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Abstract

We define a linear physiologically structured population model by two rules, one for reproduction
and one for “movement” and survival. We use these ingredients to give a constructive definition of
next-population-state operators. For the autonomous case we define the basic reproduction ratio
R0 and the Malthusian parameter r and we compute the resolvent in terms of the Laplace trans-
form of the ingredients. A key feature of our approach is that unbounded operators are avoided
throughout. This will facilitate the treatment of nonlinear models as a next step.
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On the Formulation and Analysis of
General Deterministic Structured Population Models

I. Linear Theory

Odo Diekmann
Mats Gyllenberg

J.A.J. Metz
Horst R. Thieme

1 Introduction to physiologically structured population models

The agenda of a modeller of biological populations could look as follows:

1. Model mechanisms at the i-level (i for individual),

2. lift to p-level by bookkeeping (p for population),

3. study phenomena at the p-level.

So the aim of a modelling exercise is to investigate how mechanisms at the i-level relate to phe-
nomena at the p-level. In step 2 deterministically inclined people, such as the majority of us, use
a formal law of large numbers argument to restrict to expected values, and this is exactly what we
shall do in this paper. In the theory of multi-type branching processes (see Jagers [20, 21] and the
references given there) one takes the full probabilistic structure into account, which allows one
to study, for example, fluctuations around the mean due to demographic stochasticity. For con-
crete examples of steps 1-2 we refer to METZ & DIEKMANN [25], KOOIJMAN [23], DE ROOS,
DIEKMANN & METZ [26], DE ROOS [27].

The set of all conceivable i-states is called i-state space. We shall denote it by Ω (as an
example, think of Ω as a subset of the positive age-size quadrant).

We shall assume that the outside world influences individuals through so-called environmental
interaction variables, denoted by E and taking values in an environmental space E (as an example,
think of E asR+ with E describing the concentration of a limiting nutrient, say in a chemostat).

The processes that have to be modelled are:

• growth (i.e. i-state development)

• survival

• reproduction (how much offspring and with what i-state at birth?)

• feedback (i.e. influence on the environmental interaction variables, such as consumption of
the nutrient)

1



And “modelling” here means that these processes have to be described in dependence on the i-
state and the environmental interaction variables (we refer to the book by KOOIJMAN [23] for a
systematic exposition of the physical, chemical and biological considerations that are needed to
do so). Traditionally, this is done in terms of rates.

The traditional version of step 2 then leads to a first order partial differential equation (pde)
with, as a rule, a non-local boundary condition describing the inflow of newborn individuals along
that part of the boundary ofΩwhere the flux points inwards. The unknown in the pde is the density
function describing population size and composition (that is, for each time we have an element
of L1(Ω)). The equation is the analogue of the Kolmogorov forward equation from probability
theory.

Often it is advantageous, or even necessary, to describe the population size and composition
with a (positive) measure on Ω (which is not necessarily absolutely continuous, i.e. for which a
corresponding density function may not exist). One then uses duality theory by describing the
dynamics in terms of the Kolmogorov backward equation, for a function of time with values in
C0(Ω), which is the pre-adjoint of the forward equation (see HEIJMANS [17, 18] for some nice
examples).

In any case, the traditional formulation of the model at the p-level takes the form of a formal
differential equation involving non-local terms. Despite strong efforts over an extended period
of time, the present authors did not manage to build a qualitative theory for infinite dimensional
systems describing physiologically structured populations when taking such a model formulation
in terms of a would-be infinitesimal generator as their starting point (we like to add, to our defence,
two remarks to this disclaimer

• even though we never reached the ultimate goal, some interesting (and even elegant, we
think) mathematics resulted from our attempts, see [1, 2, 3, 4]

• one should realise that, for a given time course of the environmental variables we have a
non-autonomous linear problem, while with feedback to the environment we are in a quasi-
linear situation).

The main difficulty can actually be explained in biological terms. To keep models parameter
scarce, one wants to allow for discontinuities (with respect to i-state) in the rates (think of water-
fleas that start to reproduce upon reaching a critical size). Now consider a situation in which the
i-state of some individual moves in Ω for an extended period of time along a line of discontinuity
of, say, the rate of offspring production. Then the ‘model’ is not acceptable as a model and one
should not expect that existence and uniqueness of solutions at the p-level holds. Whether or not
this phenomenon actually occurs in a specific model, is hidden in the rates. It is the combined,
global, effect of the rates that makes the difference between the model being ill or well posed!

Mathematically we might say that it is hard to express the requirement that characteristics and
surfaces of discontinuity cross transversally in verifiable abstract terms.

The aim of this paper is to present an alternative mathematical formulation of structured pop-
ulation models. The ingredients, that serve to describe the processes at the i-level, are not rates,
but quantities at the ‘global, combined’ level, such as survival functions. We stress that these are
actually closer to observable quantities than the rates. The advantage is that good and bad models
are distinguished from one another in terms of these ingredients, that is before one starts the math-
ematical analysis. (If actually the model is first given in terms of rates, one has a phase in between
modelling and analysis in which the new ingredients have to be computed from the rates; essen-
tially this amounts to integration along characteristics and it is in this phase that transversality is
checked.)
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The corresponding p-equations, as presented in our papers [3, 4], are not pde, but renewal
integral equations. Since the formulation does not involve unbounded operators, there are no
regularity questions (if one does not differentiate, one is saved the hard technical task of finding
necessary and sufficient conditions for this to be allowed; or, in other words, of turning a formal
differential expression into a well-defined operator by specifying its domain of definition).
In this paper we achieve a substantial technical simplification (compared to [3, 4]) by postponing
the step from i- to p-level. Here we shall perform the construction of the generation expansion (that
is, the iteration of the reproduction rule to specify the expected total offspring (entire clan)) at the
i-level. The step to the p-level then simply amounts to adding the contributions of all individuals.
Mathematically it means that we define a semigroup of operators by means of a family of kernels
(Green’s function). The advantage is that standard integration theory suffices and that there is no
need to go into the intricacies of abstract (Stieltjes) integration. It reduces the role of duality. In
particular we are no longer obliged to consider dual evolutionary systems and this frees us from the
need to make unwanted assumptions concerning the behaviour at the boundary of Ω or at infinity
(see [3, 4]).

The formulation presented here overlaps considerably with that of multi-type branching pro-
cesses. In essence, we simply restrict to expected behaviour. What we add, however, is the notion
of i-state and, at the p-level, the evolution operators mapping the p-state at some time onto the
p-state at a later time. When the environmental variables are given, the problem is linear, individ-
uals act independently, and the extra bookkeeping only puts on some frills. But in order to treat
problems that are nonlinear by feedback through the environment, the notion of ‘state’ (both at the
i- and at the p-level) is essential, we think. It remains to investigate whether, and in what sense, the
nonlinear deterministic model formulation is the limit of a stochastic model for initial population
size tending to infinity (see e.g. [11]). We hope that this paper is written in such a way that our
probabilistic colleagues feel invited to give it a try.

In this paper we ignore the complications of sex and pretend that mothers produce daughters
without intermediary agency of males.

2 Reproduction in a fluctuating environment

Our point of view is that structured population models are nonlinear by feedback through envi-
ronmental variables. So if one experimentally manipulates the environmental variables (e.g. by
controlling the food availability), the feedback loop is broken and a linear (i.e. density indepen-
dent) situation obtains. Alternatively one can think of the linear situation as corresponding to a
thought experiment and subsequently bring the feedback back in as a second step. This approach
then leads to a fixed point problem for the environmental interaction variables. We intend to deal
with these fixed point problems in part II of this work.

We choose to suppress the environmental variables in our notation and instead take time t as
a variable in the model ingredients. In part II we shall work, in contrast, with ingredients that
depend on the environmental variables, which in turn depend on time t.

We assume that i-states are elements of a measurable space Ω with a countably generated σ
algebra. We shall frequently consider subsets of the product spaceR+×Ω, whereR+ is equipped
with the σ-algebra of Borel sets. We shall often omit the adjective ‘measurable’ when introducing
sets.

2.1. The reproduction kernel

Consider an individual which at time t has state x ∈ Ω. Suppose at time t + s this individual
produces a child that has state y ∈ Ω at birth. Then we shall call (s, y) ∈ R+ × Ω the birth
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coordinates of this child.
The reproduction kernel Λ is by definition the expected number of children. More precisely

we have that, for all (t, x) ∈ R× Ω and subsetsA ofR+ ×Ω,

Λ(t, x)(A) = the expected number of children, with birth coordinates in
A, of an individual which at time t has state x

(2.1)

So for the particular case A = [0, s)× ω, for some subset ω of Ω, this is the expected number
of children produced in the time interval [t, t+ s) with state-at-birth in ω. A structured population
model requires first of all a specification of Λ. Thus we consider Λ as the first and most basic
ingredient of such a model.

2.2. The generation expansion

The kernel Λ describes the first generation. We want to iterate the reproduction kernel to account
for the fact that children get children etc. As the time component of the birth coordinates refers to
the time difference between the reproduction event and the moment we focussed on the ancestor,
we have to shift the subsets of R+ × Ω in the time direction when we shift attention from one
individual to another. It therefore pays to introduce the following notation:

A−τ := {(σ, ξ) ∈ R+ × Ω : (σ + τ, ξ) ∈ A} (2.2)

Note that whenA is bounded in the time direction, A−τ = ∅ for τ sufficiently large.
We now define

Λk(t, x)(A) = expected number of k-th generation offspring,
with birth coordinates in A,
of an individual which at time t has state x

(2.3)

(and emphasize once more that the time component of the birth coordinates depends on both the
ancestor whose descendants we consider and the moment at which we focussed our attention on
that ancestor). Consistency requires that

Λk+1(t, x)(A) =
∫

R+×Ω

Λ(t+ τ, ξ)(A−τ)Λ
k(t, x)(dτ × dξ) (2.4)

and thus we can build Λk from Λ by iteration. We still need to formulate hypotheses on Λ which
are sufficient to guarantee that this construction of later generation kernels is well defined. The
next subsection and the appendix together provide the necessary mathematical background.

