
 

International Institute for 
Applied Systems Analysis 
Schlossplatz 1 
A-2361 Laxenburg, Austria 

Tel: +43 2236 807 342 
Fax: +43 2236 71313 

E-mail: publications@iiasa.ac.at 
Web: www.iiasa.ac.at 

 

Interim Reports on work of the International Institute for Applied Systems Analysis receive only 
limited review. Views or opinions expressed herein do not necessarily represent those of the 
Institute, its National Member Organizations, or other organizations supporting the work. 

Interim Report IR-02-032/April 

Dynamic Microsimulation of Health Care Demand, Health Care 
Finance and the Economic Impact of Health Behavior 
 
Part I: Background and a Comparison with Cell-Based Models 
 

Martin Spielauer (spielaue@iiasa.ac.at) 
 

Approved by 

Landis MacKellar (mckellar@iiasa.ac.at) 
Social Security Reform 

April 2002 

 

 



 ii

Contents 

1. Introduction ...................................................................................................................1 

2. What is dynamic microsimulation?...............................................................................2 

3. Classification.................................................................................................................5 

The purpose: projection versus explanation..................................................................5 

General versus specialized models................................................................................6 

Cohort versus population models..................................................................................7 

Steady-state versus forecasted projections....................................................................7 

Open versus closed population models .........................................................................8 

Data-based versus agent-based models .........................................................................8 

4. Microsimulation modeling in the context of the life-course paradigm.........................9 

The human life course .................................................................................................11 

5. Microsimulation versus cell-based approaches...........................................................14 

The representation of populations ...............................................................................14 

Modeling of population dynamics...............................................................................15 

Linking microsimulation and cell-based macrosimulation models.............................16 

Areas of possible application of the microsimulation approach .................................17 

Strengths and limitations of microsimulation .............................................................21 

Summary and conclusions...............................................................................................23 

References .......................................................................................................................24 

 



 iii

Abstract 

Cell-based health care models, as well as macro-level projections of future 
population and economic trends used as input to health care models, are limited to a few 
variables, which makes microsimulation an interesting modeling option, especially as it 
allows for modeling of the interaction of demographic with social, environmental and 
economic variables. Micro-approaches can incorporate the wealth of substantive 
analysis gained from a large number of micro- and macro-level studies with regard to 
demographic, economic and health behavior. Compared to cell-based macro models, 
microsimulation can produce useful projections for the analysis of different health-
related phenomena considering additional dimensions, i.e., detailed issues regarding 
health care finance (insurance schemes, individual accounts etc.) and individual risk 
exposure.  

This paper constitutes the first part of an investigation of the potential of dynamic 
microsimulation for the modeling and projection of health care demand, health care 
finance and the economic impact of health behavior. The main purpose of this part is to 
provide a brief theoretical background with regard to the dynamic microsimulation 
approach and a comparison of the microsimulation approach with the cell-based macro 
approach. Starting with a definition of dynamic microsimulation and a classification of 
the types and approaches, microsimulation modeling is brought into the context of the 
life-course paradigm. This paradigm, meanwhile being the dominant paradigm in 
demography, can also be a useful organizational principle for the study and projection 
of health-related phenomena using microsimulation. Microsimulation is then compared 
with cell-based approaches, and the potential strengths as well as drawbacks of the 
microsimulation approach with regard to health care modeling are investigated. 
Dynamic microsimulation might turn out to be increasingly appropriate as a modeling 
approach in this field, which is currently dominated by cell-based macro-models.  
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Dynamic Microsimulation of Health Care Deamnd, Health Care 
Finance and the Economic Impact of Health Behavior 

Part I: Background and a Comparison with Cell-Based Models 

Martin Spielauer 

1. Introduction 

Cell-based health care1 models, as well as macro-level projections of future 
population and economic trends used as input to health care models, are limited to a few 
variables, which makes microsimulation an interesting modeling option, especially as it 
allows for modeling of the interaction of demographic with social, environmental and 
economic variables. Micro-approaches can incorporate the wealth of substantive 
analysis gained from a large number of micro- and macro-level studies with regard to 
demographic, economic and health behavior. Compared to cell-based macro models, 
microsimulation can produce useful projections for the analysis of different health-
related phenomena considering additional dimensions, i.e., detailed issues regarding 
health care finance (insurance schemes, individual accounts etc.) and individual risk 
exposure (such as smoking). Additional examples on the demographic side are 
educational composition, rural/urban differentials, household structures and family 
networks, which become increasingly important in the context of the ongoing 
demographic change, that goes hand in hand with changes in health status, health care 
demand and availability of informal care supply. In the context of population 
forecasting, most of these new challenges have been discussed in detail in Lutz et al. 
(1999).  

The use of microsimulation models in health studies is not limited to projections, 
and ultimately forecasts and policy recommendations. Models can also be designed and 
used to study the implications of certain assumptions and thereby to develop and test 
theories. Regardless of the main intention – prediction versus explanation – an 
important purpose of modeling is to clarify concepts. The process of modeling itself can 
produce valuable insights on the subject being modeled or may help to identify internal 
inconsistencies and gaps of theories, since, for the translation of a theory into a 
simulation model, everything needs to be quite explicit.  

