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Preface 

Scheduling problems are related to cornbinatorial ones and 
are usually formulated as integer programming problems. 
Solvability of the latter problems of realistic size is still 
an open question. In this paper principles of a new approach 
to solve scheduling problems which is based on implementation 
of indirect optimal control theory methods are described. 





Abstract 

Optimization algorithms for solving of a certain 
class of large-scale optimal control theory problems 
are described in the paper. The problems could be 
stated as problems of dynamic balanced allocation of 
limited resources among activities of a complex project. 
The problems are attacked by indirect optimal control 
theory methods based on Pontzyagin's maximum principle. 
Extensions and applications are also described. 





Owtimal Control Theorv Problems with Network 

Constraints and their Application 

Igor Zimin 

I. Introduction 

The impact of activity network models on development 

planning of complex projects, both in practice and research, 

is well known [5,10,11,17,21,23]. These project planning 

models are based on network structure. At the beginning of 

their development they assumed unlimited resources (CPM, PERT 

[4,6,9,12,14,16]). As a rule, however, this assumption is not 

valid in real problems. Many researchers were thus forced to 

deal with problems involving limited resources. 

In general the problem of scheduling interacting activities 

subject to limited resources can be stated as follows. 

Consider a graph r = (N,G) where N, the set of nodes, 

corresponds to the activities, and GI the set of arcs, corresponds 

to the precedence relations. N and G could also be used as the 

number of nodes and precedence, respectively. Any activity i&N 

is characterized by the following information. 

tlomI ti = nominal time and shortest time of completion of the 
L L 

nom i-th activity (ti - > ti). 

The values of completion time are dependent on the vector of 

resources required (denoted r) and resources available for 

activity performance (denoted R). Some components of the 

vector could be equal to zero. The activity could be completed 

within time ti if all resources it consumes are totally avail- 

able. The problem is to find such a schedule (start and finish 

times of all activities) which minimizes a certain given objective 

function I(ti,. . . .tN). To solve the problem, we have to determine 

when the activities of the N set will be or can be performed if 

the supply of resources (vector R(t)) is given for all t within 

the planning period [O,T]. Thus, the following inequality 



should hold: 

where ri(t), R(t) are the vector of resource consumption for 

the i-th activity of the vector of resource supply correspond- 

ing to moment t. 

To solve this problem, past researchers pursued the 

following approaches. 

First, the problem was formulated as an integer or general 

linear program and solved by standard linear programming tech- 

niques [15,22,251. Other approaches were the direct use of 

some enumerative schemes for constructing an optimal schedule, 

[7,8,13], and problem formulation in terms of minimaximal 

paths in a disjunctive graph and solution by network flow 

methods and implicit enumeration. Finally the problem was 

formulated as an optimal control theory problem and solved by 

penalty function methods 1201. The first three approaches 

have been compared and the essential difficulties of the 

several methods have been identified in [31. The results 

obtained indicate that the procedures have not been used 

successfully for any problem of realistic size due to the 

fact that solvability of an integer programming problem de- 

creases fairly rapidly as the number of constraints increases. 

(The number of constraints is dependent on the number of act- 

ivities N, number of resources M, and number of steps during 

the planning interval). The failure of the fourth approach 

stems from the necessity of solving the M transcedental 

equation at every tine step. As computation time increases 

exponentially with the growth of the number of resources, the 
problem becomes unsolvable for realistic sizes of M. 

In this paper we present a new approach to the problem, 

based on the implementation of indirect methods of optimal 

control theory. It allows one, on the one hand, to deal with 

quite general scheduling problems of a dynamic kind, and on 

the other hand to solve large-scale problems arising in practice. 



A few applications to water economy development, region- 

al development, an industrial integrated complex operation 

and computer network optimizations are considered. 

2. The Dynamic Scheduling Problem Statement 

Given a list of activities P that must be performed, let 

these activities be numbered, and call P a program and act- 

ivities jobs. The state of activity i at a given moment t 
i 

we characterize by the number zi (t) . We assume that z (t) is 

a portion of the completed section of the activity at instant 

t. The activity is terminated if 

where N is the total number of activities. We designate the 

moment t when condition (1) holds ti. The initial state of 

the i-th activity could be assumed to be equal to zero: 

The mark or job number zi increases during its performance. 

The rate or intensity of zi we denote by ui. We then have the 

relationship 

The performance of activities is usually subjected to 

constraints of two kinds. 

Group (a) is a group of precedence network constraints. 
+ The predecessor I'i and successor Ti sets for the i-th activity 

are given. This means that all activities of I'T must be com- 
I + pleted before i is started and all activities of Ti can start 

after the i-th activity is completed. Group (6) includes 
resource constraints and some others. For instance, various 

conditions may be imposed on maximum and minimum intensity 

of the activity performance. 



The (8) constraints we express in the following way: 

where R' is the inflow intensity of the type j resources, 

and rl is the intensity with which the type j resources are 

consumed while performing the i-th activity with unit inten- 
i i sity. We assume R and r to be given for each instant t 

j 

where hi(t) is the maximum feasible intensity of the activity 

performance at instant t. 
1 N In the model we consider z(t) = (z t),...,~ (t) as a 

1 v phase vector and the vector u (t) = (u (t) , . . . ,u- (t) ) as a 
control. We define the best control, or the best schedule 

u*, as the one in which a certain objective function I(u) is 

minimized. 

Note that the model presented is a general one and over- 

laps a wide range of scheduling problems. Below we will 

consider some of these. All results obtained with the model 

can be easily interpreted in terms of "classical CPM and PERT 

language." The model presented is a dynamic model because 

activity performance is considered over time and space, all 

activities may change their intensities while being performed, 

and the inflow intensity is an arbitrary function of time. 

3. Examples of Dynamic Scheduling Problems 

A. Duration Minimization Problem 

Min T 

s.t. ( 2 1 ,  (3) , 
( a ) ,  (81, 

z(T) 1 - e, (6 

where e = N-dimensional vector with all components equal to 

one (e=(l,l,...,l)). 



The problem is to carry out the program for a minimum 

time. In this case I(u) = T. T is the time of completing 

the program. We define the program as completed when all 

its operations are completed. 

8 .  Deviation Minimization Problem 

Min I Iz(T) - ~ £ 1  1 
sot. (2) f (3) f 

( a )  f X B )  

where 

T = given period of time (the period of planning); 

I I X - ~ ~  1 = the distance between two points x and y in 

N-dimensional space (in a certain given metric). 

For instance, the preference of some program states may be 

given in the form 

where 

X = relative "weight" of the j-th job in the program. 
j 

C. Cost Minimization Problem 

Min c (u,z) 

s.t. (2) f (3) 

( a )  f ( 6 )  f 

(6). 

The problem is to determine the time T of completing the 

program and the schedule which minimizes capital (direct 

and/or indirect) costs of program performance c(ufz). 



