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Abstract

We show in this paper how numerical bifurcation analysis can be used to study the evolution of ge-
netically transmitted phenotypic traits. For this, we consider the standard Rosenzweig-MacArthur
prey-predator model and, following the so-called Adaptive Dynamics approach, we derive from
it a second-order evolutionary model composed of two ODEs, one for the prey trait and one for
the predator trait. Then, we perform a detailed bifurcation analysis of the evolutionary model
with respect to various environmental and demographic parameters. Surprisingly, the evolution-
ary dynamics turn out to be much richer than the population dynamics. Up to three evolutionary
attractors can be present and the bifurcation diagrams contain numerous global bifurcations and
codimension-2 bifurcation points. Interesting biological properties can be extracted from these
bifurcation diagrams. In particular, one can conclude that evolution of the traits can be cyclic and
easily promote prey species diversity.
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Bifurcation Analysis of a Prey-Predator Coevolution
Model

Fabio Dercole
Jean-Olivier Irisson

Sergio Rinaldi

1 Introduction

One of the most important notions in biology, namely evolution, is now recognized to be of pri-
mary importance in many fields of science. Evolution of markets, institutions, technologies, lan-
guages, and social rules are relevant examples. Thus, a well founded mathematical theory of
evolution is now needed more than ever.

Evolving systems are in general composed ofN homogeneous subsystems identified by two
features: dimensionni and characteristic traitxi. For example, in ecology, the subsystems are
interacting plant and animal populations,ni is the number of individuals ofeachpopulation or,
equivalently, the density of the population, andxi is a genetically transmitted phenotypic trait
(e.g., body size). Both features vary in time, but densities can vary at a much faster rate than traits.
This means that an evolving system has two distinct timescales: one is fast and concerns only
the densities, that vary while traits remain practically constant, and the other concerns the slow
variation of the traits entraining slow variations of the densities. In some favorable cases, these
slow variations of the traits can be described by a standard ODE model, called evolutionary model.

The theoretical work developed so far has shown that evolutionarydynamics can be as complex
as one can imagine. For example, cyclic regimes (7) (calledRed Queen dynamics as in (27)) and
chaotic regimes (3) are possible as well as evolutionary suicides and murders, which occur when
the variation of the trait of a population entails the extinction of the same or another population
(20; 10). Moreover, an evolving system can also have alternative evolutionary attractors, in which
case the fate of the system is determined by its ancestral conditions.

Once an evolutionary model is available, the powerful machinery of numerical bifurcation
analysis can be applied to it. This is mandatory if the aim is to detect the impact of some strategic
parameters on the evolution of the system. Systematic bifurcation analysis with respect to key
environmental parameters could, for example, explain why ecosystems differ at various latitudes,
altitudes, and depths. The few bifurcation studies performed to date on evolutionary models (see,
for example, (19; 21; 7)) are far from satisfactory: they are inaccurate because they have been
mainly carried out through simulation and they are incomplete because theyrefer to non-generic
cases or point out only some aspects of the full bifurcation diagram. In this article we therefore
present an accurate and detailed bifurcation analysis of a typical evolutionary model. The prob-
lem we tackle is the coevolution of prey and predator traits, a subject that has received a great
deal of attention in the last decade (see (1) for a review). We consider two populations (prey and
predator), and two traits (one for eachpopulation), and the bifurcation analysis of the evolution-
ary model is performed with respect to pairs of parameters. The results we obtain are of rather
limited biological value because they refer to a specific prey-predator coevolution model. How-
ever, the methodology is very general and could be applied to other models in order to obtain,
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through a suitable comparative analysis, general conclusions on the coevolution of prey-predator
communities.

The paper is organized as follows. In the nextsection we recall how,under suitable assump-
tions on the mutation and selection processes, a canonical evolutionary model can be derived from
a general population model (6; 5). Then, we focus on the well known Rosenzweig-MacArthur
prey-predator model (26), showing how the canonical evolutionary model can be explicitly derived
from it. Finally, we present the bifurcation analysis of the evolutionary model, and demonstrate
how interesting biological conclusions can be extracted from it. Some comments and comparisons
with the literature close the paper.