2.3. Kernels and the ⊗-product

Let M+(R+ × Ω) denote the set of positive measures on R+ × Ω, that is, measures defined on
the product σ-algebra with values in R̄+ = [0,∞].

DEFINITION 2.1. A functionΨ : R×Ω→M+(R+×Ω) is called a kernel if, for any measurable
set A ⊂ R+ ×Ω the function

(t, x)→ Ψ(t, x)(A)
fromR× Ω to R̄+ is measurable.

OnM+(R+ × Ω) we define the order relation≥ by:

m1 ≥ m2 if and only ifm1(A) ≥ m2(A) for all measurable A.
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The ordered cone M+(R+ × Ω) inherits monotone sequential completeness from R̄+: every
monotonically increasing sequence of elements ofM+(R+ ×Ω) has a limit inM+(R+ ×Ω).

We lift the order relation to the set of all kernels by requiring that the inequality holds for all
(t, x) ∈ R×Ω. Since the pointwise limit of measurable functions is measurable, the set of kernels
inherits monotone sequential completeness. In particular, every series whose terms are kernels has
a well-defined sum, which is a kernel.

We shall use the notation Ψn ↑ Ψ∞ whenever we have monotone convergence of kernels in
the point- and setwise sense specified above.

Next we introduce more algebraic structure on the set of kernels. In the Appendix we show that
for every measurable set A ⊂ R+×Ω the mapping (t, τ, ξ) 	→ Ψ(t+ τ, ξ)(A−τ) is a measurable
function fromR×R+ ×Ω to R̄+. So the definition

(Φ⊗Ψ)(t, x)(A) =
∫

R+× Ω

Φ(t+ τ, ξ)(A−τ)Ψ(t, x)(dτ × dξ) (2.5)

makes sense. In the Appendix the following collection of results is proved. (The algebraically
inclined reader will recognize that the set of kernels is a semi-ring.)

THEOREM 2.2.

(i) Φ⊗Ψ defined by (2.5) is a kernel
(ii) the ⊗ product is associative: Θ⊗ (Φ⊗Ψ) = (Θ⊗Φ)⊗Ψ for all kernelsΘ,Φ,Ψ

(iii) the ⊗ product is distributive:

Θ⊗ (Φ +Ψ) = Θ⊗Φ+ Θ⊗Ψ
(Φ +Ψ)⊗Θ = Φ⊗Θ+Ψ⊗Θ

for all kernelsΘ,Φ,Ψ
(iv) the ↑ limit and⊗ commute:

Φ⊗Ψn ↑ Φ⊗Ψ∞
Ψn ⊗Φ ↑ Ψ∞ ⊗Φ

whenever Ψn ↑ Ψ∞.

It follows from this theorem that parentheses are superfluous in arbitrary finite products and, in
particular, that the kth-powerΨk of a kernelΨ is well-defined. By monotone convergence the sum
of these powers exists. Exploiting the properties (iii) and (iv) in the theorem above, one verifies
that the sum is the solution of an equation, the so-called resolvent equation. We formulate this
result as

THEOREM 2.3. Let Ψ be a kernel. For any measurable subset A of R+ × Ω and any (t, x) ∈
R×Ω, the series

∞∑
k=1

Ψk(t, x)(A)

converges in R̄+, and the sum defines a kernel, which we denote by Ψc. The kernel Ψc is the
resolvent ofΨ with respect to⊗, i.e. it satisfies the resolvent equation

Ψc = Ψ+Ψc ⊗Ψ = Ψ+Ψ⊗Ψc. (2.6)

COROLLARY 2.4. (which explains the name “resolvent”).
Let Ψ and f be given kernels. The solution of the equation

X = f +Ψ⊗X

5



is given explicitly by
X = f +Ψc ⊗ f.

where Ψc denotes the resolvent ofΨ.

Note that the corollary shows (a bit implicitly perhaps) that the resolvent is unique (cf. GRIPEN-
BERG, LONDEN & STAFFANS [15]).

Before turning to the biological interpretation of the resolvent, we like to make the following
side-remark. Clearly one can formulate variants in which t is restricted to a subset of R, e.g.
[s,∞) for some s. It may also happen that one has chosen Ω too large and that restriction to a
subset ofΩ yields a meaningful problem (see e.g. Section 2.4 below). We think such modifications
are straightforward and we chose not to complicate the formulation by including them from the
very beginning.

2.4. The clan kernel and the renewal equation

Returning to the population dynamical setting, we now assume that Λ is a kernel and we shall call
the sum of all generation kernels

Λc =
∞∑
k=1

Λk. (2.7)

the clan kernel.
As the members of the clan originating from an individual are either its children or members

of the clan originating from one of its children, we should have

Λc = Λ+Λc ⊗ Λ. (2.8)

But one is just as right in noting that clan members are either children or children of clan members,
i.e.

Λc = Λ+Λ⊗ Λc. (2.9)

Thus we see that in our particular context both identities, that together constitute the resolvent
equation (2.6), alllow for a simple and straightforward biological interpretation. This interpreta-
tion is also reflected in the name “renewal equation”, that is frequently used to denote equations
(2.8), (2.9) and the like (a more strict motivation for the word “renewal” derives from economic
applications, having to do with the replacement of machine parts whose life time follows some
distribution).

As we have seen, Λc(t, x)(A) is always a well-defined element of R̄+. But often we want and
expect some form of boundedness, in particular that Λc(t, x)(A) is finite for every (t, x) ∈ R×Ω
and every A ⊂ R+ × Ω which is bounded in the time direction. We present two results in this
spirit.

Whenever there is necessarily a gap between being born and giving birth, only finitely many
terms in the sum defining Λc(t, x)(A) are different from zero when A is bounded in the time
direction (but the number of non-zero terms increases without bound when we allowA to expand
indefinitely in the time direction).

DEFINITION 2.5. We say that a measurable subset Ωb of Ω is a set representing the birth states,
if, for all (t, x) ∈ R× Ω, Λ(t, x) is concentrated on R+ × Ωb (in the sense that Λ(t, x)(A) = 0
whenever A ∩R+ ×Ωb = ∅).

REMARK 2.6. Whenever Ω has a natural locally compact Hausdorff topology and we are dealing
with regular Borel measures, we can uniquely define Ωb as the smallest closed subset of Ω such
that, for all (t, x) ∈ R×Ω, Λ(t, x)(R+×ω) = 0 whenever ω∩Ωb = ∅. In that case we will call
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Ωb the set of birth states. In general, we have to live with the somewhat irritating vagueness and
non-uniqueness of Definition 2.5.

DEFINITION 2.7. x ∈ Ω is called a juvenile state, with reproduction delay at least ε, when

sup
t∈R
Λ(t, x)([0, ε)× Ω) = 0.

THEOREM 2.8. Suppose birth states (i.e. elements of Ωb as in Definition 2.5) are juvenile
states with uniform reproduction delay ε, then the generation expansion is finite in the sense that
Λk(t, x)(A) = 0 whenever, for some s, A ⊂ [0, s)× Ω and k > 1

εs.

The second type of result employs exponential estimates. We present a version in terms of integrals
while noting that, under appropriate hypotheses, pointwise estimates work equally well.

The Laplace transform Ψ̂ of a kernelΨ is defined, for real values of z at first, by

Ψ̂(t, x; z)(ω) =

∫
R+× ω

e−zτΨ(t, x)(dτ × dξ) = lim
s→∞

∫
[0,s)×ω

e−zτΨ(t, x)(dτ × dξ). (2.10)

So Ψ̂maps R×Ω×R intoM+(Ω). We define

‖Ψ‖z := sup
(t,x)∈R×Ω

Ψ̂(t, x; z)(Ω). (2.11)

A kernelΨ is called a Laplace kernel if

‖Ψ‖z0 <∞ for some z0 ∈ R. (2.12)

Note that in that case the definition (2.10) can be extended to z ∈ C with Rez > z0.

THEOREM 2.9. If Φ and Ψ are kernels then

‖Φ⊗Ψ‖z ≤ ‖Φ‖z‖Ψ‖z. (2.13)

COROLLARY 2.10. If Φ and Ψ are Laplace kernels, so are Φ⊗Ψ and Φk for k ≥ 1. Moreover

‖Φk‖z ≤ (‖Φ‖z)k. (2.14)

THEOREM 2.11. Let Λ be a Laplace kernel with, for some z0 > 0 and some j ≥ 1, ‖Λ‖z0 < ∞
and ‖Λj‖z0 < 1. Let, for some s, A ⊂ [0, s)× Ω be measurable. Then the series

Λc(t, x)(A) =
∞∑
k=1

Λk(t, x)(A)

converges inR, uniformly in t ∈R and x ∈ Ω. Moreover, Λc is a Laplace kernel.

We emphasize that all information about population growth (or decline) is contained in Λc. And
since Λc is obtained from Λ by a straightforward constructive procedure, it is possible to deduce
such information directly from Λ. In section 6 we shall elaborate this for the relatively simple,
but important, special case that Λ(t, x)(A) is independent of t, which amounts to the environment
being constant rather than fluctuating.