D. Due Date Minimization Problem 

j Min Max (ti - tD)+ 
j EP 

s.t. (21, (3) 

The problem is to minimize the maximum deviation between time 
j tf, when the corresponding job is actually completed, and the - 

due date of completion which is designated by ti. The function 
(,I+ is defined as follows: 

E. PlanDeviation Minimization Problem 

Min I lu - u*I 1 
s.t. (21, (3) 

(a) 1 ( 6 )  

(6) 

The problem is to minimize the deviation between a given plan 

u* and actual modified control, which could be done given 

available resources. For instance, the function may be defined 

in the form 

where p > 0 are relative "penalties" for the deviation. 
j - 

F. Consumption Deviation Minimization Problem 

Min F* - F (u) 
s.t. (2) 1 ( 3 )  1 

(a), (B) , 
(6) 



where 

F* (t) = a given (desirable) resource consumption 

by the program; 

F (u (t) ) = resource consumption under given constraints. 

For example, the objective function may be assumed as 

Many other problems may be stated, in a similar way and all 

objective functions described may be combined. 

To simplify the discussion we will consider the solution 

of Problem B. It should be emphasized that some of the problems 

A-F are interconnected, in the sense that the solution to one 

may be obtained on the basis of the solution to the other. For 

instance, instead of the time minimization problem, a set of 

problems B with fixed time T < T* may be solved, where T* is 

the optimal time of carrying out the program (i.e. an optimal 

solution of the problem). 

If T > T*, there is an infinite set of ways to carry out 

the program and problem A is degenerate. But this difficulty 
4 

is easily overcome by the introduction of a dummy job', which 

can start when all activities of the program have terminated. 

The intensity of this job should be assumed to be constant 

and less than or equal to 1/T. 

The optimal time for performing this "lengthened" program 

will be greater than T* and also greater than T (T is chosen 

in advance). Now, instead of minimizing (8) for the initial 

program, a similar objective function for the"lengthenedW 
A 

program (that is for extended vector z = ( Z , Z ~ + ~  ) ) has to be 

minimized. 

If the final dummy job has not started its performance 

at a given T, then T < T*. On the other hand, if dummy job 

number z N+l becomes non-zero, then T > T*. Thus, during 

'we define a dummy job as one which has non-zero 

duration and does not consume resources. 



computation, a dual upper and lower estimate is obtained 

for the optimal time of performing the progran. 

4. Solution of the Problem 

Thus we consider the solution of the following problem: 

Note that most computational methods for obtaining optimal 

solutions can be considered as a utilization of explicit or 

implicit penalties for constraint violation. In some cases, 

there is a feedback between deviation size from the optimal 

solution and size of the penalty (implicit case). This feed- 

back is realized by means of the solution of a dual problem. 

Here we use penalties of a discontinuous kind for violation 

of the (a) constraints. Instead of system (3) with precedence 

network constraints (a), introduce the modified system. 

with the (a) constraints and the condition (6) deleted. 

Now every job can be performed (the corresponding uj may 

be positive)before the previous activities have been completed, 

or after zJ has reached its final value 1. But the mark (job 

number) zJ will not increase under these conditions. The 

intensity of performing a job which has terminated or which 

is not feasible for the (a) constraints can take in an inter- 

val [O,h(t)] (t E [O,T]). To avoid this lack of uniqueness, 

at such instants we will choose u3 = 0 from the set of fea- 

sible values. 

Under these conditions the problem B is equivalent to 



the modified problem: 

0 5 ui(t) 5 hi (t) . 

The difference between this problem and ordinary control 

theory problems is due to discontinuous multipliers in the 

right-hand sides of the equations (10). Nevertheless the 

maximum principle is valid in this case. The necessity of 

maximum principle conditions for more general problems with 

discontinuous right-hand sides of equations has been proved 

by V.V. Velitchenko [ 2 4 ] .  Moreover the maximum principle 

conditions are (locally) sufficient for this problem. The 

proof can be found in [ 2 6 ]  . 
These conditions can be written as follows. Let the 

control (schedule) u* (t) maximize (on the phase trajectory 

defined by it) the Hamiltonian function 

with respect to all feasible controls. We define the schedule 

u*(t) as a feasible control if it satisfies all (8) constraints. 

Here p(t), corresponding to the u*(t) vector of Lagrange 

multipliers is a solution of the conjugate system: 

with jump conditions for instants coinciding with the 



instants at which the activities terminate: 

and boundary conditions 

It is clear that all p are piecewise constant functions. 
j 

The main purpose of the method is to find controls u(t) 

and corresponding p (t) which satisfy conditions (1 3)- (15) 

and maximize functions H(u,z,p). Such methods are usually 

called indirect optimal control methods [18]. 

The foilowing algorithm, based on the method of succesive 

approximations, will be used for solving the problem. (The 

flow chart is given in Figure 1). 

(i) Given any feasible control u(' ) (t) , t E [O,T] . 
We may always use u jcl) (t) = 0, 1 . . . N t E [O.Tl. 

For a given system u(l) , (10) is integrated from 
t = 0 to t = T. Simultaneously we determine the 

values t, (l) . We denote this trajectory by z (t) . - - - 

(1) (ii) Substitute u , z (1 , t into the system (13) - (14) 
and integrate it from t = T to t = 0 for the given 

initial conditions (15). 

(iii) Determine a new approximation of control u (k+l) 

using the condition 

H (u (t) (k+l ) , (t) , (k) (t) ) = Max H (u, z (k) , p (k) ) f 

(16) 

where the maximum is taken under (6) constraints. 



ST ART 

DETERMINE 
IN IT IAL 

CONTROL 

F IGURE 1. COMPUTATIONAL FLOW CHART OF T H E  
ALGORITHM. 



(k+l) 
3 

(iv) Compare I (k) and I 

then replace u by u(~+') and pass to (i) . 
If 

pass to (v). 

(v) Calculate new controls as follows: 

G(t) = J k )  (t) + p(u (k+l) (t) - U(k) (t) ) , 

'L 
(u (t) belongs to the feasible control domain, 

because this domain is a convex set). Pass to (vi) . 
(k (vi) Calculate I (:) and compare I . 

If 

then set u (k+l) 'L = u, p = 1 and pass to (i) . 

then reduce p (for instance, one may set p = p/2) 

and pass to (vii). 

(vii) Compare p and E (E is the external parameter, small 

positive number). If 

we complete the iterative process and consider u (k) 

to be the solution of tke problem. 

We denote I (k) as the value of the objective function - 
I (u) , when u = u(~) . I ) is assumed to be equal to + . 



pass to (v) . 
The proof of algorithm convergence is similar to that in [ I ] .  

The specific character of the problem and its solution by the 

method should be outlined. When integrating the system (10) 

in (i), the following linear programming problem (LPP) is to 

be solved at every time step: 

s. t. ( 6 )  constraints. 

