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Abstract

We define alinear physiologicaly structured population model by two rules, one for reproduction
and onefor “movement” and survival. We use these ingredientsto give a constructive definition of
next-popul ation-state operators. For the autonomous case we define the basic reproduction ratio
Ry and the Mdthusian parameter » and we compute the resolvent in terms of the Laplace trans-
form of the ingredients. A key feature of our approach is that unbounded operators are avoided
throughout. Thiswill facilitate the treatment of nonlinear models as a next step.
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On the Formulation and Analysis of
General Deterministic Structured Population M odels
|. Linear Theory

Odo Diekmann
Mats Gyllenberg
J.AJ. Metz
Horst R. Thieme

1 Introduction to physiologically structured population models
The agenda of amodeller of biological populationscould look as follows:

1. Model mechanisms at the i-level (i for individual),
2. liftto p-level by bookkeeping (p for population),

3. study phenomenaat the p-level.

So the aim of a modelling exercise is to investigate how mechanisms at the i-level relate to phe-
nomena at the p-level. In step 2 deterministically inclined people, such as the majority of us, use
aforma law of large numbers argument to restrict to expected values, and thisis exactly what we
shall doin this paper. In the theory of multi-type branching processes (see Jagers [20, 21] and the
references given there) one takes the full probabilistic structure into account, which allows one
to study, for example, fluctuations around the mean due to demographic stochasticity. For con-
crete examples of steps 1-2 we refer to METZ & DIEKMANN [25], KOolJMAN [23], DE RoOS,
DIEKMANN & METz [26], DE RoOSs [27].

The set of al conceivable i-states is called i-state space. We shall denote it by Q (as an
example, think of 2 asasubset of the positive age-size quadrant).

We shall assume that the outsideworld influencesindividual sthrough so-called environmental
interaction variables, denoted by E' and taking valuesin an environmental space £ (as an example,
think of £ as R with E describing the concentration of alimiting nutrient, say in a chemostat).

The processes that have to be modelled are:

e growth (i.e. i-state development)

e surviva

e reproduction (how much offspring and with what i-state at birth?)

e feedback (i.e. influence on the environmental interaction variables, such as consumption of
the nutrient)



And “modelling” here means that these processes have to be described in dependence on the i-
state and the environmental interaction variables (we refer to the book by KoolimAaN [23] for a
systematic exposition of the physical, chemical and biological considerations that are needed to
do so). Traditionaly, thisisdone in terms of rates.

The traditional version of step 2 then leads to a first order partial differential equation (pde)
with, asarule, anon-local boundary condition describing the inflow of newborn individualsalong
that part of the boundary of Q2 where theflux pointsinwards. The unknowninthe pdeisthe density
function describing population size and composition (that is, for each time we have an element
of L1(22)). The equation is the anaogue of the Kolmogorov forward equation from probability
theory.

Often it is advantageous, or even necessary, to describe the population size and composition
with a (positive) measure on €2 (which is not necessarily absolutely continuous, i.e. for which a
corresponding density function may not exist). One then uses duality theory by describing the
dynamics in terms of the Kolmogorov backward equation, for a function of time with valuesin
Co(£2), which is the pre-adjoint of the forward equation (see HEIJMANS [17, 18] for some nice
examples).

In any case, the traditional formulation of the modd at the p-level takesthe form of aformal
differential equation involving non-local terms. Despite strong efforts over an extended period
of time, the present authors did not manage to build a qualitative theory for infinite dimensional
systems describing physiologically structured populations when taking such a model formulation
interms of awould-beinfinitesimal generator astheir starting point (we liketo add, to our defence,
two remarks to this disclaimer

e even though we never reached the ultimate goal, some interesting (and even elegant, we
think) mathematics resulted from our attempts, see[1, 2, 3, 4]

¢ one should redlise that, for a given time course of the environmental variables we have a
non-autonomouslinear problem, while with feedback to the environment we are in a quasi-
linear situation).

The main difficulty can actually be explained in biological terms. To keep models parameter
scarce, onewantsto alow for discontinuities (with respect to i-state) in the rates (think of water-
fleas that start to reproduce upon reaching a critical size). Now consider a situation in which the
i-state of some individua movesin 2 for an extended period of time along aline of discontinuity
of, say, the rate of offspring production. Then the ‘model’ is not acceptable as a model and one
should not expect that existence and uniqueness of solutions at the p-level holds. Whether or not
this phenomenon actually occurs in a specific model, is hidden in the rates. It is the combined,
global, effect of the rates that makes the difference between the model being ill or well posed!

Mathematically we might say that it is hard to express the requirement that characteristicsand
surfaces of discontinuity cross transversaly in verifiable abstract terms.

The aim of this paper isto present an alternative mathematical formulation of structured pop-
ulation models. The ingredients, that serve to describe the processes at the i-level, are not rates,
but quantities at the ‘global, combined’ level, such as survival functions. We stress that these are
actually closer to observable quantitiesthan the rates. The advantage is that good and bad models
are distinguished from one another in terms of theseingredients, that is before one starts the math-
ematical analysis. (If actually the model isfirst given in terms of rates, one has a phasein between
modelling and analysisin which the new ingredients have to be computed from the rates; essen-
tially this amounts to integration along characteristics and it is in this phase that transversdity is
checked.)



The corresponding p-equations, as presented in our papers [3, 4], are not pde, but renewal

integral equations. Since the formulation does not involve unbounded operators, there are no
regularity questions (if one does not differentiate, one is saved the hard technical task of finding
necessary and sufficient conditionsfor this to be alowed; or, in other words, of turning a formal
differential expression into awell-defined operator by specifying its domain of definition).
In this paper we achieve a substantial technical simplification (compared to [3, 4]) by postponing
the step fromi- to p-level. Herewe shall perform the construction of the generation expansion (that
is, theiteration of the reproduction rule to specify the expected total offspring (entire clan)) at the
i-level. The step to the p-level then simply amounts to adding the contributions of all individuals.
Mathematically it means that we define a semigroup of operators by means of afamily of kernels
(Green's function). The advantage is that standard integration theory suffices and that there is no
need to go into the intricacies of abstract (Stieltjes) integration. It reduces the role of duality. In
particular we are no longer obligedto consider dual evolutionary systemsand thisfreesusfromthe
need to make unwanted assumptions concerning the behaviour at the boundary of 2 or at infinity
(see[3, 4]).

The formulation presented here overlaps considerably with that of multi-type branching pro-
cesses. In essence, we simply restrict to expected behaviour. What we add, however, is the notion
of i-state and, at the p-level, the evolution operators mapping the p-state at some time onto the
p-state at alater time. When the environmental variables are given, the problem islinear, individ-
uas act independently, and the extra bookkeeping only puts on some frills. But in order to treat
problems that are nonlinear by feedback through the environment, the notion of ‘state’ (both at the
i- and at the p-level) isessentia, we think. It remainsto investigate whether, and in what sense, the
nonlinear deterministic model formulation is the limit of a stochastic model for initial population
size tending to infinity (see e.g. [11]). We hope that this paper is written in such a way that our
probabilistic colleaguesfed invited to giveit atry.

In this paper we ignore the complications of sex and pretend that mothers produce daughters
without intermediary agency of males.

2 Reproduction in afluctuating environment

Our point of view is that structured population models are nonlinear by feedback through envi-
ronmenta variables. So if one experimentaly manipulates the environmental variables (e.g. by
controlling the food availability), the feedback loop is broken and a linear (i.e. density indepen-
dent) situation obtains. Alternatively one can think of the linear situation as corresponding to a
thought experiment and subsequently bring the feedback back in as a second step. This approach
then leads to afixed point problem for the environmental interaction variables. We intend to desl
with these fixed point problemsin part 11 of thiswork.

We choose to suppress the environmental variables in our notation and instead take time ¢t as
a variable in the modd ingredients. In part Il we shall work, in contrast, with ingredients that
depend on the environmental variables, which in turn depend on time ¢.

We assume that i-states are elements of a measurable space €2 with a countably generated o
algebra. We shall frequently consider subsets of the product space R, x €2, where R ;. isequipped
with the o-algebraof Borel sets. We shall often omit the adjective ‘ measurable’ when introducing
Sets.