7



2.5. Reduction of the generation expansion

A set Ωb representing the birth states (Definition 2.5) may be considerably smaller than Ω. In
particular this is the case when age is a component of i-state, since newborns have age zero by the
very definition of age.

The reduced reproduction kernel Λb is just Λ, but with the convention that in Λb(t, x)(A) :=
Λ(t, x)(A) we restrict to x ∈ Ωb and to A ⊂ R+ × Ωb. From it we build the higher generation
kernels by iteration, as usual:

Λk+1b (t, x)(A) =
∫

R+×Ωb

Λb(t+ τ, ξ)(A−τ)Λ
k
b (t, x)(dτ × dξ) (2.15)

with the same restriction on x and A.
The point is that we need Λ to compute the first generation for a general initial condition,

but that all information concerning subsequent generations is contained in the powers of Λb. We
formulate this precisely as

LEMMA 2.12. For all (t, x) ∈ R× Ω and A ⊂ R+ × Ω

Λk+1(t, x)(A) =
∫

R+×Ωb

Λkb (t+ τ, ξ)(A−τ ∩ (R+ ×Ωb))Λ(t, x)(dτ × dξ). (2.16)

Sometimes a further reduction is possible. Suppose birth states are ‘separated’ from states in which
reproduction is possible by a set of i-states, which we then call renewal points. Here ‘separated’
means that any individual has to pass at least one renewal point before being able to reproduce.
As a concrete example consider a size structured cell population in which the minimum size of
a mother is larger than the maximum size of a daughter. Then any size in between qualifies as
a renewal point (see [6, 5]; note that this example demonstrates that there may be an element of
choice in the definition of renewal points).

The idea is now that we may consider passage through a renewal point as a kind of birth and
base our bookkeeping of reproduction on this ‘birth’ process, rather than on the true birth process.
When individual movement (see the next section) is continuous, ‘passage’ should be taken literal,
but when it is a jump process it is more accurate to speak about first hitting a renewal point.

To describe such situations mathematically, we introduce a measurable subset Ωr of Ω, which
we call the renewal set, and for each t ∈ R and x ∈ Ωb a measure π(t, x) on R+ × Ωr, which
describes when and where an individual which is born at time t with birth state x will hit the set
Ωr for the first time. We assume that for any measurable A ⊂ R+ × Ωr the function (t, x) 	−→
π(t, x)(A) fromR×Ωb toR is measurable.We now require that, for each t ∈ R and x ∈ Ωb and
A ⊂ R+ ×Ωb

Λb(t, x)(A) =
∫

R+× Ωr

Λ(t+ τ, ξ)(A−τ)π(t, x)(dτ × dξ). (2.17)

Note that in (2.14) expected reproduction from birth states is expressed in expected reproduction
from renewal states and expected arrival at renewal states.

We next define for x ∈ Ωr and A ⊂ R+ ×Ωr the reduced renewal kernel Λr by

Λr(t, x)(A) =

∫
R+×Ωb

π(t+ τ, ξ)(A−τ)Λ(t, x)(dτ × dξ). (2.18)

Note that Λr computes, for an individual with a state in Ωr, first the true reproduction and next
the hitting ofΩr of the offspring. Or, in other words, Λr describes reproduction for the quasi-birth
process of hittingΩr
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The powers of Λr are now defined in exactly the same way as those of Λ and Λb. More
precisely, in the computation of Λkr(t, x)(A) we restrict to x ∈ Ωr and A ⊂ R+ × Ωr. Of course
the advantage hinges upon Ωr being smaller than Ωb.

We now want to express the powers of Λb explicitly in terms of the powers of Λr. As a first
step we express iterated true birth kernels starting from a renewal state in powers of Λr and the
given Λ.

LEMMA 2.13. For any t ∈ R, x ∈ Ωr and A ⊂ R+ ×Ωb the identity

Λk(t, x)(A) =

∫
R+× Ωr

Λ(t+ τ, ξ)(A−τ)Λ
k−1
r (t, x)(dτ × dξ) (2.19)

holds.

PROOF. With a slight abuse of the ⊗ notation (since we do not incorporate the dependence on the
subset of Ω considered) we may write (2.17) as

Λb = Λ⊗ π

and (2.18) as
Λr = π ⊗ Λ

and (2.19) as
Λk = Λ⊗ Λk−1r .

We now prove the validity of this last identity by induction. Suppose it holds for k. Then

Λk+1 = Λb ⊗ Λk = Λ⊗ π ⊗ Λ⊗ Λk−1r = Λ⊗ Λr ⊗ Λk−1r = Λ⊗ Λkr

or, in words, it holds for k + 1. Since the identity is trivial for k = 1, the proof is complete. �

All that remains to be done in order to achieve our aim is to derive the higher order analogue of
(2.17).

LEMMA 2.14. For any t ∈ R, x ∈ Ωb and A ⊂ R+ × Ωb the identity

Λkb (t, x)(A) =
∫

R+×Ωr

Λk(t+ τ, ξ)(A−τ)π(t, x)(dτ × dξ) (2.20)

holds.

PROOF. In symbolic notation we have to prove that

Λkb = Λ
k ⊗ π.

Assume that this relation holds for k. Then

Λk+1b = Λb ⊗ Λkb = Λb ⊗ Λk ⊗ π = Λk+1 ⊗ π

and we conclude that it holds for k + 1. Since for k = 1 the relation is nothing else than (2.17),
the proof is complete.

The results of this subsection are now reworded and summarised in the following
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THEOREM 2.15. (i) For t ∈ R and x ∈ Ω we can explicitly express Λc in terms of Λ and Λcb:

Λc(t, x)(A) = Λ(t, x)(A) +

∫
R+×Ωb

Λcb(t+ τ, ξ)(Aτ)Λ(t, x)(dτ × dξ) (2.21)

(ii) If, for a suitably defined renewal set Ωr, the kernelΛb allows the representation (2.17), we can
explicitly express Λcb in terms of Λ, π and Λcr: for t ∈ R and x ∈ Ωr we have that

Λcb(t, x)(A) =
∫

R+×Ωr

Λc(t+ τ, ξ)(A−τ)π(t, x)(dτ × dξ) (2.22)

and
Λc(t, x)(A) = Λ(t, x)(A) +

∫
R+× Ωr

Λ(t+ τ, ξ)(A−τ)Λ
c
r(t, x)(dτ × dξ) (2.23)

PROOF. (i) follows from Lemma 2.12 by summing over k.
Likewise we obtain (2.23) from Lemma 2.13 by summing over k, and (2.22) from Lemma

2.14.

3 i-state development and survival

So far our presentation echoes the treatment of expected behaviour in the theory of multi-type
branching processes (e.g. JAGERS [21] )
But now we introduce as our second ingredient

u(t, x; s)(ω) = probability that an individual which has state x at time t
is alive s time units later and then has a state in ω ⊂ Ω (3.1)

What we have in mind is that individuals follow a Markov process with death as a hidden ab-
sorbing state. But we do not need a full specification of this process. The information about
i-state development in Ω (e.g. individual growth, if size is an i-state variable) and survival that is
embodied in the function u with the stated interpretation, suffices for our deterministic purposes.

We emphasize that stochastic movement in Ω is allowed (such in contrast with formulations
in terms of first order pde, which require movement in Ω to be described by ode). Stochastic
movement is so easily included, at least at the formal general level, because the description in
(3.1) works with finite time differences rather than with infinitesimal time differences.

The interpretation requires that u satisfies a consistency condition, the Chapman-Kolmogorov
relation

u(t, x; s)(ω) =
∫
Ω

u(t+ σ, ξ; s− σ)(ω)u(t, x; σ)(dξ) (3.2)

which should hold for all x ∈ Ω, t ∈ R, s ∈ R+, 0 ≤ σ ≤ s and ω ⊂ Ω. Often we shall suppress
ω in identities of this kind and simply write it as

u(t, x; s) =
∫
Ω

u(t+ σ, ξ; s− σ)u(t, x; σ)(dξ). (3.3)

The Chapman-Kolmogorov relation expresses that i-state is a ‘state’ in the Markovian sense, by
requiring that a rearrangement of our bookkeeping corresponding to a stop and re-start at time
t + σ in between t and t + s should not lead to different results. As the same conclusion should
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hold when we consider reproduction, there is a second consistency relation that combines u and
Λ:

Λ(t, x)(A) = Λ(t, x)(A∩ ([0, s)×Ω)) +
∫
Ω

Λ(t+ s, ξ)(A−s)u(t, x; s)(dξ) (3.4)

As for any A necessarily As ∩ ([0, s)×Ω) = ∅ we may alternatively write this as

Λ(t, x)(As) =
∫
Ω

Λ(t+ s, ξ)(A)u(t, x; s)(dξ). (3.5)

This relation should hold for all x ∈ Ω, t ∈ R, s ∈R+ and A ⊂ R+ × Ω.
We assume that u maps R × Ω ×R+ into the setM+(Ω) of positive measures on Ω and is

such that

(i) for any ω ⊂ Ω the function
(t, x; s) 	−→ u(t, x; s)(ω)

is measurable
(ii) u(t, x; s)(Ω)≤ 1, that is, u(t, x; s) is a, in general defective, probability measure

(iii) the consistency conditions (3.2) and (3.4) are satisfied.

