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Preface

In continuation of earlier IIASA work on the reduction
of analytic and computational complexity for high-dimensional
control processes, this Memorandum details the relationship of
the earlier results for autonomous (constant coefficient)
systems to the triangular factorization of a certain associated
matrix. As a result of adopting this viewpoint, it is seen how
the structure of time-dependent problems may be exploited to
yield low-dimensional computational algorithms similar to those

for constant systems.
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Generalized X-Y Functions, the Linear
Matrix Inequality, and Triangular

Factorization for Linear Control Problems

J. Casti

Abstract

The relationship between the linear matrix
inequality (LMI), generalized X-Y functions, and
triangular factorization is examined within the
framework of the classical linear-quadratic-
gaussian problem. It is shown that the generalized
X-Y functions arise naturally as components within
the factors of the matrix forming the LMI when
that matrix is decomposed into its symmetric tri-
angular factors. This viewpoint enables us to
propose a low-dimensional computational algorithm
for time-dependent problems which reduces to
the generalized X-Y situation for constant systems.

In addition to the basic factorization results,
we also briefly touch upon several related topics
including the infinite-interval (regqulator) pro-
blem, singular control problems, canonical forms,
and numerical considerations.

1. Introduction

We consider the problem of minimizing the quadratic form

T
J:i/. [(x,0Qx) + 2(x,Su) + (u,Ru)lds ,
t
over vector functions u(s), where x(s) and u(s) are related by

the linear differential equation
=— = Fx + Gu , x(t) = ¢ .

Here x and u are n- and m-dimensional vector functions,

respectively, while Q, S, R, F, G are real, time-varying matrix



functions of appropriate sizes with Q = @', R = R'. At the
outset we make no assumptions on the definiteness of Q and R.
The functions u(S) are assumed to belong to the class

m

% = {u : (-»,T) > R, u(s)elL, (a,T) for all a < T}

2
We further assume throughout that the pair (F,G) 1is controllable
and that F, G, Q, R, S are as smooth as may be required for
the needs at hand.

By making the assumption that the optimal control law

u(s) is linear feedback, 1i.e.,
u(s) = -K(s)x(s) ’

for some m x n matrix function K, a reasonably straightforward
integration by parts shows that the problem of minimizing J

over all admissible u is equivalent to the minimization of

F'P + PF + Q + P PG + S|| I
tr{[I -K'] W (1)
G'P + S R -K

over matrices K(s), P(s), for all positive semidefinite matrix
functions W(s). The symbol "tr" denotes the matrix trace
operation (details of this derivation are found in [1]). It
is well known [2], that J has a bounded infimum and x(s) - 0
as s » -» if and only if there exists a real, symmetric solu-

tion P(t) to the linear matrix inequality

F'P(t) + P(t)F + Q + P P(t)G + S
M(P) = > 0 (2)
G'P(t) + S' R

L

for all t < T.
It is a fairly easy exercise to verify that (1) is mini-

mized by the choice



RK = G'P + 8" ’ (3)

with P satisfying the matrix Riccati differential equation

=0+ PF 4+ FP - (PG+S)R™ ' (PG+S) ', (4)
P(T) = 0 (5)

Note that for (4) to be valid, we must impose the additional
restriction that R(s) is invertible on t < s < T. To avoid
unnecessary complications with the main ideas of this paper,
for the time being, we shall assume R(s) is 1invertible. The case
of singular R will be discussed in a later section.

To compute the optimal feedback law K, we see that the
above approach requires the solution of the n ¥ n matrix
Riccati equation (4), subject to the initial condition (5).
As long as P(t) is such that (2) is satisfied, the problem
has a unique solution given by the feedback control
u = -K(t)x(t), with K computed from (3).