                                                 
1 The term “health care model” is used for the broad range of models addressed in this paper, including 
models of health care demand, health care finance and health behavior, and their economic impacts. The 
term “health studies” is also used in this broad context.  
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This paper constitutes the first part of an investigation of the potential of dynamic 
microsimulation for the modeling and projection of health care demand, health care 
finance and the economic impact of health behavior. The main purpose of this part is to 
provide a brief theoretical background with regard to the dynamic microsimulation 
approach and a comparison of the microsimulation approach with the cell-based macro 
approach. Starting with a definition of dynamic microsimulation and a classification of 
the types and approaches, microsimulation modeling is brought into the context of the 
life-course paradigm. The impact of massive social change on people’s lives has 
become a vital area of research, and great progress has been made in the ways of 
studying how lives change over time. In this context, an important paradigm shift can be 
observed during the last decades that led to the integration of structural and dynamic 
approaches to the life-course paradigm. This paradigm, meanwhile being the dominant 
paradigm in demography, can also be a useful organizational principle for the study and 
projection of health-related phenomena using microsimulation. Microsimulation is then 
compared with cell-based approaches, and the potential strengths as well as drawbacks 
of the microsimulation approach with regard to health care modeling are investigated. 
Dynamic microsimulation might turn out to be increasingly appropriate as a modeling 
approach in this field, which is currently dominated by cell-based macro-models. 

2. What is dynamic microsimulation? 

Microsimulation is a rather confusing term, both due to the wide range of 
models it addresses and the very different concepts in which the terms simulation and 
modeling are used. Very generally, a microsimulation model can be defined as a model 
which uses simulation techniques and which takes micro-level units – in the social 
sciences usually individuals, families or firms - as the basic units of analysis 
(O'Donoghue, 2001). Following this broad definition, dynamic microsimulation would 
include a broad variety of models and modeling approaches ranging from data-based 
empiric dynamic microsimulation to concept-driven microsimulation based on the 
distributed artificial intelligence approach2. A detailed classification is given in the next 
chapter.  

In the social sciences, dynamic microsimulation was introduced in the late 1950s 
dominantly in the form of “empirical” dynamic microsimulation models, which are 
models designed and used operatively for forecasting and policy recommendations 
(Klevmarken, 1997). This tradition can be traced back to a “direct” and an “indirect” 
source. The direct source of dynamic microsimulation can be found in Guy Orcutt's idea 
about mimicking natural experiments in economics, which led to the development of the 
                                                 

2 As data-based dynamic microsimulation and agent-based simulation evolved ‘in almost total ignorance 
of each other’ (Troitzsch, 1996), the term dynamic microsimulation is also often used as a term for the 
first approach as distinguished from agent-based simulation. Inasmuch as data-based empirical models 
move from ‘black box’ models of behavior to models that incorporate theory and individual goal 
orientation, the distinction becomes more difficult. Both traditions increasingly use concepts of each other 
and a synthesis might be desirable. To support this view, a broad definition of dynamic microsimulation 
was chosen in the context of this paper, even though it clearly concentrates on data-based 
microsimulation.  
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DYNASIM model (Orcutt, 1957). The indirect source lies in the static tax benefit 
microsimulation models, resulting from the increased interest among policy-makers in 
distributional studies. As attempts are made to enlarge the initially static tax benefit 
models with behavioral models to capture the second-order effects of policies and to 
simulate behavior over time, these tax-benefit models approach Orcutts's DYNASIM 
and/or its various successors. This tradition is also labeled data-based microsimulation, 
as it is usually based on empirical micro-data and dominated by statistical and 
econometric behavioral models. In general, there are various additional ways of 
modeling the behavior of the micro-units, ranging from simple rules to economic 
optimization behavior to agent-based models. In data-based models, theory is often 
sacrificed in favor of a highly detailed model with a good fit to the data. Behavior is 
mostly modeled implicitly, and so are corresponding assumptions, which can make 
models difficult to understand. In contrast, “abstract models” incorporate behavior 
explicitly. These models are rather designed and used to test and develop theories, i.e., 
for explanation rather than prediction. This also holds true for context-driven agent-
based microsimulation. Agents are defined by their behavior and act according to the 
environmental context they are placed in. Context-driven microsimulation goes back to 
the 1980s.  

The term micro indicates the level of analysis, in the social sciences usually 
individuals or households. In contrast to static microsimulation models, in which these 
micro-units are only used as rather passive accounting units, the common element of all 
dynamic microsimulation approaches and traditions is that they analyze the behavior of 
a system by using the characteristics of micro-units that are changed – or autonomously 
change – according to a behavioral model. The main idea of microsimulation is that 
processes resulting from the actions and interactions of a large number of micro-units 
can be explained best by looking at the micro-units and their behavior. One expects to 
find more stable behavioral relationships on the micro-level than in aggregated data that 
are affected by structural changes when the number or size of the micro-units in the 
population changes, even if the behavior of the individual micro-units and their 
individual characteristics do not change. These micro-units might be particles moving in 
line with probability laws, e.g., in fluids or thermodynamics, a field in which 
microsimulation was first introduced. They might also represent artificial species of 
‘artificial societies’ as is the case in most agent-based simulations. But they can also 
represent individuals, families or households of empirical populations, as it is the case 
in ‘data-based’ microsimulation.  

Beside this ‘direct’ source of dynamic microsimulation, the modeling and 
simulation of dynamics over time and in response to context changes (i.e., policy 
response) is not introduced in static microsimulation models. Tax-benefit systems are 
the most typical application of static microsimulation, where individuals or households 
(represented in a micro-database) are only used as accounting units with the necessary 
characteristics to calculate taxes and benefits. Reduced to its bare essentials, a data-
based static microsimulation model consists of two parts (Martini and Trivellato, 1997):  

- a baseline database: a data set containing information on individual or 
family/household units, in particular socio-demographic characteristics and 
economic information that bears a relationship with a set of policies;  
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- a set of accounting rules: these are computer language instructions that produce, 
for each unit, the provisions of existing or alternative tax and transfer systems, 
or other relevant institutional features. 