We note that (3.2) and (ii) together imply that the survival probability s 	−→ u(t, x; s)(Ω) is a
non-increasing function, as it should be. We may require as an additional condition that

lim
s→∞

u(t, x; s)(Ω) = 0 (3.6)

to express that no individual is immortal. Or, alternatively, that

sup
(t,x)∈R×Ω

∞∫
0

su(t, x; ds)(Ω)<∞ (3.7)

to express that life expectancy is uniformly bounded. For many submodels u(t, x; s)(Ω) will
actually converge exponentially to zero as s→∞.

4 Combining i-state development, survival and reproduction

Consider one individual which at time t has statex. By uc(t, x; s)we want to describe the expected
size and composition of its clan, including the individual itself. So we define:

uc(t, x; s) = u(t, x; s) +
∫

[0,s)×Ω

u(t+ τ, ξ; s− τ)Λc(t, x)(dτ × dξ) (4.1)

What properties of uc follow from this explicit definition? Clearly for any ω ⊂ Ω the function

(t, x; s) 	−→ uc(t, x; s)(ω)

fromR× Ω×R+ toR is measurable. The estimate

uc(t, x; s)(Ω) ≤ 1 +
s∫
0

Λc(t, x)(dτ × Ω)

readily implies that
uc(t, x; s)(Ω)≤ 1 +Kez0s
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whenever ‖ Λc ‖z0≤ K or, in words, Λc is a Laplace kernel (cf. Theorem 2.11).
We now want to verify that uc satisfies the Chapman-Kolmogorov relation. It turns out that it

is convenient to prove first the analogue of (3.5).

LEMMA 4.1. Our assumptions concerning Λ and u guarantee that the identity

Λc(t, x)(As) =
∫
Ω

Λc(t+ s, ξ)(A)uc(t, x; s)(dξ) (4.2)

holds for Λc defined by (2.7) and uc defined by (4.1).

PROOF. According to the renewal equation (2.9)

Λc(t, x)(As) = Λ(t, x)(As) +

∫
R+×Ω

Λ(t+ τ, ξ)(As−τ)Λ
c(t, x)(dτ × dξ).

We decomposeR+ ×Ω = ([0, s)×Ω) ∪ ([s,∞)×Ω) and use (3.5) to write

Λc(t, x)(As) =

∫
Ω

Λ(t+ s, η)(A)u(t, x; s)(dη)

+

∫
[0,s)×Ω

∫
Ω

Λ(t+ s, η)(A)u(t+ τ, ξ; s− τ)(dη)Λc(t, x)(dτ × dξ)

+
∫

[s,∞)×Ω

Λ(t+ τ, ξ)(As−τ)Λ
c(t, x)(dτ × dξ)

Using (4.1), a change in the order of integration of the second term, and the new integration
variable σ = τ − s in the third term, we deduce that

Λc(t, x)(As) =

∫
Ω

Λ(t+ s, η)(A)uc(t, x; s)(dη)

+

∫
R+×Ω

Λ(t+ s+ σ, ξ)(A−σ)Λ
c(t, x)([s, s+ dσ]× dξ).

Now define f by

f(t, x)(A) =

∫
Ω

Λ(t, η)(A)uc(t− s, x; s)(dη)

andX by
X(t, x)(A) = Λc(t− s, x)(As)

then, upon replacing t by t− s, we can write this identity as the renewal equation

X = f +Λ⊗X.

So, by Corollary 2.4, we have
X = f + Λc ⊗ f
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or, written out in detail while inserting t+ s for t;

Λc(t, x)(As) =

∫
Ω

Λ(t+ s, η)(A)uc(t, x; s)(dη)

+

∫
R+×Ω

Λc(t+ s+ τ, ξ)(A−τ)
∫
Ω

Λ(t+ s, η)(dτ × dξ)uc(t, x; s)(dη)

=
∫
Ω

(Λ(t+ s, η)(A) + (Λc ⊗ Λ)(t+ s, η)(A))uc(t, x; s)(dη)

=
∫
Ω

Λc(t+ s, η)(A)uc(t, x; s)(dη).

LEMMA 4.2. Our assumptions concerningΛ and u guarantee that u c defined by (4.1) satisfies the
Chapman-Kolmogorov equation, i.e.

uc(t, x; s) =

∫
Ω

uc(t+ σ, ξ; s− σ)uc(t, x; σ)(dξ) (4.3)

for all 0 ≤ σ ≤ s.

PROOF. According to (4.1) and (3.2)

uc(t, x; s) = u(t, x; s) +
∫

[0,σ)×Ω

u(t+ τ, η; s− τ)Λc(t, x)(dτ × dη)

+

∫
[σ,∞)×Ω

u(t+ τ, η; s− τ)Λc(t, x)(dτ × dη)

=
∫
Ω

u(t+ σ, ξ; s− σ)u(t, x; σ)(dξ)

+
∫
Ω

u(t+ σ, ξ; s− σ)
∫

[0,σ)×Ω

u(t+ τ, η; σ− τ)(dξ)Λc(t, x)(dτ × dη)

+

∫
[0,s−σ)×Ω)

u(t+ σ + α, η; s− σ − α)Λc(t, x)([σ, σ+ dα]× dη).

By the defining relation (4.1) the sum of the first two terms equals∫
Ω

u(t+ σ, ξ; s− σ)uc(t, x; σ)(dξ)

while by Lemma 4.1 the last term can be rewritten as∫
[0,s−σ)×Ω

u(t+ σ + α, η; s− σ − α)
∫
Ω

Λc(t+ σ, ξ)(dα× dη)uc(t, x; σ)(dξ).

Combining these steps we find that

uc(t, x; s) =
∫
Ω

[u(t+ σ, ξ; s− σ)+∫
[0,s−σ)×Ω

u(t+ σ + α, η; s− σ − α)Λc(t+ σ, ξ)(dα× dη)]uc(t, x; σ)(dξ).
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Using definition (4.1) once more we finally arrive at

uc(t, x; s) =

∫
Ω

uc(t+ σ, ξ; s− σ)uc(t, x; σ)(dξ).

Let us summarise the situation. We have introduced two ingredients Λ and u that together fully
specify a linear, time-dependent, structured population model. From these we have defined, by a
constructive procedure, uc such that uc(t, x; s) is the measure on Ω that describes at time t+ s the
expected size and composition of the population descending from one individual at time t having
state x. This interpretation demands that uc satisfies the Chapman-Kolmogorov equation. We have
verified that the construction procedure at the i-level guarantees that the Chapman-Kolmogorov
equation indeed holds and we are ready to take up the bookkeeping at the p-level. As we will see,
this now simply amounts to adding contributions.

5 The population level

Let M(Ω) denote the linear space of measures on the i-state space Ω and M+(Ω) the subset of
positive measures. The generic element is denoted bym. We now define linear operators mapping
M(Ω) into itself and leaving M+(Ω) invariant. Reproduction operators are denoted by V and
next-state operators by U . Such operators carry an index i which can take the values 1 and c.
When the index equals 1 we often suppress it in the notation (in fact we have done so consistently
in the foregoing).

DEFINITION 5.1.

(V i(t+ τ, τ)m)(ω) :=
∫
Ω

Λi(τ, x)([0, t)× ω)m(dx) (5.1)

(U i(t+ τ, τ)m)(ω) :=
∫
Ω

ui(τ, ξ; t)(ω)m(dξ) (5.2)

The Chapman-Kolmogorov equations (3.2) and (4.3) and the consistency conditions (3.3) and
(4.2) have as an immediate

COROLLARY 5.2. For 0 ≤ σ ≤ s

U i(t+ s, t) = U i(t+ s, t+ σ)U i(t+ σ, t) (5.3)

and
V i(t+ s, t) = V i(t+ σ, t) + V i(t+ s, t+ σ)U i(t+ σ, t) (5.4)

The identity (5.3) can be summarised in words by saying that U i forms a (forward) evolution-
ary system while, in the terminology of DIEKMANN, GYLLENBERG and THIEME [4, 3], (5.4)
expresses that V i is a cumulative output family for the evolutionary system U i.

Symbolically, we can lift the renewal equations (2.8) and (2.9) and the definition (4.1) to the
p-level as well and write

V c(t+ s, t) = V (t+ s, t) +

t+s∫
t

V (t+ s, σ)V c(dσ, t) (5.5)
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V c(t+ s, t) = V (t+ s, t) +

t+s∫
t

V c(t+ s, σ)V (dσ, t) (5.6)

U c(t+ s, t) = U(t+ s, t) +

t+s∫
t

U(t+ s, σ)V c(dσ, t) (5.7)

In earlier work, we have taken such abstract equations and identities as our starting point, putting
quite some energy in the precise underpinning of the abstract Stieltjes integral. Now we tend to
view them as a kind of shorthand notation: in order to give them a precise meaning (in particular
the integrals), we have to apply both sides to a measurem and then ‘insert’ a set ω ⊂ Ω. The key
point is that the operators are defined in terms of kernels which satisfy certain identities!

6 Growth or decline in a constant environment?

In the case of a constant environment both Λ(t, x) and u(t, x; s) are independent of t. It then
follows that the same is true for Λc(t, x), uc(t, x; s), V i(t+ s, t) and U i(t+ s, t). In particular the
one-parameter family of operators

T i(s) := U i(t+ s, t) (6.1)

forms a semigroup with
W i(s) := V i(t+ s, t) (6.2)

as a corresponding cumulative output family.
In a constant environment the time of birth does not matter and we can, if we like, study

the population from a generation perspective. Let the measure m on Ω describe the size of a
generation and its distribution with respect to state at birth. ThenW (∞)m defined by

(W (∞)m)(ω) =
∫
Ω

Λ(x)(R+× ω)m(dx) (6.3)

contains exactly that same information concerning the next generation and consequently we shall
callW (∞) the next generation operator (note: here and in the following we suppress t in the no-
tation for Λ; our choice to work with relative time for the time component of the birth coordinates,
instead of absolute time, was actually motivated by the wish to achieve such a straightforward
reduction in the notation for the case of a constant environment).