If the coefficient matrices F, G, Q, S, R are constant,
a major simplification in the foregoing solution procedure
occurs when the matrices (Q—SR“1S') and GR—1G' have low rank.
Specifically, if

1

rank (Q-SR '8') = p , (6)

1

rank (GR 'G') (7)

i
3

then it can be shown [3,4] that the optimal feedback gain

matrix K may be computed from a system of n(p+m) eguations. These
equations, termed "generalized X-Y functions" in [4], are

formed by two matrix functions L and N, satisfying the

equations



i = -nr""V%HL ,  nm =12 , (8)
N = -LL'Gr™V/2 N(T) =0 |, (9)
where Z2Z2' = Q - SR_1S'. Thus, from the rank assumptions (6)

and (7), plus the definition
N' = (PG+S)R_1/2 ,

we see that L is an n x p matrix, while N' is of size n X m,.
From (3), we have the obvious but critical relation

k' = N'R_V/2 , (10)

connecting the low-dimensional function N with the optimal
feedback rule K. In addition, the derivation of Egs. (8)-(9)

given in [3,4] shows that
L(t)L'(t) = -P(t) , (11)

another important formula for our subsequent development.
The starting point of our investigation is the remark in
[2] that "the basic importance of the LMI seems to be largely
unappreciated. It would be interesting to see whether or not
it can be exploited in computational algorithms, for example."
The principle goals of this study are to underscore the cen-
tral role of the LMI in least-squares problems, to demonstrate
its connection with the low-dimensional functions L and N,
and to show how it may be exploited to generate a feasible
low-dimensional computational approach to time-varying problems.
Our approach is to work with a modified version of the
matrix M(P) appearing in (2). We construct the matrix .#(P)

by deleting the P term from M. This gives



F'P(t) + P(t)F + Q P(t)G + S
A (P)

(12)
G'P(t) + S’ R

We then factor.# into its symmetric triangular components and re-
late the entries appearing in the triangular arrays to the
original problem, as well as to the functions L and N. Finally,
we show how the factorization procedure may be streamlined to
generate so-called "fast" [5] algorithms for computing K in

the case of time-varying ¥, G, Q, R, S.

2. Basic Results

We begin our analysis by factoring the (n+m) x (n+m) matrix

A(P) into upper and lower triangular components. Thus, we have
T¢ f] ¢' © F'P + PF+(Q PG + S
‘ = . (13)

O wyrr ' G'P + 8' R |

Such a factorization implies the following relations:

o' + I'T' = F'P + PF + Q , (148)
YyIr'' = G'P + S' ’ (15)
yy' = R . (16)

Formulas (14)-(16) hold for any fixed symmetric matrix P.

Equations (15) and (16) immediately give

1/2

y(t) = R eyv () (17)

R/2yiri(e) = g+ 50, (18)



where V is an arbitrary orthogonal matrix which, for convenience,
we choose equal to the identity I. Since R is assumed invertible

for all t, Eg.(14) shows that ¢ satisfies

b(t)o'(t) = Q + F'P + PF - (PG+S)R™ | (PG+S) ' . (19)
Recalling the basic results (3) and (4), we see that the con-
nections between the optimal feedback law K, the solution of

the matrix Riccati equation (4), and the functions ¢, T, ¥,

are

Kt) = R V?%rvey (20)

l
d
t

I

p(e)d' (t) . (21)

To see the relationship between the factors I', ¢, and y
and the low-dimensional functions L and N, we compare Egs. (20),
(21) with Egs. (10) and (11). This comparison, together with
the proof of Egs. (8)-(9) given in [4], immediately suggests

Theorem 1. Assume F, G, S, O, R are constant matrices

of appropriate sizes. Further, let the rank conditions (6),

(7) hold. Then the factors T and ¢ in the triangular decom-

position of .# are related to the functions L and M in Egs. (8)-
(9) by

¢ = Lg' (22)

rr =77 |, (23)

where U(t) and T(t) are arbitrary p x p, m x m orthogonal matrices,

respectively.

Proof. Since P(t) is symmetric, there exists an crtho-

gonal transformation V(t) such that

() = V'(t)[g 8}V(t) ,



where D is a p *x p diagonal matrix with entries 1, if rank

ﬁ(t) = p. However,
-P(t) = ¢¢' = LL'
Thus,

1/2 1/2
v = yr|D Of;7v7|D 0
o' =V { ) OJU U[ 0 OJV '

where U(t) is an arbitrary n x n orthogonal matrix. Hence,
we see that the identification

1/2
= Vl “D } ,
L 170

1/2
which follows upon neglecting the last n-p columns of {DO 8}

gives the result (22).

Relation (23) is an easy consequence of the definition
N = (PG+S)R_1/2 and relation (15).