2.1. Thereproduction kernel

Consider an individual which at time ¢ has state z € 2. Suppose at time ¢ + s this individual
produces a child that has state y € Q at birth. Then we shall call (s,y) € Ry x Q the birth



coordinates of this child.
The reproduction kernel A is by definition the expected number of children. More precisely
we have that, for al (¢,z) € R x Q and subsets A of R x Q,

A(t,z)(A) = theexpected number of children, with birth coordinatesin

A. of anindividua whichat time t has state x (21)

So for the particular case A = [0, s) X w, for some subset w of 2, thisisthe expected number
of children produced inthetimeinterval [¢, ¢ + s) with state-at-birthinw. A structured population
model requires first of all a specification of A. Thus we consider A as the first and most basic
ingredient of such amodel.

2.2. Thegeneration expansion

The kernel A describes the first generation. We want to iterate the reproduction kernel to account
for thefact that children get children etc. Asthetime component of the birth coordinatesrefers to
the time difference between the reproduction event and the moment we focussed on the ancestor,
we have to shift the subsets of R, x 2 in the time direction when we shift attention from one
individua to another. It therefore pays to introduce the following notation:

A ={(0,) e Ry xQ:(0+71,&) € A} (2.2

Note that when A isboundedin thetimedirection, A_, = () for 7 sufficiently large.
We now define

AF(t,z)(A) = expected number of k-th generation offspring,
with birth coordinatesin A, (2.3)
of an individual which at time t has state x

(and emphasize once more that the time component of the birth coordinates depends on both the
ancestor whose descendants we consider and the moment at which we focussed our attention on
that ancestor). Consistency requires that

ARt 2)(A) = / A(t+ 7, €)(A_)AR(t, ) (dr x dE) (2.4)
Ry x

and thus we can build A* from A by iteration. We still need to formulate hypotheses on A which
are sufficient to guarantee that this construction of later generation kernelsis well defined. The
next subsection and the appendix together provide the necessary mathematical background.

2.3. Kernelsand the ®-product

Let M, (R4 x Q) denote the set of positive measures on R x €, that is, measures defined on
the product o-algebrawith valuesin R, = [0, oo].

DEFINITION 2.1. A function ¥ : R xQ — My (R4 x Q) iscaled akernel if, for any measurable
set A C Ry x Q thefunction
(t,z) = Y(t,x)(A)

fromR x Q to R, ismeasurable.
On M, (R4 x Q) we define the order relation > by:

my > meg if and only if my(A) > mo(A) for all measurable A.



The ordered cone M, (R, x Q) inherits monotone sequential completeness from R, : every
monotonically increasing sequence of elements of M (R x Q) hasalimitin M (R4 x Q).

We lift the order relation to the set of al kernels by requiring that the inequality holds for all
(t,z) € R x Q. Sincethe pointwiselimit of measurable functionsis measurable, the set of kernels
inherits monotone sequential completeness. In particular, every series whoseterms are kernelshas
awell-defined sum, whichisakernel.

We shall use the notation ¥,, T ¥, whenever we have monotone convergence of kernelsin
the point- and setwise sense specified above.

Next weintroducemore algebraic structureon the set of kernels. In the Appendix we show that
for every measurable set A C R x Q themapping (¢, 7, &) — U(t + 7,&)(A_,) isamessurable
functionfrom R x R, x Qto R, . So the definition

@e V)@ 0)A) = [ @(t+mEA)V(E)dr x ) (25)
R+>< Q
makes sense. In the Appendix the following collection of resultsis proved. (The agebraicaly
inclined reader will recognize that the set of kernelsis asemi-ring.)

THEOREM 2.2.

(i) ® ® ¥ defined by (2.5) isa kernel
(ii) the ® productisassociative: © ® (? @ V) = (0 ® ®) @ ¥ for all kernels©, &, ¥
(iii) the ® product isdistributive:

O (¢ + )
(24+9)®0

O+ VY
PR0+VY®O

for dl kernels©, &, ¥
(iv) thet limitand ® commute:
PRV, T P2V,

UV, @0 T Vo ®®
whenever ¥, 1 ..

It followsfrom thistheorem that parentheses are superfluousin arbitrary finite productsand, in
particular, that the kth-power U* of akernel ¥ iswell-defined. By monotone convergence the sum
of these powers exists. Exploiting the properties (iii) and (iv) in the theorem above, one verifies
that the sum is the solution of an equation, the so-called resolvent equation. We formulate this
result as

THEOREM 2.3. Let U be a kernel. For any measurable subset A of R x © and any (¢, z) €
R x Q, the series

fﬂﬂa@m)
k=1

converges in R, and the sum defines a kernel, which we denote by ¥¢. The kernel ¥¢ is the
resolvent of ¥ with respect to ®, i.e. it satisfiesthe resolvent equation
Ue=U4+0°QU="0+7Tg T (2.6)

COROLLARY 2.4. (which explains the name “resolvent”).
Let ¥ and f be given kernels. The solution of the equation

X=f+U@X



is given explicitly by
X=f4+7®f.

where ¢ denotes the resolvent of W.

Note that the corollary shows (a bit implicitly perhaps) that the resolvent is unique (cf. GRIPEN-
BERG, LONDEN & STAFFANS [15]).

Befare turning to the biological interpretation of the resolvent, we like to make the following
side-remark. Clearly one can formulate variants in which ¢ is restricted to a subset of R, eg.
[s,00) for some s. It may aso happen that one has chosen 2 too large and that restriction to a
subset of €2 yieldsa meaningful problem (see e.g. Section 2.4 below). We think such modifications
are straightforward and we chose not to complicate the formulation by including them from the
very beginning.

24. Theclan kernel and therenewal equation

Returning to the population dynamical setting, we now assumethat A isakernel and we shall call
the sum of al generation kernels

A=) AR (2.7)
k=1

the clan kerndl.
As the members of the clan originating from an individual are either its children or members
of the clan originating from one of its children, we should have

A=A+ A°®A. (2.8)

But oneisjust asright in noting that clan members are either children or children of clan members,
i.e
AC=A+ARA“ (2.9

Thus we see that in our particular context both identities, that together constitute the resolvent
equation (2.6), allow for a simple and straightforward biologica interpretation. This interpreta-
tion is also reflected in the name “renewa equation”, that is frequently used to denote equations
(2.8), (2.9) and the like (a more strict motivation for the word “renewal” derives from economic
applications, having to do with the replacement of machine parts whose life time follows some
distribution).

Aswe have seen, A°(t, x)(A) isawaysawell-defined element of R.,.. But often we want and
expect some form of boundedness, in particular that A°(¢, z)(A) isfinitefor every (¢, z) € R x Q
and every A C R4 x Q which is bounded in the time direction. We present two results in this
spirit.

Whenever there is necessarily a gap between being born and giving birth, only finitely many
terms in the sum defining A°(¢, z)(A) are different from zero when A is bounded in the time
direction (but the number of non-zero terms increases without bound when we alow A to expand
indefinitely in the time direction).

DEFINITION 2.5. We say that a measurable subset 2, of €2 is a set representing the birth states,
if, foral (¢,z) € R x Q, A(t,z) isconcentrated on R x € (inthesensethat A(¢,z)(A) =0
whenever ANR; x Qp, = 0).

REMARK 2.6. Whenever 2 has anatural locally compact Hausdorff topology and we are dealing
with regular Borel measures, we can uniquely define 2, as the smallest closed subset of €2 such
that, for al (t,z) € R x Q, A(t,z)(Ry x w) = 0 whenever w N Q = (. In that case we will call



Qy the set of birth states. In general, we have to live with the somewhat irritating vagueness and
non-uniqueness of Definition 2.5.

DEFINITION 2.7. xz € Q iscalled ajuvenile state, with reproduction delay at least , when

sup A(t,z)([0,e) x Q) = 0.

teR
THEOREM 2.8. Suppose birth states (i.e. elements of 2, as in Definition 2.5) are juvenile
states with uniformreproduction delay ¢, then the generation expansion is finite in the sense that
A*(t,z)(A) = 0 whenever, for somes, A C [0,s) x Qandk > 1s.

The second type of result employsexponential estimates. We present aversionintermsof integrals
while noting that, under appfopriate hypotheses, pointwise estimates work equally well.
The Laplace transform ¥ of a kernel ¥ isdefined, for real valuesof z at first, by

B(t, 23 2) (w) = / Ut @) (dr x dE) = Tim [ e (L) (dr x dE). (20)
Rixw [0,8) xw
So U maps R x Q x Rinto M, (2). We define
). = sup  W(t,a;2)(Q). (211)
(t,x)ERxS)
A kernel U iscalled aLaplace kernel if
| ¥, < ooforsomez € R. (2.12)

Note that in that case the definition (2.10) can be extended to z € C with Rez > z;.
THEOREM 2.9. If & and ¥ are kernelsthen
1@ @ W[l < [|®[][¥]- (213)
COROLLARY 2.10. If ® and ¥ are Laplace kernels, so are ® ® ¥ and ®* for & > 1. Moreover
12¥]- < (ll].)". (2.14)

THEOREM 2.11. Let A be a Laplace kernel with, for some zp > 0 and somej > 1, ||Al|,, < oo
and ||A7||zp < 1. Let, for some s, A C [0, s) x © be measurable. Then the series

AS(t,z)(A) = i A¥(t,2)(A)
k=1

convergesin R, uniformlyin¢ € R and z € ). Moreover, A€ isa Laplace kernel.

