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PREFACE

The Water Resources Group of the IIASA has been engaged
in various research tasks, including short-term forecasting
and control problems in the water resources field. Cyclone
motion forecasting was the initial part of this task to further
the effort of similar technical applications to climatological,
hydrological and water quality forecast and control.

This is the first of a two-part report. Methodology and
a few experiments on typhoon forecasting are presented.
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ABSTRACT

The Kalman filtering technique was applied to the problem
of cyclone forecasting. This paper presents the methodology
and the preliminary results of typhoon experiments. Further
typhoon experiments and hurricane experiments will be reported
in a forthcoming paper.

The purpose of the study is to establish a methodology
which will better utilize existing models. In this paper, the
SFC.700 mb model and SNT models, developed respectively by
Dr. Arakawa and the Japan Meteorological Agency, were selected
as examples of existing models. The case study was conducted
using the typhoon data observed in August 1974. The results,
the improvement of the performance of original models, were
demonstrated in terms of the percent reduction in prediction
errors which appeared to be 30% to 50% on an average. Improve-
ment of the 24 hour forecast is recognized more than that of the
12 hour forecast. The Kalman filter application is concluded to
be promising in tropical cyclone forecast probelms in the sense
that it improves the performance of any models whose residual
errors are correlated.
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I. INTRODUCTION

Cyclone motion forecasting has long been one of the major
subjects in meteorology. Insights, experiences, aerodynamical
analyses and their combinations have been explored and applied.
The cyclone studied in this paper is a tropical cyclone,
including tropical depressions and storms1, although the basic
techniques employed apply to the forecast ~f motions of any
cyclones and other similar meteorological phenomena.

Among a number of cyclone motion forecast models, the
statistical model plays a very important role amending the
shortcomings of both empirical and purely theoretical approaches.
It is well acknowledged that the numerical solution to the
aerodynamical equations has made a significant improvement in
recent years in forecasting the general flows in the atmosphere
but does not and will not give satisfactory forecasts for cyclone
motions, at least in the near future. A further knowledge of
dynamics of the atmosphere and a denser and wider observation
network to obtain meteorological data are necessary. In the
meantime, improvement of the statistical models is of great

importance.

According to the Japan Meteorological Agency, tropical cyclones
are classified in the following four categories depending on
the maximum velocity of winds in the cyclone area:

. . 17.2 m/sec or less
1. Tropical depression (~34%t)

2. Tropical storm };Af;§££? m/sec

: 24.5~32.7 m/sec
3. Severe tropical storm (48~64kt)

32.7 m/sec or more
4. Typhoon (64kt-) '



Objective

The objective of this paper is to demonstrate a method
to better utllize the 'existing' statistical cyclone motion
forecast models. The cyclone motion in this context means
the advancing direction and speed of the eye of a tropical
cyclone after its formation. The forecasting time spans are
twelve and twenty-four hours. It is not intended to create
any new statistical models but rather intended to devise a
better use of already existing models. The statistical models

to be used should have a simple linear regression form.

Methodology

Most, if not all, statistical models developed thus far
for tropical cyclones have a simple linear regression form which

can be represented by

A = f (persistence data, climatological data,

synoptic data)

where A is a predictant, the location of the cyclone eye at the
forecast time or the displacement of the cyclone eye per unit
time interval such as 12 hours, 24 hours, ..., 72 hours and f
is a linear function. Persistence data refer to the location
and advancing direction of a cyclone at current and preceeding
times. The simplest model which is not yet a statistical model
uses only these data, assuming that a storm will continue to
move in the direction and speed that it has been moving at. The
climatological data usually stand for the cyclone motion data
accumulated in the past. These data are used to determine the
motion of a cyclone, assuming that it moves in the same direc-
tion and at the same speed as other cyclones moved which occurred
during the same month and in the same location. These two
methods and their combinations, often denoted as % (C + p),
sometimes give as accurate a forecast as other more sophisticated
methods especially for cyclones in the lower latitude area.

The synoptic data refer to the meteorological data at and

around a cyclone, such as surface pressure distribution,
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geopotential height distribution and the distribution of

their time rate of changes. The prognostic synoptic data are
also used in practice, by obtaining the prognostic map through
numerical simulation of dynamic equations.

Although quite a variety of statistical models exist and
their performances depend upon the application areas, seasons,
and other geotopographical and meteorological factors, the
choice of models to be worked on in this paper is insignificant
as long as the model has a linear regression form. In fact,

the performance of any model, good or bad, will be improved by
a magnitude depending upon the characteristics of prediction

errors of the original model.