The coefficient attached to uj in the Hamiltonian function 

is zero for those jobs which do not satisfy (a) constraints or 

which have terminated. Hence the corresponding uj may be made 

equal to zero without changing the values of the Hamiltonian. 

Thus, the maximum can be sought only with respect to the uJ 

for which the jobs have not been performed and which are adrnis- 

sible by the network logic. This essentially reduces the 

dimension of the LPP. In the problem the number of variables 

is equal to the number of technologically feasible jobs at 

t,he instants. 

The number of linear constraints at each time step is 

equal to the number of different resources consumed by these 

jobs. 

The choice of the time step length could be easily autom- 

ated in the algorithm. Indeed one need not solve LP problem 

(17) at every time step, but only at the instants when one of 

the following events takes place: 

(i) resource inflows have changed, 
i i 

(ii) resource consumption (functions r. (t) , gj (t)) 
I 

have changed, 

(iii) one or more jobs have been completed. 

The difference between the time when one of these events 



occurs and the current instant determines the length of the 

next step. 

The positive features of the method are: 

(i) usage of the standard procedures (for example, 

simplex algorithm); 

(ii) the simplicity of the computer program; 

(iii) a relatively small number of computations at every 

iteration; 

(iv) "high-speed" work of the algorithm (as a consequence 

of (i) - (iii) , due to t h e  fact that scheduling 

problems and LP problems need not be solved with 

great precision) ; 

(v) the approximate solution obtained at every i~ter- 

mediate iteration always belongs to the feasible 

control set; 

(vi) the algorithm can easily be extended to incorporate 

nonlinear relationships between resource consumption 

and the performance intensity of a job. 

The shortcomings of the algorithm are: 

(i) in general the algorithm makes it possible to obtain 

a solution which corresponds to a local minimum of 

the objective function; 

(ii) non economical usage of computer memory (the algorithm 

is expected to store program trajectories obtained 

at the two adjacent iterations) . 
These shortcomings can be overcome. The first will be 

discussed in Section 5; the second may be rem0ved.b~ somewhat 

sophisticating the computer program. 

Some generalizations of the model are discussed below. 

5. Additional Constraints on Program Performance 

A. In previous sections we described the algorithm which 

guarantees obtaining the local optimal solution of the schedul- 

ing problem. Note that the problem is a multi extremal one by 

its nature. 

Let us modify the initial problem by introducing, instead 



of I(u), the objective function 

where E > 0 is a sufficiently small number. In this case the 

Hamiltonian 

is a strictly concave function. 

Thus the problem 

has a single (global) solution. Consequently the initial 

modified problem has a single solution. 

To solve the modified problem we apply the same algorithm. 

However, one now needs to solve a nonlinear (quadratic) pro- 

gramming problem at every time step. The dimension of the 

problem is the same as in the linear case (see (12)). 

B. Storable Resources 

In Section 2 we considered the case when a program consumes 

only unstorable resources. The problem may be generalized by 

including constraints on the storable resources. As usual, a 

resource is called storable if its residue can be utilized at 

subsequent instants. 

It is easy to verify that E is subjected to the following 
constraints: 

E Min 1 rl(t)c. (t) 
l<i M w  j=1 - - I I 

where 

c . (t) E the coefficient at uJ in the Hamiltonian (1 2) , 
l 

and 



The ( f 3 )  constraints on the storable resources can be 

written as 

where 
k 
g.(t) = the intensity with which the k-th storable 

I 
resource is consumed at instant t when performing 

the j-th activity with unit intensity; 

(li (t) = the intensity of inflow of the i-th storable 

resource, released for performance of the program 

at instant t; 

N2 = the number of different storable resources. 

Let us extend the phase vector by introducing additional 
N+i phase variables z (i = 1,2, ..., N2). The equations for these 

variables are written in the following form: 

Denote functions F~ (t) as 

Then, in accordance with (20), (21), the constraints (19) may 

be written as 

Thus we get the control problem with phase constraints. 

Consider one simple approach for its solution. Again, we 

modify equations (10) by introducing additional discontinuous 

terms to their right-hand sides. Instead of equations (10) 

and constraints (22), consider the system 



where 

Similar to [23], it may be proved that maximum principle 

conditions are necessary and sufficient for control optimality 

in problem B, when the phase equations are (20) and (23) . 
In this case the Hamiltonian is 

where 

E the Lagrange multipliers that corresponds to the 

variable zJ and satisfies the conditions (1 3) - (1 5) ; 
a: E the Lagrange multiplier that corresponds to the 
I 

variable z N+i and satisfies equation 

doi 
- 0  , dt- 

boundary condition 

ai (T) = 0 , 

and jump condition 



where we denote ti as the moment when 

zN+' (t) = F~ (t) 

and 

i.e., the moment when the phase trajectory intersects outward 

with the surface F (t) = (Fl (t) 
' * * - ' F ~ Z  

(t) ) . Whenever this 

occurs, conjugate variable oi is subjected to jumps (24). 

Similar to p the Lagrange multipliers ai are piecewise 
j 

constant over time. This allows us to use the computer memory 

economically, because to construct the conjugate trajectory we 

need know only values of the jumps and the corresponding 
j instants tH. 

C. Constraints on Minimal Intensity of Job Performance 

Consider the case where constraints are imposed upon the 

minimal performance intensity for all or some jobs of the 

program. In particular, one of these constraints is that the 

job is to be carried out with no preemption (for example, 

certain technological processes in the chemical industry can- 

not be interrupted). 

Constraints of this kind can be taken into account in the 

model in the following way: 

uj (t) > sj (t) 0- (21 (t) )0-(1 - zj (t) 1 I - ( 2 5 )  

where 

j s (t) E minimal admissible intensity of carrying out 

the job j at instant t. 



This means that if the job performance has begun and is not 

completed (0 < zJ (t) < I), its intensity should be no less 

than sJ (t). If the job has not begun (zj (t) = 0) or has been 

completed, formula (25) reduces to 

i.e., the job may remain in one of these states for an indefin- 

ite time. 

Multiplying both sides of (25) by 9 - (1 - zj) ll 9+(ze - 1) 
r -  - 

j 
and integrating from r = 0 up to T = t, we get 

Here we used equations (1 0) . 
It is convenient to introduce auxiliary phase variables 

N+j z , which satisfy the system 

Note that constraints (26) are equivalent to 

zj (t) - z N+j > O  . - (28) 

Instead of (10) and (28) we consider the system of equations 

The maximum principle conditions for this (modified) problem 

are 

* * * * * 
Max H(u,z (t),p (t)) = H(u (t),z ( t ) , ~  (t)) , (30) 



where 

and 

pj (t) = Lagrange multiplier (j = 1,. . . ,N) which satisfies 
equations (1 3) , boundary conditions (1 5) and 

jump conditions 

Here 

tJ = the first moment when the trajectory zJ achieves 
q 

the boundary of the domain 

o = conjugate variable to zJ (j = N+l , . . . , 2N) which 
j 

satisfies the equation 

boundary condition 



and jump conditions 

a . (t' - 0) - a (ti + 0) = 
1 p .  (t' + 0)uj(ti + 0) . (34) 

3 s' (ti-0) 3 q 

We have denoted the values corresponding to optimal control 

with a star. 