We emphasize that all information about population growth (or decline) is contained in A¢. And
since A€ isobtained from A by a straightforward constructive procedure, it is possible to deduce
such information directly from A. In section 6 we shall elaborate this for the relatively simple,
but important, special casethat A(¢, z)(A) isindependent of ¢, which amountsto the environment
being constant rather than fluctuating.



2.5. Reduction of the generation expansion

A set Q; representing the birth states (Definition 2.5) may be considerably smaler than €. In
particular thisisthe case when age is a component of i-state, since newborns have age zero by the
very definition of age.

The reduced reproduction kernel A, isjust A, but with the convention that in Ay (¢, x)(A) =
A(t,z)(A) werestrict toz € Q, andto A C Ry x . From it we build the higher generation
kernels by iteration, as usua:

ARFL(E, ) (A) = / Ao(t+ 7, ) (A_DAE(E, 2) (dr x dE) (2.15)
Ry x (Y

with the same restriction on = and A.

The point is that we need A to compute the first generation for a general initial condition,
but that all information concerning subsegquent generations is contained in the powers of A;. We
formulate this precisdly as

LEMMA 2.12. Forall (t,z) e R x Qand A C Ry x Q

AL, 2)(A) = / At + 7, 6) (A, 1 (Rs x Q)AL 2)(dr x ). (2.16)
Ry x ()

Sometimes afurther reductionispossible. Supposebirth statesare ‘ separated’ from statesinwhich
reproduction is possible by a set of i-states, which we then call renewal points. Here ‘ separated’
means that any individual has to pass at |east one renewal point before being able to reproduce.
As a concrete example consider a size structured cell population in which the minimum size of
a mother is larger than the maximum size of a daughter. Then any size in between qualifies as
arenewal point (see [6, 5]; note that this example demonstrates that there may be an element of
choicein the definition of renewal points).

Theideais nhow that we may consider passage through a renewal point as a kind of birth and
base our bookkeeping of reproduction on this ‘birth’ process, rather than on the true birth process.
When individual movement (see the next section) is continuous, ‘ passage’ should be taken literal,
but when it isajump processit is more accurate to speak about first hitting a renewa point.

To describe such situations mathematically, we introduce a measurabl e subset 2, of 2, which
we call the renewal set, and for esch ¢t € R and = € €, ameasure 7(¢, z) on Ry x €, which
describes when and where an individual which is born at time ¢ with birth state z will hit the set
Q, for the first time. We assume that for any measurable A C R x €, the function (¢, z) —
7(t,z)(A) from R x € to R ismeasurable.We now requirethat, for each t € R and = € ;, and
ACRL x

Ao(t, 2)(A) = / A(t+7, ) (A )w(t, 2)(dr x dE). 2.17)
Ry x ),

Note that in (2.14) expected reproduction from birth states is expressed in expected reproduction
from renewal states and expected arrival at renewal states.
We next definefor x € Q, and A C R x Q, thereduced renewal kernel A, by

A(t, 2)(A) = / 7(t 47 &) (A )AL, o) (dr x dE). (2.18)
Ry x ()

Note that A, computes, for an individual with a state in 2,., first the true reproduction and next
the hitting of €2, of the offspring. Or, in other words, A, describes reproduction for the quasi-birth
process of hitting €2,



The powers of A, are now defined in exactly the same way as those of A and A,. More
precisely, in the computation of A¥(¢, z)(A) werestricttoz € 2, and A C R, x Q.. Of course
the advantage hinges upon €2, being smaller than ;.

We now want to express the powers of A, explicitly in terms of the powers of A,.. Asafirst
step we express iterated true birth kernels starting from a renewal state in powers of A, and the
given A.

LEMMA 2.13. Foranyt € R,z € Q, and A C R x Q; theidentity
Ao = [ MG+ AN @) (dr x de) (2.19)
Ry x (),
holds.

Proor. With a dlight abuse of the ® notation (since we do not incorporate the dependence on the
subset of Q) considered) we may write (2.17) as

Ap=A®mn
and (2.18) as
A,=7T®A
and (2.19) as
AF =A@ AL

We now prove the validity of thislast identity by induction. Supposeit holdsfor k. Then
AL A QA = ARTRAQAN =A@ A QA=A A"
or, inwords, it holdsfor & + 1. Sincetheidentity istrivia for k = 1, the proof iscomplete. O

All that remains to be done in order to achieve our aim is to derive the higher order analogue of
(2.17).

LEMMA 2.14. Foranyt € R,z € Qpand A C R x Q theidentity

AK(t, 2)(A) = / ARt + 7, €)(A_ ) (t, @) (dr x dE) (2.20)
R x ),

holds.
PROOF. In symbolic notation we have to prove that
AY =A@
Assume that thisrelation holdsfor k. Then
Mt =N A =Moo A or=ATer
and we conclude that it holdsfor k£ 4+ 1. Since for & = 1 therelation is nothing else than (2.17),

the proof is complete. o

The results of this subsection are now reworded and summarised in the following



THEOREM 2.15. (i) For t € R and = € € we can explicitly express A intermsof A and Aj:
A%t 2)(A) = A(t,z)(A) + /’<Mu+T@xA»wamhxdo (2.21)
R+>< Qb

(i) If, for a suitably defined renewal set 2., the kernel A, allowsthe representation (2.17), we can
explicitly express Af intermsof A, m and A¢: for ¢ € R and z € €2, we have that

A§(t 2)(A) = / A(t + 7, &) (A (t, z)(dr x dE) (2.22)
R x ),
and
A°(t, 2)(A) = At 2)(A) + / At + 7, €)(A_)AS(t, 2)(dr x dE) 2.23)
R x ),

PROOF. (i) followsfrom Lemma 2.12 by summing over k.
Likewise we obtain (2.23) from Lemma 2.13 by summing over k, and (2.22) from Lemma
2.14. m]

3 I-statedevelopment and survival

So far our presentation echoes the treatment of expected behaviour in the theory of multi-type
branching processes (e.g. JAGERS [21] )
But now we introduce as our second ingredient

u(t,z; s)(w) = probability that an individual which has state « at time ¢

isalive s time unitslater and then hasastateinw C (31)

What we have in mind is that individuas follow a Markov process with death as a hidden ab-
sorbing state. But we do not need a full specification of this process. The information about
i-state development in 2 (e.g. individua growth, if sizeisan i-state variable) and survival that is
embodied in the function u with the stated interpretation, suffices for our deterministic purposes.
We emphasize that stochastic movement in €2 is alowed (such in contrast with formulations
in terms of first order pde, which require movement in 2 to be described by ode). Stochastic
movement is so easily included, at least at the forma general level, because the description in
(3.1) works with finite time differences rather than with infinitesimal time differences.
Theinterpretation requires that v satisfies a consistency condition, the Chapman-Kolmogorov
relation
u(t,z; 9)(w) = [ ult+ 0,65~ o) (w)ult, 7:0)(d6) (32)
Q
which should holdforal z € 2,t e R,s € Ry,0 < o < sandw C 2. Often we shall suppress
w inidentitiesof thiskind and simply writeit as

ult,zi ) = [u(t+ 0,655 = oJult, i) (dE) (33)
Q

The Chapman-Kolmogorov relation expresses that i-state is a ‘ state’ in the Markovian sense, by
requiring that a rearrangement of our bookkeeping corresponding to a stop and re-start at time
t + o in between t and ¢ + s should not lead to different results. Asthe same conclusion should
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hold when we consider reproduction, there is a second consistency relation that combines u and
A:
A(t,z)(A) = A(t, ) (AN ([0,5) x ) + /A(t +5,&)(A-s)u(t, z;5)(d€)  (3.4)
Q

Asfor any A necessarily A; N ([0, s) x Q) = () we may alternatively write thisas

At 2)(A) = [ Alt+ 5.8 (Ault,:.5)(d9). (35)
Q

Thisrelationshouldholdforal z € 2,t € R,s € Ry and A C Ry x Q.
We assume that u maps R x Q x Ry into the set M, () of positive measures on 2 and is
such that

(i) forany w C Q thefunction
(t,@;5) — u(t, z; 5)(w)

is measurable
(i) u(t,x;s)(Q) < 1, thatis, u(t, z; s) isa, in genera defective, probability measure
(iii) the consistency conditions(3.2) and (3.4) are satisfied.