Remarks:

(1) Theorem 1 shows that the functions ¢ and I'' arising
from the factorization of.# are equivalent, modulo the ortho-
gonal group, to the generalized X-Y functions L and N. We
need only be careful to note the convention that L is defined

by deleting the irrelevant zero columns from the factorization
1

of O - SR 'S'.

(2) Relation (16) shows that the factor y is independent
of the matrix P. Thus, ¢ can be produced once and for all at
the beginning of any computational process, thereby reauiring
only the triangular decomposition of the first n rows of the
matrix # at each stage of the process.

Actually, by (15) we see that it is possible to obtain
I'' by solving a triangular system of equations. Thus, the
only real factorization necessary is that of determining ¢
which, by remark (1), requires only algebraic operations on

the first p rows and n columns of .# when the rank condition (6)



is satisfied. 1In short, at most we need triangularly decom-
pose a single n X n matrix at each step of the process.
Furthermore, if desired even the triangularization of ¢

may be averted by using the relationship

-P =Q+ PF + F'P - IT! (24)
to update P. The point here, of course, is that if P(t) has
low rank, then the partial factorization of .# to produce ¢
may enable us to update P much more efficiently using the
relation

-b = ¢¢' , (25)

in place of (24).

3. General Computational Procedure

Notwithstanding the theoretical interest associated with
the LMI and the triangular decomposition of .#, the primary
importance of the above results lie in their use for the
development of efficient computational approaches to least-
squares problems. In this section, we sketch the outline of
a computational algorithm suitable for either time-varying or
constant systems.

The steps of our algorithm are the following:

0. Factor R(t) into its triangular components yY(t),
p'(t).

1. Compute I''(t) by solving the triangular system (15).

2. Determine K(t) =y (£)T' (t).

3. Triangularly factor the first n rows of .« to
determine ¢ (note that the factorization will
terminate after p rows if P(t) has rank Pl .

4, Let t » t - A and determine P(t-A) using the

relation



-P(t) = ¢(t)o'(t) .

5. Go to step 1.

The preceding algorithm makes clear the tremendous ad-
vantages offered by the generalized X-Y functions L and N for
constant systems. In the-time varying case it is necessary
to go through the matrix function P in order to obtain the
desired quantity I which, in essence, characterizes the optimal
control law. However, Theorem 1 shows that for time-invariant
systems, the L and N equations enable us to produce (modulo
an inessential orthogonal transformation) the factors ¢ and T

directly, totally bypassing the matrix P.

4. Singular Control

The formulas derived for the optimal feedback law K in
section 2 were based upon the assumption that the control
weighting matrix R was positive-definite, hence nonsingular.
However, in some cases of practical interest R may be only
positive semidefinite, or even indefinite if, for example,
the LQG problem arises as an approximation to a system with
non-quadratic costs. Thus, it is of interest to re-examine

the factorization results from this point of view.
Upon reviewing the steps leading to Eg.(2) for K, we

see that the invertibility of R is not invoked for the factor-

ization of .#. Thus, Egs. (14)-(18) remain valid for any
symmetric R. From Eq.(3) we know that the optimal feedback

law K must satisfy the relation

RK G'P + S

ylI'' (26)
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modulo an inessential orthogonal transformation. Equation (26)
is a set of m2 equations in the mn unknown components of K.

In general, this system will be underdetermined, therby giving
an m(n-m)-parameter family of solutions for the optimal feed-

back law K.

5. Algebraic Considerations

Since the factorization of .# lies at the heart of our
discussion, it is desirable to choose a coordinate system in
which .# assumes the simplest possible form. Regarding the
original problem as being completely specified by the five
matrices z = (F,G,Q,R,S), we introduce the so-called "feedback"

group ¢ of transformations consisting of
(I) nonsingular coordinate changes T in the state space,
@: (II) nonsingular coordinate changes V in the control space,

(III) application of an arbitrary feedback law L.

Under the group %, the system I transforms as follows:

s) =1
g XD p,ev,0,v TRy, sv Yy = Irp e
r (1) (p_GL,C,Q0+L'RL-L'S'-SL,R,S-L'R) = Piip -

It is a fairly routine exercise to see that, under the feedback

group, it is possible to reduce.# to the form

T (Q+PF+F'P)T | 0
P = -
.4%9( ) . .
0 \Y 'RV
This reduction involves choosing L such that RL' = (PG+S)'.