The variables a can be treated as "indirect" penalties 

for violation of conditions (28). We need not change the 

algorithm to solve the modified problem. Additional inform- 

ation includes information on auxiliary variable trajectories, 

instants tJ and jumps (31 ) - (34) . The dimension of the LP 
q' 

problem to be solved at each time step does not increase. 

D. Constraints on Simultaneous Performance of Jobs 

If certain jobs should be performed simultaneously and 

cannot be shared over time, one may consider them as one act- 

ivity with an extended vector of resource consumption. The 

elements of the vector are the intensities of resource con- 

sumption for all jobs which are combined. Note that components 

corresponding to the same resource type should be added. 

Conversely, certain jobs may be subject to the restriction 

that their performance cannot be shared over time; for instance, 

job j cannot be performed simultaneously with job k. These 

constraints are also taken into account by introducing approp- 

riate discontinuous multipliers into the right-hand sides of 

the equations. In our case the modified equations are written 

in the form 

dz k k  k - j - u (e-(i - z ) n e+(zm - 1) - e-(zj) e-(1 - z 1 )  . dt- mcrk 

The maximum principle holds and the algorithm does not change. 



E. Other Awwroaches to Solvina the Problem 

Note that the method used to deal with (a) constraints 

in previous sections is not the only feasible one. In this 

section we briefly discuss some other techniques which are 

generalizations and complements of the method under discussion. 

The first group of methods introduces penalties (not 

necessarily of the discontinuous type) on the intensity of 

performing an operation. 

(a) constraints can be written in the form: 

This means that the j-th job cannot be performed until all 

preceding jobs have been completed, and its performance 

breaks off when the succeeding jobs begin operation. 

Instead of the initial equations (3) and conditions (35)' 

consider 

where 

f = function of phase variables, control variables and 
j 

vector of parameters y; the function has the follow- 

ing properties. 

( 1  ; (i) fj - 



(ii) if (a) constraints are satisfied, then 

f = 1  ; 
j 

(iii) if (a) constraints are infringed then 

fj+f0'o j - 
as parameters tend to certain limits. 

If we consider problem A we obtain 

where 
* 

T (1-0 = minimum time in the modified problem (36) 

under (B) constraints; * 
T = minimum time in the initial problem under 

(a) and (B) constraints. 

Indeed, the set of all solutions of system (36) subjected to 

(B) constraints includes all solutions of system (3) subjected 

to (a) and (6) constraints. The penalty function may be 

constructed in such a way that 

with a certain variation of the parameter u. 
For example, take the penalty functions 

i where u.(i,j = 1, ..., N) are large positive numbers and uO is 
3 

an odd positive integer. Violation of (a) constraints will 

lead to reduction in the job number zJ. 

Another group of methods uses a penalty for infringing 

(a) constraints introduced into the objective function. 

Instead of the initial objective function I, a "penalized" 

function of one of the following typical kinds is minimized: 



The utilization of smooth penalties allows us to apply 

direct optimization methods to solve the problem [I81 and 

combine them rationally with the indirect methods described 

above. 

F. Some Heuristic A~~roaches to Solvina the Problem 

It should be emphasized that the conjugate variables in 

our problem could be termed the objectively stipulated 

estimate of the operation (or "shadow price" of the job). The 

intensity uJ of performing a job depends on the value of the 

coefficient in the Hamiltonian. It the case of uncompleted 

jobs satisfying (a) constraints, it is equal to P and char- 
j 

acterizes the "weight" or importance of performing the job at 

a given instant. The weight of the job vanishes at t = T if 

the job terminates at this instant. If the job is not termi- 
j nated its weight is non-zero and equal to X.(1 - z (TI). 

3 
The zero value of p at the instant of terminating job 
j j 

(t = tf) is increased by a jump (14). This increase is the 

larger, the greater the weight of the jobs immediately follow- 

ing the j-th, and the greater the ihtensity of performing 



these jobs (at previous iterations of the algorithm). It 

is the smaller, the less intensively the j-th action was 
j performed at instant tf. We may consider that the i-th job 

immediately following the j-th makes a claim for an increase 

in the intensity of performance of its immediate predecessors 

by increasing their weight at the next iteration of the 

algorithm 

Notice that job i, immediately following job j, increases 

the weight of job j only if it is started immediately after 

action j, i.e., uj (t! + 0 )  # 0, and if all the other preceding 
k jobs i are completed at this instant (z (t) = 1 , k~ri). 

Though the weight of each job is increased at the expense 

of the job immediately following it, the increase becomes more 

marked as the time lag of the following actions becomes greater, 

since the weight of a job is increased to a greater degree as 

weights of the immediately subsequent jobs are increased. In 

turn, the weights of the following jobs become the greater, 

the greater the weights of the jobs following them, etc. Thus 

all the actions lagging behind a given job accumulate in the 

weight of the given j. 

Everything stated above about conjugate variables (La- 

grange multipliers) can serve as a starting point for various 

heuristic algorithms in cases where jofnt solution of the 

direct and dual problems is impossible for some reason. The 

reason for constructing such approaches are, for example, 

excessively high dimensions (1000,000 variables) of the problem 

on the one hand, and on the other hand the necessity to obtain 

a solution in an extremely short time. The latter takes place 

in short-term planning for fast-proceeding processes. Heuris- 

tic procedures could also be used to obtain rough upper bounds 

for a length of schedule. 

Here we consider the approach based on the utilization 

of conjugate variables as job priorities. The most labor- 

consuming operation in the algorithm is the solution of the LP 

problem at each time step. ~f one solves it by using the 

simplified component-wise descent method, the following procedure 



is used: 

(i) Choose the maximal positive coefficient in the 

Hamiltonian (1 2 )  . Let it be p 
j' 

(ii) Set the corresponding uj (t) equal to 

Pass to the next choice within the other positive 

coefficients (i) - (ii) . Note that if the coefficient 

is equal to zero which means the performance of the 

corresponding job is not admissible by (a) constraints 

or is compieted) we assume that the corresponding u j 

is equal to zero. 

Thus we have obtained a well-known priority method. 

h e  idea of the method is to assign each job some number 

(priority) which defines the relative weight of the job. Then 

at every instant one indicates the performance of the job 

which has the maximal priority. If the resources are available 

to perforrr, the job, the intensity is set equal to (37) (maximal 

admissible intensity), and otherwise equal to zero. Then pass 

to the next job and so on. Regarding Lagrange multipliers as 

priorities, one has the following rule to calculate them. 