The construction of representative data sets containing all necessary variables, 
and modeling at least part of a complex tax-benefit system, absorbed all the resources in 
the early days of microsimulation. The work of Pechman and Okner (1974) analyzing 
the redistribution effects of the US tax system represents the most celebrated example of 
this type of research. Historically, microsimulation moved from the description of the 
distributional impact of the existing tax and transfer system to a second stage, in which 
it became a tool for understanding the differential impact of alternative proposals for 
reforming existing systems. A more recent example is the investigation of the treatment 
of the family in income tax systems across Europe by O'Donoghue and Sutherland 
(1999). In this study different European tax systems were examined for the UK, using 
the tax-benefit microsimulation model POLIMOD (Sutherland, 1995a, 1995b). 

In static models, time – if introduced at all – has no effect on individual 
characteristics, such as to reflect the future composition of the population; the dataset is 
simply re-weighted at each time step (a process called static aging). Dynamic 
microsimulation includes behavior over time, a set of behavioral relationships which 
varies greatly in scope and importance across models. This can be of two types:  

- behavior that produces events that take place over time such as demographic 
events, i.e. marriage, divorce, death, etc., and economic events such as leaving 
the labor force;  

- behavior producing feedback reactions of individuals and/or families to changes 
in external circumstances, notably to changes in public policies. 

In dynamic microsimulation, the behavior of the micro-units is modeled – most 
importantly, its behavior over time. Various approaches can be used in order to model 
behavior over time ranging from simple transition tables to elaborated econometrical 
models, neuronal networks or artificial intelligence. Typical behavioral models are 
statistical models that, for a given set of personal characteristics, determine probabilities 
for a defined set of possible transitions like marriage, pregnancy or death. Monte-Carlo 
simulation is then used to determine if a transition takes place in the simulation 
experiment. This allows to dynamically update personal characteristics over time and to 
add and remove micro-units to or from the population due to birth, death or migration. 
Dynamic microsimulation simultaneously addresses point-in-time “snapshot” 
distribution issues as well as longitudinal "life-path" issues, making it a powerful and 
flexible tool for policy analysis. Another type of dynamic behavior is policy response, 
which might be modeled using econometrical approaches or based on theory such as 
utility maximization. Again, there is a wide range of possibilities for modeling 
individual behavior, from the modeling of a rational forward-looking utility-optimizing 
"homo economicus" to more realistic human behavior including learning processes, etc., 
as is done in agent-based simulation based on the artificial intelligence approach.  

Dynamic microsimulation models are the result of a synthesis of various models 
usually including a population database as model representation of an empirical or 
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artificial society, model representations of alternative tax-benefit systems (like health-
care finance) as well as behavioral models as outlined above.  

The use of the term simulation can be quite misleading in labeling 
microsimulation models, as simulation (among other applications as a techniques) is a 
particular type of modeling in itself (Gilbert and Troitzsch, 1999), but not all 
microsimulation models are “simulation models” in this sense. Simulation modeling 
constitutes a research method that is quite different from the logic of statistical 
modeling. While agent-based models are typical simulation models in this sense, data-
based models are usually statistical models and simulation does not “add” anything to 
these models but is used as a technique to “run” them into the future, i.e., in the form of 
a Monte-Carlo simulation. One main difference lies in the notation: statistical models 
are expressed in statistical equations, whereas simulation models are usually expressed 
in the form of computer programs. In other words, in data-based microsimulation it is 
possible to distinguish the model itself from the computer software used to “run” the 
model, a process that might be done by or include (Monte-Carlo) simulation, with the 
whole exercise also being called a simulation in the sense that it mimics a “real” 
experiment using a model. In contrast to statistical models and their notation, simulation 
models have a considerably extended scope as they are not restricted to a theory that can 
be formalized in mathematical notation, but underlie the much wider notation of 
computer languages. In this respect, computer simulation models represent a third 
domain, complementing both natural language and mathematical/statistical analysis.  

Due to their complexity and the quantity of data to be processed in 
microsimulation models, these are inevitably run on computers. To the degree that 
computer programming itself can be seen as a modeling exercise, microsimulation 
modeling approaches also correspond to some degree to programming paradigms. Static 
microsimulation can be technically described as the manipulation of a population micro-
database by computer procedures that produce, for each unit, the provisions of existing 
or alternative tax and transfer systems, or other relevant institutional features. There is a 
clear correspondence with the procedural programming paradigm that clearly 
distinguishes data from codes. To the extent that individual behavior is introduced, 
object oriented programming becomes the more adequate programming paradigm, as 
individuals can be described much better as objects that encapsulate both, the data 
structure holding all individual characteristics that describe the status of an object, as 
well as the methods that describe the behavior with changes these characteristics. 
Agents as modeled in agent-based simulation directly correspond to agents in the 
computer terminology that can be described as “extended objects”, being characterized 
by purposefulness, autonomy, and reactivity. 

3. Classification 

The purpose: projection versus explanation 

A first distinction can be made with regard to the intended use of a 
microsimulation model which can either lie in projections (and consequently in 
producing forecasts and policy recommendations), or in the explanation of social 
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phenomena. In this sense, microsimulation models can be empirical models or abstract 
models. If designed and used operatively for forecasting and policy recommendations, 
such models ‘need to be firmly based in an empirical reality and its relations should 
have been estimated from real data and carefully tested using well-established statistical 
and econometric methods. In this case the feasibility of an inference to a real world 
population or economic process is of great importance’ (Klevmarken, 1997). In contrast, 
abstract models are rather designed and used to study the implications of certain 
assumptions without an ambition to produce reliable forecasts.  

