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Abstract

The evolution of cannibalistic traits in consumer populationsis studied in this paper with the ap-
proach of Adaptive Dynamicstheory. Themodel iskept at its minimum complexity by eliminating
some environmental characteristics, like heterogeneity and seasonalities, and by hiding the size-
structure of the population. Evolutionary dynamics are identified through numerical bifurcation
analysis, applied both to the ecological (resident-mutant) model and to the canonical equation of
Adaptive Dynamics. Theresult isarich catalogue of evolutionary scenarios involving evolution-
ary stable strategies and branching points both in the monomorphic and dimorphic dynamics. The
possibility of evolutionary extinction of highly cannibalistic populationsis aso ascertained. This
allows one to explain why cannibalism can be atransient stage of evolution.
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Evolution of Cannibalistic Traits: Scenarios Derived from
Adaptive Dynamics

Fabio Dercole
Sergio Rinaldi

1 Introduction

Cannibalism, defined as intraspecific predation, is a behaviora trait found in a wide variety of
animals, ranging from protozoa and rotifers to birds and mammals (Fox, 1975). The maost impor-
tant studies based on field and laboratory data have been surveyed by Polis (1981, 1988) who has
shown that pronounced cannibalism is a frequent feature of population dynamics in species that
grow through awide size range. Often cannibalism develops at ecological time scale asareaction
of adult individualsto food scarcity (Fox, 1975). However, besidesthe evidence for dietary induc-
tion several types of dataindicate that, for many species, there is a strong genetic component to
cannibalism (see Polis (1981) and references therein).

The am of this noteisto show how afew characteristics of the evolution of phenotypic can-
nibalistic traits in consumer populations can be derived from general and formal principles. The
approach we follow is that of Adaptive Dynamics Theory (Hofbauer and Sigmund, 1990; Metz
et al., 1992; Geritz et al., 1997). It is based on a transparent conceptual framework (small and
rare random mutations followed by natura selection) and allows one to describe the dynamics of
the traits in a purely deterministic way, through an ODE called canonical equation (Dieckmann
and Law, 1996; Champagnat et al., 2001). The method is also capable of explaining the transition
from monomor phismto dimorphism (Geritz et al., 1997).

However, the derivation of the canonical equation poses some problems if the resident and
mutant populations are described with high dimensional models. On the other hand, cannibalis-
tic consumer populations naturally call for relatively complex age/size-structured models (Polis,
1988). Thus, in order to easily derive the canonical equation we have used a strongly simplified
population model. Our choice has been to hide the size-structure of the population as well as dl
environmental heterogeneity and seasonalities, which are known to enhance cannibalism in many
species (Fox, 1975). Thus, both the resident and the mutant popul ations are described with afirst
order ODE with constant parameters. Although the model on which the entire study is based is
only acaricature of thereal world, it containsthe basic ingredientsfor a sound discussion of adap-
tation. In fact, the cannibalistic predation rate and the searching efficiency of the common resource
depend upon a phenotypictrait from now on called cannibalism. Moreover, the functional form of
the model and the ranges of its admissible parameter val ues have been carefully selected in order
to fit a paradigmatic case, namely that of the Eurasian perch (Perca fluviatilis), recently described
in great detail (Claessen et al., 2000). Thus, at least from this point of view, the model is quite
realistic.

The paper is organized as follows. In the next section we describe the resident-mutant model
and the dependence of the demographic parameters upon the adaptivetrait. In the third section we
derive the monomorphic canonical equation and study the evolutionary dynamics of the trait. In
particular, we show that an evolutionary stable strategy (ESS) (Maynard Smith and Price, 1973;
Maynard Smith, 1982) characterized by a low value of cannibalism is aways guaranteed if the



environment is not too rich, and that dimorphism is a possible evolutionary option in populations
with wide size range. Then, in the following section we explore dimorphic dynamics by studying
a second order canonica equation derived, once more, from the resident-mutant model. The
most interesting result is that dimorphic evolution can have a halt in an ESS characterized by
the coexistence of two populations, one with low and one with high cannibalism. Assuming
that body size of adult individuals and cannibalism are positively correlated, this dimorphic ESS
explains the coexistence of dwarfs and giants. Our findings are therefore consistent with one of
the conclusions of Polis (1988) who assessed “the possible evolutionary options of large entities
living among hordes of smaller entities”.