We note that (3.2) and (ii) together imply that the survival probability s — u(t, x; s)(Q2) isa
non-increasing function, asit should be. We may require as an additional condition that

lim u(t,z;s)(2) =0 (3.6)

§—00

to express that no individua isimmortal. Or, aternatively, that

sup /su(t, x;ds)(Q) < 00 (3.7)
(t,x)eRxS) 0

to express that life expectancy is uniformly bounded. For many submodels u(t, z; s)(€2) will
actually converge exponentially to zero as s — oo.
4 Combining i-state development, survival and reproduction

Consider oneindividual which at timet has state x. By u°(¢, x; s) wewant to describe the expected
size and composition of its clan, including the individual itself. So we define:

u(t, z; s) = u(t, x; ) + / u(t+ 7,8 s — 17)A(t, ) (dr x df) 4.0
[0,s)xQ2

What properties of « follow from this explicit definition? Clearly for any w C €2 the function
(t, @y 8) — ul(t, @3 8) (w)

fromR x Q x R4 to R ismeasurable. The estimate
Wt s)(Q) < 1+ / A(t, ) (dr x Q)
0

readily implies that
u(t, z; s)(Q) <1+ Ke*?

11



whenever || A€ ||, < K or, inwords, A¢ isaLaplace kernel (cf. Theorem 2.11).
We now want to verify that «¢ satisfies the Chapman-Kolmaogorov relation. It turns out that it
is convenient to prove first the analogue of (3.5).

LEMMA 4.1. Our assumptionsconcerning A and v guarantee that the identity
At 2)(A) = [ A“(t + 5,€) (Apuc(t, 5 5) (d€) 42
Q

holds for A¢ defined by (2.7) and u¢ defined by (4.1).

PROOF. According to the renewal equation (2.9)

At 2)(A) = M)A+ [ A+ T (A )ALt 2)(dr x dE).
R xQ

We decompose R x 2 = (][0, s) x ) U ([s,00) x Q) and use (3.5) to write

At 2)(A) = [ A(t+ s, m)(A)ult, 3 9)(dn)
Q

4 / / At + 5, (A)ult + 7 & s — 7)(dn)A(t, ) (dr x dE)
[0,5)xQ

+ / A(E+ 7€) (A )A%(t, ) (dr x dE)
[s,00) X2

Using (4.1), a change in the order of integration of the second term, and the new integration
variablec = 7 — s inthethird term, we deduce that

A(t,2)(A) = [ Alt+ s, m)(A)u(t, :5) (dn)
Q

b [ A0 (A A 2) (s, 5+ do] x de).
Ry x
Now define f by

Fta)(A) = [ At n)(A)uclt - s,2:5)(dn)
Q
and X by
X(t,z)(A) = A(t — s,2)(Ay)

then, upon replacing ¢ by ¢t — s, we can write thisidentity as the renewal equation
X=f+AxX.

So, by Corallary 2.4, we have
X=f+AQRf
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or, written out in detail whileinsertingt + s for ¢;
A%t 2) (As) = / A(t+ 5, ) (A)ul(t, z; 5)(dn)
Q

+ / At +s+76)(A) / At + s,m)(dr x dOWuC(t, o 5)(dn)
x 0 Q
A(t+s,m)(A) + (A° @A) (t +5,1)(A)u(t, z; 5)(dn)

I
SR S

At +s,m)(A)u(t, z; 5) (dn).

LEMMA 4.2. Our assumptionsconcerning A and » guaranteethat « © defined by (4.1) satisfiesthe
Chapman-Kolmogorov equation, i.e.

Wt w5 8) = / Wt + 0, &5 5 — )t 73 ) (dE) 4.3)
Q

forall0 <o <s.

PROOF. Accordingto (4.1) and (3.2)

ut(t,x;s) =u(t,z;s)+ / u(t +7,m; 8 — 7)A(t, x)(dT X dn)
[0,0)xQ
4 / w(t + 7, m; 5 — TV, 2) (dr x di)
[0,00) %2

_ /u(t+a,5;s — o)u(t, z; 0)(dE)

Q

—|—/u(t to,65—0) / w(t+ 7,05 0 — 7)(dE)YA(t, ) (dr x dn)
Q [0,0)xQ

+ / u(t+o+a,n;s— 0 —a)A(t,x)([o,0 + da] x dn).
[0,s—0)xQ)

By the defining relation (4.1) the sum of thefirst two terms equals
[utt+ 0,65 - oy (t,230)(d6)
Q
while by Lemma 4.1 the last term can be rewritten as
u(t+o+a,ns—0—a) /Ac(t + 0,&)(da x dn)u(t, z; o) (dE).
[0,s—0)xQ Q
Combining these stepswe find that

u(t,x;s) = [[u(t+0,&s— o)+
Q
[ ult+o+a,ms—0—a)A(t+o,&)(da x dn)u(t, z; 0)(dE).
[0,s—0)xQ
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Using definition (4.1) once more we finally arrive at

u(t, z;s) = /uc(t +0,& s — o)ul(t, x; 0)(dE).

Q

]

Let us summarise the situation. We have introduced two ingredients A and w that together fully
specify alinear, time-dependent, structured population model. From these we have defined, by a
constructive procedure, u¢ such that u(t, z; s) isthe measure on 2 that describes at time ¢ + s the
expected size and composition of the population descending from one individual at time ¢ having
state z. Thisinterpretation demandsthat v satisfies the Chapman-Kolmogorov equation. We have
verified that the construction procedure at the i-level guarantees that the Chapman-Kolmogorov
equation indeed holds and we are ready to take up the bookkeeping at the p-level. Aswe will see,
this now simply amounts to adding contributions.

5 Thepopulation level

Let M (€2) denote the linear space of measures on the i-state space 2 and M (€2) the subset of
positive measures. The generic element is denoted by m. We now define linear operators mapping
M(Q) into itself and leaving M (€2) invariant. Reproduction operators are denoted by V' and
next-state operators by U. Such operators carry an index ¢ which can take the values 1 and c.
When theindex equals 1 we often suppressit in the notation (in fact we have done so consistently
in the foregoing).

DEFINITION 5.1.

(Vi(t +7,7)m)(w) := /Ai(T, z)([0,t) X w)m(dx) (5.2
Q
(Ut +7,7)m) (w) = / Wi (7, € 1) (w)m(de) (5.2)
Q

The Chapman-Kolmogorov equations (3.2) and (4.3) and the consistency conditions (3.3) and
(4.2) have as an immediate

COROLLARY 5.2. For0 <o <s
Uit +5,t) = Ut + s,t + 0)U'(t + 0, 1) (5.3)
Vit +s,t)=V(t+o,t)+V'(t+s,t+0)U(t+o,t) (5.9

The identity (5.3) can be summarised in words by saying that U forms a (forward) evolution-
ary system while, in the terminology of DIEKMANN, GYLLENBERG and THIEME [4, 3], (5.4)
expressesthat V* isacumulative output family for the evolutionary system U,

Symbolically, we can lift the renewal equations (2.8) and (2.9) and the definition (4.1) to the
p-level aswell and write

t+s
Ve(t+s,8) = V(E+5,8) + / V(t +5,0)V(do, t) (5.5)
t
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t+s

Vet +5,8) = V(t+ 8,1) + / Ve(t + 5, 0)V(do, £) (5.6)
t
t+s

Ut + 5,8) = Ult + 5, 1) + / Ut + s,0)V°(do, t) (5.7)

t

In earlier work, we have taken such abstract equations and identities as our starting point, putting
quite some energy in the precise underpinning of the abstract Stieltjes integral. Now we tend to
view them as akind of shorthand notation: in order to give them a precise meaning (in particular
the integrals), we have to apply both sides to a measure m and then ‘insert’ aset w C . Thekey
point isthat the operators are defined in terms of kernels which satisfy certain identities!

6 Growth or declinein a constant environment?

In the case of a constant environment both A(¢, z) and u(¢, x; s) are independent of ¢. It then
followsthat the sameistruefor A¢(t, x), u(t, x; s), Vi(t+s,t) and U'(t + s, t). In particular the
one-parameter family of operators

T'(s) := U'(t + s, 1) (6.1)

forms a semigroup with A A
W' (s):=V"(t+s,t) (6.2

as a corresponding cumulative output family.