Typical demographic applications of abstract models in demography and 
population studies are models for partner matching and geographical segregation with 
ABCD (Agent-based Computational Demography), which is currently becoming a vital 
area of research that is not primarily intended to forecast the behavior of actual 
populations, but to study dynamics and patterns of artificial societies resulting from the 
interactions of artificial species. By "growing" these societies, simulations serve as a 
tool to develop and test theories that might help to explain human behavior, on the 
assumption that artificial societies might show similar behavioral patterns as empirical 
ones. An example in which agent-based simulation was successfully used to reproduce 
observed residential patterns is a model developed for Israeli communities by Benenson 
and Omer (2001). Simulation models of this type might also be interesting in the field 
of health behavior, where agents might follow conflicting goals (e.g., health, pleasure) 
in different contexts, i.e., with regard to their own responsibilities, job situations and the 
observed behaviors of other agents.  

Regardless of the intention – prediction versus explanation – an important 
purpose of modeling is to clarify concepts (Burch, 1999). The social sciences are over-
rich in descriptive theories that have limited practical application (Lane, 1999). The 
process of modeling itself can produce valuable insight into the subject being modeled. 
The act of translating a theory into a simulation model requires that everything be made 
explicit and quickly exposes internal inconsistencies and gaps. In contrast to pure 
mathematical models and mathematical notation, simulation models have a considerably 
extended scope, as they are not restricted to a theory that can be formalized in 
mathematical notation, but underlie the much wider notation of computer languages. In 
this respect, computer simulation represents a third domain, complementing both natural 
language and mathematical/ statistical analysis. 

General versus specialized models 

In the data-based tradition, many microsimulation models were developed for a 
wide range of purposes and are therefore rather general models, typically covering the 
whole household sector of a country. Such general models exist for various countries 
and are reviewed in the second part of this paper series. Apart from these general 
models, there are also very specialized microsimulation models that typically 
concentrate on one specific behavior (most prominently, the labor market behavior) or 
population segment. An example of the latter is the British NCCSU Long-term Care 
Model (Hancock et al., 2002). This model simulates the incomes and assets of future 
cohorts of older people and their ability to contribute towards care-home fees. It thereby 
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concentrates on the simulation of the means test of long-term care policies, with the 
results fed into a macro model of future demands and costs. 

The same distinction can be made for context-driven models that would be 
constructed to model specific behaviors like matching processes or to model whole 
economies, like the American ASPEN model (Pryor et al., 1996) which was developed 
in order to study the consequences of various legal, regulatory and political changes. 

Cohort versus population models 

Cohort models age a single cohort over his entire lifetime, predicting each 
individual's major life-course events. In contrast, dynamic population microsimulation 
models age entire cross-sections. Studies typically done with single cohort models 
investigate lifetime income and interpersonal distributions. Examples of this kind of 
models include the HARDING and the LIFEMOD models developed in parallel for 
Australia (HARDING) and Great Britain (LIFEMOD) (Falkingham and Harding, 1996). 
This kind of models typically assumes a steady-state world, i.e., the HARDIG cohort is 
‘born’ into and lives in a world that looks like Australia in 1986.  

Several limitations of these cohort models are derestricted when simulating a 
whole cross-section population, including issues of demographic change and 
distributional issues between cohorts. Population models are usually far more complex 
and demanding with regard to data. Some models only focus on a certain age range, like 
women in their reproductive age, e.g. in FAMSIM (Spielauer, 2000), or the retired 
population, e.g. in the NCCSU Long-term Care Model. 

In population models, the ability to isolate single cohorts with regard to financial 
accounting will support the study of the sustainability of a social security system and the 
study of intergenerational fairness issues.  

Steady-state versus forecasted projections 

Steady-state assumptions are common, especially in single-cohort models and as 
'benchmark' scenarios in population models. In these models, individuals are aged in an 
unchanging world with regard to the environmental context such as economic growth 
and policies, and the individual behavior is "frozen" not allowing for cohort or period 
effects. As a today's population cross-section does not result from a steady-state world, 
"freezing" individual behavior and the socioeconomic context can also serve to isolate 
and study future dynamics and phenomena resulting from past changes, such as the 
population momentum. 

For many models steady-state assumptions (if made) only serve as a benchmark; 
usually the models try to include (and produce) forecasts with regard to the future 
world. “Pure” steady-state models would be inappropriate for studying micro-macro 
interactions, such as the impact of demographic change on social security systems, but 
“freezing” some behaviors will help to isolate the contribution of single processes to the 
future dynamics of the whole system. 
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Open versus closed population models 

In microsimulation the terms open and closed population usually corresponds to 
whether the matching of spouses is restricted to persons within the population or 
whether spouses are imputed. In open population models partners are usually attached 
as attributes to the "dominant" individuals of the population with characteristics 
synthetically generated or sampled from a host population. In contrast, closed models 
allow to track kinship networks and also enforce more consistency, given a large 
enough population to find appropriate matches. Major drawbacks of closed models are 
the computational demands associated with mate matching and sampling problems. In a 
starting population derived from a sample, the model may not be balanced with respect 
to kinship linkages other than spouses, as a person's parents and siblings are not 
included in the base population if not living in the same household. (Toder et al., 2000). 

A related topic is how to model immigration. Approaches range from the cloning 
of existing ‘recent immigrants’ to sampling from a host population or even from 
different ‘pools’ of host populations representing different regions.  