2 Theresident-mutant model

Assume that a cannibalistic consumer populationis characterized by a phenotypic trait indicated
by z. Since we do not want to refer to a particular popul ation or species, we can not specify what
is. However, in order to facilitate the interpretation of our results, we take the liberty of assuming
that the size of adult individualsis positively correlated with the cannibalistic trait. Thus, x can
be simply identified with a suitable measure of body size, so that the coexistence of two sub-
populations, one with low and one with high cannibalism, should be revealed by the presence of
dwarfs and giantsin the same environment.

The derivation of the canonical equation of Adaptive Dynamics requires two things: (i) the
knowledge of the interactions occurring at ecological time scale between all sub-populations; (i)
the dependence of the demographic parameters of the sub-populations upon the traits. All this
can be specified through a resident-mutant model composed of (N + 1) populations. Thefirst N
popul ations, with biomass densities n; and traits x;, are the resident populations, while the last
popul ation, with biomass density n 1 and trait 1, isthe mutant population. The interactions
between all sub-populationsare described by the following ODE’s

N+1
€ Qi Ths

jZO R Rk aji M ol
D . - _ Jr % _ ;. -
n; =n; N1 Z N1 Z Cij Mj it=1,...,N+ (1)

j=1 j=1
1+ Z hij Qi Mg 1+ Z hjk Qjk Nk
7=0 k=0

wheretheindex 0 refers to the common resource and theindexes 1,..., N + 1 to the consumer sub-
populations. Noticethat the density ng of the common resource, from now on called environmental
richness, is assumed to be constant, i. e. seasonalitiesare ruled out. The three terms at the right-
hand-side of eg. (1) are natality due to food intake, mortality due to cannibalism and mortality
due to competition. The first term is written in the form of a type Il functiona response and
takes into account that each individual has two alternative food sources: the common resource and
the individuals of the same species. In the case of the Eurasian perch, which has motivated the
present study, the common resource is zooplankton on which all perch feed, at least in the first
stages of their life (Holcik, 1977). Thus, rich environment are those in which young perch have
more access to food. The parameter e;; is a conversion factor transforming food intake of type
J into new biomass of type i. The parameter h;; is the handling time of the i-th sub-population
associated with the food source of type j and c¢;; is a coefficient specifying the extra-mortality
due to competition. Although al demographic parameters depend upon various traits, in order to
obtain atractable problem we limit the analysis to the case in which only two parameters depend
upon the trait we have called cannibalism. Our choice has been to assume that the parameters e;;
and ¢;; are constant (recall that n; is biomass density), while the attack rates a;; and the handling
times h;; depend upon the traits. But other choices would also be justifiable.



Figure 1: The cannibalistic attack rate a;; as afunction of the traitsz; and z; (see eq. (3)). Thethick line
indicates the restriction of a;; on theray z; = px;. Parameter values: A;; = 1,8 =2,7v=4,0 = 2,
z=0.3,7=0.9p=0.4.

The attack rate a;y specifies the consumption of the common resource and is assumed to be a
bell-shaped function of thetrait x;, because a consumer performs better when itsbody size iswell
tuned with the size of the local resource. The trait value at which the attack rate is maximum is
supposed to be the same for all sub-populationsand is indicated by 2. In the analysis we use the

following bell-shaped function

a0 = TaNE 20N\
(3) + ()

where A;q isthe maximum attack rate and o > 1 specifiesthe sharpness of the bell.