The technique used in this paper is the Kalman filter,
which is a filtering technique used to obtain optimal estimates
of state variables that can only be observed indirectly. The
Kalman filter is nothing but a least square estimation technique,
but possesses very important capabilities; namely, a non-—
stationary system can be dealt with in an adaptive way and the
computational burden required is negligible. To illustrate
what the Kalman filter does, consider a simple linear model

having the form:

Ye T aqXqp tagxy + oot tanxy
where Yt is a predictant at time t, Xt is a predictor to be used
at time t, as a; is a corresponding coefficient. A regression
equation of this type is usually used with fixed coefficients,
thus the system is stationary. In reality, however, the governing
nature in meteorology is highly nonstationary and accordingly,
the system seldom performs well if its structure is set constant.
Even in a case where the real system can be approximated station-
ary, its structure may be imprecisely known and the choice of
predictors may be irrelevant. The nonlinearity part that can-
not be incorporated with the form of a model described above and
various uncertainties and errors are also involved both in the
system structure and in the measurements. All of these factors

lead to an irrelevant performance of the model.
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One of the simplest ways to mitigate such difficulties
is to relax the constraint on the constancy of the coefficients,
namely, to allow them to vary while leaving the structure of a
model fixed.

In order to proceed with this line of thought, one can
treat the coefficients as unknown state variables. Then the
Kalman filtering technique can be used to obtain the best
estimates of the unknown variables in an adaptive way responding
to the difference observed between a predicted and an observed
value.

The motivation which initiated this analysis lies in the
fact that the performance of a forecast model differs from
cyclone to cyclone. A model works satisfactorily for a cyclone
Oor a portion of the cyclone and for another, it does not. This
phenomena seems quite natural because each cyclone at any point
in time has specific inner and surrounding physical characteris-
tics. The constant coefficient regression model cannot respond
to time variant peculiarities. Consequently, the forecast
errors often appear in the same direction or the errors show
sequential correlations. Once some coefficients in the model
are slightly changed in accordance with the forecast errors

observed, such simple errors must disappear.

II. SELECTION OF MODELS AND DATA REQUIREMENT

Since the aim of this study is the development of a method
through which existing models can be put to better use, the
object models should be selected. Such models should have a
form of simple linear regression, but also preferably be in
current practice in competent meteorological agencies.
Considering these conditions, the following three models have
been selected:

1. SFC.700 mb model (Arakawa, 1963)

2. SNT model (Nomoto, Takenaga & Hara, 1973)

3. NHC 72 model (NHC, NOAA, 1972)

The SFC.700 mb model belongs to the earliest group of

statistical forecast models. Nevertheless, its performance is
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not inferior to other later and more sophisticated models.

The SNT (Statistical and Numerical forecasting Technique)
model is presently in use as a part of the comprehensive
cyclone forecast management in the Japan Meteorological Agency.
The major difference between the SNT model and others is the use
of prognostic synoptic field data as predictors. The prognostic
data are obtained through the numerical simulation of a
dynamical equation, independently of the statistical model.
This approach is new, having been developed in the past few
years, but it is considered to be one of the most promising
techniques as the progress of a more accurate solution of
dynamical equations is expected to be firm and constant. The
NHC 73 model, the latest forecast model in the US National
Hurricane Center, also takes this approach.

The NHC 72 model (Neumann, Hope and Miller, 1972) is the
latest model among those using only observation analysis data.
The original version was developed as the NHC 67 model (Miller,
Hill and Chase, 1968) and revised to the current form as part
of the NHC 72 model, which consists of the revised NHC 67 and
the so-called CLIPER model. The reformed NHC 67 model is
referred to simply as the NHC 72 model in this paper.

A complete description of a 12 hour forecast SFC.700 model
and 24 hour forecast SNT model, the predictors and their
coefficients, is given in Tables 1 and 2. The necessary data
required to use these models are obvious from the tables. The
data were supplied by the Japan Meteorclogical Agency and the
US National Hurricane Center. Table 3 lists the data used in
the analyses. The large amount of data was sent from these
agencies on magnetic tapes. Only data 1 were read from the
typhoon truck map.

All the models use the moving coordinate system fixed to
the eye of a cyclone, which moves as the cyclone moves (see
Figures 1 and 2). Therefore, in case the data are given on
grid points fixed on the earth, the values corresponding to the
grid points on the moving coordinate are determined through
recalculation. This process necessitated an interpolation. A
simple weighted average was used for this purpose with weights

being inverse to the distance. Figure 3 depicts the procedure.
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ITT. APPLICATION OF THE KALMAN FILTER

Brief Review of the Theory

The term 'filtering' stands for a process computing an
estimate of a state variable X, at time ty using the sequence

of observations up to time tys i.e.

z(k) = {20,21,...,zk} .

Independent variable t assumes the discrete times ty <ty <ty
(3)

k-1 < T < ¢t

is denoted by X

< ... <t An estimate of X using z

k+1 < e & o -
Therefore, a filtered estimate is §k|k'

k

k|3°
while a predicted estimate is xk|j' j < k and a smoothed

estimate is §k|j' j 5 k.