Data-based versus agent-based models 

As mentioned above, in data-based microsimulation a clear distinction can be 
made between the data representing the population, the model that determines the 
behavior, the Monte-Carlo simulation typically used to run the model, and the software 
necessary for the whole exercise. Associated with this type of microsimulation are 
usually micro-econometric and statistical models, whose behavior is usually expressed 
in transition probabilities or duration times. Two main approaches can be distinguished 
according to the way of modeling time: (1) the continuous-time competing-risk 
approach to dynamic microsimulation modeling, and (2) approaches based on a 
discrete-time framework. These issues are explored in detail in Galler (1996). 

Agent-based microsimulation, based on the distributed artificial intelligence 
approach, represents a very different modeling tradition. Agents are defined by their 
behavior and act according to the environmental context they are placed in. As stated 
before, today the “artificial society” approach is mainly used to explore theories. A 
good example is the Evolution of Organized Societies (EOS) project set out to explore 
theories accounting for the growth of social complexity among the human population in 
the Upper Paleolithic period in south-western France (Doran et al., 1994, quoted from 
Gilbert and Troitzsch, 1999). Micro-units are "intelligent" and acting agents, having 
goals and following rules. The following features characterize agents:  

- agents have receptors, they get input from the environment; 

- agents have cognitive abilities, beliefs and intentions; 

- agents can follow different rules and make decisions which rules to follow; 

- agents live in groups of other agents and interact; 

- agents can act and act simultaneously; 

- agents can learn. 
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A synthesis might be desirable and could be approached by combining or 
allowing various "rules of motion" and population types according to the respective 
research questions and goals. As an example, fertility might be modeled in a two-step 
process by combining a child-heaving decision model – a model that might incorporate 
theory and could be agent-based – with a (statistical) waiting-time model 
(Vencatasawmy, 2002). Similar approaches might also be appropriate in the modeling 
of health risks, where the choice for a given behavior (like smoking) can be 
distinguished from the modeling of the consequences of this behavior. To the extent that 
dynamic microsimulation incorporates concepts of goal orientation, planned behavior 
and strategic adaptation, the more attractive it might become as a tool in demographic 
research in the context of its dominant paradigm: the life-course paradigm. 

4. Microsimulation modeling in the context of the life-course 
paradigm 

The massive social and demographic change in the last decades went hand in hand 
with tremendous technological progress, with computers now being a powerful and 
indispensable tool in various fields of research. Their ability to process large amounts of 
data has boosted data collection, enabled new survey designs and ways of data analysis. 
In general, the impact of massive social change on people’s lives has become a vital 
area of research, and great progress has been made in the ways of studying how lives 
change over time. In this context, an important paradigm shift can be observed in the 
last decades that led to the integration of structural and dynamic approaches to the life-
course paradigm, which has meanwhile become the dominant paradigm in demography. 
It combines several major theoretical and empirical streams of research, connecting 
social change, social structure, and individual action (Giele and Elder, 1998). This 
chapter outlines the main recent paradigm shifts in social sciences and puts 
microsimulation into the context of the life-course paradigm that can be seen as useful 
organizational principle for the study and projection of population phenomena including 
health issues by microsimulation. 

Demography and health studies involve a variety of research disciplines and are 
therefore not only influenced by general changes and shifts in the focus of attention but 
also benefit from their developments and innovations. The changes that can be observed 
can occur along four dimensions (Willekens, 1999): 

- from structure to process 

- from macro to micro 

- from analysis to synthesis 

- from certainty to uncertainty. 

The change from structure to process shifts the focus of attention from a static 
view of the social systems to the dynamics of the systems over time and to the processes 
generating the dynamics. While this “transition from entity-oriented perception of 
reality to process-oriented perception” was made by nearly every social and natural 
science (Willekens, 1999; 4), its importance increases with the speed of the observed 
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social and demographic changes and the various new questions raised by these changes. 
The focus on processes brings in various new concepts, with causality and time being 
among the most important. Various population phenomena are characterized by their 
rapid change over time, and a substantial research effort is required to identify and 
understand the underlying processes generating these phenomena. Good examples are 
low fertility, increasing divorce rates and changes in the distribution of income and 
wealth. An example with regard to health issues is the excess-mortality of adult males in 
various post-communist countries as a consequence of various reasons including 
economic stress, unemployment and alcohol abuse.  

The importance of time is also increasingly recognized in the field of policy 
analysis, where the attention shifts to the long-term dynamics and the sustainability of 
tax-benefit and social security systems. In studying distribution effects of policies, time 
adds a new dimension to research, as distribution effects are not only analyzed in a 
cross-sectional view for a given time, but also over time, between cohorts and over 
generations. Regarding health care costs, such studies can also include the distributional 
impacts of policies between different risk groups, such as, e.g., smokers and non-
smokers, and might furthermore include excise taxes on certain products, etc. This shift 
in focus is mirrored in the development of microsimulation models, both by the 
increasing efforts undertaken to extend static models to dynamic models, and generally 
by their increasing importance as a research tool that can handle dynamic processes 
over time. 

The second dimension considers the level of analysis. Social sciences tend to 
move from macro- to micro-explanations and to interpret changes on the macro-level as 
results of actions taken by individual agents and their interactions. These interactions 
also include reactions and feedback of individual agents in connection with changes in 
their environment, i.e. changes on the macro-level that form the context of individual 
decisions and actions. Contexts interacting with health comprise economic conditions 
and incentives, including those stemming from insurance systems themselves. Again, 
there is a direct correspondence between this general shift to micro-level research and 
microsimulation. 