Let us consider problem A. We assume that the problem 

has a solution; that is that there exists T < + m, for which 

where e = (1, ..., 1) is a vector with N components. 
Then for all j 

= 0 
3 

except for the final dummy job N+1. 

According to ( 1 4 ) ,  the jumps for final jobs which are completed 

at instant T are as follows: 



We may assume the intensity and the weight of the final dummy 

job to be arbitrarily positive numbers (due to the homogeneity 

of the conjugate system (13)-(15)). Consequently, without 

loss of generality one may let 

Thus we get 

where j is the number of the final job in the program. 

Then, considering the jobs of the next job layer in the 

graph of the program (beginning from the end), we calculate 

priorities for these jobs as 

i and so on. (where to is the starting time for job i). Note 

that priorities are recalculated at every iteration in accor- 

dance with the "new" u(t), tf and to. 

Similarly one may construct priorities which take into 
i j account the distance between to and tf, i E I' + Then instead 

j. 
of (38) we get 



where x is a fixed parameter (x > 0). Thus we take into 

account all the so-called "subcritical" jobs. 
j In particular, for constant intensities u (t) = uj we 

0 
have 

and 

T: is the duration of job performance. 
J + 

Note that if none of the jobs of I' begins its performance 
j 

directly after completion of the j-th job (~~(t! + 0) = 0, 
- + 

i E ri), the priority of the j-th job equals zero. In other 
A 

words the job has zero priority if this does not delay per- 

formance of its successors. In this way one may evaluate how 

critical the job is. From (38) we obtain the following priority, 

where bi] is the number of jobs immediately succeeding the 

j-th job. This priority is a generalization of a well-known 

priority: "the longest operation". 

Using conjugate variables in the problem when penalties 

are given in form (37) we get the following priority rule: 

This means that the most preferable job of the set which is 

admissible with respect to ( a )  constraints is the one which 

has the longest duration and the largest number of successors. 

Moreover, the priority of the job is the greater, the shorter 



the duration of each of its successors. 

If we use penalties for violation of (a) constraints in 

the form 

we immediately get the following priority rule for our 

particular case: 

where lI-ci is the production of durations of all successor jobs. 

In a similar way we may obtain a number of other various 

priority rules. 

It should be emphasized that the "price" for such simpli- 

fication of the algorithm is a change for the worse in the 

solution quality. Despite this fact the heuristic developed 

(as follows from a preliminary testing) allows one to obtain 

much better solutions than well-known rule-of-thumb algorithms, 

for example the CPM technique. 

5. Example 

In this section we consider a simple example to illustrate 

the algorithm. 

Let the program consist of seven jobs. The 7-th job is a 

dummy one. The graph of the program ((a) constraints) is 

shown in Figure 2. 

( B )  constraints are as follows: 

where (see also Figure 3) 



FIGURE 2 .  NUMERICAL EXAMPLE : 
ACTIVITY NETWORK. 



The constraints on maximal performance intensities are given 

in the form: 

6 
0 - < u (t) 5 0.5'0 , 

In this case equations for phase variables are written as 

We have the following expressions for the jump conditions of 

the conjugate variables: 



We consider T = 11, and the objective function as 

I 

The interval [O,111 is divided into 11 equal parts. Let 

U: = 0.1 j = 7 k = 1 . 1 1  be the starting point. 

Below we exhibit the results of calculations at every 

iteration. (A computer program of the algorithm has been 

written in FORTRAN). 

1-st Iteration 

Intensities: 

time u 1 

1 0.10 

2 0.10 

3 0.10 

4 0.10 

5 0.10 

6 0.10 

7 0.10 

8 0.10 

9 0.10 

.lo 0.10 

11 0.10 



Job marks: 

time z 1 

1 0.10 

2 0.20 

3 0.30 

4 0.40 

5 0.50 

6 0.60 

7 0.70 

8 0.80 

9 0.90 

10 1.00 

11 1.00 

Objective Function: I = 2.31 

2-nd Iteration: 

Intensities 

time 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 



Job Marks: 

time ul u2 u3 u4 

1 0.33 0.50 0.00 0.00 

2 0.67 0.75 0.00 0.00 

3 1.00 1.00 0.00 0.00 

4 1.00 1.00 0.50 0.06 

5 1.00 1.00 1.00 0.12 

6 1.00 1.00 1.00 0.37 

7 1.00 1.00 1.00 0.62 

8 1.00 1.00 1.00 0.87 

9 1.00 1.00 1.00 1.00 

10 1.00 1.00 1.00 1.00 

11 1.00 1.00 1.00 1.00 

Objective function: I = 0.56 

3-rd Iteration (Optimal Solution) 

Intensities: 

time u1 

1 0.33 

2 0.33 

3 0.33 

4 0.00 

5 0.00 

6 0.00 

7 0.00 

8 0.00 

9 0.00 

10 0.00 

11 0.00 



Job Marks: 

time zl z2 

Objective function: I = 0.4) 

The Gantt diagram corresponding to the optimal solution is 

presented in Figure 4. 



FIGURE 3. NUMERICAL E X A M P L E  : 
RESOURCE SUPPLY. 
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FIGURE 4 .  O P T I M A L  S C H E D U L E  
(GANTT D IAGRAM)  



A. Water Economy: Long- and Short-Term Planning 

Here we consider application of scheduling methods devel- 

oped for long- and short-term planning in the water economy 

of a region or state. 

We assume the water economy to consist of a river basin 

and a set of water economy structures (reservoirs, canals, 

conduits, dams, etc.). The problem is to construct a plan for 

the short-term operation of water economy structures during 

their expansion, building and reconstruction in order to mini- 

mize cumulative losses over the planning pericd. The losses 

are due to an insufficient water supply for water consumers 

and to floods; and the water economy directive body seeks to 

avoid or at least to decrease the losses as far as possible. 

Thus the problem is how to distribute limited resources 

(capital, skills and raw materials) over time and among water 

structures for their expansion, building and reconstruction, 

and how to operate them during the planning period in order to 

minimize the losses. We assume that resource inflows are 

given for the whole period. 

The model of water economy development consists of two 

sub-models, a river basin model, and a program performance 

model as described in Section 1. 

First consider the river basin model. Here we use the 

model described in [ I 9 1  with a few simplifications. Let the 

river system be represented as a cycle-free precedence network. 

