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Abstract

This paper is as much about a certain modelling methodology, as it is about the constructive
definition of future population states from a description of individual behaviour and an initia
popul ation state. The key ideaisto build a nonlinear model in two steps, by explicitly introducing
the environmental condition viathe requirement that individual sare independent from one another
(and hence equations are linear) when this condition is given (prescribed) as a function of time.

A linear physiologically structured population model is defined by two rules, one for repro-
duction and one for development and survival, both depending on the initial individual state and
the prevailing environmental condition. In Part | we showed how one can constructively define
future population state operators from these two ingredients.

A nonlinear model is a linear model together with a feedback law that describes how the
environmental condition at any particular time depends on the popul ation size and composition at
that time. When applied to the solution of the linear problem, the feedback law yields afixed point
problem. This we solve constructively by means of the contraction mapping principle, for any
giveninitia population state. Using subsequently thisfixed point asinput in the linear population
model, we obtain a population semiflow. We then say that we solved the nonlinear problem.

The paper is organized in a top-down spirit: We describe a general abstract setting first and
then specialise, while becoming more technical.

The results are not restricted to a single population but aso cover the interaction (including
predation) of severa structured (and unstructured) populations.
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1 Anintroductoryexample: amodel involving cannibalisticbehaviour

Consider a population of, say, fish and assume that the behaviour of individuas (notably repro-
duction, survival, food consumption) depends on their size z. Let birth size be fixed at x;, and let
growth be deterministic with arate g that depends on size x and the x-specific energy intake rate.
Likewise, reproduction is described by specifying how the rate 8 of producing offspring depends
on size z and the x-specific energy intakerate. Assuming that predation isthe only cause of death,
we describe survival in terms of a death rate 1, which we call the x-specific predation pressure.

Next we have to describe how energy intake rate and predation pressure are themsel ves deter-
mined. For the purpose of exposition we assume that, apart from effects due to cannibalism, both
food concentration and predation pressure are constant in time. In other words, cannibalismisthe
only feedback loop by which the individual sinfluence the environmental conditionsof each other.

If we neglect the effects of handling times, satiation etc., we can describe the predation process
in terms of attack rates and concentrations (the rate of eating being by definition the product, in
this simple case of alinear functional response). Assume that individualsof size z have access to
a food source with concentration Z (), which they attack at rate C(x) and which has energetic
value E'(z). Moreover, they attack conspecifics of sizey with rate ¢(z, y) and these have energetic
value e(y). Let m; be the measure describing the population size and composition at time ¢ (so
my(w) isthe number (or rather spatial concentration) of individualswith sizein w at timet). Then
the energy intake rate of an individual of size z isgiven by

Li(t,x) = F1(O1(t,x),z) = E(z)C(x)Z(z) + O1(t, x) (1.1

with
O1(t,x) = / e(y)e(z, y)my(dy) (1.2

while the predation pressure exerted on in[d;)vid)ualsof size x isgiven by

Ly(t,x) = F5(02(t, x),z) = o(z) + Os(t, ) (1.3

with
Os(t,x) = / c(y, x)my(dy) (1.9

[z5,00)



where o denotes the x-specific non-cannibalistic predation pressure.

Once we now also specify g and 3, we obtain a nonlinear structured population model, all
interactions being due to cannibalism. We want to show constructively that one can associate in
a meaningful way a dynamical system with such a model description. In other words, we want
a construction that for given mg yields m;, at least for ¢ sufficiently small, and then we want to
establish uniquenessin order to conclude that m, qualifies as the popul ation state (p-state) at time
t.

To do so, we first cut the feedback loop and then re-establish it as a fixed point equation.
More precisely, we pretend that the energy intake rate 11 (¢, «) and the predation pressure I»(t, z)
are known functions. In this manner we obtain a non-autonomous (i.e., time dependent) but lin-
ear model to which we can apply the constructive procedure of Part | (Diekmann et al. 1998),
culminating in solution operators that assign to a p-state my the p-state m; for ¢ > 0 in awell-
defined and unique manner. If we insert now these p-states in the formulas (1.2) and (1.4) we
obtain a (nonlinear) input-output map. The biology expressed in (1.1) and (1.3) then requires that
I = F(O) which, since O dependson I, isafixed point problem. Our aim in this paper isto show
that for large classes of models one can derive Lipschitz estimates, apply the contraction mapping
theorem to the fixed point problem to obtain a unique solution for any given initial p-state, and
then use the fixed point to define a nonlinear autonomous dynamical system.

It isenticing to restrict the generality of ¢ by putting

C(.CIZ, y) = w(x)¢(y)a (15)

where 1) describes the degree of cannibalistic activity and ¢ the vulnerability to cannibalistic
predation and where we have in mind that the support of ¢ is strictly to the left of the support of
1 (S0 big ones eat small ones but the precise size of potential predator and potentia victim do
influence what happens upon encounter in an independent manner; thisis an example of making a
model less parameter rich). The advantage isthat we may now define outputs

Out) = [ ewowmidy) (19
[2p,00)
and
Oa(t) = [ w(wymidy) @)
[p,00)

which are only functions of time, and analyse how these depend on input when we take as the
z-specific energy intakerate

Li(t, ) = B(z)C(2)Z(x) + 4 (2)O(1) (18)
and the x-specific predation pressure
L(t,z) = o() + ¢(x)Oa(t)- (19)

However, to actualy take advantage of this we must adapt the notion of input. We do so by
noting that the z-specific energy intakerateis of the form

E(2)C(2)Z(x) + () 11(t) (1.10)
and the x-specific predation pressure of the form

o(z) + ()2 (t) (1.11)



and by now calling I; and I, the input. In this setting the feedback becomes simply the identity.
We say that the environmenta interaction variables are two-dimensional and we formulate the
fixed point problem for R2-valued functions of time.

Althoughthe framework we devel op is of amore general nature, the class of exampleswe have
in mind so far involves only R*-valued functions of time and we postpone a thorough analysis of
inputs which are general functions of both ¢ and x to some later time.

To reduce the parameter richness even further, we may choose

0, z<zxa

b(z) = { 1w (1.12)

for some given z 4. This expresses that individuals become cannibalistic upon reaching size x 4
(here A stands for “adult”) and that there is no variation in the degree of cannibalistic tendency.
The price we pay for such an “idealized” descriptionisthat individual behaviour changes abruptly
as a function of individua state (i-state) x. When anaysing the input-output-input map such
a discontinuity needs specia attention and in particular we need to make sure that the state of
individuals always crosses the discontinuity transversally (in the present case of one dimensional
i-state spacethisjust means“with positive speed”, but when the i-state spaceis higher dimensional
the requirement is more easily interpreted as transversality (Diekmann et al. 2000)). In section 8
we return to this point.

The classical Holling time scale argument (see e.g. Metz and Diekmann (1986) and the ref-
erences given therein) yields a saturating functional response reflecting a limited time budget and
the effect of handling time. In the present situation involving size structure, we need to introduce
athird interaction variable

Is(t,x) =14 H(z)C(x)Z(z) + Os(t, z), (1.13)
with
Osltse) = [ h(e,y)e(w,y)mildy) (114)
[26,00)

where H and h are the respective handling times. The size-specific fraction of the time spent
searching is then the inverse of I5(¢, z). Thisfraction hasto be incorporated in (1.1) and (1.3) as
amultiplication factor, to account for the effect of handling time, thus letting us replace (1.1) and
(1.4) by, respectively,

E(x)C(z)Z(x) + O1(t, x)

I(tz) = o) (1.15)
and
Out) = [ c<y’””))mt<dy>, (L16)

) 13(t7 Y

[y,00

and thus introducing a dependence of the output on the instantaneous input while keeping the
linearity of output in the p-state. We will show in Section 8 that a certain hierarchical structure
makes the dependence of output on input rather harmless.

As a side-remark we mention that one can give another derivation of such expressions by
invoking digestion as the limiting fast time scale process (Metz and Diekmann 1986).

11 Trait d’union

We hope these modelling considerations have provided our readers with enough motivation, as
well as enough understanding of the underlying general model structure, to dive into an abstract



setting. Our approach will betop down. We start abstract and general and even trivial, in the sense
that we simply assume everything we need. We work our way downwards by deriving in each step
sufficient conditionsfor the assumptionsin the preceding step. These may come in variousforms
and so we develop atheory with pyramid structure. The hope isthat in this manner we may in the
future incorporate new and essentially different examples with minimal effort, changing only the
argumentsin one (or afew) step(s).