2 The canonical equation of monomorphic evolutionary dynamics

Consider two interacting populations, from now on calledprey andpredator populations, with
densitiesn1 andn2 and phenotypic traitsx1 andx2.

At ecological timescale (fast dynamics), the traits are constant while the densities varyaccord-
ing to two ODEs of the form:

ṅ1 = n1F1(n1, n2, x1, x2)
ṅ2 = n2F2(n1, n2, x1, x2)

(1)

whereFi is the net per capita growth rate of thei-th population. In the following, model (1), called
resident model, is assumed to have one strictly positive and globally stable equilibriumn̄(x1, x2)
for each(x1, x2) belonging to a set of the trait space calledstationary coexistence region. This
condition is not strictly necessary, but it simplifies the discussion.

At evolutionary timescale (slow dynamics), the traits vary according to two ODEs calledevo-
lutionary model

ẋ1 = k1G1(x1, x2)
ẋ2 = k2G2(x1, x2)

(2)

wherek1 andk2 are suitable constant parameters determined by size and frequency of mutations.
However, populationdensities vary slowly with the traits because, at evolutionary timescale, model
(1) is always at the equilibrium̄n(x1, x2).

Some authors discuss evolutionary problems by assigning particular forms to the functionsG1
andG2 in model (2) without connecting them with a population model (see (2) and references
therein). More frequently, model (2) is derived from model (1) through various arguments (16; 2).
This is a little surprising, since the dynamics of the traits should reflect the characteristics of
the mutation and selection processes, that, however, are not included in the resident model (1).
In fact, the most transparent approach for deriving the evolutionary model (2) is the so-called
Adaptive Dynamics approach (15; 22; 6; 13; 12) based on theresident-mutant models, which
describe the interactions among three populations, namely the two resident populations, and a
mutant population with traitx′1 or x′2 (notice that this approach rules out the possibility that prey
and predator mutants are present at the same time). When the prey population is split into two
subpopulations (resident and mutant) with densitiesn1 andn′1 and traitsx1 andx′1, the model is:

ṅ1 = n1f1(n1, n2, n
′
1, x1, x2, x

′
1)

ṅ2 = n2f2(n1, n2, n
′
1, x1, x2, x

′
1)

ṅ′1 = n
′
1f
′
1(n1, n2, n

′
1, x1, x2, x

′
1)

(3)

The initial value ofn′1 in these equations is very small because a mutant population is initially
composed of one or a few individuals. A similar third order model involving the mutant traitx′2,
the densityn′2, and the functionf ′2 describes the case in which the mutant is a predator. In the
ecological literature, models like model (3) are often called “competition models” because they
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describe the competition between two similar populations. Obviously, model (3), together with its
companion model for the predator mutation, contains more information than the resident model
(1). Indeed, the latter can be immediately derived from the former by disregarding the mutant
equation and lettingn′1 = n

′
2 = 0, x

′
1 = x1 andx′2 = x2, thus obtaining:

Fi(n1, n2, x1, x2) = fi(n1, n2, 0, x1, x2, xi)

The functionsfi andf ′i , identifying the right-hand-sides of the resident-mutant models, are called
fitness functions, and they enjoy a number of structural properties. Functionf1 satisfies the condi-
tion:

f1(n1, n2, n
′
1, x1, x2, x1) = F1(n1 + n

′
1, n2, x1, x2)

because, whenx1 = x′1, resident and mutant individualsdo not differ, so that only the total number
of prey (n1 + n′1) matters. Of course, the same property holds for the functionsf2, f ′1, andf ′2.
Another structural property of the fitness functions is:

f ′1(n1, n2, n
′
1, x1, x2, x

′
1) = f1(n

′
1, n2, n1, x

′
1, x2, x1)

because any oneof the two prey subpopulationscan be considered as mutant, provided the other
is considered as resident.