The nodes of the network are separate cross-sections of the 

river and its tributaries where intake units (cities, irrig- 

ation syst.ems, canals, etc.) are situated. The arcs connecting 

the nodes are marked by arrows which show the direction of 

water flow. The water balance equation for the i-th element is 



where 

wi(t) = total amount of water in the i-th element at 

instant t; 

intensity (or rate) of water running from 

element i (the network node) to element j at 

instant t; 

FiO(t) = intensity of water withdrawal in element i at 

the instant t (intensity of water flow to 

another sector of the economy; 

Foi (t) = intensity of water inflow into element i from 

without (surface and underground inflow, 

precipitations); 

- set of preceding (upstream) elements (cross- Yi- - 
sections, reservoirs, canals); 

- set of elements into which water flows from Yi+ - 
element i; 

Eji (t) = intensity of water inflow into the i-th from 

the j-th element due to floods; 

Eij (t) = intensity of water outflow from the i-th to the 

j-th element due to floods; 

Eio(t) = intensity of irreparable losses of water caused 

by the flood at moment t; 

%+ = set of elements into which water flows from Y i 
element i if a flood occurs; 

%- 

Y i = set of elements from which water flows to the 

i-th element if a flood occurs; 

M = total number of elements in the water system 

The initial conditions are determined by the state of the 

basin at the initial moment of the planning period: 



The values of wi(t), Fijf are limited by the maximum (wi(t) ,Fij) 

and minimum (wi(t),O) - feasible capacity of water reservoirs 

and canals: 

If element i corresponds to a reach of a river or canal, then 

as there is no accumulation of water in such reaches. 

Foi (t) are given functions of time. Eij (t) , Eio (t) are certain 
given functions of all other variables and are determined by 

the amount of water and by the relief in the vicinity of a 

given river reach. 

The second sub-model is the program performance model 

described in Section 2. The connection between the sub-models 

is accomplished through the values of maximal capacities of 

the elements Ei (t) and Fi (t) as follows: 

- k k  
Fij(t) =F..(O) + 1 f..Z (t) 

11 k€K:, 1 I 

where - 
Fij (0) ,E. (0) = maximal capacities of the i-th element 

1 

at the beginning of the planning period; 

KijfLi = sets of activities directed to the ex- 

pansion, reconstruction and creation of 

the i-th reservoir and river reach (or 

canal) ; 
k z (t) = portion of the k-th job completed by 

moment t; 



k 1 fij,fi = additional capacities which come into operation 

after completing the k-th and the 1-th jobs. 

The values of EijIEio are non-negative: 

We consider the objective function to be accumulated losses 

(expressed in monetary units) due to an insufficient water 

supply for consumers and to damage caused by floods. It is 

assumed to be given in the following form: 

where 
w F  F Xi,Xin,hi = convex penalties for an insufficient water 

supply for consumers in the i-th element; 

= convex penalties corresponding to the Xi'Xi 
damage caused by floods (destruction of 

buildings, water economy units, swamping 

of agricultural areas, etc.); 
w F F di(t),din,di = water demands corresponding to water 

consumption in reservoirs, canals, cities 

and agriculture. 

wi(i = 1 ,  ..., M) are phase variables and Fio,Fii are controls 
in the model. Thus in the whole model of rive; system oper- 

k ation, wi (t) , z (t) are phase variables and Fio (t) , Fi (t) , 
k u (t) are controls i = 1 , . . I ;  k = 1 . . . N . Variables 
k K z (t) , u (t) describe long-term development and wi (t) , Fio (t) , 



Fij(t) described short-term operation of the river basin. 

Solving the problem 

I -+ Min (46) 

s.t. (39)-(44), 

one simultaneously obtains long-term and short-term cperational 

plans for river basin development. 

Computationally the problem (46) is no more complex than 

the problem described in Section 2 because additional constraints 

can easily be taken into account. The details of the model 

presented and the numerical algorithm can be found in [ 2 ] .  

B. Short-Tern Plannina in Industrv 

A modern industrial complex usually consists of separate 

production sectors or integrated units which are destined to 

perform successive-parallel operations. The main character- 

istics of such complexes are huge flows of raw material, energy, 

final products and information. Thus, the effectiveness of the 

work of these complexes is dependent, to a great extent, not 

only on the effectiveness of the seperate production divisions 

but also on interaction. 

Here we consider one particular set of problems arising in 

optimization and control of the complex. They are so-called 
a 

machine sequencing or assembly-line balancing problems and are 

closely related to the project scheduling problems considered 

above, since they can be represented on a similar network, 

although the form of the resource constraints may be quite 

different. 

The problem statement is as follows. Consider a set of 

S jobs which must be performed. The j-th job consists of n 
j 

tasks numbered from 1 to n (see Figure 5). The dynamic 
j 

equation we represent as 



FIGURE 5. ACTIVITY NETWORK IN THE ASSEMBLY- LINE 
BALANCING PROBLEM. 

FIGURE 6. NETWORK DIAGRAM FOR MELTING AND 
CONTINUOUS CASTING PROCESS. 



ij where x = portion of the ij-th task performed by moment t. 

It could be interpreted as a percentage of the total time Tij 

the task requires for its performance until moment t. 
ij u (t) = performance intensity of the ij-th task at instant t. 

The initial conditions are: 

We assume that the ij-th task can be completed if xi] (t) = 1. 

Thus, we have the following constraints for every t: 

i j and natural constraints for u (t) 

All relations formulated are valid for: 

i = 1 2 . . . n  ; j=lf2,...S ; t &  [O,Tl ; 
j 

(51 

T is the length of the planning period. 

In addition, for the final (dummy) task F we have: 

Note that in this case the precedence network has a special 

structure so that all activities (other than the first and 

last dummy activities) have exactly one predecessor and one 

successor each. The nominal time to perform each task is a 

known integer represented by Tij for the i-th task of the j-th 

job. Given a set of K different resources to perform the jobs, 

Rk is the amount of the k-th resource which is available at 



any time. The amount of the k-th resource required by task ij 
k 

during its processing is r i j  For example, if resources cor- 

respond to the machines in a job shop and each task requires 

only a single machine during the interval of its processing, 
1 

then k=l and rij=l Thus resource constraints could be 

written as: 

We assume that no preemption of task performance is allowed. 

Once task ij is started, it must be processed until completed 

in no more than Pij time units and no fewer than Tij time units. 
The corresponding constraints are written in the following 

form: 

- 
uij (t) Tij 

. . 
ulJ (t) , - 0 (xi] (t) 10 (1 - xi] (t)) . Tij 

We are required to find intensities for all task performances 

(vector u) which satisfy all conditions mentioned and for which 

the total number of jobs (or tasks) completed during the given 

planning period [O,T] is maximal. Thus the objective function 

is 

and the problem statement is as follows: 

I (u) + Max 

As an example, let us consider the industrial system consisting 

of two complexes: oxygen-converters, and continuous casting 

machines for steel production. (Details can be found in [271). 



The purpose of the oxygen-converter complex is the production 

of steel of a given composition and temperature. The purpose 

of the continuous casting machine complex is the continuous 

casting of steel in slabs of given dimensions. 

When scheduling the processing of the complexes, there is 

the problem of choosing the ryth for all activiti2s in which 

output steel production is maximal. In other words, the £re- 

quency of heat preparation in the oxygen-converter complex 

should correspond to the productivity of the continuous casting 

machine complex. 