Asfor the cannibaistic attack rate a;;, we assumeit is shaped as in Figure 1. Along each ray
xj/x; = const the attack rate is bell-shaped and vanishes for z; tending to zero and to infinity.
Similarly, a;; is a bell-shaped function of theratio x;/x;, since the predation rate is higher when
the body size of the victim is in a suitable ratio with that of the predator, i. . when z; = p;,
p < 1. Thefunction we use in our analysisis

2

2 z] x?
M (YRS =2) (-5 ?
where A;; isthe maximum attack rateand 8 > 1,y > 1,6 > 1 and z, T are suitable parameters
specifying the bell-shaped functions. The parameter z is a sort of threshold indicating the body
size at which cannibalism becomes physiol ogically significant, while the second threshold z isthe
body size at which predation starts to be limited by habitat morphology (see Figure 1). In order to
alow thesurvival of populationswith negligible cannibalism (z; < z) we assumein thefollowing
20 < z. Small values of 3 imply high values of the cannibalistic attack rate a;; (see eg. (3) with
x; = x;), 1. € great possibilitiesfor individualsof trait x; to predate individuals of the same trait.
In the real world such a population would be characterized by a substantial change in size from
juvenileto adult, so that adult individuals can easily predate young ones (Polis, 1981, 1988). For
this reason the parameter (1//3) is a sort of surrogate for the size range of the individuasin the
popul ation and will, indeed, be called size range in the following.



Finally, the handling times h;;, which can be estimated from feeding experiments performed
under excessive food conditions (Bystrom and Garcia-Berthou, 1999), are assumed to depend
mainly upon the trait x; through the function (see Claessen et al., 2000)

hij = W1 .CC~_w2 (4)

(2

For thisreason, in the Appendix the functions h;; are substituted by h;.

3 Monomorphic dynamics

We now use model (1-4) with N = 1 to study the monomorphic evolution of cannibalism. Con-
sistently with the Adaptive Dynamics approach we assume that the resident population with trait
value z; isat its equilibrium 7 (z1) when a mutant appears. The uniqueness of this equilibrium
can be easily ascertained from the formul as presented in the Appendix. Moreover, we a so assume
that the trait x5 of the mutant is only dlightly different from z1 (i. €. zo = z1 + ¢, with small ¢€)
and that the mutant population density ns isinitialy very small. Under these conditions, model
(1-4) written inthe form

n1 = ny fi(na, n2, r1, v2) ()

ng = ng fa(n1,n2, 1, T2)

can be used to establish the fate of the mutant and resident popul ations. Generically, an invading
mutant replaces the former resident so that, in the end, the system is composed of a single popula-
tionwithtrait 21 +e¢. Inthe oppositecase, i. e. when the mutant population doesnot invade, it goes
extinct so that thetrait of the population remains unchanged. This process of mutation and selec-
tion can be further specified by making suitable assumptions on the frequency and distribution of
small mutations (Dieckmann and Law, 1996) and the conclusion is that the rate at which the trait
x1 varies at evolutionary time scale is given by the following ODE (called canonical equation of
Adaptive Dynamics)

8f2 (.CC1, .2122)

(9.2122

where k is proportional to the frequency and variance of small mutations and f,(z1, x2) is the
fitness of the mutant, i. e.

&1 = kn(z1) Sy (6)

fa(z1,2) = fa(Mi(1),0, z1, 22) (7)

Equation (6) always admits the trivial solution z; = 0 because 7y (x1) and 0 fy/0%2|ry—z,
are zero for z; = 0 (the proof can be easily derived from egs. (A1,A3) of the Appendix, by taking
into account that a,( vanishesfor x; tending to zero (see eq. (2))). Moreover, the trivial solution
r1 = 0 isawaysunstable(i. e. #; > 0 for small z; > 0) sincem (x1) and 0 f,/0w2|p,—r, A€
positive for small and positive values of z;. Since k > 0 and 71 (z1) is positive for any positive
1, €9S. (6,7) say that x; is stationary (monomorphic equilibrium) when the fitness of the mutant
is stationary with respect to z,. In generic conditions, the non-trivial monomorphic equilibriaare
either one or three, as shownin Figure 2 for three different combinationsof environmental richness
(ng) and sizerange (1/3) (see the Appendix for a qualitative analysis of egs. (6,7)). In the case
of Figure 2B two stable equilibriaz}; and /" (filled circles on the z; axis) are separated by an
unstable equilibrium z/ (empty circle). Thus, in this case the cannibalistic trait can evolve either
toward alow value (corresponding to a very dense population of dwarfs) or toward a high value
(corresponding to a scarce population of giants). In the other two cases there is only one stable
equilibrium: a low value T} with high population density in case A, and a high value 7" with
low population density in case C. The transition from B to A [C] is characterized by the collision
of Z{ with Z{" [z}]. The parameter conditions characterizing such collisions can, in principle,
be detected through extensive simulations of model (6,7). However, they can be detected much
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more accurately through numeric bifurcation analysis (Kuznetsov, 1998), which is, indeed, the
technique used in this paper.