Now that we have defined the resident model (1) and the resident-mutant model (3), we can
show how the evolutionary model (2) can be derived following the Adaptive Dynamics approach.
For this, assume that the resident population model (1) with traitsx1 andx2 is at its equilibrium
n̄(x1, x2) when a mutant appears. If mutations are rare at ecological timescale, the initial con-
ditions(n̄1(x1, x2), n̄2(x1, x2), n′1) can be used in model (3) to determine the fate of the mutant
population. If the mutant population does not invade, i.e., if:

f ′1(n̄1(x1, x2), n̄2(x1, x2), n
′
1, x1, x2, x

′
1) < 0 (4)

for all smalln′1 > 0, then it becomes extinct and the final result is still a pair of resident populations
with traitsx1 andx2 and densities̄n1(x1, x2) andn̄2(x1, x2). By contrast, it can be proved (11)
that if (4) holds with the opposite inequality sign and if mutations are small (i.e.,x′1 differs only
slightly fromx1), then the residentpopulation generically becomes extinctand is replaced by the
mutant population with densitȳn1(x′1, x2). In other words, each mutation brings a new trait into
the system, but competition between resident and mutant populations selects the winner, namely
the trait that remains in the system. This kind of evolution of the traits is calledmonomorphic
evolution. This process of mutation and selection can be further specified by making suitable
assumptions on the frequency and distribution of small mutations (6; 5), and the conclusion is that
the rate at which the traitxi varies at evolutionary timescale is given by the following ODE, called
canonical equation of Adaptive Dynamics:

ẋi = kin̄i(x1, x2)
∂f ′i
∂x′i

∣∣∣∣ n1=n̄1(x1,x2)n2=n̄2(x1,x2)
n′i=0;x

′
i=xi

(5)

whereki is proportional to the frequency and variance of mutations,n̄i(x1, x2) is the equilibrium
density of the resident model, and∂f ′i/∂x

′
i is the derivative of the fitness of the mutant, called

selective derivative. Equation (5), written for the prey and for the predator, gives two ODEs that
form the evolutionary model (2) with:

Gi(x1, x2) = n̄i(x1, x2)
∂f ′i
∂x′i

∣∣∣∣ n1=n̄1(x1,x2)n2=n̄2(x1,x2)
n′i=0;x

′
i=xi

(6)
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Figure 1: Example of coevolutionary portrait in the stationary coexistence region. The portrait is
characterized by three equilibria (two stable foci (filled circles) and one saddle (half-filled circle))
and two limit cycles (one stable (thick line) and one unstable (dashed line)).

Thus, model (5) describes the monomorphic coevolution of the traits under the assumption of rare
and random mutations of small effects. Monomorphic evolutionary dynamics are usually pre-
sented by drawing a few trajectories of model (5) in the stationary coexistence region. This set of
trajectories, calledcoevolutionary portrait, points out, as sketched in Figure 1, all relevant invari-
ant sets (equilibria, limit cycles, and saddle separatrices). Some trajectories of the coevolutionary
portrait (see gray regions in Figure 1) reach theboundary of the stationary coexistence region, thus
implying the extinction of one of the two populations.

Figure 2 schematically summarizes monomorphic evolution, and highlights the different roles
played by the three models we have introduced. The ecological literature mainly deals with the
resident model (1) since ecologists are interested in the short-term dynamics of the populations
and usually do not even consider the possibility of having a mutant population involved in the
game. By contrast, theoretical studies on evolution are based on formal evolutionary models (2),
or on verbal theories that can be considered as a sort of surrogate of these models. Figure 2 points
out two facts. The first is that both the resident model (1) and the evolutionary model (2) are
needed if one is interested in the population dynamics entrained at evolutionary timescale by the
dynamics of the traits. The second is that the resident-mutant model (3) is a “source” model,
namely a model that contains the information needed to answer all questions. Unfortunately, the
scheme of Figure 2 is not always taken into account and evolutionary models (2) are often derived
directly from the resident model through arguments, which at best give the same result that a
hidden equivalent resident-mutant model would give.