The third dimension looks at the shift from analysis to synthesis. When shifting 
the focus of attention from structure to process, research increasingly tends not to stop 
at the analysis of these processes and the resulting structures. The identification of the 
elementary processes that generate the complex dynamics of a system are indispensable 
for understanding these dynamics, but also have to be ‘put together’ by way of 
synthesis. In this way, system dynamics can be projected under different assumptions. 
As described in more detail below, the life course may be viewed as a combination of a 
large number of elementary processes. The challenge is to detect the elementary 
processes and the rules that link them. Microsimulation is the main tool for linking 
multiple elementary processes in order to generate complex dynamics and to quantify 
what a given process contributes to the complex pattern of change. 

The fourth shift is based on the insight that uncertainty is associated with many 
events. Agents have only limited control over most events and their exact timing. Hence 
the individual likelihood that certain events will or will not happen becomes an 
important issue. This holds true for many phenomena and events studied in 
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demographic research: pregnancy is a good example. While the degree of planning 
might vary, the exact timing cannot be controlled even though probabilities might be 
well known. This also applies to health issues, where behavioral choices have a strong 
impact on health risks. Again, microsimulation can be used to study these random 
distributional effects. Due to the inclusion of stochastic elements, i.e., Monte-Carlo 
simulation, resulting in different outcomes for each individual simulation experiment, 
microsimulation allows for the exploration of the distribution of events rather than its 
point-estimates, thus leading to a more adequate representation of uncertainty and risk. 

Together, these four shifts have a huge impact on the way in which individual 
lives and interactions of individuals are described and investigated. The corresponding 
paradigmatic shifts led to the development of the human life course as a central concept 
or ‘organization principle’.  

The human life course 

The term ‘life course’ was first used by Cain (Cain, 1964) to encompass 
anthropological, sociological, and psychological concepts of aging, particularly as they 
were related to the maturing individual's movement through an expected sequence of 
social roles. The life course refers to a sequence of socially defined events and roles that 
the individual enacts over time. It differs from the concept of the life cycle by allowing 
for many diverse events and roles that do not necessarily proceed in a given sequence, 
but constitute the sum total of a person's actual experience over time (Elder, 1975). 
These roles and the transitions from one role to another are central issues in family 
demography: childhood, partnership formation and dissolution as well as parenthood, 
just to name some of them. Contrary to the life-cycle concepts, which are widely used, 
e.g., in economics or psychology, and which are based on a predetermined ‘typical’ 
sequence of roles, episodes of life or expected behaviors, the life-course concept permits 
us to study changing role patterns and the interactions between different domains or 
careers, such as education, jobs, partnerships, births, but also disability. The health 
status can be seen as an integrated part of this career framework as it interacts with all 
other careers. The individual life course is determined by four key factors that constitute 
the key elements of the life-course paradigm:  

- location; 

- social integration; 

- goal orientation; and  

- strategic adaptation. 

The location in time and place or the cultural background constitutes the first 
key element that determines the individual life course and closely corresponds the 
demographic concept of period effects as a dominant concept, especially in historical 
demography. In historic demography, births, deaths and marriages are reconstructed by 
the use of archival parish registers, and the economic and political factors that shaped 
the key demographic events of everyday life are determined. Key topics and insights of 
this kind of historical research - which concentrates on ‘ordinary people’ rather than 
leaders and battles - consider the changing roles and functions of families, and in 
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particular of women. In addition, institutional changes caused by demographic changes 
(e.g., changes in inheritance laws) are investigated. Period factors affect a whole 
population at the same moment of (calendar) time. Typical health-related period effects 
stem from natural or nuclear catastrophes and epidemics, but also from economic 
transitions and crisis, which, of course, might have a different impact on different age 
cohorts.  

The second key element is social integration or the concept of ‘linked lives’. It 
closely corresponds to cohort effects as used in demography. Important insights were 
gained by comparing and identifying ‘typical’ life patterns of different cohorts, a 
method widely used in sociology. Rich empirical studies of variations in life patterns 
among different birth cohorts helped to elaborate the multidimensional model of the 
human life course. In health-care models, the concept of ‘linked lives’ is also of 
importance with regard to direct family links, as health risks (or the behaviors regarding 
risk factors) typically vary with living arrangements, as does the availability of informal 
care. In health-care finance systems, family links in the form of dependent spouses and 
children are also important. Health issues are also influenced by what can be attributed 
to cohort effects. Economic crises might affect specific age cohorts and result in specific 
health problems of these cohorts, but also epidemics can be expected to have a different 
impact on different cohorts. Health campaigns might have an impact on specific 
cohorts, such as preventing the current generation of young people from creating 
dangerous habits.  

Individual age is of primary importance in demography (as a third concept 
beside period and cohort effects) as well as in all life-cycle models, and especially in the 
psychology of developmental stages. Age is also of central importance with regard to 
health care risks, and the change of the age distribution of the future population is one 
of the key issues regarding health care finance. Various scholars have tried to describe 
the typical life cycle that begins with birth and moves through adolescence, young 
adulthood, and the middle years to old age and death. By moving to a multidimensional 
model, the study of the life course has perceivably moved from a tendency to divide the 
study of development into discrete stages toward the firm recognition that any point in 
the life span must be viewed dynamically. This holds also true for the individual health 
status that is not only determined by random effects and age, but heavily depends on 
past behavior. Generally, the current situation and decisions of a person can be seen as 
the consequence of past experiences and future expectations, as integration of individual 
motives and external constraints. In this way, human agency and individual goal 
orientation are added to the explanatory framework.  