It is important to note that, in general, the transformations
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T, V, and L will need to be time-varying since P is time-varying.
However, the situation is materially improved if R is constant
since then we may choose V to diagonalize R, leaving only the
factorization of the term T'_1(Q+P15‘+I:"'P)T_1 for each t. This
operation may also be "trivialized" at the expense of com-
puting the orthogonal matrix T which diaconalizes the symmetric

matrix Q + PF + F'P, for each t.

6. The Regulator Problems and Spectral Factors

In the event the original problem is over the semi-infinite

interval (-«,T), the matrices M of Eq. (2) and .# of Eqg. (12)

coincide. It is evident that in this case P = 0 which implies
® = 0. Thus, the factorization of .# degenerates into the case
r
[r v'l =.#P) ,
V]
i.e.
[T* = °F'P + PF + Q , (27)
yr' = G'P + ' (28)
yy' = R, (29)

where P is any solution of the algebraic Riccati equation.
Equations (27)-(29) suggest the following linear successive
approximation scheme for determining the optimal steady-state
gain function K({«):
(i) Guess Pn'

(1ii) Determine Fﬂ as the solution of
' P ) ' .
wrn G'P_ + S5
as the solution of the equation

(1ii) Obtain Pn+1
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As before, step (ii) of the algorithm involves a triangular
system of eguations, while step (iii) is a standard Lyapunov
matrix equation for which efficient algorithms exist [6].

It should also be clear from the above considerations

that the factorization of .# has direct bearing upon the "inverse"

problem of optimal control. 1In fact, several important results
have already been obtained in [7] using similar techniques.

An important technique in the analysis of the regulator
problem is the "spectral" decomposition of the function

- -1

H(5,s) = R + S(Is-F) |G + G' (IS-F')

Sl

+ G‘(IE—F')_1Q(Is—F)—1G , (30)

where s is a complex variable. The function H(s,s) plays
an important role in many problems of applied mathematics,
arising from the Laplace transform of the original LQG problem.
The pseudo-spectral factors of H are defined to be any rational

matrices W(s), W'(-s) satisfying
H(-s,s) = W' (-s)W(s) . (31)

It is of interest to examine the connections between these
factors of H and the elements I' and V.

We first note the following result:

Theorem 2. Let P be any symmetric matrix satisfying
A(P) > 0 and let .# be factored as

A(P) = (r* »'1 . (32)

(Here we neglect the irrelevant zero columns of the triangular

factors.) Then the pseudo-spectral factors W(s), W'(-s) are

related to I' and ¥y as

-
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1

W(s) = y' + I''(Is-F) G .
Proof. Premultiply by [G'(—Is—}?")—1 I], post-multiply
by (Is-F) " 'G] and use the definition of H(-s,s) given in Eq. (30).
5 I
Remark:

In [2] it is shown that use of the solutions P* of the
algebraic Riccati equation give .# smallest possible rank which,
in turn, vields the lowest rank W(s), i.e., if R > 0 and g is
the number of rows in I'' and Y', then q = rank R = m if and
only if P is a solution of the algebraic Riccati equation.

In this case, W(s) is a sguare m x m matrix with an inverse
analytic in Re s > 0. By a result of Youla [11], such a W(s)
is unique and the matrix

wi(s) = w'(I+R-1(G'P*+s')(Is—F)_1G)

vields the so-called "spectral factorization" of H(-s,s).

7. Infinite-Dimensional Problems

Upon replacing the defining matrices F, G, Q, R, S by
operators acting in suitable Hilbert spaces, the results pre-
sented above become applicable to the so-called "distributed
parameter” control problems. This observation opens the way
for a factorization approach to systems governed by partial
differential equations and differential-delay equations. Some
related results giving generalized X-Y functions for these
situations may be found in [8].

The passage to the infinite-dimensional setting also
calls to mind the deep and beautiful theory of triangular
factorization of operators developed by Gohberg-Krein [9],
Schumitzky-McNabb [10], and others. The connection between
the triangular factors and the generalized ¥X-Y functions for

time-invariant operators given in Theorem 1, should now
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motivate a re-examination of the above work for further ex-

tension to the non-self-adjoint case.
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