When supx∈ΩΛ(x)(R+ × Ω) is bounded, W (∞) is a bounded linear operator on M(Ω),
equipped with the total variation norm.

The basic reproduction ratioR0 is by definition the spectral radius ofW (∞).

Positivity arguments guarantee that, as a rule,R0 is an eigenvalue (usually called the dominant
eigenvalue). An irreducibility assumption is needed to accomplish that R0 is the only positive
eigenvalue and that it is simple. When further conditions bring about that the rest of the spectrum
is contained in a circle with radius strictly less than R0, it is clear that iteration of W (∞) leads
to a stable distribution for the state-at-birth (viz., the eigenvector corresponding toR0 normalized
such that the measure of Ω equals one), while the population size changes in the long run with
a factor R0 from generation to generation. We therefore identify R0 with the generation growth
rate.
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In order to characterise the population growth rate in real time we consider the Laplace-
Stieltjes transform

(dŴ (z)m)(ω) =
∫

R+× Ω

e−zτΛ(x)(dτ × ω)m(dx). (6.4)

Note that dŴ (z) adds offspring, while discounting for the reproduction delay by weighing a new-
born with e−zτ when the time interval between the birth of mother and daughter equals τ . This
interpretation suggests, as FISCHER [13] made clear in the context of the Euler-Lotka character-
istic equation for age-dependent population growth, that the population growth rate r in real time
is determined by the condition that dŴ (r) should have dominant eigenvalue 1. When R0 > 1 the
equation

spectral radius dŴ (z) = 1 (6.5)

has a unique solution z = r on the real line and necessarily r > 0. When R0 < 1 the existence of
a real solution of (6.5) is not guaranteed, as the integral in (6.4) may grow insufficiently when we
approach the abscissa of convergence. But additional conditions (see JAGERS [22], SHURENKOV

[28]) are known that guarantee the existence of r also in this case, and then necessarily r < 0. We
note that r is often called the Malthusian parameter.

The eigenvector of dŴ (r) corresponding to the eigenvalue one describes the stable distri-
bution for the state-at-birth when we sample newborns at a particular moment in time (which is
different indeed from sampling newborns that belong to a specific generation).

In summary, and with reference to the end of section 2, we conclude that, under suitable
conditions, both the generation growth rate R0 and the Malthusian parameter r are well-defined
once Λ is specified and that r > 0 if and only if R0 > 1. To prove that r is indeed the growth rate
of the semigroup T c(s) defined by (6.1) one can employ Laplace transforms. We shall deal with
this method in the next section . It requires conditions which are somewhat stronger than needed
and it is worth the effort to consult SHURENKOV [29, 30] and THIEME [31], for general results
covering both the lattice and the non-lattice case (see FELLER [12] for these notions and for the
main ideas in the simplest context).

The borderline case R0 = 1 is of special interest, as it leads to a steady state. For (abstract)
differential equations dydt = Ay one can spot steady states by solving Ay = 0; in particular one
can characterize steady states directly in terms of the given ingredient A, without paying any
attention to (the construction of) the semigroup of solution operators generated by A. The aim of
the rest of this section is to expose explicitly the corresponding result for the setting of the non-
local ingredientsΛ and u. For the linear situation the question is perhaps a bit academic, as steady
states will be the exception rather than the rule. But in the nonlinear theory of part II the result
will play a prominent role. Moreover, in the next section we shall give a very natural extension by
expressing the resolvent in terms of Laplace(-Stieltjes) transforms of the ingredients.

When individuals are immortal, a steady state may exist at the generation level, but the total
extant population will keep growing. In order to exclude such a degenerate situation we require
for the rest of this section that

sup
x∈Ω

∞∫
0

u(x; τ)(Ω)dτ <∞ (6.6)

i.e. life expectancy is bounded, uniformly with respect to the state-at-birth.

THEOREM 6.1. i) Assume that
W (∞)b = b (6.7)
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thenm defined by

m =

∫ ∞
0
T (τ)bdτ =

∞∫
0

∫
Ω

u(ξ; τ)b(dξ)dτ (6.8)

is a steady state of T c(t), i.e.
T c(t)m = m for all t ≥ 0 (6.9)

ii) Conversely, letm be a steady state of T c(t) then b defined by

b =
1

t
W c(t)m (6.10)

does not depend on t and satisfies (6.7).

PROOF. To give a precise meaning to the integrals and identities that follow, one should insert an
arbitrary set ω ⊂ Ω to obtainR-valued functions of t.
i) Assume (6.7) and definem by (6.8) (note thatm is well-defined, since we assumed (6.6)). Then

W (t)m =W (t)

∞∫
0

T (τ)bdτ =

∞∫
0

W (t)T (τ)bdτ.

So by (5.4) we find

W (t)m =

∞∫
0

[W (t+ τ)−W (τ)]bdτ

=

∞∫
0

[W (t+ τ)−W (∞)]bdτ +
∞∫
0

[W (∞)−W (τ)]bdτ

=

∞∫
t

[W (τ)−W (∞)]bdτ +
∞∫
0

[W (∞)−W (τ)]bdτ

=

t∫
0

[W (∞)−W (τ)]bdτ = tb−
t∫
0

W (τ)bdτ.

The autonomous version of (5.6) reads

W c(t) =W (t) +

t∫
0

W c(t− σ)W (dσ). (6.11)

Applying both sides tom and using the expression forW (t)m we find

W c(t)m = tb−
t∫
0

W (τ)bdτ +

t∫
0

W c(σ)bdσ−
t∫
0

W c(t− σ)W (σ)bdσ.

If, on the other hand, we integrate over time, we obtain

t∫
0

W c(τ)dτ =

t∫
0

W (τ)dτ +

t∫
0

W c(t− σ)W (σ)dσ.

Combining these two identities we see that necessarily

W c(t)m = tb.
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The autonomous version of (5.7) reads

T c(t) = T (t) +

t∫
0

T (t− τ)W c(dτ). (6.12)

Applying both sides tom we deduce that

T c(t)m = T (t)m+

t∫
0

T (t− τ)bdτ =
t∫
0

T (τ)bdτ +

∞∫
t

T (τ)bdτ

=

∞∫
0

T (τ)bdτ = m.

ii) Assume (6.9). Then

W c(t+ s)m−W c(s)m =W c(t)T c(s)m =W c(t)m.

It follows that for rational t
W c(t)m = tW c(1)m.

But if we evaluate for a set ω ⊂ Ωwe obtain a non-decreasing real-valued function and a sandwich
argument makes clear that the identity necessarily holds for all t.

Define
b =W c(1)m.

Then

b =
1

t
W c(t)m =

1

t
W (t)m+

1

t

t∫
0

W (t− τ)W c(dτ)m

=
1

t
W (t)m +

1

t

t∫
0

W (σ)bdσ.

For t→∞ the right hand side converges toW (∞)b and we conclude that necessarily

b =W (∞)b.

The biological interpretation of Theorem 6.1 is that steady states for the generation process and
for the real time process are in one to one correspondence. For the generation process, we have
to compute the eigenvector of eigenvalue 1 for the operatorW (∞) defined directly in terms of Λ.
Next we can use the operators T (t), defined directly in terms of u, to compute the real time steady
statem from the generation steady state b. So the i) part of Theorem 6.1 delineates a constructive
procedure for determining the steady states directly from the ingredients that specify the model,
while the ii) part makes sure that we cannot possibly miss a steady state in this manner.

7 The resolvent

A steady state exists when z = 0 is a singularity of the resolvent of the generator. In this section
we extend our interest to singularities in general. More precisely, we shall employ the Laplace
transform to derive a product representation for the resolvent, which exemplifies the perturbation
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approach. A key point is that the factors are directly expressed in terms of Laplace transforms of
the ingredients.

Recalling that

(T i(t)m)(ω) =
∫
Ω

ui(x; t)(ω)m(dx) (7.1)

and
(W i(t)m)(ω) =

∫
Ω

Λi(x)([0, t)× ω)m(dx) (7.2)

we define the Laplace transform of T and the Laplace-Stieltjes transform of W by the explicit
formulas

(T̂ i(z)m)(ω) =
∫

R+× Ω

e−ztui(x; t)(ω)dtm(dx). (7.3)

(dŴ i(z)m)(ω) =

∫
R+× Ω

e−ztΛi(x)(dt× ω)m(dx) (7.4)

Throughout this section we assume that Λ is a Laplace kernel, so that (7.4) makes sense for Re z
sufficiently large (cf. Theorem 2.11). According to the estimates from the beginning of Section 4,
the definition (7.3) with i = c then makes sense as well for Re z large. Actually, as we show now,
one can express T̂ c in terms of T̂ and dŴ .

THEOREM 7.1. For Re z sufficiently large the identity

T̂ c(z) = T̂ (z)(I − dŴ (z))−1 (7.5)

holds.

PROOF. Taking Laplace transforms of the renewal equation (6.11) we find

I + dŴ c(z) = (I − dŴ (z))−1

The identity (6.12) likewise transforms into

T̂ c(z) = T̂ (z)(I + dŴ c(z))

and by combining the two we obtain (7.5) (which appears as (1.16) in [3]).