Once monomorphic dynamics has found a halt at a stable monomorphic equilibriumx̄, one can
look at the second-order terms in the Taylor expansion of the mutant fitness function to establish
if the equilibrium is abranching point (13) or not. More precisely, a stable equilibrium̄x is said
to be a branching point if

∂2f ′i
∂x′2i

∣∣∣∣ n1=n̄1(x̄1,x̄2)n2=n̄2(x̄1,x̄2)
n′i=0;x

′
i=xi;x=x̄

> 0 (7)
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Figure 2: Flow chart demonstrating the relationships among resident-mutant models, resident
model and evolutionary model.

and

∂2f ′i
∂x′i∂xi

∣∣∣∣ n1=n̄1(x̄1,x̄2)n2=n̄2(x̄1,x̄2)
n′i=0;x

′
i=xi;x=x̄

< 0 (8)

for i equal to 1 or 2, since small mutations of thei-th population invade and coexist, at equilibrium,
with the former resident (12). Thus, branching points are the origin of dimorphism. Of course,
after a branching has occurred, there are three resident populations and one can continue the
analysis by deriving the three corresponding canonical equations.

3 A model of prey-predator coevolution

In this section we specify the prey-predator coevolution problem, which is analyzed in what fol-
lows. First we present the resident prey-predator model that has most often been used in the last
few decades to predict prey andpredator abundances at ecological timescale in the absence of
mutations. We then extend this model to a scenario in which a mutant population is also present,
by adding a third ODE for the mutant population and by specifying the dependence of the de-
mographic parameters upon the traits of the resident and mutant populations. This produces a
resident-mutant population model from which, following the scheme described in the previous
section, we finally derive an evolutionarymodel of the form (2) (details are relegated in Appendix).

The population model we consider is the well known Rosenzweig-MacArthur prey-predator
model (26)

ṅ1 = n1

(
r − cn1 −

a

1 + ahn1
n2

)

ṅ2 = n2

(
e
an1

1 + ahn1
− d
) (9)

wherer is prey growth rate per capita,c is prey intraspecific competition,a is predator attack
rate,h is predator handling time, namely the time needed by each predator to handle and digest
one unit of prey,e is efficiency, namely a conversion factor transforming each unit of predated
biomass into predator newborns, andd is predator death rate. The reader interested in more details
on the biological interpretation of the parameters can refer to (23). The six positive parameters
of the model (r, c, a, h, e, d) could be reduced to three through rescaling. However, we do not
follow this option because it would complicate the biological interpretation of the dependence of
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the parameters upon the prey and predator traits. In order to have a meaningful problem one must
assume thate > dh, because, otherwise, the predator population cannotgrow even in the presence
of an infinitely abundant prey population.

For any meaningful parameter setting, model (9) has a global attractor inR
2
+, namely

(a) the trivial equilibrium(r/c, 0) if d/a(e− dh) ≥ r/c

(b) the strictly positive equilibrium

n̄1 =
d

a(e− dh) n̄2 =
c

a

(
r

c
− d

a(e− dh)

)(
1 + ah

d

a(e− dh)

)
(10)

if
rah− c
2ahc

≤ d

a(e− dh) <
r

c
(11)

(c) a strictly positive limit cycle ifd/a(e− dh) < (rah− c)/(2ahc)

The transition from(a) to (b) is a transcritical bifurcation (which is generic in the class of positive
systems of the form (9)), while the transition from(b) to (c) is a supercritical Hopf bifurcation
(see (17) for a proof).

If we now imagine that a mutant population is also present, we can enlarge model (9) by
adding a third ODE and by slightly modifying the equations of the resident populations in order
to take the mutant population into account. Of course wealso need to specify how the parameters
depend upon the traitsx1, x2, x′1, x

′
2. The number of possibilities is practically unlimited, because

even for well identified prey and predator species there are many meaningful options. Thus, at
this level of abstraction, it is reasonable to limit the number of parameters sensitive to the traits
and avoid trait dependencies that could give rise to biologically unrealistic evolutionary dynamics,
like the unlimited growth of a trait (so-called runaway). Our choice has been to assume that the
parametersr, e, andd are independent of the traits, because this will allow us to compare our
results with those obtained in (7). Thus, in the case of a mutation in the prey population, the
resident-mutant model is