In a constant environment the time of birth does not matter and we can, if we like, study
the population from a generation perspective. Let the measure m on 2 describe the size of a
generation and its distribution with respect to state at birth. Then W (co)m defined by

(W(eeym)(@) = [ A(e) (R x wm(da) (63)
Q

contains exactly that same information concerning the next generation and consequently we shall
call W (oo) the next generation operator (note: here and in the following we suppress¢ in the no-
tationfor A; our choice to work with relative time for the time component of the birth coordinates,
instead of absolute time, was actually motivated by the wish to achieve such a straightforward
reduction in the notation for the case of a constant environment).

When sup,cq A(z)(R4 x Q) is bounded, W (oo) is a bounded linear operator on M ((2),
equipped with thetotal variation norm.

Thebasic reproductionratio R is by definition the spectral radius of W (o).

Positivity arguments guarantee that, asarule, Ry isan eigenvalue (usually called the dominant
eigenvalue). An irreducibility assumption is needed to accomplish that Ry is the only positive
eigenvalue and that it is simple. When further conditions bring about that the rest of the spectrum
is contained in a circle with radius strictly less than Ry, it is clear that iteration of W (o) leads
to astabledistribution for the state-at-birth (viz., the eigenvector corresponding to R normalized
such that the measure of €2 equals one), while the population size changes in the long run with
afactor Ry from generation to generation. We therefore identify R with the generation growth
rate.
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In order to characterise the population growth rate in rea time we consider the Laplace-
Stieltjestransform

A

(AW (2)m) (w) = / e~ Az)(dr x w)m(dz). (6.4)
Ry x

Note that dW(z) adds offspring, while discounting for the reproduction delay by weighing a new-
born with e=*™ when the time interval between the birth of mother and daughter equals 7. This
interpretation suggests, as FISCHER [13] made clear in the context of the Euler-L otka character-
istic equation for age-dependent population growth, that the population growth rate r in real time
is determined by the condition that dV¥ (r) should have dominant eigenvalue 1. When R, > 1 the
equation

spectral radius dW (z) = 1 (6.5)

has a unique solution z = r on thereal line and necessarily » > 0. When R < 1 the existence of
area solution of (6.5) is not guaranteed, as theintegral in (6.4) may grow insufficiently when we
approach the abscissa of convergence. But additional conditions (see JAGERS [22], SHURENKOV
[28]) are known that guarantee the existence of r also in this case, and then necessarily » < 0. We
note that r is often called the Mathusian parameter.

The eigenvector of dW(r) corresponding to the eigenvalue one describes the stable distri-
bution for the state-at-birth when we sample newborns at a particular moment in time (which is
different indeed from sampling newborns that belong to a specific generation).

In summary, and with reference to the end of section 2, we conclude that, under suitable
conditions, both the generation growth rate Ry and the Malthusian parameter r are well-defined
once A isspecified and that » > 0 if and only if Ry > 1. To prove that r isindeed the growth rate
of the semigroup 7°(s) defined by (6.1) one can employ Laplace transforms. We shall deal with
this method in the next section . It requires conditions which are somewhat stronger than needed
and it is worth the effort to consult SHURENKOV [29, 30] and THIEME [31], for genera results
covering both the lattice and the non-lattice case (see FELLER [12] for these notions and for the
main ideasin the simplest context).

The borderline case Ry = 1 is of specia interest, as it leads to a steady state. For (abstract)
differential equations %? = Ay one can spot steady states by solving Ay = 0; in particular one
can characterize steady states directly in terms of the given ingredient A, without paying any
attention to (the construction of) the semigroup of solution operators generated by A. The aim of
the rest of this section is to expose explicitly the corresponding result for the setting of the non-
local ingredients A and w. For the linear situation the question is perhaps abit academic, as steady
states will be the exception rather than the rule. But in the nonlinear theory of part Il the result
will play aprominent role. Moreover, in the next section we shall give avery natural extension by
expressing the resolvent in terms of Laplace(-Stieltjes) transforms of the ingredients.

When individualsare immortal, a steady state may exist at the generation level, but the total
extant population will keep growing. In order to exclude such a degenerate situation we require
for therest of this section that

o0

sup/u(a:;T)(Q)dT < 00 (6.6)
€ 0

i.e. life expectancy is bounded, uniformly with respect to the state-at-birth.

THEOREM 6.1. i) Assume that
W (co)b =b (6.7)
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then m defined by
m— /0 T T (r)bdr = / / w(&; T)b(de)dr 6.8)
0 Q

isa steady stateof 7¢(¢), i.e.
T°(tym =m fordlt >0 (6.9)

i) Conversely, let m be a steady state of 7¢(¢) then b defined by
b— %Wc(t)m (6.10)
does not depend on ¢ and satisfies (6.7).

PROOF. To give a precise meaning to the integrals and identities that follow, one should insert an
arbitrary set w C € to obtain R-va ued functions of ¢.
i) Assume (6.7) and define m by (6.8) (note that m iswell-defined, since we assumed (6.6)). Then

W (t)m = W (#) / T(r)bdr — / W ()T ()bdr.
0 0

So by (5.4) wefind

W (t)m [W(t+7)— W(r)bdr

(W (t +7) — W (o0)]bdr + / (W (00) — W (r)]bdr
0

(W (r) — W (00)]bdr + / (W (00) — W (7)]bdr
0

Ot T g — g — ¢

(W (c0) — W(r)|bdr = tb — / W (7)bdr.
0

The autonomous version of (5.6) reads

We(t) = W(t) + / We(t — o)W (do). (6.11)
0

Applying both sidesto m and using the expression for W (¢)m we find

We(t)ym = th — / W (r)bdr + / We(o)bdo — / We(t — o)W (o)bdo.
0 0 0

If, on the other hand, we integrate over time, we obtain

/tWC(T)dT— /tW(T)dT—i—/tWC(t— o)W (o)do.
0 0 0

Combining these two identitieswe see that necessarily

We(t)m = tb.
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The autonomous version of (5.7) reads
t
Te(t) = T(t) + / T(t — 7)W*(dr). (6.12)
0

Applying both sidesto m we deduce that

Te(ym = T(t)m + / T(t — 7)bdr — / T(r)bdr + / T(7)bdr
0 0 t

O/T(T)de =m.

ii) Assume (6.9). Then
We(t+ s)m — We(s)m = W(t)T(s)m = WE(t)m.
It followsthat for rational ¢
We(t)m = tWe(1)m.

But if weevaluatefor aset w C €2 we obtain anon-decreasing real -val ued function and asandwich
argument makes clear that the identity necessarily holdsfor al ¢.
Define
b=We1)m.

Then

1 1

| =

/ W (t — 7)We(dr)m
0

t
1 1
= SW(m -+ / W (0)bdo.
0

For ¢ — oo the right hand side converges to W (co)b and we conclude that necessarily
b= W(o0)b.
]

The biological interpretation of Theorem 6.1 is that steady states for the generation process and
for the real time process are in one to one correspondence. For the generation process, we have
to compute the eigenvector of eigenvalue 1 for the operator W (co) defined directly in terms of A.
Next we can use the operators 7'(¢), defined directly in terms of w, to compute the redl time steady
state m from the generation steady state b. So the i) part of Theorem 6.1 delineates a constructive
procedure for determining the steady states directly from the ingredients that specify the model,
whiletheii) part makes sure that we cannot possibly miss a steady state in this manner.

7 Theresolvent
A steady state existswhen z = 0 isa singularity of the resolvent of the generator. In this section

we extend our interest to singularitiesin general. More precisely, we shall employ the Laplace
transform to derive a product representation for the resolvent, which exemplifies the perturbation
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approach. A key point is that the factors are directly expressed in terms of Laplace transforms of
the ingredients.
Recalling that

(Ttym)(w) = [ wi(ast)(wm(da) 7.0

Q
and A A
(W (t)m)(w) = /Az(x)([o,t) X w)m(dx) (7.2)
Q

we define the Laplace transform of T' and the Laplace-Stidtjes transform of W by the explicit
formulas

(T (2)m) (w) = / =7t (2 £) () dtm (dx). (7.3)
Ry x

(AW (2)m)(w) = / e~ Ni(2) (dt x w)m(dz) (7.4)
Ry x

Throughout this section we assumethat A isa Laplace kernel, so that (7.4) makes sense for Re z
sufficiently large (cf. Theorem 2.11). According to the estimates from the beginning of Section 4,
the definition (7.3) with i = ¢ then makes sense aswell for Re z large. Actually, as we show now,
one can express 7 in terms of 7" and d1V.