Once monomorphic dynamics have found a halt at a stable monomorphic equilibrium (z} or
z!" in our case), one should look at the higher order terms in the Taylor expansion of the fitness
function (7) to establish if the equilibrium is an ESS or a branching point (Geritz et al., 1997).
More precisely, at a stable monomorphic equilibrium, the following correspondence holds

8272(371’ .’122)
0x3

8272(371’ .’122)
0x3

lgg=a; <0 ESS
(8)

lgg=z, >0 branching point

In the first case all small mutations of the resident population fail to invade, while in the second
case small mutationsinvade but do not replace the former resident. Thus, branching pointsare the
origin of dimorphism. For example, in Figure 2 the low equilibriaz] are ESSs, while the high
equilibriaz!” are branching points (see Appendix). But other combinations are possible for other
values of environmental richness (n) and sizerange (1/5).

The study of monomorphic dynamics has been completed by performing the bifurcation anal-
ysisof model (6,7) with respect to (ng) and (1//3), thus producing the diagram shown in Figure 3.
In such adiagram, the two curves merging at the cusp point C' are the combinations of parameter
values (ng, 1/3) for which the unstable equilibrium z} collides with Z} or Z{’. By contrast, the
remaining curve represents the values (ng, 1/3) for which 6% f,/022|,,—., evauated at =}’ is
zero, i. e. the values (ng, 1/3) separating evolutionary stable strategies from branching strategies
(seeeq. (8)). Thus, the space (ng, 1/3) issubdivided into four regions, each characterized by one
or two stable monomorphic equilibria and by a different mix of ESSs and branching points. In
particular, Figure 3 shows that in poor environments an ESS always exists and that dimorphism
(due to branching points) is a possible evolutionary option only in populations with wide size
range (actually it is the only option in very rich environments). Through Figure 3 one can aso
identify the conditions under which a population will evolve toward high degrees of cannibalism.
Indeed, in the regions with wide size range the presence of a branching point and the fact that
its associated cannibalistic trait is high (see point z{" in Figure 2B) guarantees the possibility of
a monomorphic evolution toward high degrees of cannibalism (followed by a subsequent phase
of dimorphism discussed in the next section). However, populations characterized by small size
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Figure 3: Bifurcation diagram of model (6,7) with respect to ny and 1/3. The curves identify four re-
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strategies (ESS) or branching points (BR). Parameter values asin Figure 2.

ranges can a so develop high degrees of cannibalism, because it can be shown through numerical
analysis that the cannibalistic trait associated to the ESS is high for very rich environments. All
thisisin good agreement with Polis (1981, 1988), who has noticed that pronounced cannibalism
is often present in populations growing through a wide size range.