In accordance with the given steel standard, the output, 

energy demand and certain other characteristics of each complex 

are given (i.e., in a melting and continuous casting process: 

melting, preparation for casting, and casting itself). The 

corresponding network diagram is shown in Figure 6, and the 

numerical example in Figure 7. 

Converters for melting and casts for casting are considered 

as resources. Certain results concerning computational exper- 

iments with the model are shown in Figure 8. The input data 

for the model are as follows: total number of jobs S = 5; tasks 

(1.1 ) - (1.5) correspond to the meltings; tasks (2.1 ) - (2.5) are 
preparations for castings; and tasks (3.1 ) - (3.5) correspond to 
the casting. Table 1 gives time durations for every task. 

TABLE 1 

Job Task Duration Task Duration Task 'Duration 
Xumber Nurilber (in min) IJumber (in min) Number (in min) 



FIGURE 7. NUMERICAL EXAMPLE : NETWORK DIAGRAM 
FOR MELTING AND CASTING. 
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FIGURE 8. NUMERICAL EXAMPLE: 
GANTT AND RESOURCE LOADING DIAGRAMS. 



Gantt and resource loading diagrams corresponding to the 

optimal solution of the problem (when T = 140 and the number 

of converters and casts is 4 each) are given in Figures 7, 8. 

C. Joint Calculation of a General Program Performance 

Model and Dynamic Multi-Branch Industrial Models 

The methods suggested in previous sections could be applied 

in calculating the optimal long-term development plan of a 

certain complex system such as a state or region. Here we will 

not give concrete expression to the system under consideration 

(it could be easily done for every particular case) but assume 

that the directive body of the system has certain goals, a 

certain program of actions directed to attain these goals and 

a multi-branch industry which is to supply the program with the 

resources required. We refer to the system as the region. 

The problem is how to construct the long-term plan of 

program performance which would allow one to attain given goals 

in the best way by taking into account limited-resource pro- 

duction rates of the industry. 

Thus we consider a general purpose program to be a given 

set of activities or jobs {al,... ' a ~ l  to be carried out to 

achieve the system goals. The model of program performance is 

the same as in Section 2. The performance of the program can 

be controlled because usually there are various ways to carry 

out its jobs. Indeed there are a number of schedules which 

satisfy (a) and ( B )  constraints. Here we assume that the states 

of the program (vector Z(T)) at the end of the planning period 

are ranked according to the preferences of the directive body. 

Thus the calculation of the program is reduced to the following 

problem: find a schedule which transfers the program from the 

initial state 

to the point (vector Z(T)) which gives the maximum to the 

following objective function: 



where ci(j = 1, ..., N) = relative weight values which reflect 
J 

directive-body preferences for different program states at 

instant T. 

Let Ri(t) be the M-space resource vector required to 

perform job i at instant t with unit intensity. We assume that 

the i-th job consumes the k-th resource if R: > 0. Thus the 

total amount of resources which the program consumes at instant 
N 

t is equal to Ri (t) ui (t) . This amount depends on the state 
i=l 

of the program z(t) and the intensity u(t). We will write re- 

source constraints as 

where r(t) = vector of resource inflow to carry out the program. 

The peculiarity of the problem is that the inflow of re- 

sources (vector r(t)) is unknown in advance and can be determined 
I 

during optimal schedule calculation. The resource inflow is 

provided by industry and its amount is dependent on the capac- 

ities of industry sectors. 

The resource supply plan is regarded as a support program. 

This program is a set of jobs of production, expansion and 

reconstruction of enterprises. In the two latter cases the jobs 

to be carried out are unknown in advance and their magnitudes 

are to be determined during the process of schedule calculation 

on the basis of the most appropriate resource supply of the 

general purpose program. Some details on the problem statement 

can be found in [I71 and [28]. 

Let the regional industry be subdivided into M producing 

sectors. The balance equations are 



where 

q ( t )  = 

x t t )  = 

i x  ( t)  = 

A ( t )  = 

a  ( t )  = 
i j  

1 M 
( q  ( t )  I ,y ( t ) )  s t o c k  of  r e s o u r c e s  

accumulated up t o  i n s t a n t  t ;  

1 M (x t . x  ( t )  ( g r o s s )  o u t p u t ;  

o u t p u t  o f  t h e  i - t h  i n d u s t r y  a t  i n s t a n t  t ;  

M x M m a t r i x  w i t h  e lements  a i j  ( t )  ; 

i n p u t  c o e f f i c i e n t  o f  p r o d u c t  o f  s e c t o r  i i n t o  

s e c t o r  j ( t h e  q u a n t i t y  of  t h e  o u t p u t  s e c t o r  

i absorbed by s e c t o r  j p e r  u n i t  of i t s  t o t a l  

o u t p u t )  ; 

1 M ( w  ( t )  , . . . , w  ( t ) )  = v e c t o r  o f  consumer goods; 

p o r t i o n  o f  t h e  f i n a l  p r o d u c t  which i s  s e n t  i n t o  

t h e  g e n e r a l  purpose  and s u p p o r t  programs. 

Bas ic  dynamics < ( t )  can  be  w r i t t e n  a s  

Gi = set  of  a c t i v i t i e s  d i r e c t e d  t o  t h e  expans ion  o f  t h e  

i - t h  i n d u s t r y  s e c t o r  c a p a c i t i e s  e x i s t i n g  a t  t h e  

beg inn ing  of  t h e  p lann ing  p e r i o d  ( t = 0 )  5 : ;  
e i  = a d d i t i o n a l  c a p a c i t y  o f  t h e  i - t h  s e c t o r  which goes  n  

i n t o  o p e r a t i o n  a f t e r  comple t ion  o f  t h e  n- th  job.  

I f  w e  assume t h a t  a l l  c a p a c i t i e s  a r e  t o t a l l y  loaded  a t  each  

i n s t a n t  t ,  t h e n  

S u b s t i t u t i n g  (58)  and ( 5 9 )  i n t o  t h e  r i g h t - h a n d  s i d e s  of  (57)  

w e  have 



where B! = the k-th element of matrix B; 

E = unit matrix of M x M . 
For simplicity we assume that all production resources are 

storable. This leads to the following constraints: 

The consumption required over the planning period wo(t) is 

given. Thus we have at each instant: 

Now the problem of joint calculation of a general purpose 

problem and multi-branch industry can be stated as follows: 

cz(T) + Max 

s. t. 1 -  3 , (56) , (60)-(62) 

In this problem z (t) , q(t) are phase variables and u(t), w(t) 
are controls 

To solve the problem the algorithm described in Section 

2 is used. In this case the following linear programming 

problem has to be solved at each time step: 

H(uIw,r) + Max 

subject to 

where 



M k - 1 h k ( t )  ( rk + w ) = c o r r e s p o n d i n g  Hamil tonian  
k= 1  

f u n c t i o n ;  

p j  ( t ) ,  h k ( t )  = Lagrange m u l t i p l i e r s  which s a t i s f y  t h e  

f o l l o w i n g  c o n d i t i o n s :  

k  tk = t h e  i n s t a n t  when t h e  k- th  s t o c k  (q  ) becomes e q u a l  
q  

t o  z e r o .  