The discrete time Kalman filtering technique used to
obtain the optimal estimate ﬁk[k assumes the system governed
by the following linear, vector difference equation

x, = F(k,k-1)  x k=1,2,3... (1)

K 1 + G(k,k-1) -

k- Vi-1

The state of the system at time ty is given by the (n x 1) vector
Xpe Vk is a (n x p) stochastic random vector, the input to the
system at time tk. F(k,k-1) is a (n x n) state transition matrix
which relates the state at time t, ; to the state at time tg.
G(k,k-1) is a (n x p) matrix that relates the stochastic inputs

at time t,_q to the state at time t,- The states of the system

are assumed measurable through output 2, , an (r x 1) observa-
tion vector at time tk which is linearly related to the state,

corrupted by an additive noise Wy s namely

z, = H(k) - X oW (2)
H(k) is an (r x n) observation matrix. The (r x 1) vector Wy

is called an observation or measurement disturbance. The number
of observations r may be smaller than the number of state

variables n. This assumption is quite realistic and convenient



for application since only a few measurements are often
available for the system involving many states. The statistical

properties of disturbance vectors v, and w, are assumed to be

k k
known as
E(Vk) = 0
Ty —
E(Vkvj) = Q(k)cSkj
E(wk) =0 (3)

Ty = .
E(wkwj) R(k)ék]
E(kag) = 0 for all k and j

where ij is the Kronecker's delta. Since the statistical
properties of Vi and W) are assumed to be fully represented
by the means and covariences, their distributions are necessarily
Gaussian. If this is not the case, as one might expect, the
estimates obtained through the Kalman filter do not possess
the various convenient properties such as maximum likelihood
estimates. They will merely be the least squared estimates.

The governing system parameters (F,G,H), should be a priori
known at each time, but not necessarily be constant. This
latter property is one of the most important advantages of the
Kalman filter in contrast to the Wiener filter which applies
only to stationary processes.

The following is a brief sketch of the solution to the
problem. Only the general concept is described in an
intuitive fashion. Suppose that one has the observation z(k_1)
at the beginning of time ty and that one gets the optimal
k=1 asﬁﬁk_1|k_1. The first task is to
obtain the best estimate of Z,, the predicted observation.

For this purpose, eqguation (2) suggests that the estimate of

filtered estimate of x

ﬁk be found. This can be obtained through equation (1), by

substituting x

of v
K

k=1 with ﬁk-1|k—1 and taking the expectation

The estimate is a predicted estimate ﬁklk—1’ i.e.

= F(k,k-1)

Xy | k-1 X 1|k=1 (4)
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This, in turn, gives the observation prediction

= H(k) (5)

2k k-1 k-1 °

With this forecast at hand, one gets a new observation

z, at the end of time tk' Naturally, the difference between

k
the predicted and the observed is recognized. This difference
is important information by which the state estimate can be
updated from Xy k-1 t© Xk|k’ which is the s?cond task. 1In

order to obtain the best filtered estimate xk’k’ the Kalman

filter assumes the relation

xk|k = xklk-1 + K(k) - (Zk - Zklk—1) (6)
where K(k) is an (n x r) matrix called Kalman gain.
(zk - 2k|k—1) is a prediction error, whose sequence is often
referred to as an innovation sequence. The Kalman gain is
determined under a criterion to minimize the squared state
estimation error, namely

min _ 3 T . _ 2

K(k)‘gj(xk X )T (X xk!k)£ : (7)

In general, this criterion is equivalent to the weighted mean

square error criterion such that

Eti)éfg(xk BT S §k|k)£

where Wk is an arbitrary (n x n) positive definite symetric
matrix. It is obvious, therefore, that the Kalman filter is
nothing but a least squared estimate. This criterion is
equivalent to the orthogonality betweef (xk - lek) and z(k).
This simply implies that the estimate Xy 1k is optimal if and

only if, its error (x §k|k) does not include any part that

K "
can be further explained by the information obtained up to

time t - The complete solution to the problem is as follows



Xp | k-1 = F(k,k-1) X x| k-1 (8)
Zg k-1 = HOOD toxy g (9)
— -— T — -
Pk[k—1 = F(k,k-1) Pklk—1 F (k,k=-1) + G(k,k=-1)
Q(k) + GT(k,k=1) (10)
- T T -1
K (k) Pk|k—1 H* (k) [H (k) Pklk—1 HY (k) + R(k)]
(11)
X |k = Xk k-1 t KKz = 2z | 4] (12)
Pk|k = [I - K(k) = H(k)] Pklk—1 (13)
Pi’j is a covariance matrix of state estimation error
(xi - xilj), i.e.
Poii= £(x; = Rep0) » (k. = %07 (14)
ilj i ilj i i3

Besides the system parameters F(k,k-1), G(k,k-1) and H(k), an

the covariance structure of random vectors Q(k) and R(k), the

d

initial conditions §0|0 and P0|0 are also assumed to be given.