4 Dimorphic dynamics

We now focuson the evol ution of the cannibalistictraits z; and z- of two coexisting sub-populations
with densitiesn; and no. The aim of the analysisistwofold. First we want to investigate the long
term evolution of thetraits and establish, in particular, if dimorphismisthe fina state of evolution
or can turn into polymorphism or even back to monomorphism (Matsuda and Abrams, 1994a,b;
Dieckmann et al., 1995). Second, we want to show that a sort of catalogue of al possible outcomes
can be identified by performing, once more, a bifurcation analysis with respect to parameters.
The study of dimorphic dynamics must be limited to the coexistence region, whichistheregion
of al pairs(z1, z2) for whichmodel (5) hasastableand strictly positiveequilibrium. Such aregion
can be computed by performing the bifurcation anaysis of model (5) with respect to the traits x;
and x5 interpreted as constant parameters. Since dimorphic dynamics, i. e. trgjectoriesin the space
(21, x2), are symmetric with respect to the diagonal z2 = x1, we limit the anaysisto the region
x1 < m9 and cal populations 1 and 2 dwarf and giant populations, respectively. An example
of this bifurcation analysis is shown in Figure 4, where the upper part reports al bifurcation
curves which identify seven regions (1-VI1), while the lower part reports the corresponding state
portraits of model (5). Since only in the state portraits IV and VII there is a stable and strictly
positive equilibrium, the region of coexistence is the union of regions 1V and VII. The points FE,
U and B on the diagona zo = z1, where various bifurcation curves merge, correspond to the
monomorphic equilibria,i.e. £ = (z),7,), U = (z},7}), and B = (=}, =}’). Since Figure 4
has been obtained for the same parameter settings used in Figure 2B, the equilibriaz}, 7}, and
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7" of model (6,7) are ESS, unstable, and branching, respectively. The nature of a bifurcation
curve separating two nearby regions can be understood by comparing the two corresponding state
portraits. For example, the bifurcation curve separating region IV from region V1 is characterized
(see state portraits 1V and V1) by the collision of a stable node with a saddle on the n;-axis. Thus,
if adimorphictrajectory inregion 1V movestoward and finally hitsthisbifurcation curve, the giant
popul ation goes extinct. In such a case the bifurcation curve correspondsto what is properly called
evolutionary murder. In fact, approaching this curve, i+ vanishes (see forthcoming eg. (10)), i. e.
it is the evolutionary change in the dwarfs that kills the giants, thus marking the transition from
dimorphism to monomorphism.

We now use model (1-4) with N = 2 and denote by 71 (z1, x2) and m2(x1, z2) the densities
of the stable and strictly positive equilibrium of model (5) in the region of coexistence. As for
monomorphic evolution, we assume that the resident populationsare at equilibriumwhen amutant
appears. Moreover, the mutant populationis initialy very scarce and itstrait 3 is only slightly
different from that of the resident population (i. e. z3 = x; + ¢, withsmall e and i = 1 or 2). If
model (1-4) iswritten in theform

n1 = ny fi(ni, ne, n3, 1, 2, 3)
ng = ng fa(ni, ng, n3, 1, 2, T3) 9)
7:L3 = n3 f3(n1an2an3axlax2ax3)

the dimorphic canonical equation turns out to be given by

873(3:1) T2, .’133)

1 = k1mi(x , L r3=T

1 1 1( 1 2) B axg ‘ 3=T1 (10)
. _ 8f3(.’131,.’132,x3)
By = ko n2($1,$2)—8x3 |23=25

where k; and k- are proportiona to the frequency and variance of small mutationsin the resident



populationsand f5(x1, 2o, x3) isthefitness of the mutant, i. e.

fs(z1, w2, 23) = fs(M1(z1, 22), Ma(21, T2), 0, 71, T2, T3) (11)

Moreover, if dimorphic dynamicsfind a halt at a stable equilibrium (z1, Z2), such an equilib-
riumisan ESSif _
82]03(51, TQ) .’133)

o3
Conversdly, if condition (12) does not hold, then the dimorphic equilibrium is a branching point.

Three examples of dimorphic dynamics are shown in Figure 5 for different values of environ-
mental richness (ng) and size range (1/3). The coexistence region is partitioned in white and
dark subregions. Trajectories starting in the white region tend toward a dimorphic equilibrium D
which can be either ESS or branching. By contrast, trgjectories starting in the dark region hit the
boundary of the coexistence region where an evolutionary murder occurs.

In Figure 5A, the tragjectories starting close to the branching point B where dimorphism
originates, tend toward a dimorphic stable ESS D = (7, 72), characterized by 71 (Z1,72) >
no(T1, T2). Thisresultisin agreement with Polis (1988) observation on the possible coexistence
of an abundant population of small individualswith a scarce population of large and highly canni-
balisticindividuals.