2 Someterminology, definitions and hypotheses
Our basic thought experiment isthat we

(i) pretend to know the state of the system at some initial time, which we take as the origin of
thetime axis,

(i) pretend to know the input to the system for alength s of time;

(iii) determine the state of the system at time s.

Here an input is a function of time taking on values in a Banach space E. |n the structured
population context we call an element of £ an “environmental condition” and the time argument
of the input tells us at what time this condition is supposed to hold. Aninput I is defined on the
interval [0, ¢(I)) and we call £(I) the length of theinput I.

It turns out to be convenient to introduce the empty input denoted by I. It is defined as an
input of zero length: ¢(1) = 0. According to the definition of an input, it isan E-valued function
defined on the empty interval [0, 0) and thusiit is nothing but the empty set. We have chosen the
symbol I which resembles the symbol ) for the empty set to remind us of this fact. The empty
input I should not be confused with the zero input 0, which is the function which has the constant
value0 € F for dl t initsinterva of definition, which can have any length.

To inputs we can apply three basic operations, namely restriction, shift and concatenation.
They are defined as follows:

Restriction p: For 0 < s < ¢(I), p(s)I istherestriction of I to the subinterval [0, s), that
is,
(p(s)I)(t)=1(t) for 0<t<s.

Shift : Theshift §(—s)I isfor 0 < s < ¢(I) defined on theinterval [0, £(I) — s) by
O(=s))(t)=I(t+s), 0<t<l(I)—s.
Concatenation ®: The concatenation Io©1; of I; and I, isdefined ontheinterval [0, £(11) + £(12))
by

(L) for0 <t < (1),
(I ® L) (t) = {Iz(t — (L)) fore(ly) <t < (I1) + {(I2).

We collect some useful elementary propertiesinto the following lemma:

LemmaZ2.1
(i) p(0)I = Ifor all inputsI;
(i) p(¢(I))I = I for all inputs I;



(iii) p(s)I = p(s)p(t+ s)Iforalls>0, ¢t > 0suchthatt + s < ¢(1);
(iv) 6

(
(=0)I = I for all inputs I;
(v) 0(—
(=
(=

¢(I))I = Ifor alinputs’;
(vi) 0

(vii) 0

)

(
$)0(—t)I = 6(—(s+t))[forall s >0,t > 0suchthatt+ s < 4(I);
s)p(t+ s)I = p(t)f(—s)I forall s >0, ¢t > 0suchthatt + s < £(I);
(

(viii) I3 ® IQ@Il) (Ig@fz) © It;
(ix) IoI=]1e1=Iforalinputs’;
X) I=0(—s)Iop(s)I, 0<s<LI).

There will be certain properties, like boundedness, measurability and integrability, that we
require inputsto have. These properties should be such that they are preserved under restriction,
shift and concatenation. Observe that, for instance, continuity is not preserved under concatena-
tion. We also may want to identify inputs that differ only on sets of Lebesgue measure zero. As
this identification commutes with the three basic operations, they extend to equivalence classes
that are obtained by the identification.

To formalize the setting, we have to postulate certain properties of the spaces to which the
inputs belong. Because the inputs may have arbitrary lengths we have to introduce awhole family
{Bs}s>0 of spaces. Here and in the following hypothesisthe parameter s should be interpreted as
the length of an inpuit.

Hypothesis 2.2

(@ By = {]} and for a given but arbitrary s > 0, B, is a set of (equivalence classes of)
functions defined on theinterval [0, s) with valuesin E such that
(1) for0 < o < s therestriction p(o) maps B, onto B,,
(2) for0 < o < s theshift §(—o) maps B, onto B;,_,
(3) for s; > 0, s > 0 concatenation is aone-to-one mapping of B, x B, onto By, +s,,
(4) the constant functions defined on [0, s) belong to B;.

(b) Foreach s > 0, B, isaBanach space with norm || - || (note that the norm depends on s but
that we do not express thisin the notation) such that

(1) for0 < o < s, p(o) and 6(—o) are bounded linear operators of norm one (the same
istruefor p(s) and 6(0), but p(0) and 6(—s) have norm zero),
@) [T =[[|[= 0o I
Q) Leod+0ohLh=LohL
In assertion (b3) above, the lengths of the zero inputs are of course assumed to be such that

the sum makes sense, that is, such that both terms on the left hand side have the same length. It
follows from (b2) and (b3) that

12 © Ll <[] + [[]]- (21)

Despite a slight abuse of the symbol p, it seems natural to denote the input defined on [0, s)
taking the constant value I € E by p(s)I. With this convention assertion (a4) can be written as
p(s)I € B,.



We use B to denote | J,~ Bs. Notethat for I € Bwehave ((I) = sif andonly if I € B;.
Moreover, it follows from Lemma 2.1 (viii) and (ix) that B isamonoid (that is, a semigroup with
aunit element) under concatenation, with the empty input 1 as unit.

In Hypotheses 2.2 (a) we formalized the requirement that certain technical constraints on the
inputs are preserved under restriction, shift, and concatenation. But usually the biological inter-
pretation also puts constraints on the inputs and in most cases these take the form of a condition
on therange of the inputs. A typical example is when the interpretation requires the input to take
on only nonnegative values. We shall therefore from now onassume that the inputs take on values
in asubset Z of the Banach space E. Obviously this range condition is invariant under the three
basic operations.

We denote the subset of B, consisting of functionswith valuesin Z by Bs(Z). Likewisewe
use B(Z) to denote > Bs(Z2).

Let Y beaset. The set Y figures as the state space of the dynamical system that we want
to construct. We now formulate the assumption that for a given input we have a well-defined
dynamical system.

Hypothesis 2.3 (The semigroup property) For every I € B(Z) there existsamap 77 from Y to
Y such that
Ty = idy, (2.2

T[2 TIl - T[2®[1 (23)
In (2.2) idy istheidentity mapping on Y. Note that (2.3) can equivalently be stated as
T = T@(—o‘)[ Tp(o‘)[a 0<o< e(I) (24)

Note that the information about how much we go forward in timeis contained in the length of
the input. Whenever thereis a need to consider, for given I, the population statesfor times ¢ with
0 <t < {(I), we do so by means of the restriction operator, that is, by considering 7, ry.

The name “semigroup” derives from the fact that (2.3) states that the map [ — 77 from
B(Z) tothe set of maps of Y intoitself (which is asemigroup under composition) isa semigroup
homomorphism. As amatter of fact it is even a monoid homomorphism as (2.2) says that the unit
of B(Z) ismapped toidy .

For constant inputs we obtain semigroups of maps of Y into Y parametrized by positive real

numbers. Indeed, for I € Z, define T(s) = T,7. Then
T(s1)T(s2) = Tp(Sl)TTP(@)7 - Tﬁ’(‘91)7®p(‘92)7 - Tp(Sl-f—82)7 =T(s1+ s2). (2.5)

3 Construction of a dynamical system (closing the feedback 1oop)

To define the output, we introduceamap H : Y — Z. In the setting of Hypothesis2.3, lety € Y
and I € B(Z) begiven. The output is then the function

t H (Tp(m y) (3.1)

defined on [0, ¢(I)) and with valuesin Z. We are here, for the sake of mathematical simplicity,
thinking of a feedback map which is the identity, such that the distinction between the input-
output-input map and the input-output map introduced in Definition 3.2 below becomes irrelevant.
Relative to the formulation which corresponds most closely to the biologica mechanism this may
entail amathematical transformation, as, e.g., the step from I(t, z) to I(t) in Section 1.



Hypothesis 3.1 The output defined by (3.1) is an element of By (Z).

Next we introduce the map that transforms input into output, given the popul ation state .

Definition 3.2 For each y € Y theinput-output map P, : B(Z) — B(Z) isdefined by
Py(I) = H (Ty(y1 ).

By Hypothesis3.1 P, maps B, (Z) into Bs(Z) for each s > 0. Moreover, P, commutes with p(o)
foral o > 0.

A shift in the input should be reflected in a corresponding shift in the output, provided the
population state is updated accordingly. That thisis indeed the case is shown in the following
lemma.

Lemma3.3 Forall I € B(Z) andall 0 < s < ¢(I) one has
0(—s)Py(I) = Pr,,, 4 (0(=s)I). (3.2

Proof. If s = £(I), then (3.2) reducesto theidentity I = . For0 < s < ¢(I), 0 <t < {(I)—s
the | eft hand side of (3.2) evaluated at ¢ equals Hf (Tp(t iy y) whereasthe right hand side equals

H (Tp(t)g(_s) 1 Tos)1 y). It follows from Lemma 2.1 and the semigroup property of Hypothesis
2.3 that the two sides are indeed equal . o

The distinction between input and output is, in our context, a mental construction and the two
should in fact be identical. In other words, our task is to find a fixed point of the map P, for
arbitrary y € Y. Atthislevel in our top down approach we state this as a hypothesis:

Hypothesis3.4 For dl y € Y there existsan s(y) > 0 such that P, \BS(Z) has a unique fixed
point, to be called I, for every s < s(y).