ṅ1 = n1

(
r − c(x1, x1)n1 − c(x1, x′1)n′1+

− a(x1, x2)

1 + a(x1, x2)h(x1, x2)n1 + a(x
′
1, x2)h(x

′
1, x2)n

′
1

n2

)

ṅ2 = n2

(
e

a(x1, x2)n1 + a(x
′
1, x2)n

′
1

1 + a(x1, x2)h(x1, x2)n1 + a(x
′
1, x2)h(x

′
1, x2)n

′
1

− d
)

ṅ′1 = n
′
1

(
r − c(x′1, x1)n1 − c(x′1, x′1)n′1+

− a(x′1, x2)

1 + a(x1, x2)h(x1, x2)n1 + a(x
′
1, x2)h(x

′
1, x2)n

′
1

n2

)
(12)

The traits are assumed to be real variables obtained from the actual phenotypic traits through
a suitable nonlinear scaling that maps the positive interval of the phenotype into the real axis.
Thus, the maximum and minimum values of the prey [predator] phenotype correspond to the limit
values∞ and−∞ of x1 [x2]. Similarly, in the case of a mutation in the predator population, the
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resident-mutant model is

ṅ1 = n1

(
r− c(x1, x1)n1+

− a(x1, x2)

1 + a(x1, x2)h(x1, x2)n1
n2 −

a(x1, x
′
2)

1 + a(x1, x′2)h(x1, x
′
2)n1
n′2

)

ṅ2 = n2

(
e

a(x1, x2)n1
1 + a(x1, x2)h(x1, x2)n1

− d
)

ṅ′2 = n
′
2

(
e

a(x1, x
′
2)n1

1 + a(x1, x
′
2)h(x1, x

′
2)n1

− d
)

(13)

The functional forms specifying the parameters dependence upon the traits are reported in Ap-
pendix and are such that the left inequality of condition (11) (i.e.,(rah− c)/(2ahc) ≤ d/(a(e−
dh))) is always satisfied (this excludes the possibility of population cycles). Thus, the boundary of
the stationary coexistence region is simply the set of pairs(x1, x2) for whichd/(a(e−dh)) = r/c
(see eq. (11)). This means that on that boundaryn̄2(x1, x2) = 0, i.e., the predator population
becomes extinct if the traitsreach theboundary of the stationary coexistence region.

At this point eq. (6) can be used to derive the evolutionary model (2), since the strictly positive
equilibriumn̄(x1, x2) is known (see eq. (10)). The analytic expressions of the selective derivatives
and of the second-order derivatives needed for evaluating the branching conditions (7,8) are not
reported because very long. In anycase, they can be easily derived by means of any software for
symbolic computation.

4 Bifurcation analysis

The evolutionary model derived in the previous section has been studied through numerical bi-
furcation analysis. Local and global codimension-1 bifurcations with respect to various param-
eters have been obtained by means of specialized software based on continuation techniques
(9; 8; 18). Moreover, two-dimensional bifurcation diagrams have been produced by focusing
on codimension-2 bifurcation points (17).

The first surprising result is that the evolutionary model is much richer than the resident pop-
ulation model. In fact, while the latter is characterized by two bifurcations, 12 bifurcations have
been detected in the former. Figure 3 shows these bifurcations in the space(e, γ)wheree is preda-
tor efficiency andγ is the prey trait value (called optimum) at which intraspecific competition is
minimum. In general, both parameters are influenced by environmental factors. For example, the
efficiency of a herbivore (predator) depends upon the caloric content of its prey (grass), which,
in turn, is mainly fixed by humidity, temperature, and soil composition. Figure 3 points out that
there are 14 subregions in the parameter space characterized by different coevolutionary portraits.
In each one of them, for simplicity, the boundary of the stationary coexistence region, where the
predator population becomes extinct, is not shown. This, however, fails to point out, graphically,
that evolutionary extinction of the predator population occurs in all cases, as shown in Figure 1,
which is actually the coevolutionary portrait corresponding to subregion 11. It is worth noticing
that this form of evolutionary extinction is always an evolutionary murder. In fact, on the boundary
of the stationary coexistence regionẋ2 = 0, becausēn2 = 0 in eq. (5), i.e., the predator trait is
locally constant while the prey trait varies.

