi
(1− β)1/β−1

=
(1− e−ρt)α

λ+ νe−ρt
g0eκt

(c0i )
1/β−1

or
ρα−1x̄αi (c

0
i )
1/β−1

(1− β)1/β−1g0
=

eκt(1− e−ρt)α

λ+ νe−ρt

Using notations (4.23) and (4.24), we arrive at equation (4.22).
2. Due to (4.14) equation (4.18) determining t+i is specified as

ρα−1x̄αi
(1− β)1/β−1

=
(1− e−ρt)α

λ+ νe−ρt

(
1− (2− β)c0i

c01 + c02

)2
g0eκt

(c01 + c02)
1/β−1

Using notations (4.23) and (4.26), we arrive at equation (4.25).

Conclusion

The paper is devoted to the analysis of a two-player game, in which the players’ strategies
are times of terminating individual dynamical processes. The formal setting is related
to management of large-scale innovation projects, whose key feature is that the profits
gained through the implementation of the projects are highly sensitive to the projects’
commercialization times. The basic reason for that is that the price formation mechanism
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rapidly changes the price as a new project is commercialized and supply sharply increases.
This situation is analyzed in the context of competition of two projects on the construc-
tion of gas pipelines. In the game between the projects the total profits gained during
the pipelines’ life periods act as payoffs and commercialization times as strategies. The
reduction of project management to choices of the commercialization times is justified by
the assumption that the individual regulation mechanisms comprising investments into
the construction of the gas pipelines and regulation of supply work optimally provided the
commercialization times are given. The analysis of the game leads to the restriction of
player’s rational choices to no more than two prescribed combinations of commercialization
times, which constitute the Nash equilibria in the game. Typically, two Nash equilibria
arise and the projects compete for a fast commercialization scenario; its complement, a
slow commercialization scenario, is less profitable, representing the best response to the
fast scenario of the competitor. A simple algorithm for finding the Nash equilibria is
described.
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