Application to Cyclone Forecast Models

The Kalman filtering technique is applied to cyclone
forecast madels. The procedure is illustrated by using the
12 hour latitudinal prediction equation of the Arakawa's
SFC.700 mb model as an example. It reads from Table 1

12 = - 33.0 + 1.7710\00 - 0.777O¢_12 - 0.0076H1u7

12

+ 0.0568X26

(15)
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where P12+ Por P-q are the latitude (0.1 degree unit) of
the cyclone eye at 12 hours ahead,
at current time, and at 12 hours

past, respectively.

H1u7 is 700 mb gph (in meters) at grid

point 147 at current time, and

X is surface pressure (in mb) at grid

*° point 26 at current time.

The location of grid point relative to the cyclone eye is
defined in Figure 1. In the Kalman filter application, the
coefficients of the regression model are treated time variant.
To make this model compatible with the theory described in the
previous section, the equation is rewritten in the following

way:

= [1 330 |+ (16)
v12 = [1 90 qp Hyyy Xpe] | 733 v
1.7710
-0.7770
-0.0076
0.0568
| _ —
where Y12 is now the real observation and w is the observation
error. Equation (16) is considered the measurement equation
zp = H(k) = xp + wp (17)
where Zy = P4, is the cyclone eye position at time tk’
H(k) =

[1 % ¢_12 Hiyq X26] is the observation matrix
at time ty composed of the observations obtained
at time tk—1'
The (5 x 1) vector Xy is the coefficient vector, now treated
as a time variant state vector, whose change is governed by the

system transition equation

X401 = F(k+1,k) « x + G(k+1,k) - Vi (18)
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The initial estimate of the state ﬁO)O is regarded as the

given coefficient vector,

-33.0
1.7710

= -0.7770 (19)

-0.0076

| 0.0568 |

The transition matrices F and G can be considered identity

A

%0lo

matrices since the true transition structure is unknown and
the changes are supposedly gradual. If the process is consi-

dered first order Markovian, F could be calculated from correla-

tion matrices such that

F(kt1,k) = (% q * %) « O = %) . (20)

This approach is, however, unfeasible here for the determination
of F since the sample states are not available.

The guestion left is the statistical structure of distur-
bance sequences Vi and W) In theory, they should be zero
mean white sequences. The assumption of zero mean may be
reasonable since the original model (15) is already in good
approximation. On the other hand, the disturbance sequences
are quite likely to be sequentially correlated. This is
obvious from the fact that the forecasts of the original model
are often biased to the same direction for consecutive periods,
as mentioned in the section on Methodology. This difficulty
along with the problem of unknown covariances Q and R are

considered in the next section.

Shaping Filter and Adaptive Filter

A linear dynamical system whose output u, has zero mean and
covariance matrix Djk' when the input Uk is a zero mean white
noise, is called a 'shaping filter'. This filter can be used
as a converter from a colored sequence to a white sequence.

Consider linear differential dynamical systems
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<
I

Wylk,k=1) * vy + Wy(k,k=1) « 6, . (21)

£
It

Wolk,k=1) + wy_q + Wy (k,k=1) « w,_, (22)

where (E and Ui are zero mean white noise processes having

the covariance Qe(k) and R“Kk)' The dimensions of vectors

6 Kk and wk are the same as those of Ve and W respectively.
The transition matrices Wi(k,k—1)ls have to be determined so
that the covariance structure of Vi and Wy are preserved.
Similarly to the transition matrices of F and G, however, W's
cannot be analytically determined in the cyclone problem.

They are all assumed identity matrices here, since the sequen-

tial correlations of vy and w,_ are likely to be very high and

k
their changes gradual.

Now the shaping filter developed and the original formula-

tion (17) and (18) should be combined. The three state transi-
tion systems (18), (21) and (22)

X, = F(k,k=1) « x _4 + G(k,k=1) » v, _,

= - . - . 0
Ve = We(k,k=1) Vi-q + Wy (k,k=1) k=1
Wy = Walk,k=1) = wy_4 + Wy(k,k=1) = w,_4

can be rewritten as

En F(k,k=1) G(k,k-1) o —;k—;w
Vi = 0 W1(k,k—1) 0 Vi1
Wy 0 0 W3(k,k-1) Wy 1
| - B I S
o N N
+ W2(k,k—1) 0 Wi q (23)
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The observation equation (17) becomes

2, = [H(k) 0 1] EN

Vi (24)

| k]

Redefining the vectors and matrices as

(x|
Xy = Vi : dimension (2n + 1) x 1 (25)
Yk
F(k,k-1) = | F(k,k-1)  G(k,k-1) o |
0 W, (k,k=1) 0 (26)
0 0 Wy (k k=1)
{(2n + 1) x (2n + 1)
G(k,k-1) = | 0 o |
W, (k, k=1) 0 s (2n+1) x (n+1)  (27)
| o Wy (k k1) |
v, = 6, : (n+1) x 1 (28)
|
H(k) = [H(k) 0 1] : r x (2n + 1) . (29)
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the equation (23) and (24) returns to a simple form

(30)

e
I

F(k,k=1) + x4 + G(k,k=1) * v, _,

z, = H(k) « xp . (31)
The dimensions of 0 and I are omitted but should be obvious.