Coevolutionary attractors can be equilibria or limit cycles and the existence of alternative
attractors is rather common. When they exist, attracting cycles surround all equilibria. Actually,
there can be up to three alternative attractors (two equilibria and one cycle), as shown by the
coevolutionary portraits 10, 11, 13, and 14. There are 10 codimension-2 bifurcation points, namely
a cusp (C), two generalized Hopf (GH1 andGH2), two Bogdanov-Takens (BT1 andBT2), four
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Figure 3: Bifurcation diagram of evolutionary model (5) with respect to predator efficiencye and
optimum prey traitγ and corresponding sketches of coevolutionary state portraits. Panelsa, b,
andc are magnified views of the bifurcation diagram. Parameter values arer = 0.5, d = 0.05,
k1 = k2 = 1, γ0 = 0.01, γ1 = 0.5, γ2 = 1, α = 1, α0 = 0.01, α1 = 1, α2 = 1, α3 = 0.6,
θ = 0.9, θ1 = θ2 = 0.5, θ3 = θ4 = 1.

non-central saddle-node homoclinic loops (S1, S2, B1, andB2), and a double homoclinic loop
(D) (17).

No other bifurcation curves and codimension-2 bifurcation points are present in the two extra
bifurcation diagrams presented in Figure 4, where the coevolutionary portraits are intentionally
not shown to stress that they are exactly as in Figure 3. The parameter on the horizontal axis of
these two bifurcation diagrams is still the efficiency of the predator, while the parameter on the
vertical axis is related to two important characteristics of the mutation and predation processes,
namely the ratiok1/k2 between the frequencies of prey and predator mutations and the predator
handling timeθ corresponding to the maximum attack rate (see Appendix).

The bifurcation diagrams are very useful for deriving interesting biological properties concern-
ing the impact of various factors on coevolution. For example, one could be interested in iden-
tifying the factors favoring the so-called Red Queen dynamics, namely the possibility of cyclic
coevolution of the traits. For this, one should extract from each bifurcation diagram the subre-
gions 2–4, 8–14, where at least one of the coevolutionary attractors is a limit cycle. The result is
Figure 5, which shows where cyclic coevolution is the only possible outcome (gray regions) and
where stationary coevolution is also possible (black regions). Figure 5 indicates that Red Queen
dynamics occur only for intermediate values of predator efficiency. Thus, slow environmental
drifts entraining slow but continuous variations of predator efficiency can promote the disappear-
ance of Red Queen dynamics. However, if efficiency decreases, Red Queen dynamics disappear
smoothly through a supercritical Hopf bifurcation (where the attracting evolutionary cycle shrinks
to a point). By contrast, if efficiency increases, Red Queen dynamics disappear discontinuously
through a catastrophic bifurcation (tangent bifurcation of limit cycles). Figure 5 indicates also
other biologically relevant properties, such as the fact that Red Queen dynamics are facilitated
by high [low] frequency of prey [predator] mutation, and by low predator handling times. This
last result shows that the highest chances for cyclic coevolution are obtained whenθ = 0, i.e.,
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Figure 4: Bifurcation diagram of evolutionary model (5) with respect to predator efficiencye and
mutation frequency ratiok1/k2 (A) and handling timeθ (B). See Figure 3 for coevolutionary state
portraits and parameter values.

when the Rosenzweig-MacArthur model degenerates into the Lotka-Volterra model. This brings
us to the following rather intriguing conclusion: the Lotka-Volterra assumptions (which do not
give rise to population cycles) can easily explain coevolutionary cycles, while the Rosenzweig-
MacArthur assumptions (which can easily give rise to population cycles) can hardly support Red
Queen dynamics.