Strictly speaking the fixed point not only depends on y but also on the s that we choose.
However, the fixed point on a smaller interval is simply the restriction of the fixed point on a
larger interval (because of uniquenessand the fact that the restriction map commutes with P,) and
therefore we may safely suppress s in the composite symbol denoting the fixed point.

Lemma35 Foraly €Y, s € [0,s(y)) onehas

0(—8)Iy = ITP

(s)Iy Y°

Proof. One has (—s)I, = 0(—s) P, (1) = Pr, (0(—s)I,) by Lemma3.3. So §(—s)I, isa

(s)Iy Y

fixed point of Pr, .\, -, and by uniquenessit must therefore be equal to I, ), . D
Definition 3.6 For ¢ > 0 we put
S(t,y) =Ty, v (3.3)
whenever theright hand sideis defined.
Note that it followsfrom (3.3) that
S0,y) =Tyoy, y=Try=idyy =y (34)

foralyeY.



Theorem 3.7 Lety € Y. Thens < s(y), t < s(S(s,y)) impliest + s < s(y) and
S(t+s,y) =5(t,5(s,y)). (35)
Proof.

S(t,S5(s,y)) = Tp(t)IS(s,y) S(s,y) = Tp(t)ITp(s),y y S(s:y)

= Tpyo(—s)1, S(5:Y) = To—s)p(t+s)1, Lp(s)1, Y
= To(—s)p(t+s)1,00(s)I, Y = Tp(t+s)1, Y
= S(t+sy).

]

Theorem 3.7 together with the identity (3.4) says that S is a semiflow. Usually one requires
that a semiflow is continuous both with respect to time and initial state.

Whenever we verify Hypothesis 3.4 we say that we have solved anonlinear problem, meaning,
of course, that we can combine 77 and I, into a semiflow via(3.3)

4 Kernesand convolutions

Asin Part | (Diekmann et al. 1998) we consider individua states as elements of a measurable
space 2 with a countably generated o-algebra . Our use of the word “kernel” is somewhat
different from that of Part I. Here akernel k isamap from 2 x X into R which is bounded and
measurable with respect to the first variable and countably additive with respect to the second
variable. (So for fixed w € ¥ the function z — k(z,w) is bounded and measurable, while for
fixed z € 2 themap w — k(x,w) defines afinite signed measure on 2). We call akernel positive
if it assumes non-negative valuesonly.
The product k! x k2 of two kernels k! and k? isthe kernel defined by

(k' > ) (2, ) = /le(f,w)kz(x,df). 4.1)

Likewisewe define the product f x k of a bounded measurable function f : @ — Z and akernel
k asthefunction

(f x k) ( / FOk(x, de). 4.2)
The product of akernel k£ and a measure p is defined anal ogously as the measure
(k x 1) / k(& w 4.3)

Finally we agree that the product f x u of afunctionand ameasureis

fxu= [ f@pnld) € 2. (4.4)

The x-product is associativein the following sense: If in the case of three abjects f, k and 1,
say, both the products (f x k) x pand f x (k x u) are well-defined, then they are equal. In this
case we |eave out the parentheses and write simply f x &k x p.

We shall useinputs I € B to parametrize kernels and functions. For two parametrized families
k} and k% of kernelswe define their convolution product (k' * k%), by

kL« k2 :/ K X k2, 45
( )I 10,6(1)) 0(—o)I p(do)I (4.5



whenever the integral exists. In particular, this is the case if o — ké(_a)l(i,w) is bounded,
uniformly in £ and w, and measurable, while o — kg(a)l(x, w) is of bounded variation uniformly
inzandw.

The convolution product of a parametrized family f; of functions and a parametrized family

k; of kernelsisdefined anaogoudly:
f+k), = / fo(—o ko(do)I- 4.6
( * )I 10,6(I) 0(—o)I X Kp(do)I ( )

Note that the convolution of two parametrized families of kernelsis again a parametrized family
of kernels, while the convolution of afamily of functionsand kernelsyieldsafamily of functions.

When deriving Lipschitz estimates for the input-output map P,, we need sup-norm estimates
for convolution products. To prepare the way, first note that

[(f x k) (@)l < sup |f(&)] g [K|(x, ), (4.7)
=

where | - | g denotesthe norm in the Banach space E, |k|(z, -) denotes the total variation measure
of k(x, ) and accordingly |k|(x, Q) isthetotal variation of k(z, -). We also need thetotal variation
of areal valued function ¢ defined on an interval [0, s). Thiswill be denoted by V' (¢). Asthe
length of theinterval will always be clear from the context it need not be included in the symbol.

We now lift the inequality (4.7) to the convolution product. Therationale for the introduction
of the subset 2;, of 2 will be explained in the next section.

Lemma4.l Let f; and k; be parametrized families of functions and kernels, respectively. If
k(z,-) isconcentrated on 2, for all z € €, then

Cems@lp s swn oo @,V (o ) (48

Proof. One has

and hence, by (4.7)

Femy@lp< [ sup |fa @) [Foaont] (2, 00).

[0,£(1)) €€

From here the inequality (4.8) follows directly. o

5 Linear structured population modelswith input

When modelling structured popul ations one starts by describing individual behaviour. A first task
of the mathematician isthen to show that this descriptionleadsto awell-defined dynamical system
at the population level, that is, a dynamical system that for any given initial popul ation state gives
the population state for future instants of time.

Usually individua behaviour is described in terms of rates of development, death and repro-
duction. In (Diekmann et al. 1998) we argued at length that a certain pre-processing of such basic
ingredients, leading to composite ingredients at a somewhat higher level of aggregation, has con-
ceptua and technical advantages. In this section we take this pre-processing step for granted, but
in Section 8 we return to this point.



Let Q be a measurable space with a countably generated o-algebra X. Individuas are char-
acterized by their i-state, which is represented by an element z of Q.  istherefore caled the
i-state space. The two ingredients of a linear structured population model with input are two
parametrized familiesu; and A; of kernels which have the following interpretations:

e u;(z,w)isthe probability that, given theinput I, an individual which hasi-statex € Q at a
certain time, isstill aive ¢(I) time unitslater and then hasi-stateinw € X.

e Aj(z,w) isthe expected number of offspring, with state-at-birth in w € ¥, produced by
an individual, with i-state z € ) at a certain time, within the time interval of length ¢(I)
following that time, given theinput 7.

The interpretation of the ingredientsu; and A requires that certain consistency relations and
monotonicity conditions hold. We collect these into the following assumption:

Assumption 5.1
(i) uwy and A are parameterized families of positive kernels.
(ii) Forevery I; and I, in B(Z) one has
UL,ol, = UL, X U, -
(iii) For every I; and I, in B(Z) one has
Anon = A, + A, xup,.

(iv) Foranyz € Q, w € ¥, I € B(Z) thefunctiono — A ,);(z,w) isnon-decreasing and

EJI})IAP(G)I(;C’ w) = Ag(z,w) = 0.

(v) Foranyz € Q, w € X, I € Bthefunctiono — u,;(z, 2) isnon-increasing and

Liﬁ)lup(a)l(xa w) = u}(xa w) = 5%(“))7

In particular,
ur(z, Q) < 1.