It is worth noting that the observation equation does not have
any explicit noise terms. They are now imbedded in the state
equations. The covariance of the zero mean white noise sequence

Vi is, as already defined

Q(k) = [Qg(k) 0 : (n+ 1) x @+ 1) | (32)

The corresponding Kalman filter solution is exactly the same
as those given in the previous section with R(k) being a zero
matrixz).

The only question reméining now is the determination of
unknown noise covariance Q(k), which is huristically treated
in this analysis based on the following facts. The Kalman
filter is a linear filter applicable to nonstationary processes.
Nonstationary process has, by definition, time variant statis-
tical properties. 1In fact, the covariance of disturbance
sequence Vv is defined as Q(k) which is a function of time.
This matrix, however, cannot be determined a priori unless the
physical process involved is statistically known or some predic-
tion procedure for error covariances available. In the cyclone
problem, neither is the case. Instead of prediction, however,
the updating procedure is available, which is called an
'adaptive filter'. An adaptive filter updates the unknown

parameters of the system during the operation of a model, using

2)  The condition R(k) = 0 implies H(k) . P, HL(K) =0
which could lead to some computational difficulty, and can be
avoided by the method described in (Jazwinski, 1970. p.213).
This difficulty was, however, not encountered in this cyclone
analysis.
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the predicted measurement errors as new information.

The various techniques of adaptive filters are available
(Mehr, 1972). Among them is one that has practical computa-
tional feasability and is based on the so-called 'innovation
sequence' defined as {vk} such that

- H(k) (33)

Vk T %k X |k-1
It can be shown that if the optimal filter is used for the
estimation of ﬁk K with respect to the least squared error
criterion, the innovation sequence should be a zero mean white
noise sequence (Kailath, 1968). 1If in reality the innovation
sequence is found to be correlated, the filter used must be
suboptimal rather than optimal. This fact, in turn, can be
used to improve the filter and the estimates of error covariance
matrices Q and R.

Two difficulties are involved in this line of development.
One is that a number of Vi observations are necessary to
obtain a reasonable correlation covariance of V) Sequence,
while in a cyclone case more than ten vk's are seldom available.

The other difficulty is more profound, that is, most of
the theories currently available deal with the time variant
system. The system can be parameterized as (F,G,H) where in
this paper the observation matrix H varies over time. An
example of a theory dealing with a time variant case is in
Jazwinski, (1970, p.311), whose performance is doubtful when
the number of stages of forecast is limited as in the cyclone
problem.

Considering such circumstances, the following simple
procedure is used in this analysis where the covariance
structure is considered time invariant. First, arbitrary but

1] 0 . . . ! »
intuitively reasonable covariance matrices are assumed, that is

2 2

_ 21
Qe(k) = a (xolo)(/\2 )2 0 (34)
%0]0 &3 )2
0107 (5 ¢
0] 0 (23, )2
0 0|0
2 ~ 2
Qw(k) =8 [%i?n (zk - zk|k—1)J (35)
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where §3|0 is the i-th component of the initial estimate of
vector xg, given equation (19), o and B are the scalar para-
meters to be optimized. The mean value of (zk - %k|k—1) is an
unknown a priori but the prediction accuracy of the original
model is used as a rough estimate. The choice of these parti-
cular forms is based on the assumption that the variance of a
variable should roughly be proportional to the magnitude of
the value of the variable; namely, the variance of a variable
having a large absolute value is quite likely larger than that
of having a small absolute value. This assumption does not
hold in general, but must be reasonable under various practical
situations. Note that the covariance of Wy is set not propor-

tional to z but to its estimate error since the error

’
magnitude iz roughly known while the estimate error of Xy is
completely unknown before the calculation.

The next task is to optimize the parameter o and B, which
is performed under the criterion

N
min 1 :E:
a8 N ¢

~

Zk - Zk|k_.I (36)

b4

where N is the number of prediction cases. Once an optimal
set of o and B are obtained by considering several cyclones,
they are set constant for other cyclones.

The last problem is to determine the initial estimate of
PO|O' the error covariance of state variables. Since the
Kalman filter solution (8) and (13) includes the updating of
Pk kr the accuracy of its initial value is less important
than Q0 (and R). A similar assumption as applied to equations

(33) and (34) is used for this matrix, too; that is

_ I3 ]
p0|0 = P1 0 (37)
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where

) 0

a5 2

| Fola) |

2 ~
Py =73 'Fwan (z - zk[k-1ﬁ

k

About the magnitude of parameters o, B, Y1/ Yy and Y3+ the
equations (17), (18), (21) and (25) suggest that the following
relation may quite likely hold

(38)

It is simply because Yq and Y3 are the coefficients of the
error covarience of Xy and Zy s while the others are the
coefficients of the error covariances of noises attached to
Xy and Zy - Finally, it should be noted that all the error
covariances are assumed diagonal matrices, since the cross
correlations of state variables and their noises are absolutely
unknown and quite likely smaller in magnitude than those of
variances.

