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Preface 

In continuation of earlier IIASA work on the reduction 

of analytic and computational complexity for high-dimensional 

control processes, this Memorandum details the relationship of 

the earlier results for autonomous (constant coefficient) 

systems to the triangular factorization of a certain associated 

matrix. As a result of adopting this viewpoint, it is seen how 

the structure of time-dependent problems may be exploited to 

yield low-dimensional computational algorithms similar to those 

for constant systems. 
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Abstract 

The relationship between the linear matrix 
inequality (LMI), generalized X-Y functions, and 
triangular factorization is examined within the 
framework of the classical linear-quadratic- 
gaussian problem. It is shown that the seneralized 
X-Y functions arise naturally as components within 
the factors of the matrix forming the LMI when 
that matrix is decomposed into its symmetric tri- 
angular factors. This viewpoint enables us to 
propose a low-dimensional computational algorithm 
for time-dependent problems which reduces to 
the generalized X-Y situation for constant systems. 

In addition to the basic factorization results, 
we also briefly touch upon sever31 related topics 
including the infinite-interval (regulator) pro- 
blem, singular control problems, canonical forms, 
and numerical considerations. 

1. Introduction 

We consider the problem of minimizing the quadratic form 

over vector functions u(s) , where x(s) and u(s) are related by 
the linear differential equation 

Here x and u are n- and m-d.imensiona1 vector functions, 

respectively, while Q, S, R, F, G are real, time-varying matrix 



functions of appropriate sizes with Q = Q', R = 3 ' .  At the 

outset we make no assumptions on the definiteness of Q and R. 

The functions u(s) are assumed to belong to the class 

W =  (U : (-m,T) + gm, U(S) cL2 ( a , ~ )  for all n - < T} . 

We further assume throughout that the pair (F,G) is controllable 

and that F, GI Q, R, S are as smooth as may be required for 

the needs at hand. 

By making the assumption that the optimal control law 

U(S) is linear feedback, i.e., 

for some m x n matrix function K, a reasonably straightforward 

integration by parts shows that the problem of minimizing J 

over all admissible u is equivalent to the minimization of 

over matrices K(s), P(s), for all positive semidefinite matrix 

functions W(s). The symbol "tr" denotes the matrix trace 

operation (details of this derivation are found in [ I  1 ) . It 

is well known [2] , that J has a bounded infimum and x (s) + 0 

as s + -m if and only if there exists a real, symmetric solu- 

tion P(t) to the linear matrix inequality 

1 

for all t < T. - 

I [I -Kt] 

It is a fairly easy exercise to verify that (1 ) is mini- 

- 

F'P + PF + Q + 6 

C ' D  -I- C' W 

mized by the choice 



RK = G'P + S' , (3) 

with P satisfying the matrix Riccati differential equation 

Note that for (4) to be valid, we must impose the additional 

restriction that R(s) is invertible on t - < s < T. To avoid - 
unnecessary complications with the main ideas of this paper, 

for the time beinq, we shall assune R ( s )  is invertible. The case 

of singular I? will be discussed in a later section. 

To compute the optimal feedback law K, we see that the 

above approach requires the solution of the n x n matrix 

Riccati equation (4), subject to the initial condition (5). 

As long as P(t) is such that (2) is satisfied, the problem 

has a unique solution given by the feedback control 

u = -K (t) x (t) , with K computed from (3). 
If the coefficient matrices F, GI Q, S,  R are constant, 

a major simplification in the foregoing solution procedure 
- 1 - 1 

occurs when the matrices (8-SR S' ) and GR G' have low rank. 

Specifically, if 

rank (Q-SR-IS') = p , ( 6 )  

rank (GR-'GI) = m , ( 7  

then it can be shown [3,4] that the optimal feedback gain 

matrix K may be computed from a system of n(p+m) equations. These 

equations, termed "generalized X-Y functions" in [4], are 

formed by two matrix functions L and Y ,  satisfyin? the 

equations 




