Relation (ii) is nothing but the Chapman—Kolmogorov equation, whilerelation (iii) isasimilar
consistency relation tying reproduction, survival and individual development together (see Diek-
mann et al. 1998 for more motivation). Sometimes we requirein additionto (v) that

li 0) = A
Z({;I_I}l@?ﬁz(% )=0 (5.1)

uniformly for z € Q or the somewhat stronger condition of auniformly bounded life expectancy:
There existsan M < oo such that

o ,do < M 5.2
/[W)) oy (2, ) do (52)
for every z € Q and every I € B(Z). Thelimitin (5.1) is of the general type limy1)_, f1 = g,

which in an arbitrary metric space is defined by Ve > 0 3M > 0 suchthat I € B(Z), ¢(I) >
M = d(f[,g) <e.
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The population state (p-state) is by definition the distribution of i-states and can therefore be
represented by a measure m on the i-state space 2. A natura choice for the p-state space is
therefore a closed subcone Y of M (Q2), the cone of al (finite) positive measures on 2. The
dynamical system T’ describing the dynamicsat the populationlevel should therefore be such that
given theinitial p-state m( and the input I, T7 my is the p-state at time ¢(I). The population at
time £(I) consists of those individuals present in the initial population that are still aive and all
living descendants of the initial population. Suppose that we have somehow been able to construct
ameasure u$(z, -) on 2 with theinterpretation that u$(z, w) isur(z, w) plusthe expected number
of descendants (i.e. children, grand-children, great grand-children, etc) of an individual initially
of i-state =, which are still alive and have i-state in w, ¢(I) time unitslater. Here the superscript
c refersto “clan”. Summing up over al individuals present initially we obtain the composition of
the population at time ¢(1) asfollows:

(1 mo) @) = [ (e, wmo(do). (53)

Suppose furthermore that we have constructed A§ with the sameinterpretation as A7, but now
referring to the whole clan. Because every member of the clan is either a child of the ancestor or
achild of amember of the clan, or dternatively, either a child of the ancestor or a member of the
clan of achild of the ancestor, we obtain the following consistency relation:

AS=Ar+ (AxA%, =Ar+ (A% A), . (5.4)

We now notice that we only have to construct A because once this has been done, the verbal
description of u$ can beformalized as

uf =ur+ (uxA;. (5.5)
Thegeneral linear structured popul ation problem with input can now be formul ated asfollows:

Linear structured population problem with input. Given the ingredients«; and A, construct
Af such that (5.4) holds for every I € B(Z) and show that the family {77}z, of linear
operators on (the span of) Y defined by (5.3) and (5.5) is a semigroup.

The state-at-birth is realy a state, that is, it summarizes all information that is relevant for
predicting the future. Hence the expected number of grand-childrenis obtained as the convolution
product of A withitself, the expected number of great-grand-children asthe threefold convolution
product of Ay withitself, etc.. The clan is obtained by summing up over al generations:

o0

¢=>Y " Af, (5.6)

k=1

In (5.6) Al = A and Ak* = (AUf—l)* % A)I for k > 2.

The positivity of the family A; guaranteesthat (5.6) has ameaning in any case, but additional
conditionson A; (e.g. areproduction delay preventing newborns to give birth) guarantee that the
sum converges to something finite (Diekmann et al. 1998). Another important feature that often
simplifiesthe analysisisthat A; may be concentrated on a set €2, C €2 which may be considerably
smaller that €2 itself (indeed, 2, may consist of just one point: Q, = {z;} asin the introductory
example of Section 1). We formalize these ideas in the following definition (cf. Diekmann et al.
1998, Definitions 2.5 and 2.7).

Definition 5.2 (i) A set O, € ¥ is caled a set representing the birth states if the measure
Ar(z,-)isconcentrated on Q for dl z € Q and adl I € B(Z).

11



(i) = € Qiscaled astatewith reproductiondelay at least ¢ if A;(x,Q2) = 0foradl I € Bs(2)
with s < e.

Obviously we would like to choose €2, as small as possible. But as we aready pointed out in
(Diekmann et al. 1998) there is, in general, no unique way of achieving thisgoal. To see this,
notice that if €2 is a set representing the birth states one can remove from €, any set w such that
Ar(z,w) = 0fordl z € Qand dl I € B(Z) without destroying property (i) of Definition 5.2.
But one can certainly not remove an uncountable union of such sets. If €2 has a natura topology,
then one can use the idea of support of a measure and define 2, to be the smallest closed set such
that A;(xz, ) = 0fordlz € Qandall I € B(Z) (here - denotes the complement of a set).

Theinterpretation of u$ and A given above requiresthat «$ and A¢, too, satisfy the Chapman-
Kolmogorov equation and the reproducti on-surviva -i-state-devel opment consi stency relation. That
thisisindeed the case was proved (in a slightly different setting) in Part | (Diekmann et al. 1998),
where we also showed that A isthe (unique) resolvent of A ;. We collect these factsinto a propo-
sition:

Proposition 5.3
(i) For every I; and I, in B(Z) one has
ul, o = U, X uj,.
(ii) For every I; and I in B(Z) one has
Al o, = Af, + AF, xuf,.
(iii) A§ defined by (5.6) is the unique solution of Equation (5.4)and
uf =ur+ (u*A);. (5.7)
Themap T7 : Y — Y isnow defined by T7 mo = u§ x my, that is, by (5.3). By Proposition
5.3 (i) T7 isindeed a semigroup, that is, it satisfies Hypothesis 2.3. By the uniqueness result (iii)
of Proposition 5.3 thisis the only semigroup describing the dynamics at the population level. We

can thus summarize the contents of (Diekmann et al. 1998) as follows:

Theorem 5.4 Under Assumption 5.1, the linear structured population problemwith input has a
unique solution.

6 Nonlinear structured population models

In the previous section we showed that under Assumption 5.1 the model ingredients u; and A;
uniquely determine alinear semigroup {77} ;. B(z) ON (the span of) the p-state space. In this sec-
tion we shall formulate nonlinear population problems, where the input I is not given beforehand
but fed back into the system from an output.

When the output is obtained by applying a linear map from the p-state space Y € M.(Q2) to
Z we speak about a pure mass action problem. In thiscase we shall actually assume slightly more,
viz. that the output map H : Y — Z isrepresented by

H(m)=~vxm= /Q’y(x)m(da:) (6.2)

12



for some bounded and measurabley : 2 — Z. S0, in the pure mass action case the specification
of the nonlinear problem requires only one new ingredient: ~.
The x-product alows usto give anice representation of the input-output-input map P:

Ppo(I) =7 x u2(~)l X myg. (6.2)
We are now ready to formulate our first nonlinear structured popul ation problem.

Pure mass action problem. Given theingredientsuy, Ay and + and theinitia p-statemg € Y,
show that the input-output-input map P,,, defined by (6.2) has a unique fixed point I,,,, in some
space B;(Z). Thedynamical system describing the time-evol ution of the p-stateis then given by

S(t, mO) = Tp(t) mo

IT"/O

and we say that the problem has been solved.

Remark 6.1 Preferably there should be auniform (in mg) lower bound for s = s(myg), since such
a bound guarantees global existence. Asthe reasons for the existence of such abound (and hence
the techniques for deriving the bound) are quite problem specific, we do not deal withtheissuein
the current paper. Whenever amodel is based on energy budget considerations (Kooijman 2000)
we expect that globa existenceis guaranteed.

To solve the pure mass action problem one has to verify that P,,, maps B,(Z) into Bs(Z)
andis, for s sufficiently (depending on my) small, acontraction mapping once B;(Z) is equipped
with asuitable norm.

Aswe have seen in Section 1, time scal e arguments applied to mass action model formulations
may |ead to more complicated outputs, which either can be represented by a nonlinear map H on
Y or by alinear map on 'Y depending on theinput itself. In such cases there seems to be (always,
as far aswe know) ahierarchical structureinthesensethat 7 = 71 x Zs x - -+ x Zj and, in self
explaining notation,

Hi(y) = Li(y),
Hy(y) = Lao(l,y) = L2(L1(y), ), (6.3)

Hk(y) = Lk(Ila IQa ceey Ik—la y)

We call the resulting nonlinear structured population problem a generalized mass action prob-
lem. We shal concentrate on the case £k = 2 and formulate our results in such a way that an
induction argument settlesthe case of a genera k.

For the time being, let us restrict ourselvesto the case of linear output. Define, fori = 1 or ¢,

ob = x ub. (6.4)
Multiplying (in the sense of x) equation (5.7) from the left by v one obtains
of =or+ (0°*A); (6.5)

and thisis the equation we are going to analyse in the next section. What we shall do isformulate
assumptions on the maps I — oy and I — A and derive conclusions about the map I — of
which take the form of a Lipschitz estimate with a constant that tendsto zero as ¢(I) | 0.
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7 Lipschitz estimates

In our top down spirit we now start working downwards to derive sufficient conditions for the
assumptions concerning P, to hold. We start by alemma

Lemma 7.1 Suppose there exists a bounded and measurablefunction C'; : 2 x R4 — R such
that for o defined by (6.4) one has

0501 (@) = ofys(@)|| < Caa,s) 1T = T1], weQ, (7.1)
for all I and J in B,(Z) and such that
Ci(z,s) L0 (7.2)
forall z € Q. Then Hypothesis3.4 isverified for Y = M (©2) and P defined by (6.2).