Figure 5B corresponds to populationswith a wider size range (1/3). The cannibalism of the
monomorphic population at the branching point is so high that point B is now on the boundary
of the dark region, so that dimorphic dynamics end with the evolutionary murder of the giant
population at point X* = (z7, 23). After that (i. e. after the sudden transition from X* to X**
in Figure 5B) the dwarf population evolves, starting with atrait z; = 7 in accordance with the
monomorphic canonical equations (6,7). Thus, in the end, the system settles at the monomorphic
ESS 7 (see point E of Figure 5B). In other words, starting from any ancestral monomorphic
condition the final outcome of evolution is a low cannibalistic population of dwarfs. However,
if the ancestral conditions are characterized by a sufficiently low cannibalistic trait (i. e. z1 <
7', see point U in Figure 5B), the evolution is purely monomorphic, while ancestral conditions
x1 > T4 give rise to three distinct evolutionary phases: first a monomorphic evolution toward
the branching point B, then a dimorphic evolution implying the temporary presence of a highly
cannibalistic population of giants (from B to X*) and, finaly, after the extinction of the giant
population, amonomorphic evolutiontoward an ESS (from X ** to E). All thiscan be summarized
by saying that in evolutionary systems different but very close initial conditions can generate
completely different evolutionary paths, ending however in the same fina state (see aso Geritz
et al., 1999). This property (which does not hold in generic dynamical systems) might be crucial
for understanding controversial results based on field or |aboratory data concerning the evolution
of adaptivetraits.

In the case of aricher environment (see Figure 5C) thetrgjectories starting closeto the branch-
ing point B tend toward a stable dimorphic equilibrium D = (7, T2), asin the case of Figure 5A.
However, at point D condition (12) holdsonly for i = 1, so that at D the giant population under-
goes a branching. Of course, the procedure we have followed to construct the monomorphic and
dimorphic canonical equations can be extended to the genera polymorphic case. In particular, for
the parameter values of Figure 5C, numerical simulationsshow that the trgjectory of the polymor-
phic canonical equation with N = 3 starting from (z;, T2, T2 + €), tends toward a polymorphic
stable ESS characterized by a scarce population of giants, a crowded population of dwarfs and a
population of individualswith intermediate body size. Also thisresult is not in conflict with the
observations described in Polis (1988).

The complete bifurcation analysis of model (10,11) is out from the scope of this paper. How-
ever, by looking at Figure 5 we can make the following considerations. The transition between

logez, <0 i=1,2 (12)
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the state portraits of Figures 5A and B is a global bifurcation (called heteroclinic bifurcation) in
which the unstable manifold of point B coincides with the stable manifold of the saddle S, while
the transition between the state portraits of Figures 5A and C is slightly more complicated. In
fact, two characteristics of the state portrait of Figure 5C are qualitatively different from those of
Figure 5A: first point U does not belong to the coexistence region, and second there is a small
dark region in which the dimorphic dynamics are characterized by the evolutionary murder of
the dwarf population. Starting from Figure 5A and increasing ny, at afirst critical value ny, the
coexistence region looses the contact with point U. Thisimpliesthat, for ng slightly bigger than
ng, the border of the coexistence region on the left of point B is characterized by the absence of
the dwarf population. Thisfirst bifurcation can be identified by a straightforward condition on the
fitness (7). At a second critical value ng the equilibria R, S; and Sz appear contemporarily at a
single point of the border of the coexistence region. For a further increase of n the three points
split: the repellor R enters into the coexistence region, while the saddles S; and S, remain on its
border, thus giving rise to the small dark region of Figure 5C. The bifurcation at ny = ng, caled
pitchfork bifurcation, can be easily identified with the condition 1 (2 £, z¥) = 0, where (21, 2%)
are the coordinates of R. Finally, at a third critical value ng’ the dimorphic ESS D becomes a
branching point. Strictly speaking, this critical valueis not a bifurcation of model (10,11). How-
ever, it implies a discontinuity in the evolutionary dynamics, i. e. the birth of polymorphism with
N = 3, sothatitisjustified to consider it as a special bifurcation.