In general T̂ (z) will be analytic in some (relatively large, i.e. extending quite far to the left) right
half plane, and so will be dŴ (z). The representation (7.5) therefore demonstrates that z ∈ C
for which I − dŴ (z) is non-invertible are of paramount importance when studying asymptotic
behaviour and the related decomposition of the state spaceM(Ω).

In the construction of (I − dŴ (z))−1 one can make certain reductions, just as in the con-
struction of the generation expansion discussed in subsection 2.5 (and for the same biological
reasons). Recalling the Definition 2.5 of a set representing the birth states, we first of all note that
the decomposition

Ω = Ωb ∪ (Ω\Ωb)

induces a direct sum decomposition

M(Ω) =M(Ωb)⊕M(Ω\Ωb) (7.6)
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with corresponding projection operator onM(Ωb)

(Pm)(ω) = m(ω ∩Ωb). (7.7)

The fact that the range of dŴ (z) is contained inM(Ωb) motivates the following elementary aux-
iliary result.

LEMMA 7.2. Let X be a Banach space and P a projection operator on X such that, with Y =
R(P ) and Z = R(I − P ),

X = Y ⊕ Z.
LetK be a linear operator onX withR(K) ⊂ Y . Then I−K is invertible if and only if (I−K)| Y
is invertible and

(I −K)−1 = (I −K)|−1Y (P +K(I − P )) + I − P (7.8)

COROLLARY 7.3. Define dŴb(z) :M(Ωb)→M(Ωb) by

(dŴb(z)m)(ω) =
∫

R+× Ωb

e−ztΛb(x)(dt× ω)m(dx). (7.9)

Then I − dŴ (z) is invertible if and only if I − dŴb(z) is invertible. Moreover, the formula
(7.8) allows us to compute the residue of (I − dŴ (z))−1 in a pole from the Laurent expansion of
(I − dŴb(z))−1 and the Taylor expansion of dŴ (z).

When only finitely many states at birth are possible, i.e. Ωb is finite, the condition amounts to the
invertibility of a matrix and by taking the determinant we find a characteristic equation. As we
now explain, the same is possible when there are only finitely many states at birth in a stochastic
sense. By this we mean that

Λb(x)(A) =
n∑
i=1

(βi(x)× γi)(A) (7.10)

or, in more detail, that for any t ≥ 0 and ω ⊂ Ωb

Λb(x)([0, t)× ω) =
n∑
i=1

βi(x)([0, t))γi(ω). (7.11)

In words one could say that the range of Λb(x) is spanned by finitely many product measures on
R+ × Ωb, with the second factors the same for all x. As a consequence, the range of dŴb(z) is,
for all allowable z, spanned by finitely many measures on Ωb, viz. the {γi}.

THEOREM 7.4. Assume that Λb allows the representation (7.11). Then I − dŴ (z) is invertible if
and only if

det∆(z) �= 0 (7.12)

where ∆(z) is the n× n-matrix with entries

∆(z)ij =
∫

R+× Ωb

e−ztβi(x)(dt)γj(dx). (7.13)

PROOF. Combination of (7.9) and (7.11) yields that

(dŴb(z)m)(ω) =
n∑
i=1

∫
R+×Ωb

e−ztβi(x)(dt)m(dx)γi(ω)

20



from which we deduce that indeed the range of dŴb(z) is spanned by {γi}. The conclusion now
follows from Corollary 7.3 and another application of Lemma 7.2.

Note that a minor further simplification is possible when βi(x)([0, t)) = ci(x)bi([0, t)), since then
we can compute∆(z) from the product representation

∆(z)ij =

∫
Ωb

ci(x)γj(dx)

∞∫
0

e−ztbi(dt).

Suppose λ is a zero of det∆(z). We should be able to define, by residue calculus, a spectral
projection operator Pλ. We conjecture that the dimension of PλM(Ω) equals the multiplicity of
λ as a zero of det∆(z). On PλM(Ω) the action of T c(t) is described by an ode. The Jordan
structure should follow from the structure of the Jordan chains of ∆, just as in the case of delay
equations (cf. Section IV. 4 of [7]. We intend to elaborate these issues in a joint publication with
S.M. Verduyn Lunel.

An infinite-dimensional variation on the same theme arises when we can identify a renewal set
Ωr and measures π(x) such that (2.17), which we here repeat for the autonomous case as

Λb(x)(A) =

∫
R+× Ωr

Λ(ξ)(A−τ)π(x)(dτ × dξ), (7.14)

holds. In that case it is natural to decompose the Laplace-Stieltjes transform of Wb into two
factors. For this purpose we define L(z) : M(Ωb) → M(Ωr) and K(z) : M(Ωr) → M(Ωb) by,
respectively,

(L(z)m)(ω) =
∫

R+×Ωb

e−ztπ(x)(dt× ω)m(dx) (7.15)

and
(K(z)m)(ω) =

∫
R+×Ωr

e−ztΛ(x)(dt× ω)m(dx). (7.16)

LEMMA 7.5. (i) dŴb(z) = K(z)L(z)

ii) Define Λr by (cf. (2.18))

Λr(x)(A) =
∫

R+× Ωb

π(ξ)(A−τ)Λ(x)(dτ × dξ) (7.17)

where x ∈ Ωr andA ⊂ R+ ×Ωr. Next define dŴr(z) by

(dŴr(z)m)(ω) =

∫
R+× Ωr

e−ztΛr(x)(dt× ω)m(dx). (7.18)

Then
dŴr(z) = L(z)K(z).

Essentially this lemma is just the familiar result that convolution becomes a product under the
Laplace transform. The proof consists of writing everything out in detail and applying Fubini’s
theorem, and we omit it.
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Let us first assume that L(z) is surjective and that

M(Ωb) = Y ⊕ Z

withR(K(z)) = Y and L(z) : Y →M(Ωr) injective. Lemma 7.2 implies that I −K(z)L(z) is
invertible if and only if (I −K(z)L(z))|Y is invertible. The latter condition, in turn, is equivalent
to the invertibility of I − L(z)K(z).

One can relate the invertibility of I −K(z)L(z) to that of I − L(z)K(z) under more general
conditions involving, in particular, a decomposition ofM(Ωr) as well. We refrain from a further
elaboration, the main point being anyhow that one can exploit the idea of renewal points to discover
structure in the construction of the resolvent (see e.g. [5]).

The resolvent representation (7.5) is the key step for proving results concerning asymptotic
large time behaviour. We first recall a fact which is rather hidden in the notation: (7.5) is a
statement about the Laplace transforms of a collection ofR-valued functions obtained by applying
the semigroup to a particular measure and evaluating for a particular subset of Ω. Hence we can
apply Tauberian theorems from classical analysis (see in particular WIDDER [32]) to deduce the
asymptotic behaviour for t → ∞ from the behaviour of the Laplace transform for z near r (cf.
(6.5)), while exploiting positivity. Thus one can show that, when all other singularities satisfy the
strict inequality Re z < r, asymptotically for t→∞ balanced exponential growth obtains:

(T c(t)m)(ω) ∼ C(m)ertφ(ω), t→∞,

where φ is the eigenvector of dŴ (r) corresponding to the eigenvalue 1 andC is a constant depend-
ing on m. When Ω is equipped with a locally compact Hausdorff topology one can reformulate
this as convergence of

e−rt(T c(t)m−C(m)φ)

with respect to the weak * topology. We refrain from a detailed elaboration of such inferences
while noting that, alternatively, one can refer to SHURENKOV [29, 30], JAGERS [21] or THIEME

[31] (in preparation) for formulations of such results appropriate for the present generality. We
emphasize that Shurenkov and Jagers also deal with the much more subtle “lattice” case, charac-
terized by the presence of a discrete additive subgroup of singularities on the line Rez = r (also
see [5] for a concrete example of this phenomenon, elaborated in full detail).

8 Examples

8.1. Age

When age qualifies as i-state, we have Ω = R+ = [0,∞) and Ωb = {0}. We write

Λb(0)([0, s)× ω) = L(s)δ0(ω)

where L(s) is the expected number of children produced before reaching (dead or alive) age s,
and δ0 is the Dirac measure concentrated in a = 0. When incorporating grandchildren etc. we
similarly have

Λcb([0, s)× ω) = R(s)δ0(ω)

where R and L are related by the reduced renewal equation

R(s) = L(s) +
∫
[0,s)

L(s− τ)R(dτ) = L(s) +
∫
[0,s)

R(s− τ)L(dτ)
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or, equivalently, by the generation expansion

R =
∞∑
k=1

Lk⊗.

Note that R0 = L(∞) and that r is the real root of the equation∫
R+

e−rτL(dτ) = 1.

In order to describe the age composition of the extant population we need as a second ingredient
the survival probability F(a). From L and F we can compute the expected number La(s) of
children produced by an a year old individual before reaching age a+ s as

La(s) =
L(a+ s)− L(a)

F(a) .

The corresponding quantity with all generations included is given explicitly by

Qa(s) = La(s) +
∫
[0,s)

R(s− τ)La(dτ)

(it is here that we exploit that all newborns have age zero and that, accordingly, we only have an
equation for Q0 = R). Clearly

uc(a; s) = u(a; s) +
∫
[0,s)

δs−τF(s− τ)Qa(dτ)

where

u(a; s) =
F(a+ s)
F(a) δa+s.

And just for completeness we note that

Λ(a)([0, s)× ω) = La(s)δ0(ω),

and
Λc(a)([0, s)× ω) = Qa(s)δ0(ω).