Theidea of the proof of Lemma 7.1 issimple. Evidently (7.2) impliesthat

lé%l/gcl(x, s)mo(dx) =0 (7.3)

for al mg € M (Q2). Then, because by (6.2) and (6.4) one has

P,(I)= Op()1 X ™Mo, (7.9
we can apply the contraction mapping principle and conclude that Hypothesis 3.4 isindeed satis-
fied.

In this section we shall provide assumptionson A and oy, which together with (6.5) imply the
estimate (7.1) and hence yield existence and uniqueness of solutionsof the population problem.

So far the spaces B;(Z) and, in particular, the norm on them, have not been specified. But
gradually we need to become more specific. In the remainder of this section the norm is either
the Ly-norm || - ||z, in which case Bs(Z) = {I € L1 ([0,s); E): I(t) € Zfor dmostall ¢} or
the sup-norm || - ||, in Which case B,(Z) is either the space of bounded measurable functions
on [0, s) with values in Z or the space of regulated functions with this domain and range (we
define regulated functions as the uniform limits of step functions, see (Dieudonné 1969, p. 145)).
To understand why we restrict ourselves to these choices, recall that we need invariance under
concatenation.

When deriving estimates bel ow, the following lemma will come in helpful. We start by intro-
ducing some notation.

Let 2, C Q. For afunction f : B(Z) x @ — R wedefine f : B(Z) — R by

()= sup |f(O(—a)L,8)|, I€B(Z). (7.5
€€y, acl0,U(1))

When the argument I € B(Z) of f iswritten as a subscript, the same convention is used for f.
Thus, for instance, we write 5. If f has athird argument, which is kept constant when taking the
supremum in (7.5), then f gets an additional argument: for instance

AI(Qb) = sup A@(—a)[(éa Qb) .
£y, a€0,4(1))
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Lemma7.2 Let ¢, h and K be functions defined on B(Z) x Q with valuesin R ;. and assume
that

é(I,x) < h(I,z)+ d(I)K(I,x) (7.6)
and
K(I) < 1. (7.7)
Then, for ¢(I) sufficiently small,
o(I,2) < h(I,z)+ (1 - F(I))_IE(I)K(I, x). (7.8)

Proof. Replacing I by 8(—«)I in (7.6) and noting that ¢(6(—a)I) < ¢(I) we obtain
#(0(—a)l,x) < h(0(—a)l,z) + (1)K (O(—a)l,x).
So taking the supremum over x € 2, and o € [0, (1)) wefind
o(I) < h(I) + (1) K(I),
which, under the assumption (7.7), implies
o) < (1-K(1)) (D). (79)
Inserting (7.9) into (7.6) we find (7.8). o
Our first estimate gives a bound on o in terms of boundson oy and A;.

Lemma 7.3 Assume that there are positive constants K; and K> and a nondecreasing function
Ci(s), with limg o Ci(s) = 0, such that one hasfor all z € Q and all I € B(Z)

lo1(z)|p < K1 (7.10)
A[(.CC, Qb) S Kg (711)
andfor all z €
Ar(z, Q) < CL(L(D)). (7.12)
Then, provided C; (¢(I)) < 1,
0§ (2)|p < K1 (14 (1= C1(e(D)) " Ka) . (7.13)

Proof. If we take the E-norm of both sides of the convolution equation (6.5) we find by virtue of
Lemma4.1 theinequality (7.6) with

o(I,z) = l|of(2)|g
hI,z) = |or(z)|p
K(I,x) = Ar(z,$%)

and so the conclusion of Lemma 7.2 yields the estimate

05(@) s < lor(@)lp + (1~ K1) orAs(e, ) (7.14)

provided (7.7) is true. Note that (7.12) guarantees that (7.7) is true for ¢(I) sufficiently small.
Inserting the bounds (7.10), (7.11), and (7.12) into the estimate (7.14) we arrive at (7.13). i
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When estimating differences of outputs we are led to consider doubly parametrized families.
For inputs I; and I, of equd length (i.e., £(11) = ¢(I2)) wedefinethe Z x Z valued function I by
I = (I, I,). We then define the convolution product as before; cf. (4.5) and (4.6). Starting from
the two equations

0% = o + (oic *Ai)l, i=1,2,
where o} = oy,, €tc., we arrive by subtraction and rearrangement at
lc 2¢c 1 2 lc 1 A2 le _ 2c 2
01° — 07" = 07 0[—1—(0 *(A A))I—i—((o 0 )*A)I

> 0¥ — 0% = g1 + ((olc — 02‘3) * A2)1 (7.15)

with
gr :=or — 0¥ + (olc * (Al — Az))l. (7.16)

So the difference of, — of, satisfies a convolution equation with forcing function g;. We proceed
by deriving an estimate for g;.

Lemma 7.4 One has

91(@) < Jon, (@) = o, (@) 5 + 5,V (|Aprry = Apy| (%)) . (7.27)

Proof. Thisisnothing but Lemma 4.1 applied to the particular situation. o

Lemma 7.5 Assume (7.11) and (7.12). Provided C4 (¢(I)) < 1, the estimate
[of, () — of, (2)| g < lgr(@)| + (1= C1(U(D)) ™" Kagy (7.18)
holds.

Proof. Take the E-norm at both sides of (7.15) and note that this yields (7.6) with ¢, h, and
K replaced by, respectively, |of (z) — of, (:c)‘E, lg1(z)| g, and A, (x, Q). As(7.18) is nothing
but (7.8) written out for this choice of ¢, h and K, we are done (Strictly speaking we cannot
apply Lemma 7.2 as formulated, sincein that lemma the I-argument isthe same for all functions,
whereas now it differs. However, it should be clear that exactly the same sequence of arguments
can be applied to yield (7.18)). o

It remains to combine the lemmas into a more informative statement.

Proposition 7.6 Assume that there are positive constants K ; and K such that for all x € © and
all I € B(2)
lor(z)|p < K1, (7.19)

A[(-CC, Qb) < K. (720)

Assume, furthermore, that there are nondecreasing (as functions of s) functions C'1 (), Ca(z, s)
and Cs(z, s) which tend to zero as s | 0, in the case of index 2 and 3 uniformly for =z € Q, (but
not necessarily uniformly for € 2) such that

Ar(e, ) < CL(U(T)), (7.20)

lor(z) — 05 (z)| g < Ca(z, O[T = J]| (7.22)
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V (|Aprr = Bpya| (@) < Ca(w, O] = J| (7.23)
forallz € Qandall I, J € B(Z) of equal length ¢ = ¢(I) = £(J). Then
|07 (z) = 05(2)| g < (C2(0) + Cu(z, O) |1 = J], (7.24)

where Cs(s) and C4(z, s) are nondecreasing in s and tend to zero for s | 0 (in the case of C4
pointwisefor x € 2 but uniformly for z € Q).

Proof. By Lemma 7.3 and Lemma 7.4 we have
l91(2)|p < Cala, O = J1I, (7.25)

where
Cu(, ) i= C(z,8) + K1 (1+ (1= Cu(s) " K3) Cs(a, 9).

If weinsert (7.25) into (7.18) we obtain (7.24) with

Ca(s) = (1= Ci(s)) ™" K2 sup Cu(&, 5).
e

As astraightforward corollary we obtain the following theorem.

Theorem 7.7 Let Bs(Z) be equipped with the supremumnorm. Under the assumptions of Propo-
sition 7.6 the pure mass action problem has a unique sol ution.

Proof. It follows from the proposition that the inequality (7.1) holds, and this, as we have aready
shown, impliesthat the pure mass action problem has a unique solution. o

The derivation of the appropriate estimate for the L;-norm proceeds along exactly the same
lines. We start with the analogue of Lemma 7.3.

Lemma 7.8 Assume that there are positive constants K; and K and a nondecreasing function
Ci(s), withlimgo Ci(s) = 0, suchthat for all z € Q andall I € B(2)

dt < K, 7.26
/[o,e(l)) ‘Op(t)l(x)‘E = (720)
A[(.CC, Qb) S Kg (727)

andfor all z € Qp andall I € B(Z)
Ar(z, ) < CL(UT)). (7.28)

Then
/[0 «1) 951, At < Ko (14 (1= Cu(e(D) ™" Ka) (7.29)

forallz € Qandall I € B(Z)withCy(¢(1)) < 1.
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Proof. Consider again the convolution equation (6.5), but now in the form

Oty = Op(tyr + (0° A)p(t)l.