Returning to the original shaping filter formulation (21)
and (22), one can conceive of simpler cases where the observation

disturbances are not correlated while the system disturbances are.
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This situation may occur in the cyclone forecast when the
highly correlated prediction errors of the original model
are mostly due to the fixed coefficients and not due to the
correlated observation errors. In this case, the shaping
filter to the observation disturbance (22) can be omitted,

resulting in the corresponding system and measurement equations:

X, F(k,k-1) 0 Xy 0 * 0y
= +
Vi 0 W1(k,k-1) Vi 1 Wz(k,k—1)
(n x 1)

(2n x 1) (2n x 2n) (2n x 1) (2n x n) (39)

z, = [H(k) 0] Xy + Wy (40)

Yk

(1 x 1) (1 x 2n) (2n x 1) (1 x 1) .

Redefining the vectors and matrices as

Xy = —xk
| Yk
F(k,k=-1) = —F(k,k—1) 0
0 W1(k,k—1)
G(k,k-1) = [o
W, (k,k=1)
v = 8
H(k) = [H(k) 0]

(39) and (40) become

Xk = F(klk_1) ¢ xk-1 + G(k,k—1) . Vk—1 (41)
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z, = H(k) - X+ oWy (42)
which are identical to the original forms (1) and (2). The
error covariances are now assumed

Q(k) = 0 (k) (43)

R(k) = Rv(k) (u4)

Polo = |P1 O (45)
0 P

where Qe, Rv’ P1 and P2 are given in (34), (35) and (37). In
these covariance matrices the number of unknown parameters are
four, i.e. o, B, vy, and Y2- A corresponding foreseeable

relation (38) becomes

Y > o=y, . (46)

The model represented by (39) and (40) will be referred to as
the filtered model A, while the model represented by (23) and
(24) is referred to as the filtered model B.

IV. PRELIMINARY COMPUTATIONAL RESULTS 3)

Computational Procedure

The purpose of the computational experiments is to demon-
strate the feasibility of filtered models and their performances
and not necessarily to establish an operational program ready
for implementation. The number of cases used for experimenta-
tion are, therefore, limited to the least satisfactory amounts.
The optimization of parameters is also undertaken only to a
crude extent.

The typhoon data examined are only those which occurred
in August 1974. During this month, five typhoons occurred.
Typhoon No.14 (TYPH7414) lasted 15 days and others only two to

3)

Based only on the typhoons which occurred in August 1974.
Results based on more data will be reported in the forth-
coming paper.
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five days. The amount of data are thus very unsatisfactory,
but nevertheless they are enough to withdraw the basic information
necessary to make a preliminary evaluation of the models
developed in this paper.

Regarding the optimization of error covariance parameters,
(a, B, Yqr y2) for filtered model A and (a, B, Yqr You Y3)
for filtered model B, the following strategy was taken:

1. To an estimation of mean (zk -2y k-1)' 0.8 degree is
used regardless of the forecas% models. This value is the
12 hour prediction error associated with the simple persistence

method reported in the Typhoon Forecast Manual (Japan Weather

Association, 1974, p.76, Table 4.1.2)., But it is used for all
models since this value is simply a normalizing factor to value
B and its choice does not have any substantial effect on the
model performance as long as B is chosen properly.

2. The parameter optimization was undertaken through
random sampling with intuitive judgement. The foreseeable
relationships among parameters, (46) for filtered model A and
(38) for filtered model B were not necessarily strictly
considered, since the examination of the validity of these
relations were also in question.

3. Although the criterion is formally expressed as

N
min 1 2:
k=1

o,B,Y N

Zx ~ zk|k—1) '

this is not operational since all possible combinations of
0, B, Y can by no means be examined.

Instead, a crude stopping rule was used, that is, the
optimization procedure terminates when the first satisfactory
results are encountered. The satisfactory level is, of course,
very subjective, but nevertheless, this approach is considered
reasonable in the light of the purpose of this paper. For
practical use, a further detailed search of better parameters
may be necessary.

4. The parameter optimization was conducted only for the
data of TYPH7414. The other data are used as independent
cases. The TYPH7414 was selected because it had the longest
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duration of all the typhoons and its behaviour was complex
enough (as seen in Figure 4) to be a good representative of

other typhoons.

Results and Evaluation

The first series of results are those pertaining to the
parameter optimization, or the model calibration. Table 4
lists the 'optimal' parameters and corresponding forecasts.
This optimality is by no means the real optimality due to the
limited number of trials. One immediately notices that the
forecast improvement of 12 hours SFC.700 model for ¢ (latitude)
is minus, meaning worse than the original model. For this
particular model, many combinations of parameters were
examined, yet better parameters were not found except for a
set of parameters which leads to the filtered model identical
to the original model, that is, « = 0 (and B = 0 in model B),
or Q = 0, implying no system error. The case of Q = 0 was not
considered as optimal since it did not use Kalman filter
algorism at all, although in practice the condition Q = 0 may

be more preferable than the parameters listed in Table 4.

