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Summary: The conditional-value-at-risk (C V@R) has been widely used as

a risk measure. It is well known, that C V@R is coherent in the sense of

Artzner, Delbaen, Eber, Heath (1999). The class of coherent risk measures is

convex. It was conjectured, that all coherent risk measures can be represented

as convex combinations of C V@R’s. In this note we show that this conjecture

is wrong.

Let the random variable Y represent the future value of a portfolio. To measure the

risk contained in Y is an important task in stochastic finance. Among the enormous group

of statistical parameters, which can be associated to Y , like expectation, median, variance,

mean absolute deviation, coefficient of variation, Gini-measure etc., only some qualify as

acceptable risk measures.

Artzner, Delbaen, Eber, Heath (1999) call a statistical parameter F(Y ) coherent, if it

has the following properties:

(i) First order stochastic monotonicity.
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(ii) Positive homogeneity.

F(�Y ) = �F(Y ); for � > 0:

(iii) Subadditivity.
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Let F be the set of all coherent risk measures. Evidently,F is a convex set of functio-

nals. There is practically only one known risk functional, which satisfies coherence: The

conditional value-at-risk C V@R.

The conditional value-at-risk C V@R is defined as follows. Let G be the probability

distribution function of Y , i.e. G(u) = PfY � ug. Then
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It is known that C V@R
�

is coherent in the above sense (see Pflug, 2000). If H is any

monotonic, right continuous function on [0,1], then

C V@R
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is also coherent.
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h is monotonically decreasing in u and conversely, every monotonically decreasing func-

tion h has a representation (2). Thus the convex hull of all C V@R
�

is given by all risk

measures of the form (1).

It was proved by Uryasev and Rockafellar (2000) that
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It was conjectured that the class C V@R
H

coincides with the class of coherent risk

measures. This is however not true: Consider the new measure
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Proposition. The risk measure (3) is coherent, but is not of the form (1).
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monotone in Y , the same is true for F
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However, the constraint does not change the property of coherence, but introduces a new

type of measure.
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Let us finally remark, that if one weakens the assumption of monotonicity w.r.t. first

order stochastic dominance by the assumption of second order stochastic dominance (see

Fishburn, 1980)
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then more functionals satisfy (i’),(ii),(iii). Examples are
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