The fourth component of the life-course framework was mainly brought in by 
longitudinal surveys and associated methods: strategic adaptation or the timing of lives. 
Timing of live events can be understood as both passive and active adaptation for 
reaching individual or collective goals. Timing is one of the most important strategies in 
the presence of conflicting goals, i.e., births might be postponed in order to reach other 
career goals first. Also, behavioral changes directly related to health – like quitting 
smoking – and rehabilitation/treatment might be scheduled at certain periods (e.g., 
holidays). The timing of retirement and when to move to a nursing home can serve as 
another example of a strategic adaptation to a given context under the given limitations 
of choices. Individuals adapt to the challenges confronting them by timing the events of 
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their lives so as to make the most of opportunity and undergo the least frustration and 
failure. Whatever a person’s social and cultural heritage, friendships and networks, or 
personal motivations are, they all come together and are experienced through the 
individual’s adaptation to concrete situations and events (Giele and Elder, 1998). In 
demographic research, the life-course framework links the concepts of time, age and 
cohort by the fourth component of timing of lives.  

The life-course paradigm moved research from single-factor explanations to 
multidimensional models that are flexible enough and capable of encompassing many 
different types of cultural, social and individual variations. While human lives can be 
described in various ways and terminologies, one approach has gained increasing 
importance and has dominated life descriptions from a live course perspective: the 
description of lives as event histories. An event is defined as qualitative change that 
occurs at a specific point in time and that places an individual in a new status. Events 
are transitions between states, such as marriage and divorce, that change the marital 
status of a person. Individuals experience events and organize their lives around these 
events. As Willekens (1999, p. 2) states, “most people spend a considerable part of their 
lives either preparing for life events or coping with life events” – falling ill being a good 
example for the latter.  

States and events typically belong to different domains or careers, like 
partnership, job, educational and disability careers, that interact and influence each 
other. As a result, people may experience problems of synchronization and 
compatibility of careers. Many of the resulting problems - e.g., the reconciliation of job 
and family life - are central in explaining demographic phenomena. A typical strategy to 
cope with incompatibilities is rescheduling activities and events. An example of this 
strategic adaptation is to postpone births.  

The collection of all possible states for each career to be considered in a specific 
analysis creates a state space that determines all possible trajectories and outcomes of 
individual life histories along with all possible transitions. Once defined, the description 
of individual lives consists of ‘event history data’, i.e., all events are recorded together 
with the time they occurred or, alternatively, all states are recorded by precisely noting 
when they began and when they ended. This approach of describing individuals is 
popular in dynamic microsimulation and allows to overcome the limitations of other 
approaches, as it allows for the inclusion of duration-dependencies in behavioral models 
and thereby does not restrict modeling to first order Marcov processes. This can clearly 
be seen when comparing dynamic microsimulation (following a state-space approach) 
to cell-based approaches (that put individuals into a grid of cells representing all 
possible combinations of states). While both approaches use a state-space approach 
(note that microsimulation is not restricted to this approach), no information on how 
individuals organized their lives before entering a cell can be recorded in the latter. 
Health studies are a typical field of research, where individual histories can be expected 
to have a huge impact on future events. While this might be true for life-course studies 
in general, health studies are somewhat privileged in this respect, as individual data on 
health and health care benefits and contributions are (at least theoretically) available in 
the form of administrative data, i.e., from social security carriers. 
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5. Microsimulation versus cell-based approaches 

With regard to projection models, microsimulation and cell-based 
macrosimulation are often two alternative methods for making similar statements about 
future population characteristics (Imhoff and Post, 1998). While population projections 
in the narrow sense (by age, sex and some few other characteristics such as education) 
are almost exclusively produced by the cell-based cohort-component method, for more 
detailed projections, e.g., in the field of health care need and finance, the choice 
depends on the priorities set on the basis of a detailed evaluation of the strengths and 
weaknesses of both methods according to the research goal. While health care models 
are a typical example where both approaches can be found in parallel, there is a broad 
range of applications where no alternative to microsimulation exists. Good examples are 
tax-benefit and social security models that include detailed policies and/or require 
individual accounts over time. Caldwell and Morrison (2000) give the following 
examples: 

- analysis of projected winners and losers of alternative policies on a period-
specific or lifetime basis; 

- analysis simultaneously focused on families and individuals; 

- exploration at the micro-level of the operation of social security programs in the 
context of a broader tax/transfer system; 

- quantification of incentives to work, to save, or to retire at particular life-course 
or period junctures; 

- cross-subsidies across population segments or cohorts; 

- feedback effects of government programs on population demographics; and 

- longer-term consequences of social trends in marriage, divorce and fertility.  

This chapter compares the micro- and cell-based macrosimulation approach and 
highlights their strengths, weaknesses and relevance in health studies. It is organized 
according to the following headings: 

- The representation of populations; 

- The modeling of population dynamics; 

- Linking microsimulation and cell-based macrosimulation models; 

- The areas of possible applications of the microsimulation approach; 

- The strengths and weaknesses of microsimulation compared to cell-based 
macrosimulation. 

The representation of populations 

One of the first and most obvious differences between micro-and macro-models 
lies in the description of the population itself. In microsimulation all individuals are 
represented by an individual record containing all individual characteristics that might 
also include links to other individuals/records (e.g., to keep track of kinship networks) 
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or any other variables. In contrast, in cell-based models population is represented by an 
aggregated cross-classification table, in which the cells represent all possible 
combinations of the characteristics considered.  

A first trade-off can be found with regard to the storage space required by both 
methods, which is determined by the number of attributes and the population size. 
While this space is independent of population size in cell-based models, the number of 
cells – the state space consisting of all possible combinations of attribute values -  
"explodes" with the number of possible population attributes. In contrast, in 
microsimulation the number of records is determined by the population (or sample) size, 
and the storage space will increase only linearly with the number of variables3 
(independent of their possible values). Note that for this reason cell-based models are 
limited to categorical variables, making microsimulation the only practical choice when 
the projection model contains continuous covariates.  