A careful examination of the performance of the filtered
model reveals the fact that when the original model has large
prediction errors, the filtered model works very well. For
instance, 12 hours SFC.700 model for A (longitude) has original
mean absolute error 1.68 degree while that for ¢ has 0.7 degree
and the improvement in A is remarkable. The same applies to
24 hours SNT model. The ¢ model has the error 3.27 degree while

the A model has 1.82 degree, and the improvement in ¢ is much
larger than in A. The question is then why. In Table 5, a

comparison of observations and predictions by the SFC.700 and
the filtered model A, gives a clue. A surprising difference

can be seen in the predictions of the original models for ) and
¢, that is, all the A errors have minus signs or the constant
bias to the east side, while the ¢ errors have both signs. This
implies that the A errors are highly correlated while the

errors are not. It may also be correct to say that the ¢ errors |
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are closer to the white sequences than the ¢ errors. When
the residual errors are white, it is difficult to improve
the model by any updating procedure based on past histories.
The Kalman filter is by no means an exception. In fact, the
residual errors of the filtered model show quasi-whiteness.

Even if a small decline (a minus improvement) is obtained
in the predictions whose original errors are small, however,
the overall prediction in terms of vector error will not be
heavily affected. Because the improvement in the predictions
whose original errors are large is much larger than just to
compensate its partner's decline. The vector errors are
reduced by 30% and 45% in 12 hours and 24 hours respectively.
Such reduction is certainly substantial.

This overall improvement is more obvious in Figures 4 and
5 which show only the model A results. The filtered model is
considered practical since in a wandering part of the cyclone
track, from the 20th to 23rd August, the forecast errors by
filtered model are considerably smaller than those by the
original model. This part is the most difficult part in
practical forecasting.

With respect to the difference between filtered models A
and B, no significant differences can be observed. The small
difference may be attributed to the difference in the extent
of parameter optimization. It is, however, too soon to
conclude that the measurement disturbances are independent.
The filtered model B is simply incapable of taking away the
various errors involved in the original model. Such errors
include the non-linearity of the cyclone behaviour and the
time variant nature of error covariances and the model struc-
ture. Because model A is superior to B in perthimony (fewer
number of parameters), only model A will be used from now on.

The sensitivity of covariance parameters is found to be quite
high. To illustrate parameter effects on the forecast, only
the examples from the 12 hours SFC.700 through filteréd model
A are listed in Table 6. From this table, one notices that
the relation Yq > {(and Y3 > B in model B) holds, but o = ¥
is not necessarily true. This may be attributed to the different



-23=~

sensitivities of various elements in covariance matrices, of
which one has higher influence to the forecast than others.

In this case the parameter attached to this particular element
becomes more important than to others, and the relation a = Yo
may not hold since the most important elements in two matrices
do not necessarily coincide.

The optimized parameters have quite interesting matches
in different models, that is, o is always 0.001 and g8 is 3.0.
Although these values are not quite optimal and accordingly the
credibility of this match is not so high, still this fact
implies that the error covariances of systems noises and
measurement noises are similar in magnitudes in the four models.
Only the goodness of initial estimates of the states, P0|0 is
different. It may not be true, however, for the prediction
models of even longer periods, such as 48 hours or 72 hours.

The second series of results are those for the independent
cases which are not used for parameter determination. Unfortu-
nately, there is not enough data yet to be examined. Only four
other short period typhoons are examined. They are TYPH 13, 15
16 and 17. As a total, 34 12 hour forecasts and 10 24 hour
forecasts are made. Tables 7 and 8 list the summary of the
results.

In the 12 hour forecasts by SFC.700 model, X error is
originally 1.5 degrees and ¢ error is a 0.7 degree. Therefore,
the worse model A was improved by 29% whereas there was an
improvement of only 1% in the better model ¢. The case of
TYPH15 shows a large decline in the prediction but it should
be considered as a sample variation. Only the total mean of
this small set of 35 forecasts has significance if any at all.
In this sense, the improvement in vector error is more realistic
measure, which shows a remarkable improvement of 31%. 1In real
distance this stands for the vector error reduction from 220 km
to 150 km on an average. TYPH16 and 17 are plotted in Figures 6
and 7. From these figures, it can be concluded that the
improvement is significant.

In the 24 hour SNT forecast, the forecast of A is more
difficult than ¢. The original mean absolute error was 1.72
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degree versus 3.74 degree. In fact, the errror in prediction
A was not improved at all but even became worse by 2% as a
total mean. The TYPH17 had the worst case, about 20% decline
in errors. The prediction of ¢ is remarkable which leads to

a 50% vector error reduction as a total, implying the distance
error reduction from 450 km to 220 km on an average. The
significance of this improvement is more clearly seen in

Figures 8 and 9.

Conclusions

Despite that the number of typhoon cases used for parameter
optimization and for predictions is extremely limited, the
following can be concluded:

1. The Kalman filtering approach to get better performance

in existing models is promising.