All the bifurcations described above and others not involved in the transitions between the
state portraits of Figure 5 can be continued in a two parameter space, e. g. (ng, 1/3). However,
this poses nontrivial technical problems. In fact, the continuation of global bifurcations requires
to solve specific boundary-value problems for model (10,11) in which 7y (x4, z2) and T2 (x4, x2)
are not known in closed form. Thus, the bifurcation analysis of model (10,11) must be performed
by considering differential algebraic systems of the form

0 f3(n1,m2,0, 1, 22, 73)
(9.’123

0 f3(n1,m2,0, 1, 22, 73)
(9.’123

0 = fi(ni,n2,0,21,22,0)

0 = fa(ni,n2,0,21,22,0)

21 = k1 lzs=21

.’i:g = kQ no ‘1‘3:1‘2 (13)

for which agorithms for the numerical solution of boundary-value problems are hard to develop
(see, however, Ascher and Spiteri (1994)).

5 Discussion and conclusions

The problem of evolution of cannibalistic traitsin consumer populations has been investigated in
thispaper. The approach has been purely abstract (Adaptive Dynamicstheory) and based on avery
simplemode. Important environmental features|ike heterogeneity of the habitat and seasonalities,
have not been taken into account, while agreat deal of attention has been given to ‘ environmental
richness'. In order to keep the model at the minimum degree of complexity, we have also hidden
the size-structureof the popul ation, which has been, however, indirectly taken into account through
a specific parameter called ‘sizerange'.

The study has been performed through extensive bifurcation analysis of both the ecological
model and the evolutionary model. The result isarich catalogue of possible evolutionary scenar-
ios. In poor habitats, population with small size range remain monomorphic and tend to an ESS
characterized by a dense population of dwarfs in which cannibalism is practically absent. The
characteristics of the monomorphic ESS change smoothly with the richness of the environment
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until for very rich environmentsthe ESS is characterized by a scarce population of giants, namely
a population of large and highly cannibalistic adult individuals. By contrast, monomorphic pop-
ulations with wide size range can converge to a branching point which is the starting point of a
dimorphic phase, which depending upon the cases, can be of various form. First of all, we can
have convergence to a dimorphic ESS, characterized by a dense population of dwarfs and a scarce
population of giants. In this case, dimorphism is the fina state of evolution. But dimorphism
can be also atransient stage of evolution. This happens when dimorphic dynamics converge to a
branching point, from which a new mutant population invades, thus giving rise to a higher order
polymorphism. Surprisingly, aso the opposite transition (from dimorphism to monomorphism)
can occur through the evolutionary murder of the giant population. In other words, for suitable
demographic and environmental conditions we can have a rather interesting evolutionary path: a
monomorphic population first increases its degree of cannibalism thus becoming a population of
giants when approaching a branching point; then, after branching, the giant population becomes
more and more scarce (at evolutionary time scale) until it goes extinct; finally, the remaining
monomorphic population settles at an ESS characterized by a huge number of dwarfs. In con-
clusion, our analysis shows that depending on the ancestral conditions and on the demographic
and environmental parameters, cannibalism in consumer populations can not only monotonically
decrease or increase, but also temporarily peak before being eliminated by the mechanisms of
mutation and selection.

The complexity of the evolutionary scenarios identified in this study by varying a couple of
environmental and demographic parameters, explain why it is difficult to extract a general verba
theory of the evolution of cannibalism from the many available studies performed on different
species. However, it isworth to notice that some of the conclusionsdrawn by Polisin hisremark-
able papers on cannibalism evolution (Polis, 1981, 1988) are consistent with our findings.
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6 Appendix: Analysisof the monomorphic canonical equation

In this Appendix we analyze the monomorphic canonical equation (6,7) to show that for suitable
values of the parameters three equilibria can exist: a stable ESS 7, an unstable equilibrium =}
and a stable branching point z/”.