Taking the E-norm and integrating with respect to ¢ over [0, £(I)) we obtain the inequality (7.6)

with
¢ I,.’E - /
() [0,£(1))

h(I, :/ dt,
(L) = [ 0@
K(I,xz) = Ar(z, Q).

To see this, interchange the order of the two integrations in the convolution term. The inequality
(7.29) isthen obtained from (7.8) by using (7.26) — (7.28). o

oz(t)l(x) ‘E dt,

In completely the same manner we can prove the analogue of Lemma 7.5.

Lemma 7.9 Assume(7.27) and (7.28). Thenfor all I, J € B(Z) of equal length¢ = £(1) = ¢(J)
with C1(¢) < 1 one has

p — 0§ dt < / dtt
/[0,@ ‘Op(t)l(-l') Op(t)J(x)‘E = Jon) ‘gp(t)l(x)‘E

1-Ci(e(D) 'K sup / _or(z)|  dt. (7.30)
e ) N L BRI

Combining the lemmas 7.8 and 7.9 with Lemma 7.4 we obtain the following proposition and
its more fundamental corollary.

Proposition 7.10 Assume (7.26) — (7.28) aswell as

/[0 0 ‘Oﬂ“)f(x) - Op(tw(x)\E dt < Ca(z, ()| = J| (7.31)
and (7.23) for all I, J € B(Z) of equal length ¢. Then
/[0 ) ‘o,ﬁ(tﬂ(x) - O;(t)J(x)‘E dt < (Co(l) + Cy(z, ) || - J||, (7.32)

where Cs(s) and, for every x € Q, Cy4(x, s) are nondecreasing functions of s that tend to zero as
s 0.

Theorem 7.11 Let B;(Z) be equipped with the L;-norm. Under the assumptions of Proposition
7.10 the pure mass action problem has a unique solution.

In conclusion of this section we shall present the arguments that prepare the way for an appli-
cation of the contraction mapping principlein the case of the generalized mass action problem.

Lemma7.12 Let A; and A, be Banach spaces and let for all a = (a1,a2), b = (b1,b2) €
A1 X AQ,H = (Hl,HQ) : A1 X A2 — A1 X A2 satlsfy

[Hi(a) — Hi(b)[[a, < Alla—0bl],
[H2(a) — Ha(b)[[4, < Alla—bl|+ Kl[ar — b1l a,
for some positive constants A and K. Here || - || isthel;-normon A; x As. Then
| H*(a) — H2(b)]| < (47* + 3AK ) la — b] (7.33)

foralla, b€ Ay x Ay, where H?> = H o H.
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Proof. One has

|HE (@) = H{(®)| < A|H(a) - H()|
< A2Ma—b| + Klar — bila,) (7.34)
< (2)\2 + K)\) lla — b]|
and
|H3(a) = H3®)| < A|H(a) - H®)| + K| Hi(a) — Hi(D)]|4,
< (204 KA [la— bl + KA|la - b| (7.35)
= (224 2K)) [la—b].
Adding (7.34) and (7.35) one obtains (7.33). o

Within our framework A; = Bs(Z;) and H isthe output map, cf. (6.3). The \ then depends
on s and tends to zero as s | 0, while K stays bounded away from zero and infinity (so may
be chosen independent of s). For s sufficiently small, 4\? + 3AK < 1 and we can apply the
contraction mapping theorem to H2. The conclusion isthat H? has a unique fixed point, say @.
But as H (a) is afixed point of H?2, too, uniquenessimplies that actually @ must be a fixed point
of H itself.

In Lemma 7.12 we have chosen the [1-norm on the product space A; x A,, but, as al norms
on R? are equivalent, any other choice would have done equally well. Of course the expression
for the Lipschitz constant for H?2 interms of A\ and K depends on the choice, but in all cases this
Lipschitz constant tendsto zeroas A | 0.

8 Estimatingindividual output

Let us assume that the interaction variable takes values in a finite dimensional space, say R*.
Moreover, let us speciaiseto the situation where the i-state space 2 is a (connected) subset of R™
for some n with piecewise smooth boundary. We now concentrate on deter ministic development
of individuas, which we cal growth. We refer to (Diekmann et al. 1998, Section 8.3) for an
exampl e involving random movement in 2.

Let X(zo) denotethe i-state of an individual at time ¢(1), given that

e it had i-state zq at time zero,
e it experienced input I,
e it survived.

Similarly, let Fr(xo) denote the survival probability at time ¢(I) of an individua which had
i-State x at time zero and experienced input 1.

Concerning reproduction, let us assume that the state-at-birth has a distribution described by
a probability measure my, (concentrated on a subset 2, of Q), irrespectively of the state of the
mother at the moment of giving birth. The particular case of a fixed state-at-birth x; corresponds
to the choice m, = d,,. Let L;(xo)denote the expected number of offspring produced by an
individual with i-state z at time zero in thetimeinterval [0, £(I)) while experiencing input 1.

The assumptions made above mean that the ingredientsu; and A take the forms

u[(xa w) - 5X1(;r)(w)fl(x)? (81)
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Ar(w,w) = Li(a)my(w), (82)
for z € 2 and w ameasurable subset of 2. Asaconsequence

or(x) = (v X ur) (x) = /Qv(é)fl(w)%,(x)(dé) = v(X1(2)) Fi(x), (8.3)

where v istheindividua output function.
We shall need the following hypotheses.

Hypothesis8.1 Thereexistsaconstant K and anondecreasingfunctionC; : Ry — R tending
to0ass | Osuchthatforal I € B(Z)andal x € Q onehas

Li(z) < Ko (8.4)
andfordl I € B(Z) andal = € Q; onehas
Li(z) < CL(¢(D)). (8.5)

Hypothesis8.2 Let I and J be two inputs of equal lengths: ¢(I) = ¢(J) =: £. There exist finite
positive numbers C'x (¢), Cx(¢), C1(¢), depending only on ¢, such that for each zy € Q2

[ X1 (20) — Xy(20)| < Cx(f) /OZ [1(s) = J(s)|ds, (8.6)
[Fr(zo) = Fi(xo)| < Cr(€) /OZ [1(s) = J(s)|ds, (8.7)
| L1(x0) — Ly(wo)| < CL(¢) /OZ [1(s) = J(s)|ds. (8.8)

Hypothesis 8.1 expresses the natura requirement that no-one begets an infinite number of
children and that newborns cannot get a positive number of offspring immediately upon birth.
This latter requirement is of course automatically satisfied if every x € €, is a state with positive
reproduction delay (cf. Definition 5.2).

Hypothesis 8.2 contains natural Lipschitz-type conditions, which, as we show below, can eas-
ily be verified if individual behaviour is described in terms of rates satisfying corresponding Lips-
chitz estimates.

Theorem 8.3 Let B,(Z) be equipped with the supremumnormand let v : 2 — Z be bounded
and globally Lipschitz continuous. Then, under Hypotheses 8.1 and 8.2, the pure mass action
problem has a unique solution.

Proof. According to Proposition 7.7 we have to verify that the inequalities (7.19) —(7.23) hold
true. The estimate (7.19) holds because by (8.3) one has

lor(@)|g = Iy (X1(2)) F1(2)|g < V]l -

It followsfrom (8.2), the fact that my, isa probability measure, and Hypothesis 8.1 that (7.20) and
(7.22) hold. One has

[y (X1(2)Fir(z) —v(Xs(2) Fs(2)|p
K[X1(z) = X5(2)|g + [Vl [Fr(z) — Fs(2)]
c(0) /M 1I(s) = J(s)|ds

COLN = I oo,

lor(z) — os(2) g

ININ

IN
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which showsthat (7.22) holds.
To prove (7.23), recall that for afunction ¢ defined on an interval [a, b] thetota variation V (¢)

is defined as "
V(¢) =sup > [d(t;) — o(tj-1)l,
j=1

where the supremum is taken over dl partitions{a = to, t1, ..., tn—1,tn, = b} Of [a, b]. One gets
V ([Zo1(2) = Lot ()
- SUPZ ‘Lp(t] Loty = Lpgt;—1 + Lp(tj—l)‘]‘
- SUPZ ‘Lp(tj—tj—l)é’(—tj—ﬁf - Lp(tj—tj—l)é’(—tj—l)nf‘
< sup Y Culty i) | 0(—t;-1)I(s) — 0(~t;-1)J(s)] ds
[0,t5—tj—1)

= sup 3 Cult; — i 1) / I(s) — J(s)|ds

[tj—1:t5)
Cu(e) [ 115) = J(s)lds,
[0,6)

from which it follows that (7.23) is satisfied. o

IN

The L'-case is proven in acompletely anal ogous manner by verifying that the assumptions of
Proposition 7.10 hold. The assumption of auniformly bounded life-expectancy is needed to verify
(7.26). Therefore we formulate the following hypothesis.