The r e s u l t s  of  computa t ions  a r e  i l l u s t r a t e d  by t h e  f o l l o w i n g  

example. 

The a c t i v i t y  network i s  g i v e n  i n  F i g u r e  9 .  Here a c t i v i t i e s  

1-7 and 25 (dummy a c t i v i t y )  be long t o  t h e  g e n e r a l  purpose  program, 

and a c t i v i t i e s  7-24 a r e  i n c l u d e d  i n  t h e  s u p p o r t  program ( b u i l d i n g  

and p u t t i n g  i n t o  o p e r a t i o n  a d d i t i o n a l  i n d u s t r y  c a p a c i t i e s ) .  For  

example t h e  1 - s t  s e c t o r  c a n  be expanded by p u t t i n g  i n t o  o p e r a t i o n  

a d d i t i o n a l  c a p a c i t i e s  e 1 8  and 8110 ,  which cor respond  t o  jobs  8  

and 10. 7  and 9 a r e  t h e  b u i l d i n g  of new c a p a c i t i e s .  



FIGURE 9 : NUMERICAL EXAMPLE: 
SIMPLIFIED ACTIVITY NETWORK OF 
THE GENERAL PURPOSE AND SUPPORT 
PROGRAMS. 



The problem was solved for the following data: 

Total number of jobs N = 25, 

Number of industry sectors M = 6, 

Planning period length T = 9, 

Input-output Matrix A is shown in Table 2 

i The initial values of capacities 5; and stocks qo are: 

i 
E 0 = 6  

i q o = 4  . 
The additional capacities ei are equal to 0, except 

j 

The required consumption wo(t) is equal to 0 for all t. 

The relative weight values of jobs are 

1 for j = 1,2, ..., 6: 
c = )  100 for j = 25; 
j 

0 for all others. 

The minimal job durations are shown in Table 3. 



TABLE 3 

Number of Job Duration 



The r e sou rce  consumption ma t r ix  R i s  shown a s  

TABLE 4 

Resource 
Number 

Job 
Number 1 2 3 4 5 6 



The solution of the problem is presented in Figures 10-14. ., 

It required about two seconds to solve the problem on the 

CDC-6600 computer. It is easily seen from the figures that 

the general purpose program consumes resources produced by 

sectors 4,5 and 6, and that resources produced by sectors 1,2 

and 3 are directed to the expansion of the 1-st and 3-rd 

(industrial sector) capacities. The optimal value of the 

objective function is equal to 4.15. This means that under 

given initial conditions the general purpose program could be 

performed to the extent of 70%. This is caused by the limit- 

ation of production of the 4-th, 5-th and 6-th sectors. In 

spite of this fact the industrial capacities of these sectors 

were not expanded because their development requires the same 

kinds of resources as the general purpose program. Thus the 

performance of activities 18-24 (building and putting into 

operation additional capacities of the 4-th and 6-th sectors) 

would decrease the value of the objective function. 

At the same time the capacities of the 1-st and 3-rd 

sectors were expanded because the processing (operation) of 

these sectors influences the output of all kinds of resources 

and particularly the output of the 4-th, 5-th and 6-th sectors. 

A number of problems could be stated on the basis of the 

model presented; for example, terms taking into account an 

increase of consumption over the planning period could be 

introduced into the objective function, etc. 
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D. Computer Network Optimization Problems 

The approach presented in this paper can be applied to 

the solution of various optimization problems concerning 

computer network control. Here we consider only two of them. 

The first problem is the construction of an optimal 

queue for computers with a given number of tasks and waiting 

for the performance on the computer. 

Let us consider the case where only one computer is 

available to perform N tasks. The execution of tasks can be 

considered as a dynamic process. To describe this process we 

have to give concrete expressions for some variables and 

constraints on the program performance model in Section 2. 

Again we denote the percentage of the i-th task performed 

up to moment t by zi(t), and the intensity of its performance 

at instant t by ui (t) . ui (t) = 0 if the i-th task is waiting 
i for the computer central processor at instant t, and u (t) > 0 

if the i-th task is in progress. Thus the task processing 

equations are 

The performance of the tasks is subject to the limited computer 

capacity. We consider the computer as a resource required to 

perform tasks. In the more general case the computer could be 

considered as a set of different kinds of limited resources 

(card readers, disks, central processors, tapes, line printers, 

etc.) required to perform the tasks. Such consideration does 

not make the problem more difficult or lead to a non-essential 

increase of the problem dimension. 

Thus ( B )  or resource constraints in the model are the 
following: 



where ti = nominal duration of processing the i-th task with 

no preemption. If we have several computers with the same 

operational characteristics, we have to substitute their 

total number in the right-hand side of inequality (65). We 

assume that processing of each task can be interrupted at 

every instant. This corresponds to the time-sharing regime 

of computer functioning. On-line regime is realized if inter- 

uption of each task is not allowed. 

The objective function is total losses (expressed in 

monetary units) due to idling time for tasks in the queue: 
rn 

For simplicity, losses are assumed to be the linear function 

of the idling time for each task; ki is the penalty per unit 

of idling time for the i-th task. The process is considered 

over the finite time interval [0, TI. 

Thus the problem of optimal queue construction is to 

obtain the sequence of task performance (schedule u(t)) which 

minimizes the total cumulative losses (66). Numerical solution 

of the problem can be obtained by using the algorithm of 

Section 4 without any change. 

In the second type of problem which we are considering 

here the performance of each task has two stages: 

a) processing at the switching node for data transference 

(processing time of the i-th task is equal to di time 

units) ; 

b) processing at the central processor of the computer. 

The problem is to construct the schedule of task performance 

which minimizes total cumulative losses over the given time 

interval : 



where the first item in (67) is losses due to waiting in the 

switching node queue and the second is losses due to waiting 

in the computer buffer storage. 

Here we have divided each task into two subtasks. The 
i first is data transference (variable z,) and the second is 

i 
computation in the central processor (variables z2). The pre- 

cedence network diagram is the following: 

1 -st task 

...... 0--3 C )  
N-th task 

The dynamic equations and resource constraints for subtask 

performance are as fcllows 

The problem can be easily generalized by incorporating into 

the model several computers, several switching nodes with 

different characteristics and various interconnections between 

switching nodes and computers. 

Our purpose in Section 7 was only to demonstrate applic- 

ability in principle of the scheduling optimization techniques 

presented to problems in different areas of human activity. 

Details in problem statements and realization of these methods 

in practice would require additional efforts. 
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