THEOREM 7.1. For Re z sufficiently large the identity

N

T¢(2) = T(2)(I — dW(z)) (7.5)
holds.
PROOF. Taking Laplace transforms of the renewal equation (6.11) we find

I+dWe(z) = (I —dW(z))™!

The identity (6.12) likewisetransformsinto

A~

T%(2) = T(2)(I + dW(2))

and by combining the two we obtain (7.5) (which appears as (1.16) in [3]). i

In general T(z) will be analyticin some (relatively large, i.e. extending quite far to the left) right
half plane, and so will be dIW (z). The representation (7.5) therefore demonstrates that z € C
for which I — dW(z) is non-invertible are of paramount importance when studying asymptotic
behaviour and the related decomposition of the state space M ().

In the construction of (I — dW(z))~! one can make certain reductions, just as in the con-
struction of the generation expansion discussed in subsection 2.5 (and for the same biological
reasons). Recalling the Definition 2.5 of a set representing the birth states, we first of al note that
the decomposition

Q=0 U (Q\ )

induces a direct sum decomposition

M(Q) = M(Q%) & M(Q2\Qp) (7.6)
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with corresponding projection operator on M (€2)
(Pm)(w) = m(w N Q). (7.7)
The fact that the range of dWW (z) is contained in M (£2,) motivates the following elementary aux-

iliary result.

LEMMA 7.2. Let X be a Banach space and P a projection operator on X such that, with Y =
R(P)and Z =R(I — P),
X=YaZ

Let K bealinear operator on X withR(K) C Y. Then I — K isinvertibleifandonlyif (I —K)|y
isinvertible and

(I-K)'=(I-K)|y'(P+K(I-P)+I—-P (7.8)
COROLLARY 7.3. Define dWy(z) : M () — M () by
(dW(2)m)(w) = / =7 Ay(2)(dt x w)m(dz). (7.9)
Rix (Y

Then I — dW (z) is invertible if and only if I — dW;(z) is invertible. Moreover, the formula
(7.8) allowsus to compute the residue of (I — dW( ))~! in a pole fromthe Laurent expansion of
(I — dWj(z))~"! and the Taylor expansion of d1(z).

When only finitely many states at birth are possible, i.e. €2 isfinite, the condition amounts to the
invertibility of a matrix and by taking the determinant we find a characteristic equation. As we
now explain, the same is possible when there are only finitely many states at birth in a stochastic
sense. By thiswe mean that

Ao(@)(A) = (i) x 3)(A) (7.10)

=1

or, in more detail, that forany t > 0 and w C
Ap(2)([0,1) x w) =D Bi(@)([0, 1)) ilw)- (7.12)
=1

In words one could say that the range of Ay(z) is spanned by finitely many product measures on
R x Q, with the second factors the same for al z. As a consequence, the range of dWW(z) is,
for al allowable z, spanned by finitely many measures on €2, viz. the {;}.

THEOREM 7.4. Assumethat A, allowsthe representation (7.11). Then I — dW () isinvertibleif
and only if

det A(z) #0 (7.12)
where A(z) isthen x n-matrix with entries
A(2)ij = / e~ Bi() (dt)y;(dz). (7.13)
R+>< Qb

Proor. Combination of (7.9) and (7.11) yieldsthat

(@ (m)(w) = 3 [ e B@@mdam)

=1 R+>< Qb
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from which we deduce that indeed the range of dW;(z) is spanned by {~;}. The conclusion now
followsfrom Corollary 7.3 and another application of Lemma 7.2. o

Note that aminor further simplificationis possiblewhen 3;(x) ([0, t)) = ¢;(z)b;([0, )), since then
we can compute A(z) from the product representation

A(z)ij :/ x)v;(dx) /e by (dt).
98 0

Suppose A isazero of det A(z). We should be able to define, by residue calculus, a spectral
projection operator Py. We conjecture that the dimension of Py M () equals the multiplicity of
A as azero of det A(z). On PyM(Q) the action of T(¢) is described by an ode. The Jordan
structure should follow from the structure of the Jordan chains of A, just asin the case of delay
equations (cf. Section IV. 4 of [7]. We intend to elaborate these issuesin ajoint publication with
S.M. Verduyn Lundl.

An infinite-dimensional variation on the same theme arises when we can identify arenewal set
2, and measures () such that (2.17), which we here repeat for the autonomous case as

/ AE)(A_)m(z)(dr x de), (7.14)

R+><Q

holds. In that case it is natural to decompose the Laplace-Stieltjes transform of W, into two
factors. For this purpose we define L(z) : M () — M(£2,) and K (2) : M(Q,) — M () by,
respectively,

(L(z)m)(w) = / =7 () (dt x w)m(de) (7.15)
Ry x (Y
and
(K (2)m)(w) = / e~ A(2)(dt x w)m(dz). (7.16)
Ry x

LEMMA 7.5. (i) dWy(z) = K (2)L(2)
ii) Define A, by (cf. (2.18))

L@@ = [ wOU-DAR) @ x df) (7.47)

R+>< Qb

wherez € Q, and A ¢ R, x Q,.. Next define dW,.(z) by

(AW, (2)m)(w) = / e~ A, (2)(dt x w)m(da). (7.18)

R+>< QT’

Then )
dW,(z) = L(2)K(z).

Essentially thislemmaisjust the familiar result that convolution becomes a product under the
Laplace transform. The proof consists of writing everything out in detail and applying Fubini’s
theorem, and we omit it.
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Let usfirst assumethat L(z) is surjective and that
M(Qb) =YoZ

WithR(K(z)) =Y and L(z) : Y — M (Q,) injective. Lemma 7.2 impliesthat I — K (z)L(z) is
invertibleif and only if (I — K(z)L(z))|y isinvertible. Thelatter condition, in turn, is equivalent
to theinvertibility of I — L(z) K (z).

One can relate theinvertibility of I — K (z)L(z) tothat of I — L(z)K (z) under more general
conditionsinvolving, in particular, a decomposition of M (2,.) aswell. We refrain from a further
elaboration, the main point being anyhow that one can exploit theidea of renewal pointsto discover
structure in the construction of the resolvent (see e.g. [5]).

The resolvent representation (7.5) is the key step for proving results concerning asymptotic
large time behaviour. We first recall a fact which is rather hidden in the notation: (7.5) is a
statement about the L aplace transforms of a collection of R-valued functions obtained by applying
the semigroup to a particular measure and evaluating for a particular subset of 2. Hence we can
apply Tauberian theorems from classical analysis (see in particular WIDDER [32]) to deduce the
asymptotic behaviour for ¢ — oo from the behaviour of the Laplace transform for z near r (cf.
(6.5)), while exploiting positivity. Thus one can show that, when &l other singularities satisfy the
strict inequality Re z < r, asymptoticaly for ¢ — oo balanced exponential growth obtains:

(Te(t)m)(w) ~ C(m)e"p(w), t — oo,

where ¢ istheeigenvector of dW(r) correspondingtothe eigenvalue 1 and C' isaconstant depend-
ing on m. When € is equipped with alocally compact Hausdorff topology one can reformulate
this as convergence of

e "(Te(t)m — C(m)g)

with respect to the weak * topology. We refrain from a detailed elaboration of such inferences
while noting that, aternatively, one can refer to SHURENKOV [29, 30], JAGERS [21] or THIEME
[31] (in preparation) for formulations of such results appropriate for the present generality. We
emphasi ze that Shurenkov and Jagers a so deal with the much more subtle “lattice” case, charac-
terized by the presence of a discrete additive subgroup of singularitieson theline Rez = r (aso
see [5] for a concrete exampl e of this phenomenon, elaborated in full detail).