Extra information can be added to the bifurcation diagrams of Figures 3,4 by specifying if
the stable monomorphic equilibria(x̄1, x̄2) are branching points (B) or not (NB). This can be
easily done by computing (through continuation) the curves where conditions (7,8) are critical.
Thus, any region of parameter space characterized by only one stable monomorphic equilibrium
can, in principle, be partitioned into four subregions: in one of these subregions monomorphism is
the only form of coevolution, while in the other three regions dimorphism is possible through the
branching of one of the two populations or of both. However, in all the numerical experiments we
have performed, only prey branching did occur. This is consistent with the well known principle
of “competitive exclusion” (14). In fact, if predator would branch, the system would converge to
an equilibrium with two slightly different predators and one prey, in contrast with the competitive
exclusion principle. In conclusion, there are only two possibilities:(x̄1, x̄2) is a branching point
for the prey population or not. In other words, our findings are in line with biological principles
and support the idea (4) that predators are promoters of prey species diversity. Figure 6 shows
how the region characterized by a unique stable equilibrium(x̄1, x̄2) is partitioned into B and
NB subregions. The result is rather interesting if it is complemented with what has already been
discovered about the disappearance of Red Queen dynamics induced by variations of predator ef-
ficiency. In fact, the overall conclusion is that Red Queen dynamics disappear abruptly if predator
efficiency increases and smoothly if predator efficiency decreases. However, in the latter case,
as soon as Red Queen dynamics disappear, dimorphism can occur in the prey population. Thus,
environmental drifts of any sign can give rise to discontinuities in the dynamics of the traits. This
observation proves, once more, that coevolution is an astonishingly complex dynamic process.
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Figure 5: Red Queen dynamics: in the white regions cyclic coevolution is not possible, while in
the gray regions it is the only long-term form of coevolution. In the black regions both stationary
and cyclic coevolution are possible. Panels (A), (B), and (C) are extracted from the bifurcation
diagrams of Figures 3, 4A, and 4B, respectively.
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Figure 6: In the gray and black regions (extracted from Figure 3) the evolutionary model (5) has
only one stable equilibrium, which is either a branching point (B) for the prey population or not
(NB).
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5 Discussion and conclusions

The problem of prey-predator coevolution has been investigated in this paper from a purely math-
ematical point of view. For this, the classic Rosenzweig-MacArthur model (logistic prey and
predator with saturating functional response) has first been transformed into a resident-mutant
model by adding a third equation for the mutant population. Then, an evolutionary model de-
scribing the slow dynamics of the traits has been derived from the resident-mutant model through
the standard Adaptive Dynamics approach (15; 22; 6; 13; 12). The bifurcation analysis of the
evolutionary model has shown that the dynamics of the traits at evolutionary timescale are much
more complex than the dynamics of the populations at ecological timescale. The numerically pro-
duced bifurcation diagrams have proved to be powerful tools for extracting qualitative information
on the impact of various factors on coevolution. Conclusions like those we have obtained on the
impact of environmental drifts on evolutionary cycles (so-called Red Queen dynamics) could not
have been derived without performing a detailed bifurcation analysis of an evolutionary model.
A general encouraging message emerging from this study is that other very important biological
problems, such as the evolution of mutualism, cannibalism, and parasitism, could most likely be
studied successfully through the bifurcation analysis of the canonical evolutionary model. But the
same approach should also be very effective for studying relevant problems in social sciences and
economics where mechanisms somehow similar to biological mutation and selection can some-
times be identified.

Limiting the discussion to the problem of prey-predator coevolution, we can say that the re-
sults presented in this paper are by far much more complete than those available in the literature.
Indeed, the only comparable result is the bifurcation analysis presented in (7) where a bifurcation
diagram similar to that of Figure 4A was obtained through simulation. That bifurcation diagram
is incomplete and derived for a quite degenerate case, i.e. for a Lotka-Volterra model (θ = 0 in
our model) with a very special parameter combination reducing the number of bifurcation curves
to six. However, despite this double degeneracy, the analysis in (7) points out Red Queen dy-
namics, multiple evolutionary attractors, and evolutionary murder. A comparison with the non-
mathematical literature (see, for example, (24; 25) and (1)) neither contradicts nor supports our
findings.