8.2. Age plus state-at-birth

Assume that Ω = R+ × Y , where the first component corresponds to age and the second, essen-
tially, to state-at-birth, in the sense that it is constant during life. Then u((0, y); s) is necessarily
concentrated in (s, y) and so we can define a survival function F(y)(s) by

u((0, y); s) = δ(s,y)F(y)(s)

while, conversely, given such a family of survival functions we can define u by

u((a, y); s) = δ(a+s,y)
F(y)(a+ s)
F(y)(a) .

Likewise we can use the consistency condition (3.4) to express Λ((a, y)) in terms of Λ((0, y))
and F(y)(a). Note that Ωb = {0} × Y .
In order to express conveniently that Λ((0, y)) is concentrated inR+ × {0} × Y we introduce

J : {0} × Y → Y , J(0, y) = y.
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With a slight abuse of notation we use the same symbol J to denote the induced mapping from
R+ × {0} × Y intoR+ × Y defined by J(s, (0, y)) = (s, y).

Let, for y ∈ Y and Ã ⊂ R+ × Y, Λ̃(y)(Ã) be the expected number of children with birth
coordinates in J−1Ã, of an individual with state-at-birth y.

We then require that

Λ((0, y))(A) = Λ̃(y)(J(A∩ (R+ × {0} × Y )))

and

Λ((a, y))(A) =
Λ((0, y))(Aa)

F(y)(a) .

We conclude that the model is fully specified by the collection of survival functionsF(y) and the
collection of positive measures Λ̃(y).

How special is the assumption that Ω = R+ × Y ? For a constant environment and general
i-state, one can always define, for all possible birth states y, the survival functions F(y) and the
reproduction kernel Λ̃(y). So for all individuals born after the time at which we pose an initial
condition, we can equivalently work with the combination of state-at-birth and age. In particular,
the salient aspects of the asymptotic behaviour can be discussed in those terms. As far as the
initial condition is concerned, things are a bit more delicate. When movement is deterministic
(i.e. described by an ode), we can reconstruct the birth state from the present state and work with
state-at-birth throughout. In general, that is impossible.

We shall now illustrate these remarks with a concrete example.

8.3. Age and birth position in space

Let Y ⊂ Rn denote a spatial region. To describe dispersal from the position at birth, we introduce
a family of measures w(a, y) on Y such that, for any subsetD ⊂ Y , the number w(a, y)(D) gives
the probability that an individual born at position y ∈ Y is alive at age a and then is situated inD.
As a second ingredient we introduce the rate β(a, x) of giving birth while having age a and being
at position x.

For the survival probability we have

F(y)(s) = w(s, y)(Y ).

For Ã ⊂ R+ × Y of the form Ã = [0, a)×D the production of children in Ã is described by

Λ̃(y)(Ã) =

a∫
0

∫
D

β(α, x)w(α, y)(dx)dα

and subsequently the definition of Λ̃(y) is extended to arbitrary measurable Ã by approximation.
As a next step in our top down approach we may define the measures w(a, y) by fundamental

solutions of a diffusion equation (i.e. Green’s function). So let

w(a, y)(D) =

∫
D

v(y; a, x)dx

where v satisfies
∂v

∂a
=
∂

∂x
(c(a, x)

∂v

∂x
)− µ(a, x)v

v(y; 0, x) = δy
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and no-flux boundary conditions whenever D has a boundary (or zero Dirichlet boundary con-
ditions when reaching the boundary is a deadly affair; on unbounded domains the behaviour at
infinity is controled by the requirements that v ≥ 0 and

∫
Y

v(y; a, x)dx≤ 1.

Whenever c(a, x) ≥ ε > 0 for all (a, x) ∈ R+ × D, we can refer to FRIEDMAN [14]
or LADYSHENSKAYA & URALTSJEVA [24] for the existence and uniqueness of the solution v.
But actually we have in mind situations where dispersal stops at the end of a juvenile period,
so where c(a, x) = 0 for large a. When c(a, x) = e(a)d(x) one can use the transformation
α = α(a) =

∫ a
0 e(σ)dσ to deduce from the standard result the existence and uniqueness of v

up to the age at which movement stops, after which one only has to solve an ode. For general
c one probably has to approximate with positive c and pass to the limit (most likely one needs
some smoothness for the zero-level set {(a, x) : c(a, x) = 0}). We thank J.C. van Duijn (personal
communication [10]) for these suggestions.

Of course it may also be appropriate to assume that movement only starts after some phase of
maturation has been completed (e.g., an immobile egg stage). In that case we just take w(a, y) =
δy for small a and start using the representation by a density function v that satisfies the diffusion
equation only after the immobile stage has ended.

To handle population level initial conditions in terms of current position, rather than position
at birth, we use the solution of the diffusion equation with a Dirac measure as an initial condition
at an arbitrary age.

The present example demonstrates, we hope, how stochastic movement in i-state space is
incorporated and how one can build ingredients at the high level, with which we started, from sub-
models for movement, death and reproduction that involve in their turn ingredients that are often
rates.Fappend Admittedly the matter of the existence and uniqueness of a fundamental solution for
diffusion equations, with diffusion coefficients that are dependent on time (which amounts to the
same thing as age) and are allowed to become zero, is not an entirely trivial matter and our anal-
ysis here has been somewhat superficial. But once the fundamental solution is there, our general
results yield strong conclusions about population behaviour.

8.4. Size, with stochastic increments

As a concrete example, think of plants that reproduce by dispersing seeds. Depending on the
quality of the site in which the seed lands, the resulting plant may grow slower or faster. We
assume that all seeds are equal and that site quality ξ ∈ Ω follows a distribution γ (which in
no way depends explicitly on spatial position; in other words, γ describes the homogeneous fine
structure of the landscape). We ignore crowding.

Let the size z of a plant grow, in a site of quality ξ, according to

dz

da
= g(z, ξ)

z(0; ξ) = zb

We denote the solution by z(a; ξ). Let a plant of size z in a site of quality ξ have a probability
µ(z, ξ) per unit of time of dying. Let a plant of size z in a site of quality ξ produce seeds with
probability β(z, ξ) per unit of time. These seeds are instantaneously distributed over the sites.
Then

Λ(ξ)([0, t)× ω) =
t∫
0

β(z(a; ξ), ξ) e
−
a∫
0

µ(z(α;ξ),ξ)dα

daγ(ω)
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So Λ has one-dimensional range spanned by γ and explicitly we have that

R0 =
∫
Ω

∞∫
0

β(z(a; ξ), ξ) e
−
a∫
0

µ(z(α;ξ),ξ)dα

daγ(dξ).

8.5. Size and age, with fixed or variable birth size

Let g(a, z), µ(a, z) and β(a, z) denote, respectively, the growth-, death- and reproduction rate of
an individual with age a and size z. We define functions z(a; zb),F(a; zb) and L(a; zb) by


dz

da
= g(a, z)

z(0) = zb

F(a; zb) = exp


−

a∫
0

µ(α, z(α; zb))dα




L(a; zb) =

a∫
0

β(α, z(α; zb))F(α; zb)dα.

When the distribution of zb is given by a measure γ which does not depend on the age and/or
size of the mother, we are still in the one-dimensional situation and R0 can easily be computed
explicitly. When γ does depend on the age or size of the mother, our formalism tells us how to
compute the operator whose dominant eigenvalue isR0. We don’t elaborate this step, but hope this
somewhat incomplete example illustrates once more that our high level “ingredients” are easily
expressed, often somewhat implicitly as solutions of nonlinear ode are involved, in terms of lower
level ingredients such as individual growth-, death- and reproduction rates.

8.6. Size structured cell populations

When the smallest size of a mother is larger than the largest size of a daughter, there exists a size
interval that a cell necessarily has to transverse in between the fission event in which it is created
and the fission event in which it produces two daughters. Any size in this interval qualifies as a
renewal point. Thus the problem becomes one dimensional. We refer once more to [5] and the
references given there for a detailed elaboration, paying also attention to the lattice case in which
the asymptotic behaviour is not balanced exponential growth but rather a merry-go-round.

When the smallest size of a mother is only larger than 2−k times the largest size of a daughter
for some k ≥ 1, one can define a renewal set consisting of k + 1 points and use this to reduce the
description of the dynamics to a system of k + 1 coupled linear renewal equations. See [19, 6].

8.7. Discrete i-state space

Let Ω = {1, 2, . . . , n}. Let us assume that an individuals state is following a continuous time
Markov chain with transition matrixM . LetΘi denote the i-th unit vector inRn, i.e. (Θi)j = δij .
Then

u(i; t) = etMΘi.

Let the reproduction matrix B be composed of the rates at which individuals with state j produce
offspring with state-at-birth i. Then

Λ(i; t) =

t∫
0

BeτMΘidτ.
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WheneverBij = βjπi, for twon-vectors β and π, we have once more a one-dimensional situation:

Λ(i; t) = (

t∫
0

β · eτMΘidτ)π.

So the range of Λ is then spanned by π and

R0 = −β ·M−1π

while r is the real root of the equation

β · (zI −M)−1π = 1.

Such models arise, for instance, when studying the initial spread of a sexually transmitted disease
when transmission is restricted to partnerships that remain in existence for an extended period of
time (see e.g. [8]).

8.8. Epidemic spread

By re-interpreting “reproduction” as the “transmission of an infective agent to another host,” all
of the theory of this paper extends to the initial phase of the spreading of an infective agent in a
susceptible host population. Several more-or-less concrete examples are to be found in [9]. There
it is always assumed that the reproduction measure Λ is absolutely continuous, that is, Λ can be
represented by a density function (which is the product of the host distribution and the functionA
in [9]).
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Appendix

In this appendix we gather a number of auxiliary results (and their proofs) that show that the
⊗-product is well-defined and that it has the properties listed in Theorem 2.2.