8 Examples

8.1. Age

When age qualifiesas i-state, we have @ = R = [0, 00) and 2, = {0}. We write
Ap(0)([0, 5) x w) = L(s)do(w)

where L(s) is the expected number of children produced before reaching (dead or alive) age s,
and ¢y is the Dirac measure concentrated in ¢ = 0. When incorporating grandchildren etc. we
similarly have

A5([0, 5) X w) = R(s)do(w)

where R and L are related by the reduced renewa equation

R(s) = L(s) + / L(s — 7)R(dr) = L(s) + / R(s — ) L(dr)
[0,s) [0,s)
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or, equivalently, by the generation expansion

R=> Lk
k=1
Notethat Ry = L(oo) and that r isthereal root of the equation
/ e ""L(dr) = 1.
Rt

In order to describe the age composition of the extant population we need as a second ingredient
the survival probability F(a). From L and F we can compute the expected number L, (s) of
children produced by an a year old individua before reaching agea + s as
L(a+s) — L(a)

F(a) '

The corresponding quantity with all generationsincluded is given explicitly by

Lu(s) =

Qu(s) = La(s) + / R(s — 7)La(dr)
[0,5)
(it is here that we exploit that all newborns have age zero and that, accordingly, we only have an
equation for Qg = R). Clearly
w(a; s) = ula; s) + / 5s_r F(s — 7)Qu(d7)
[0,5)

where
Fla+s)

u(a; s) = W&H—s-

And just for completeness we note that

A(a)([0,s) X w) = La(s)do(w),
and

A(a)([0,5) X w) = Qa(s)do(w)-
8.2. Ageplusstate-at-birth

Assumethat 2 = R, x Y, where the first component corresponds to age and the second, essen-
tialy, to state-at-birth, in the sense that it is constant during life. Then «((0, y); s) is necessarily
concentrated in (s, y) and so we can define asurvival function F(y)(s) by

u((oa y); 8) = 5(s,y)f(y)(s)
while, conversely, given such afamily of survival functions we can define u by

u((aa y)§ 3) = 5((1-1—8,?/) %

Likewisewe can use the consistency condition (3.4) to express A((a, y)) intermsof A((0,y))
and F(y)(a). Notethat , = {0} x Y.
In order to express conveniently that A((0, y)) isconcentrated in R x {0} x Y weintroduce

J: A0} xY =Y , J0,y)=y.
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With a slight abuse of notation we use the same symbol J to denote the induced mapping from
R, x {0} xYintoR; x Y defined by J(s, (0,y)) = (s,y).

Let,fory € Y and A ¢ Ry x Y, A(y)(A) be the expected number of children with birth
coordinatesin J—! A, of an individual with state-at-birth y.

We then require that

A((0,))(4) = Ay) (J(AN (R4 x {0} x Y)))

and

A(a,9))(4) = %‘

We conclude that the model is fully specified by the collection of survival functions F(y) and the
collection of positive measures A (y).

How special is the assumption that 2 = R, x Y'? For a constant environment and general
i-state, one can always define, for dl possible birth states y, the survival functions F(y) and the
reproduction kernel A(y). So for al individuals born after the time at which we pose an initial
condition, we can equivaently work with the combination of state-at-birth and age. In particular,
the salient aspects of the asymptotic behaviour can be discussed in those terms. As far as the
initial condition is concerned, things are a bit more delicate. When movement is deterministic
(i.e. described by an ode), we can reconstruct the birth state from the present state and work with
state-at-birth throughout. In genera, that isimpossible.

We shall now illustrate these remarks with a concrete example.

8.3. Ageand birth position in space

LetY C R™ denoteaspatial region. To describe dispersal from the position at birth, we introduce
afamily of measures w(a, y) on'Y such that, for any subset D C Y, thenumber w(a, y)(D) gives
the probability that an individual born at positiony € Y isaliveat age a and thenissituated in D.
As a second ingredient we introduce the rate 3(a, ) of giving birth while having age a and being
at position z.

For the survival probability we have

F(y)(s) = w(s, y)(Y).

For A c R, x Y of theform A = [0, a) x D the production of childrenin A is described by
Aw)(A) = [ [ sla,myu(a,y)(do)da
0 D

and subsequently the definition of A(y) is extended to arbitrary measurable A by approximation.
As anext step in our top down approach we may define the measures w(a, y) by fundamental
solutions of a diffusion equation (i.e. Green’sfunction). So let

w(ay)(D) = [vlysa,a)da

D
where v satisfies 5 5 5
v v
90 = 5g cla 1) o) — pla, 2)v
U(y, Oa .CC) = 5?/
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and no-flux boundary conditions whenever D has a boundary (or zero Dirichlet boundary con-
ditions when reaching the boundary is a deadly affair; on unbounded domains the behaviour at
infinity is controled by the requirementsthat v > 0 and [ v(y; a, z)dz < 1.

Y

Whenever c(a,z) > € > 0 for dl (a,z) € Ry x D, we can refer to FRIEDMAN [14]
or LADYSHENSKAYA & URALTSJIEVA [24] for the existence and uniqueness of the solution v.
But actually we have in mind situations where dispersal stops at the end of a juvenile period,
so where ¢(a,z) = 0 for large a. When c¢(a,z) = e(a)d(z) one can use the transformation
a = a(a) = [y e(o)do to deduce from the standard result the existence and uniqueness of v
up to the age at which movement stops, after which one only has to solve an ode. For general
¢ one probably has to approximate with positive ¢ and pass to the limit (most likely one needs
some smoothnessfor the zero-level set {(a, z) : ¢(a, z) = 0}). We thank J.C. van Duijn (personal
communication [10]) for these suggestions.

Of courseit may also be appropriate to assume that movement only starts after some phase of
maturation has been completed (e.g., an immobile egg stage). In that case wejust take w(a, y) =
4, for small a and start using the representation by a density function v that setisfies the diffusion
equation only after the immabile stage has ended.

To handle population level initial conditionsin terms of current position, rather than position
at birth, we use the solution of the diffusion equation with a Dirac measure as an initial condition
at an arbitrary age.

The present example demonstrates, we hope, how stochastic movement in i-state space is
incorporated and how one can build ingredientsat the high level, with which we started, from sub-
models for movement, death and reproduction that involvein their turn ingredients that are often
rates.Fappend Admittedly the matter of the existence and uniqueness of afundamental solutionfor
diffusion equations, with diffusion coefficients that are dependent on time (which amounts to the
same thing as age) and are alowed to become zero, is not an entirely trivial matter and our anal-
ysis here has been somewhat superficial. But once the fundamental solution is there, our general
resultsyield strong conclusions about population behaviour.

8.4. Size, with stochastic increments

As a concrete example, think of plants that reproduce by dispersing seeds. Depending on the
quality of the site in which the seed lands, the resulting plant may grow slower or faster. We
assume that al seeds are equal and that site quaity ¢ €  follows a distribution v (which in
no way depends explicitly on spatial position; in other words, v describes the homogeneous fine
structure of the landscape). We ignore crowding.

Let the size z of aplant grow, in asite of quality &, according to

dz

% = g(zaé)

2(0;€) = 2

We denote the solution by z(a; £). Let a plant of size z in a site of quality £ have a probability
wu(z, &) per unit of time of dying. Let a plant of size z in a site of quality £ produce seeds with
probability 5(z, &) per unit of time. These seeds are instantaneously distributed over the sites.
Then .
! — [ n(z(es€) £)dox
A©(0,6)x ) = [ Ba(@&).e)e ? day(w)
0
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So A has one-dimensional range spanned by ~ and explicitly we have that

o ~ [ ue(ese) ©)da
Ro = / / B(2(a;€),6) e dary(dg).
Q0

8.5. Sizeand age, with fixed or variablebirth size

Let g(a, 2), u(a, z) and 5(a, z) denote, respectively, the growth-, death- and reproduction rate of
an individual with age a and size z. We define functions z(a; z), F (a; z5) and L(a; zp) by
dz
da
z(0) = z

= g(a’ 2)

F(a; zp) = exp (—/u(a,z(a;z@)da)

0
L(a; z) = /B(a,z(a;zb))]:(a;zb)da.
0

When the distribution of z, is given by a measure ~ which does not depend on the age and/or
size of the mother, we are till in the one-dimensional situation and R, can easily be computed
explicitly. When ~ does depend on the age or size of the mother, our formalism tells us how to
computethe operator whosedominant eigenvalueis Ry. We don't elaborate thisstep, but hopethis
somewhat incomplete example illustrates once more that our high level “ingredients’ are easily
expressed, often somewhat implicitly as solutions of nonlinear ode are involved, in terms of lower
level ingredients such as individual growth-, death- and reproduction rates.

8.6. Sizestructured cell populations

When the smallest size of a mother is larger than the largest size of a daughter, there existsa size
interval that a cell necessarily has to transverse in between the fission event in which it is created
and the fission event in which it produces two daughters. Any size in thisinterval qualifiesas a
renewal point. Thus the problem becomes one dimensional. We refer once more to [5] and the
references given there for a detailed elaboration, paying also attention to the lattice case in which
the asymptotic behaviour is not balanced exponential growth but rather a merry-go-round.

When the smallest size of amother is only larger than 2% times the largest size of adaughter
for some k > 1, one can define arenewal set consisting of k£ + 1 points and use thisto reduce the
description of the dynamicsto asystem of k + 1 coupled linear renewal equations. See[19, 6].