2. The magnitude of improvement depends upon the perfor-
mance of the original model. In the cases when the
residual errors of the original model are small and
little correlated, the improvement by the Kalman filter
is little, but when the original model's predictions
are inaccurate and errors are highly correlated, the

improvement is substantial.

3. Since the cases in which both XA and ¢ models predict
accurately are rare, the vector errors are more often
improved than each component error. 1In the 12 hour
forecast based on the SFC.700 model, the vector error
reduction was roughly 30% and in the 24 hour forecast,
based on the SNT model, it was roughly 50%.

4. Since the original model predictions are inaccurate
when a typhoon movement is stagnated in a small area,
the filtered model can improve the predictions sub-
stantially. This fact is important and beneficial to
the practical application of the filtered model.

5. The shaping filter applied to the measurement noise

does not give significant improvement in results.
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Table 3

Description of Data Supply

Data (period)

Arrangements

From the Japan Meteorological Agency

1. Observed Typhoon eye location
(whole 1974)

2. Observed surface pressure and
700 mb gph distribution
(June ~ September 1974)

3. Prognostic 250 mb and
500 mb gph distribution
(June ~ September 1974)

From the US National Hurricane Center

4., Observed Hurricane eye location

(1945 ~ 1974)

5. Observed 500, 700 and 1000 mb
gph distribution

(1945 ~ 1974)

every 12 hours (at 0 and
12 GMT).

every 12 hours (at 0 and
12 GMT) at 381 km
square grid points over
the Northern Hemisphere.

12 hour prognosis at 0 GMT
and 24 hour prognosis
at 12 GMT at 509.6 km
square grid points
over the Northern Hemis-
phere.

every 12 hours (at 0 and
12 GMT).

every 12 hours (at 0 and
12 GMT) at 5° square
grid points on moving
coordinates.

Note: 500 mb prognostic gph was calculated through linear

approximation:

500 mb gph = %

250 mb gph +

5-550 mb gph
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Table 6

Parameter Sensitivity to Forecasts:

12 hours SFC.700(A)

A
Degree of improvement
« B " Wé (original error: 1.68°)
0.001 2 1. 0.1 1.00°
0.0001 2 1. 0.1 0.96
0.01 2 1. 0.1 0.89
0.001 1 1. 0.1 0.94
0.001 3. 1. 0.1 1.04 : selected
0.001 b 1. 0.1 0.92
0.001 2 0.1 0.01 0.91
0.001 2 2. 0.2 0.95
7
(original error : 0.79)
0.001 2. 0.01 0.001 -0.02°
0.0001 2. 0.01 0.001 -0.08
0.01 2. 0.01 0.001 -0.08
0.001 1. 0.01 0.001 -0.03
0.001 3. 0.01 0.001 -0.02 : selected
0.001 u. 0.01 0.001 -0.11
0.001 2. 0.001 0.0001 -0.03
0.001 2. 0.1 0.01 -0.05
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85 78 71 64 57 50 43 36 29 22 15 8
172 165 158 151 144 137 130 123 116 109 102 95

£6 79 72 65 58 51 44 37 30 23 16 9
173 166 159 152 145 138 131 124 117 110 103 96

174 167 160 153 146 139 132 125 118 111 104 97

88 81 74 67 60 53 46 39 32 25 18 11
175 168 161 154 147 140 133 126 119 112 105 98

8 8 75 68 61 S& 47 40 33 26 19 12
169 162 155 148 141 1% 127 170 113 106 99

90 83 76 69 62 55 48 41 34 27 20 13

=50 170 163 156 149 141 142 135 128 121 114 100

91 G84 77 70 63 56 49 42 35 28 21 14
. )\_—_—5 . . . . . . . .

171 164 157 150 143 136 129 122 1f5 108 101

Figure 1 The grid system is used to express
the distribution of the surface
pressures and teh 700 mb gph for
the SFC.700 mb model.

(The center of a typhoon is located
at point 47. Grid spacing is 5° both
in latitude and longitude).
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10 9 8 7 6 5 4 3 2 1
20 19 18 17 16 15 14 13 12 11
30 29 28 27 26 25 24 23 22 21
40 39 38 37 36 35 34 33 32 31
L] L] . * @ L] - L ] L -
50 49 48 47 46 45 44 43 42 41
60 59 58 57 56 55 54 53 52 51
609. 6Km
70 69 68 67 66 65 64 63 62 61
609. 6K
Figure 2 The grid system is used to express

the distribution of 500 mb gph
for the SNT model.

(The center of a typhoon is located
at point 46. Grid spacing is 609.6Km).
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Figure 3 Interpolation.

pl(2)

pl&4)

p(i) indicates the value attached to the grid point i fixed
to the earth, one of the nearest four points surrounding the
grid point A in the moving coordinate. The value p at the

point A is determined by the formula
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FIGURE 6
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FIGURE 8
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FIGURE 9
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