Define a;;(x;, xj) = ai(x;) o(x;/x;), fori, 5 > 0 (see eq. (3)), where

ai(z) = Aji—i 1 - 21 )= "B B
i(2i) U + 2] 0+ ) ) (p2)” + (p2) ™"

Thus, fromegs. (1, 5, 7) it follows that
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82aij d2ai dai do 1 d20' 1
Ox? =2 dz? (1) dx; dz =1 x; +a dz? =1 x?
82aij ) d20' do 1

zi=x; — Qi | 7 5 |z= 2— z= 5
85”?‘] o= | gEle T2l a?
Then, assumep = 0.2, w; = 0.1 and we = 0.25 (asin Figures 2-5). Thus, (1), do/dz|,—1
and d%0/dz?|,—; are positiveand small (order 10~1). Moreover, h; ~ w; for al sufficiently high
vauesof z; (seeeq. (4)), sothat dhy /dz; and d?hy /d2x; can be neglected when z; issufficiently
high.
Let us now study the function 73 (x1). From eqg. (1) with N = 0 it followsthat 721 (z1) isthe
positive root of the second order equation

eroaiono = c11ni (1 + hiaiono) + (1 — e11)annmn + Cllﬁ%hlall (A3)

If 21 < z,thena;; < ajg, Sincea;(z1) and o(1) are small. Thus, the second and third terms at
the righthand side of eq. (A3) can be neglected, i. e.
€10a10M0

ﬁl(xl) ~ 011(1 n hlalono) = ’le(xl) (A4)

More precisely, nq(z1) is greater that 71 (1) for any positivexz;. Thus, 73 (x1) is bell-shaped as
a1o but pesks at avalue of x; greater than z° and increasing with n, (notice that the parameter
Ao can bescaled to 1, sinceit is always multiplied by ng).

Then, consider egs. (A1,A2) for z; in aneighborhood of 2. Taking into account that z° < z,
that o(1), do/dz|.,—1, d®c/d2?|,—; are small, and using (A4)we can neglect in egs. (A1,A2) al
terms containing a;; and their derivateswith 4, 7 > 0, so that

daig
Of5(z1, 952)‘ - 20wy " (1 ~_haiong )
O0zo 2T T 4 hyargno 1+ hiaigng
d2a10 daqg 2
0%F, (1, z2) N €20 322 o e20h1 (d—xl> n(z) hia10m0
0z3 lea=z, = 1+ hiaiong (1 + hyaigng)? ( 1+ h1a10n0>

For sufficiently small values of ng, i. e when (hia19n)/(1 + hiaiono) < 1, the two above
expressions can be further simplified to

872 (.CC1, .7:2)
(9.282

27 2
P 620((1;1—;10”0 %ﬁ%jm‘xgxl ~ ezodd—;%mno (A5)
Since daig/dz1],,—p0 = 0 and d?a19/dz?|,,—0 < 0, the approximations (A5) imply that (for
suitable values of the parameters) model (6,7) has astable ESS at 7 closeto x°.

The approximations (A5) do not hold for higher values of z;, since for such values ay,
dalo/d.ivl‘xl:xo and d2a10/d$%‘x1:xo are smal. In particular, in €g. (Al) 8&21/8$2‘x2:x1 is
negative for x1 sufficiently high, dueto presence of thethreshold T (see eg. (3)). Thiscanleadto a
negative sum of the first two termsin eg. (A1) which can balance the third term which is positive.

By contrast, for intermediate values of z, and in particular for ; closeto z, das1 /02| ry—z,
is positive and can give rise to a positive d f, /0xs| z,—z, - Thisimplies the presence of two other
equilibria of model (6,7), namely an unstable equilibrium z} and a stable equilibrium Z”. The
sign of 90%f,/0x3],,_z is more difficult to assess. However, for the parameter settings used
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throughout the paper, thefirst term of eq. (A2) is dominant and can be positive when evaluated at
7!, so that " isabranching point for suitable values of the parameters.

Finally, it is worth to remark that qualitative analysis is useful for understanding if a cer-
tain phenomenon can occur. For confirming the results achieved through this qualitative anal-
ysis we have performed extensive numerical analyses, mainly based on continuation techniques
(Kuznetsov and Levitin, 1997; Doedd et al., 1997) (see Figures 3,4).
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