Hypothesis8.4 Thereexistsan M < oo such that
z,Q)do < M 8.9
/[O,l(l)) up(a)[( ) = ( )

forevery x € Qandevery I € B(Z).
We state the result in the L!-case without proof.

Theorem 8.5 Let B;(Z) be equipped with the L!-normand let v : Q — Z be bounded and
globally Lipschitz continuous. Then, under Hypotheses 8.1 — 8.4, the pure mass action problem
has a unique sol ution.

Hypothesis 8.2 is easily verified if growth, survival and reproduction are modelled by instan-
taneous rates depending on the i-state and the environmental condition and if these rates are,
for instance, globally Lipschitz continuous in both their variables. Soletg : @ x Z — Ry,
pw:Q2x7Z—Ry,0:0QxZ— R, bethegrowth, death and fecundity rate, respectively. This
means that ¢ — X ,;)7(o) isthe unique solution of theinitial value problem

Ca(t) = glalt), (1)), (810)
z(0) = o, (8.11)
that
Frzo) = e Sy (X1 (5)) ds (8.12)
and that o
Li(wo) = [ B (Xp1(a0). 1()) F 1 (ao) ds. 613
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Proposition 8.6 Assumethat X ;(zo), Fr(xo) and L;(x) are defined by (8.10) — (8.13), where
the functions g, p and 8 are globally Lipschitz continuous in both variables and S is bounded.
Then the Hypotheses 8.1 and 8.2 hold true. If u(z,z) > ¢ > 0 for all (z,2z) € Q x Z, then
Hypothesis 8.4 holdstrue.

Proof. That Hypothesis 8.1 is satisfied follows under the given assumptions immediately from
(8.13). By (8.1) and (8.12) one has

/ up(a)[(xaQ)dO':/ fo ( p(s)1(x),1(s ))dst'
[0,£(1))

[0,((1))

from which Hypothesis 8.4 follows via the assumption made on .
To verify Hypothesis 8.2, first note that by (8.10) and (8.11) one has

(1)

X1(z0) = 20 +/O g (Xp(S)I’I(s)) ds

and hence, by the global Lipschitz continuity of g,
‘Xp(t)l(xo) - Xp(t)J(xO)‘ <
K/ 1I(s) — J(s)| ds + K/ ‘Xp( (20) — X p(s )J(xo)‘ ds (8.14)
for some finite constant K. Applying Gronwall’slemmacto (8.14) one obtains
(1)
| Xr(ao) = Xs(ao) [ K [ XD 1(9) = ()] ds
from which (8.6) follows immediately.

Because |[e™* — e7Y| < |z —y| forxz > 0, y > 0, it follows from (8.12) and the global
Lipschitz continuity of u that

|Fr(zo) — F(zo)| < /OZ(I) ‘u (Xp(s)l, [(s)) — (XP(S)J, J(S))‘ ds

(1) o
<K /0 X0 1(0) = X 05 (0)| ds + K /0 1I(s) — J(s)| ds. (8.15)

(8.7) now followsfrom (8.6) and (8.15).
Finally, using the fact that F;(x¢) < 1 for al I, and the assumptions about 3, one finds from
(8.13) that
|Li(wo) — Ly(xo)| <

/z(I ‘5( p(s)1> L (s )) ﬁ(Xp(S)J, J(s))‘ ‘j—“p() (960)‘ ds

o(1)
/ ‘ﬁ( p(s)J> (3))‘ ‘fp(s)l(%) _:Fp(s)J(xO)‘ ds <

o(I) (1)
K/ X, 1(w0) - Xp(S)J(xO)‘ ds + K/O I(s) = J(s)| ds
oI)
+K/ ‘ p( VI (.CC())‘ ds. (8.16)
(8.8) followsfrom (8.6), (8.7), and (8.16). o
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Aswe have argued in Section 1, certain idealisations, which are made to keep the model pa-
rameter scarce, yield functions~ that have jumps (and so are only piecewise Lipschitz continuous).
The aim of the remaining part of thissection isto derive the estimate (7.31) for a simple prototype
example of a~ with jumps.

Let us assume that the i-state space is one-dimensional, that is, @ < R. We ignore the
possibility of death and assume that the individual growth rate ¢ is bounded away from zero, that
is, thereexistsan ¢ > 0, such that g(z, z) > e foral (z,z) € Q x Z (see Remark 8.8 if you find
this assumption overly restrictive). Finally, let there be ajump point 7 € €2 such that

(2) = 0 ifz<z,
T =11 ifz <,
thevalue of v a T being irrelevant.
For agiven input I and given initia i-state z(y we can ask when an individua will reach the
jump point Z. The answer is obtained by solving the equation

Xp(s)[(x()) =T (8.17)

for s as afunction of zy and I. There may be no solution, but if there is one, it is unique by the
strict monotonicity of the map s +— X ,,)7(w0). We denote the solution (defined on a subset of
Q2 x B(Z) and teking valuesin R.) by § = §(x, I).

Alternatively we may solve (8.17) for x( as afunction of s and I. The solution (defined on a
subset of Ry x B(Z) and taking valuesin 2) is denoted by z = (s, I).

Now let I and J beinputs of equal length ¢(1) = ¢(J) = ¢£. Then we define

Smin(x0) = min{8(xo, I), 5(xo, J)},
Smax(zo) = max{5(zo,I),3(xo,J)}

with the conventions that 5p,ax (o) = ¢ if at least one of the elements (xo, I), (zo, J) isnot in
the domain of § and that 8,,in (o) = ¢ if both these elements are not in the domain of 5. We need
these quantitiesto describe the function

¥(z0,t) = |7 (Xp(0y1(20)) =7 (Xpe1s(20))] (818)
which is at the centre of our interest because
‘Op(t)l(xﬂ) - Op(t)J(xO)‘ = (o, 1). (8.19)
Clearly,
0 ifo<t< 5(.280),
¢($0, t) = { 1 if Emin(.iv()) <t< §max($()), (820)
0 if Emax(xg) <t
and consequently
Y
/ (0, ) dt < umae (20) — Frmin (0). (8.21)

We now claim that
C())

e

/O ") — J(0)] dt. 8.22)

gmax(xﬂ) - gmin(xﬂ) S

To substantiate this claim we assume that S, (z9) = §(x, I). The lower bound of the growth
rateimpliesthat for ¢ > 5(xo, I) we have

X,y1(w0) > T +e(t — 3(xo, I)).
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On the other hand, we have the Lipschitz estimate (8.6) which implies that

4
Xpr(@0) = Xpaao)| < € [ 11() = I(o)] ds.
With § = Spax(z0) = §(0, J) for brevity, we have

T = X,57(20) = Xp3)1(w0) + Xy (20) — X p(s)1(0)

> T+ (8 — 5(zo, 1) C’/ |1(s) s)| ds,
which impliesthat
§(wo, J) — 8(o, T <—/ I(s) — J(s)| ds,

that is, the estimate (8.22) holds.

Inthe estimate (8.22), however, welosealot of information. Indeed, Syax (o) — Smin (o) = 0
when both 3,,ax () and Syin (o) areequd to ¢, soinparticular when xy < min{z(¢, ), z(¢, J)}.
If we combine this observation with the estimate (8.22) we can deduce from (8.21) the estimate

/()€¢(x0,t)dt< / 11(5) = J(3)| dsX(o.oo) (w0 — min{F(6, T), 5(6,0)}),  (8.23)

where x|o,) is the characteristic function of [0, co), that is, the Heaviside function. Recalling
(8.19) we note that thisis exactly of the form (7.31) with Cs(x, £) being, for fixed zy < Z, equal
to zero for ¢ sufficiently (depending on zy) small.

Proposition 8.7 Let Q ¢ Rand Z ¢ RF and let vy : Q — Z be piecewise globally Lipschitz
continuous. Assume that £ > 0 exists such that for all I € B(Z) and all = € €2 theinequality

X[(.CC()) — X Z EK(I)

holds. Moreover, let the Lipschitz estimates (8.6) and (8.7) hold. Then, if I and J are two inputs
of equal length ¢, we have the inequality

A
/0 ‘7 (Xp(t)z(xo)) Foyr(To) =y (Xp(t)J(xO)) -,Fp(t)J(xO)‘ dt <

C(wo, ¢ / \I() — J(8)| dt

for afunction C for which lim, o C(zg, ) = 0 for every z, € 2.