Even if what we have presented in this paper might seem rather general, the analysis should
first be repeated for many other prey-predator models and for different assumptions on the trait-
dependence of the demographic parameters, and a comparative analysis should be performed in or-
der to extract biologically significant results. Moreover, there are a number of possible interesting
extensions. First, one could investigate the dynamics of dimorphism by applying the bifurcation
approach followed in this paper to more complex population assemblies, composed, for example,
of one resident predator population and two resident prey populations. The outcome of such a
study could be that a predator branching generating a second resident predator population is pos-
sible, because this outcome is not in conflict with the principle of competitive exclusion. Second,
while remaining in the simple context of monomorphism, one could be interested in detecting the
prey-predator coevolutionary dynamics under the assumption that the two populations can coexist
by cycling at ecological timescale. This extension is absolutely not trivial, because the derivation
of the evolutionary model is rather difficult in this case. However, the problem is of great interest
because its analysis could perhaps help to answer the very intriguing question: does coevolution
destabilize populations? Third, one could be interested in extending the analysis to the coevolution
of tritrophic food chains composed of a prey, a predator, and a superpredator population. From
the results obtained in this paper, showing that evolutionary dynamics of ditrophic food chains
(composed of a prey and a predator population) are much more complex than the corresponding
population dynamics, one should naturally be inclined to conjecture that chaotic coevolutionary
dynamics should be possible in tritrophic food chains. The proof of this conjecture would be a
great result.
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6 Appendix

In this appendix we specify how the prey intraspecific competitionc, the predator attack ratea,
and the predator handling timeh, appearing in the resident-mutant models (12,13), depend upon
the resident and mutant traits. Due to our definition of the traits, which are scaled measures of
the phenotypes,c, a, andh are bounded functions of the traits. Unless otherwise stated, all the
parameters appearing in these functions are assumed to be positive.

Prey intraspecific competitionc is given by

c(x1, x
′
1) =

γ1 + γ2 (x1 − γ)2

1 + γ0

(
γ1 + γ2 (x1 − γ)2

) (A1)

Notice thatc depends only upon its first argument. This means that resident prey individuals face
the same competition when they are opposed to other resident individuals or to mutant individuals.
The parameterγ, which can be either positive or negative, is the value of the prey traitx1 (called
optimum prey trait) at which intraspecific competition is minimum (and equal toγ1/(1 + γ0γ1)).
For prey traitsx1 far fromγ intraspecific competition saturates at1/γ0.

The predator attack ratea is the bell-shaped function

a(x1, x2) = α0 + α exp

(
−
(
x1
α1

)2
+ 2α3

(
x1
α1

)(
x2
α2

)
−
(
x2
α2

)2)
(A2)

whereα3 < 1. If prey and predator traits are tuned, i.e. ifx1 = x2 = 0, the predator attack rate
is maximum (and equal toα0 + α). When prey and predator traits are far from being tuned, the
predator attack rate drops toα0.

The predator handling time is the product of an increasing sigmoidal function of the prey trait
x1 and of a decreasing sigmoidal function of the predator traitx2

h(x1, x2) = θ

[
1 + θ1 −

2θ1
1 + exp (θ3x1)

][
1 + θ2 −

2θ2
1 + exp (−θ4x2)

]
(A3)

whereθ is the handling time corresponding to the tuned situation ((x1, x2) = (0, 0)), shortly called
handling time in Figures 4B and 5C.

Finally, we have fixedr, d and all the parameters of the functionsc, a, andh at the values
indicated in the caption of Figure 3, and we have limitedθ from above ande from below so that
the following two inequalities hold for all(x1, x2)

e− dh(x1, x2) > 0
r

c(x1)
≤ 1

a(x1, x2)h(x1, x2)

These conditions guarantee that the left inequality of condition (11) holds. Thus, population cycles
are ruled out from our study.
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