LEMMA A1. Let Ψ be a kernel. Then for any measurableA ⊂ R+ ×Ω the functions

(t, τ, ξ) 	→ Ψ(t, ξ)(A−τ)

and
(t, τ, ξ) 	→ Ψ(t+ τ, ξ)(A−τ)

are measurable.

PROOF. Obviously the second statement follows from the first. In order to show the first statement,
let B be a measurable subset of Ω.

Step 1: For fixed (t, τ, ξ) the function

(a, b) 	→ Ψ(t, ξ)([a, b)×B)

is left continuous in a and left-continuous in b.

Proof: This follows from the fact thatΨ(t, ξ) is a measure.

Step 2: The mapping
(t, ξ, a, b) 	→ Ψ(t, ξ)([a, b)× B)

is measurable.

It is sufficient to show that, for any c ≥ 0, the set

S =
{
(t, ξ, a, b); a ≤ b, Ψ(t, ξ)([a, b)× B) ≥ c

}
is a measurable set.

Proof: By Step 1, we have that

S =
{
(t, ξ, a, b); a ≤ b, lim

q↗a,s↗b,q,s∈Q
Ψ(t, ξ)([q, s)× B) ≥ c

}
.

Hence

S =
{

(t, ξ, a, b); a ≤ b, ∀n ∈ N ∃q, s : q ≤ a, s ≤ b, q, s ∈ Q,

∀r, t, r ∈ [q, a]∩Q, t ∈ [s, b]∩Q : Ψ(t, ξ)([r, t)×B) ≥ c− 1/n
}
.

Thus

S =
⋂
n∈N

{
(t, ξ, a, b); a ≤ b, ∃q, s : q ≤ a, s ≤ b, q, s ∈Q,

∀r, t, r ∈ [q, a] ∩Q, t ∈ [s, b] ∩Q : Ψ(t, ξ)([r, t)× B) ≥ c− 1/n
}
.

Hence

S =
⋂
n∈N

⋃
q,s∈Q

{
(t, ξ, a, b); a ≤ b, q ≤ a, s ≤ b,

∀r ∈ [q, a]∩Q, t ∈ [s, b] ∩Q : Ψ(t, ξ)([r, t)×B) ≥ c− 1/n
}
.
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Thus

S =
⋂
n∈N

⋃
q,s∈Q

⋂
r,t∈Q,r≥q,t≥s{

(t, ξ, a, b); a ≤ b, r ∈ [0, a], t ∈ [0, b] : Ψ(t, ξ)([r, t)×B) ≥ c− 1/n
}
.

Hence

S =
⋂
n∈N

⋃
q,s∈Q

⋂
r,t∈Q,r≥q,t≥s{

(t, ξ, a, b); a ≤ b, a ≥ r, b≥ t : Ψ(t, ξ)([r, t)× B) ≥ c− 1/n
}
.

Thus

S =
⋂
n∈N

⋃
q,s∈Q

⋂
r,t∈Q,r≥q,t≥s{

(t, ξ); Ψ(t, ξ)([r, t)× B) ≥ c− 1/n
}
×
{
(a, b); r ≤ a ≤ b, b ≥ t

}
.

The sets {
(t, ξ); Ψ(t, ξ)([r, t)× B) ≥ c− 1/n

}
are measurable because Ψ is a kernel (Definition 2.1). Hence the product sets{

(t, ξ); Ψ(t, ξ)([r, t)× B) ≥ c− 1/n
}
×
{
(a, b); r ≤ a ≤ b, b ≥ t

}
are measurable. Then S is measurable because the countable unions and intersections of measur-
able sets are measurable again.

Step 3: For fixed a ≤ b, the mapping

(t, ξ, τ) 	−→ Ψ(t, ξ)(([a− τ, b− τ) ∩ [0,∞))×B)

is measurable.

Proof: This follows from Step 2 and the fact that the composition of measurable functions is
measurable again.

Step 4: For any Borel set J inR+ the mapping

(t, ξ, τ) 	−→ Ψ(t, ξ)(((J − τ) ∩ [0,∞))× B) = Ψ(t, ξ)((J × B)−τ )

is measurable.

Proof: The collection of sets J with this property is a σ-algebra which, by step 3, contains all
intervals of the form [a, b) and hence contains all Borel sets inR+.

Step 5: For any measurable set A inR+ × Ω the function

(t, τ, ξ) 	→ Ψ(t, ξ)(A−τ)

is measurable.

Proof: The collection of sets A in R+ × Ω with this property is a σ-algebra which, by step 4,
contains all rectangle sets J ×B and thus all sets in the product σ-algebra. This finishes the proof.

LEMMA A2. If Φ and Ψ are kernels, so is Φ⊗Ψ defined by (2.5), i.e.

(Φ⊗Ψ)(t, x)(A) =
∫

R+× Ω

Φ(t+ τ, ξ)(A−τ)Ψ(t, x)(dτ × dξ)
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PROOF. ObviouslyΦ⊗Ψ is measure-valued. By Lemma A.1, the function

(t, τ, ξ) 	→ Φ(t+ τ, ξ)(A−τ)

is measurable and non-negative. Hence it can be pointwise approximated by a non-decreasing
sequence of functions of the form

n∑
j=1

αjχCj

with measurable subsets Cj of R × R+ × Ω and χCj denoting the characteristic or indicator
function of Cj (Hewitt & Stromberg, 1969, Theorem 11.35).

Hence it is sufficient to show that∫
R+×Ω

χC(t, τ, ξ)Ψ(t, x)(dτ × dξ)

is measurable in (t, x) for measurable subsets C of R × R+ × Ω. See [HS], Corollary 11.14.
Apparently the collection of subsetsC with this property form a σ-algebra. Thus it is sufficient to
show this property for rectangle sets C = C1 × C2 with C1 being a measurable subset of R and
C2 a measurable subset ofR+ ×Ω. Now∫

R+×Ω
χC1×C2(t, τ, ξ)Ψ(t, x)(dτ × dξ) = χC1(t)Ψ(t, x)(C2).

This is a measurable function of (t, x) because Ψ is a kernel (Definition 2.1).

LEMMA A3. Let Φ and Ψ be kernels and let f : R+ × Ω→ R̄+ be measurable. Then∫
R+×Ω

f(ρ, ζ) (φ⊗ ψ)(t, x)(dρ× dζ)

=
∫
R+×Ω

(∫
R+×Ω

f(ρ+ τ, ζ)φ(t+ τ, ξ)(dρ× dζ)
)
ψ(t, x)(dτ × dξ).

and this integral defines a non-negative measurable function of (t, x).

PROOF: We rewrite

Φ(t+ τ, ξ)(A−τ) =
∫
R+×Ω

χA−τ (ρ, ζ)Φ(t+ τ, ξ)(dρ× dζ).

Now
χA−τ (ρ, ζ) = χA(ρ+ τ, ζ).

The assertion now follows from Levi’s theorem of monotone convergence (Hewitt & Stromberg,
1969, Theorem 12.22) and the fact that non-negative measurable functions f can be pointwise
approximated from below by a non-decreasing sequence of measurable functions of the form

n∑
j=1

αjχAj .

LEMMA A4. (Associativity of⊗)

Φ1 ⊗ (Φ2 ⊗ Φ3) = (Φ1 ⊗Φ2)⊗Φ3
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for all kernels Φi, i = 1, 2, 3.

PROOF: Let t ∈ R, x ∈ Ω and A ⊆ R+ be measurable. Then, by definition of ⊗,

(Φ1 ⊗ (Φ2 ⊗ Φ3))(t, x)(A) =
∫
R+×Ω

Φ1(t+ ρ, ζ)(A−ρ)(Φ2 ⊗ Φ3)(t, x)(dρ× dζ).

By Lemma A.4,

(Φ1 ⊗ (Φ2 ⊗Φ3))(t, x)(A)

=
∫
R+×Ω

(∫
R+×Ω

Φ1(t+ ρ+ τ, ζ)
(
A−(ρ+τ )

)
Φ2(t+ τ, ξ)(dρ× dξ)

)
Φ3(t, x)(dτ × dξ).

By definition of ⊗,

(Φ1 ⊗ (Φ2 ⊗ Φ3))(t, x)(A)

=
∫
R+×Ω

(Φ1 ⊗Φ2)(t+ τ, ξ)(A−τ)Φ3(t, x)(dτ × dξ)

= ((Φ1 ⊗ Φ2)⊗ Φ3)(t, x)(A).

The next two lemmata follow via standard arguments using Levi’s theorem of monotone conver-
gence and the fact that measurable non-negative functions can be pointwise approximated from
below by a non-decreasing sequence of measurable functions of the form

n∑
j=1

αjχAj .

LEMMA A5. (Distributivity of⊗)

Φ1 ⊗ (Φ2 +Φ3) = Φ1 ⊗Φ2 +Φ1 ⊗Φ3

(Φ1 +Φ2)⊗ Φ3 = Φ1 ⊗Φ3 +Φ2 ⊗Φ3
for all kernels Φi, i = 1, 2, 3.

LEMMA A6. Assume thatΨn ↑ Ψ∞ then, for any kernel Φ,

Φ⊗Ψn ↑ Φ⊗Ψ∞

and
Ψn ⊗ Φ ↑ Ψ∞ ⊗Φ
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