This proposition can easily be proven by using the estimate (8.23) and the fact that a piecewise
Lipschitz continuous function can be written as the sum of atruly Lipschitz continuous function
and a finite number of multiples of Heaviside functions.

Remark 8.8 Note that in a similar manner one can relax the lower bound on the growth rate: it
need only hold near to the jump pointsof ~.

To conclude, we stress the two points that are essential for dealing successfully with discon-
tinuous functions ~ (‘ successfully’ meaning that we can use a contraction mapping argument to
prove well-posedness). Thefirst isthat we use the L -norm to measure inputsand outputs (indeed,
(8.20) showsthat the supremum norm of the difference in output cannot be bounded by amultiple
of the sup-norm of the difference in input). The second is that it is sufficient that the Lipschitz
constants tend to zero pointwise, but not necessarily uniformly, in the i-state o, when the time
window shrinksto zero.
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9 Back to the cannibalism example

In this section we show how the general theory applies to a nontrivial example, viz. a model
involving cannibalistic behaviour. In Section 1 we introduced various ingredients of such amodel,
but we did not provide afull specification. So before embarking upon the application of our results,
we first give amore precise description.

Individualsare characterized by their size x > x3, where x;, is the size at which they are born.
They grow, dieand reproduce withrates g, 1 and 3, respectively. Theserates depend on thei-state
as well as on the environmental condition.

The pde formulation of the model is

@—Fi(n)*—n
ot T og 9 T THWm

g = Ondzx,
z=zp z>Tp

with g, u, and 3 as specified below. In our view, thisis only a convenient short-hand notation.
In a preprocessing step we form u; and A7 via (8.1) and (8.2) with X;, F7, and L; given by
(8.10) — (8.13). Next we apply the machinery developed in Part | (Diekmann et al. 1998) and the
present paper. The main result isthat a popul ation semiflow is constructively defined, given certain
assumptionson g, u, and 5. In our eaboration below we do not strive for the utmost generality.
Yet, on the other hand, we want to demonstrate the flexibility of our approach by including a case
in which the behaviour of individuals changes abruptly upon passing acritical size.

The environmental condition has three components corresponding to, respectively, the reduc-
tion factor (I3(¢, )" of search time due to handling of prey, the rate of food ingestion I; (¢, x)
expressed in energy units, and the death rate I5(t, =) partly due to cannibalism. With slight abuse
of notation we now formulate an assumption concerning the specific form of these quantities as
follows:

I5(t,) = 1+ H(z)O(@)Z(x) + b (2)0(2)Os(0), ©1)
n(t,2) - ZICOILUDOWD, 02)
(t,) = o(x) + o(x)0al0). 03

The meaning of H(x), C(z), Z(z), ¥(z), E(z), o(z) and ¢(x) as well as that of O:(t) and
O, (t) has aready been explained in Section 1. The additional assumption underlying (9.1) — (9.3)
isthat

h(z,y) = hi(z)ha(y) (94)

and that
@@—Amﬁmwmmm» (95)

There are two more parameters entering the model description. One is the maintenance rate con-
stant . The second is the size specific alocation rule x(x) which describes how much of the
ingested energy goes to growth and how much to reproduction.

We are now ready to givethe formulasfor g, i, 8 and the three-vector ~ in terms of x and the
three-vector I(¢), that together fully specify the model:

- E(z)C(2)Z(z) + ()1 ()
g(x, I(t)) = (1 = k() 7 H(z)C(x)Z(x) + hy () () I3(t)

p(z, 1(t) = o(z) + ¢(z) Ia(1), (9.7)

- Cxa (96)
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B L0) = M) T S e T ©9
() = e(2)d(2), ©9)

) b(@)
20 10) = T H 6@ 2) + m@e @ B (510
13(2) = hale) () (011)

All functionsfeaturing in this description take nonnegative values. We assume that for somee > 0
andfor al x > (£)C() 2()
E(x)C(z)Z(z
1—

A=) @ zm)

which tells us that growth will never stop (in fact, this assumption is debatable and alternatives
like von Bertalanfy growth and/or a reserve compartment have been considered, cf. (Kooijman
2000; Metz and Diekmann 1986); however, here we do not want to complicate the formulation of
the results by having a size upper bound and the possibility of shrinkingwhen maintenance cannot
be covered by food). We also assume that al functions of x are bounded.

—(x > ¢, (9.12)

Theorem 9.1 Let { > 0 and let bounded, nonnegativefunctions £, C, Z, e, ¢, 1, o, H, hy, hs,
and «, defined on [z;, 00), be given. Assume that (9.12) holds. Also assume that all functions
are globally Lipschitz continuous, with exception of ¢, which is only piecewise globally Lipschitz
continuous. Then there exists a population semiflow corresponding to the individual behaviour as
embodied in (9.6) — (9.11).

Sketch of proof. When hy(z) = 0 (that is, when cannibalistic predation has negligible influence
on search time) and all functions of x are globally Lipschitz continuous, we can apply Theorem
8.3. Retaining the Lipschitz condition but allowing h; (x) to be nontrivial, we have to extend the
underlying lemmas and theorems by means of Lemma 7.12. If we choose, for instance, ¢ (z) =
X[0,00) (T — 4) we need Theorem 7.11 in combination with Proposition 8.7. m|

10 Concluding remarks

In this paper we have proven existence and uniqueness of solutions of a general nonlinear struc-
tured population model and applied the result to a concrete model involving cannibalistic be-
haviour. We trust that our approachissuch that it appliesdirectly, or with only slight modifications,
to alarge class of structured population models.

A characteristic feature of structured population models is that the nonlinearity enters the
model viafeedback throughthe environment. Thisfact givesaclueto the existence and uniqueness
proof: One first pretends that the environmenta condition (the input) is known during a time-
interval, then one ca cul ates the corresponding output and iterates. The solutionisthus constructed
by successive approximations. In the context of structured population models thisidea goes back
(in the case of age-structured models) at least as far as Gurtin and MacCamy (1974). Various
extensions and generalizations of the Gurtin-MacCamy model have been treated by essentialy the
same method in anumber of papers; see the book by Webb (1985) and the references therein.

Age-dependent problems are very specia in the sense that aging is not affected by the envi-
ronment: chronologica age aways advances at the same rate as time. Nonlinear age-structured
models are thus semi-linear problems, which are rather innocent nonlinear perturbationsof awell-
understood linear problem. When the individual development rate is alowed to depend on the
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environmental input, the problem becomes quasi-linear and thus essentially more difficult. Conse-
guently thereare only afew paperswith existence and uniqueness proofsfor such model s, the most
important being (Tucker and Zimmermann 1988; Thieme 1988; Calsinaand Saldafia 1995, 1997).
Tucker and Zimmermann (1988) assumed that the state-at-birth is distributed and that the popula-
tion can be described by a density function; Thieme (1988) concentrated on the Kooijman-Metz
Daphnia model and related certain model assumptions concerning individual energy allocation to
uniqueness of solutions; Calsinaand Saldafa (1995, 1997) did restrict to one-dimensional i-state
space, in other words, to size structured popul ations.

All the authors mentioned above formulated their model s anal ogously with the age-structured
model as ahyperbolicpartia differential equation supplemented by anonlocal boundary condition
describing the birth process. Diekmann et al. (2000) gave examples of how uniqueness can fail
for such equations and pointed out that the problems leading to nonuniqueness are completely
hidden in the pde formulation (see also Diekmann et al. 19933, 1995). Therefore we have in
this paper chosen the “cumulative” formulation of structured population models (Diekmann et al.
1993Db, 1998), which takes as model ingredients not the individual vital rates, but the kernels u;
and A;. An additional bonus of this approach is that stochasticity at the individual level can be
incorporated at no extra cost.

Next on our agendaisthe writing of a paper showing how to determine in an efficient manner
steady p-states from the ingredientsuy, Ay and . Thisis essentially an elaboration of Theorem
6.1 in (Diekmann et al. 1998) together with a feedback fixed point problem. A formulation
of alinearized stability test in terms of the position of the roots of a characteristic equation in
the complex plane relative to the imaginary axis seems within reach (see eg. Kirkilioniset al.,
preprint). A rigorousjustification of thistest, however, is still adaunting task.

Finally we emphasize that our approach is not restricted to single-species models. As for-
mulated in this paper our model actually includes the multi-species case: If there are k interact-
ing species with individua state spaces, 1, Q, ..., Qg, respectively, then one simply defines
Q=0U2%U...UQ. The species interactions are modelled in terms of the environmental
inputs.
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