8.7. Discretei-state space

Let @ = {1,2,...,n}. Let usassume that an individuas state is following a continuous time
Markov chain with transition matrix M. Let ©; denotethed-th unit vector inR™, i.e. (0;); = d;;.
Then
u(i;t) = Mo,
L et the reproduction matrix B be composed of the rates at which individualswith state j; produce
offspring with state-at-birth 7. Then
t
A(i;t) = / Be™©,dr.
0
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Whenever B;; = 3;m;, for twon-vectors 3 and 7, we have once more aone-dimensional situation:

t

Aist) = ( / 3. eMo,dr)r.

0

So therange of A isthen spanned by 7 and
Ry=-3-M'xn
whiler isthereal root of the equation
B (2 — M) tn=1.

Such models arise, for instance, when studying theinitial spread of a sexually transmitted disease
when transmission is restricted to partnerships that remain in existence for an extended period of
time (seee.g. [8]).

8.8. Epidemic spread

By re-interpreting “reproduction” as the “transmission of an infective agent to another host,” all
of the theory of this paper extends to the initial phase of the spreading of an infective agent in a
susceptible host population. Several more-or-less concrete examples are to be found in [9]. There
it is aways assumed that the reproduction measure A is absolutely continuous, that is, A can be
represented by a density function (which is the product of the host distribution and the function A
in[9]).
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Appendix

In this appendix we gather a number of auxiliary results (and their proofs) that show that the
®-product is well-defined and that it has the propertieslisted in Theorem 2.2.

LEMMA A1l. Let U beakernel. Then for any measurable A C R, x €2 the functions

(t,7,8) = ¥(t,)(A-r)

and
(t, 7,8 = Y(t+71,)(A)

are measurable.

PROOF. Obviously the second statement followsfrom thefirst. In order to show thefirst statement,
let B be ameasurable subset of (2.

Step 1: For fixed (¢, 7, &) the function
(a,) = ¥(t,£)([a,b) x B)

isleft continuousin a and |eft-continuousin b.
Proof: Thisfollowsfrom thefact that ¥ (¢, £) isameasure.

Step 2: The mapping
(t,€,a,b) = ¥(t,£)([a,b) x B)

is measurable.
It is sufficient to show that, for any ¢ > 0, the set

S={(t:&a,b); a<b U(t,E)(a,b)x B) > c}

is ameasurabl e set.
Proof: By Step 1, we have that

S={(t.¢a,b); a<b, lm U (gs) x B) > c}.

"q,/',5,7b,4,5€Q

Hence

s={ (t&ab) a<bVneNdgs: ¢<a,s<b qseQ,

ot 7 € [g,0] N Q€ [5,6]NQ: (L E)([rt) x B) > c—1/n}.

Thus

= ﬂ{ (taéaaab); aSba Hq,s:qﬁa,sgb,q,seQ,

neN
Vrot, r€(gaNQ,te[s,b]NQ: Ut &)([r,t) x B) Zc—l/n}.
Hence
s=N U{ t&ab); a<bg<as<y
neN  ¢,5€Q

Vre (g anQ,te[s,blNQ: Ut &) (rt)x B)>c— 1/n}.
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Thus
s= N U N
neN  ¢,s€Q rtEQ,r>qt>s

{t.€,a.b); a<bre0.a,te(o,b]: Ut E)([r,t)x B) >c—1/n}.

Hence
s= N U N
neN  ¢,s€Q rteEQ,r>q,t>s
{(taéaaa b)7 a < b,a > T,b >t: ‘I/(t,i)([r,t) X B) >c— l/n}
Thus
s= N U N
neN  ¢,s5€eQ rteEQ,r>q,t>s
{©.9; ¥@O(r)xB)2c—1/n} x {(a,b)ir<a<bb>t}.
The sets

{4, w(t,&)(rt)x B) > c—1/n}
are measurable because ¥ is akernd (Definition 2.1). Hence the product sets
{(ta é)v \Il(ta {:)([7’, t) X B) Z c— 1/”} X {(a, b), r S a S b,b Z t}

are measurable. Then S is measurabl e because the countable unions and intersections of measur-
able sets are measurable again.

Step 3: For fixed a < b, the mapping
t,&7) — ¥t E)((la—7,b—7)N[0,00)) X B)

is measurable.

Proof: This follows from Step 2 and the fact that the composition of measurable functions is
measurable again.

Step 4: For any Borel set J in R the mapping
&) — YOI —7)N[0,00)) x B) = U(t,)((J x B) )

is measurable.

Proof: The collection of sets J with this property is a o-algebra which, by step 3, contains all
intervals of theform [a, b) and hence contains all Borel setsinR ;..

Step 5: For any measurableset A in R x 2 the function

(t,7,8) = ¥(t,)(A-r)

is measurable.

Proof: The collection of sets A in R4 x Q with this property is a o-algebra which, by step 4,
containsall rectangle sets J x B and thus al setsin the product o-algebra. Thisfinishesthe proof.

LEMMA A2. If ® and ¥ are kernels, sois ® ® ¥ defined by (2.5), i.e.

(& ® U)(t,2)(A) = / B(t+7,€) (A )U(t, 2)(dr x dE)
Ry x
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PROOF. Obviously ® @ ¥ is measure-valued. By LemmaA.1, the function
(t,7,8) = B(t+7,§)(A)

is measurable and non-negative. Hence it can be pointwise approximated by a non-decreasing
sequence of functions of the form
n
Z ajXC;
j=1

with measurable subsets C; of R x Ry x Q and x¢, denoting the characteristic or indicator
function of C; (Hewitt & Stromberg, 1969, Theorem 11.35).
Henceit is sufficient to show that

/ xolt, 7, €)U(t, z)(dr x dE)
R xQ

is measurable in (t, z) for measurable subsets C' of R x R x Q. See[HS], Corollary 11.14.
Apparently the collection of subsets C' with this property form a o-algebra. Thusit is sufficient to
show this property for rectangle sets C' = €y x Cy with Cy being a measurable subset of R and
C, ameasurable subset of R, x Q. Now

/R Xy (T Wl @) (dr x d) = xey ({1, )(Co).

Thisisameasurable function of (¢, z) because ¥ is akernel (Definition 2.1).

LEMMA A3. Let ® and ¥ bekernelsandlet f : R, x Q — R, be measurable. Then

[ 1.0 6@t a)dpx do)
R xQ

- ( / f<p+T,c>¢<t+T,£><dpxdc>> () (dr x dE).
R xQ R xQ

and thisintegral defines a non-negative measurable function of (¢, x).

PrOOF: We rewrite

B(t+m.OA) = [ xa (p. QB+ 7 dp x dC).

R xQ

Now
xA_.(p, ) = xalp+1,¢).

The assertion now follows from Levi’s theorem of monotone convergence (Hewitt & Stromberg,
1969, Theorem 12.22) and the fact that non-negative measurable functions f can be pointwise
approximated from below by a non-decreasing sequence of measurable functions of the form

n
Z QXA
j=1

LEMMA A4. (Associativity of ®)

D1 ® (P2® P3) = (P21 © Ba) ® B3
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for all kernels ®;,7 =1, 2, 3.

PROOF: Lett € R,z € Q and A C R, bemeasurable. Then, by definition of ®,

(®1@ (P2 ® B3))(t, 2)(A) = /R Lo D1 (EE 2 O(A) (22 ® B3)(t, 2) (dp x dC).
By LemmaA .4,

(1 ® (P2 ® ®3))(t, z)(A)
:/ (/ Q(t+p+71,¢) (A_(p+7)) Dot + 7,&)(dp x d{)) Os(t, z)(dr x df).
R xQ R xQ

By definition of ®,

(01 ® (P2 ® 3))(t, ) (A)
= [ (@ @@ (At 2)(dr x de)
= (21 ® @2) ® ®3)(t, 7)(A).

The next two lemmata follow via standard arguments using Levi’s theorem of monotone conver-
gence and the fact that measurable non-negative functions can be pointwise approximated from
below by a non-decreasing sequence of measurable functions of the form

n
Z QXA -
j=1

LEmMMA AS5. (Distributivity of ®)
P @ (P2 + P3) = &1 ® Py + 01 ® O3
(P21 +P2) @ P3 =01 ® P34 P2 @ O3
for all kernels®;,7 =1, 2, 3.
LEMMA A6. Assumethat ¥, 1+ ¥, then, for any kernel @,
PRU, T PR VU,

and
UV, @9 t Vo @@
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