The importance of population size in microsimulation leads to another 
distinction between the approaches: microsimulation models are usually based on a 
population sample rather than on the total population. An exception to this is the 
Swedish SVERIEGE model, which is based on individual data of the whole Swedish 
population. The reasons why microsimulation is (usually) based on samples does not 
only lie in its practicability, but also in the large number of covariates that 
microsimulation models usually contain. The joint distribution of all state variables and 
covariates is generally unknown at the population level and necessary data are typically 
only available from sample surveys (Imhoff and Post, 1998). 

Modeling of population dynamics 

In cell-based macro-models, the projection model has to evaluate, for a given 
state-space and cell occupation, how the number that each individual cell contains 
changes over time. Being limited to categorical variables, dynamics can always be 
described by a limited set of events describing all possible changes of attribute values – 
or transitions from one cell to another. Given the importance of event history analysis in 
microsimulation models, this concept is also frequently applied to microsimulation, 
although microsimulation is not limited to this approach. Events are random variables 
that occur with a certain probability. At the population-level one can speak of the 
'average' occurrence of a certain event, but this average remains to be ultimately based 
on the individual occurrences (Imhoff and Post, 1998). Imhoff and Post note that ‘… 

                                                 
3 Example: For a population of size N with A attributes and Ci categories for attribute i = 1..A, the state-
space would consist of C1*C2*...*CA cells in the macro-model representation while the population 
would be represented by a matrix of dimension N*A in the micro-model. While the population 
representation would be more storage-efficient in a common age-sex state-space (of typically 101*2 = 
202 cells) for any population (sample) bigger than 100 persons (N*A = 100*2 = 200), this picture would 
change dramatically when considering more population characteristics. Consider, for example, a model 
that additionally includes nationality, occupation, education level, income class, parity and health status, 
then, even if allowing for only 6 categories each, the state space would increase to 6*6*6*6*6*6*101*2 = 
9.424.512 cells. In this case, a micro-population of the same storage size could already consist of 
9.428.512/8 = 1.178.064 individuals. Doubling the possible categories of only one attribute, i.e., 
increasing the income categories to 12, would double the whole state-space, while this would be of no 
effect in the case of the micro-representation. 
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when making a statement about a certain future number of events, we are in fact making 
a statement about the expected value of a random variable. In doing so, both the 
microsimulation and the macrosimulation approach rely upon the Law of Large 
Numbers. However, they do so in different ways. A macro-model assumes that the size 
of the population is so large that the projected number of events may be set equal to its 
expected value. A micro-model assumes that the number of repetitions of the random 
experiment in the sample is so large that the resulting projected number of events will 
approximately equal its expected value.’ 

The processes that can be simulated by cell-based models are restricted to first 
order Markov-processes, that is, processes without memory. The number a cell contains 
does not give any information of how long the individuals it represents have been in this 
cell and from "where" (which cell) they came.  

In microsimulation models, the attribute vector is updated for each individual 
according to a behavioral model formulated at the individual micro-level. If needed, all 
past information can be stored allowing for the retrieval of the whole event history or 
biography of individual agents that might enter the behavioral model. This allows to 
include variables of duration since the previous event, which is seen as a significant 
source of demographic heterogeneity.  

As there are no restrictions as to the variable types microsimulation models can 
handle, behavioral models can be of various forms. With regard to the implementation 
of the state-space approach in microsimulation, whether an event occurs or not for an 
individual is typically determined by Monte-Carlo simulation. This leads to a major 
difference between the modeling approaches even when modeling the same processes: 
dynamic microsimulation models do not only produce the expected value. As individual 
simulation experiments are subject to random variation, repeated simulation 
experiments can produce information on the distribution of target variables. As will be 
seen below, this is not always a “convenient" strength of the microsimulation approach. 

Linking microsimulation and cell-based macrosimulation models 

In various fields of projection modeling, microsimulation and cell-based 
macrosimulation are often seen as two alternative methods for making similar 
statements about the future. With both methods having their strengths and limitations, 
the modeler's choice is not necessarily between these two alternative methods, but it can 
also be a choice of how to combine these two approaches. A common practice is to 
align microsimulation projections to projections obtained from macro-models or 
scenarios (such as variants of "official" demographic projections). This approach allows 
to produce or reproduce given scenarios with regard to aggregated target variables while 
including distributional information into the projection.  

Various approaches have been made in the field of linking micro-models (e.g., 
of a household population) to macro-models (e.g., of the economy), the German DMMS 
Darmstadt Micro Macro Simulator (Heike et al., 1994) being one example. In this 
approach, models interchange data via a defined interface (micro-macro link). This link 
can be of various nature, from models where the simulation results of one model feed 
into the other model without producing feedback reactions, to highly dynamic models, 
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like models of an economy, where behaviors simulated at the micro-level will influence 
prices determined in a macro-model that will again feed back into micro-behavior. 

A different approach might be of interest in cases where data availability limits 
possible modeling approaches to macro-models (or in cases in which microsimulation 
would not add anything, as transition rates are only known at the aggregated level), 
though some additional information can be obtained from separate microsimulation 
models and incorporated into the macrosimulation model. An example are the attempts 
to link the PSSRU (Personal Social Services Research Unit, University of Kent) cell-
based macro-model and the NCCSU (Nuffield Community Care Studies Unit) 
microsimulation model for projections on long-term care finance in the UK (Hancock, 
2002). In this approach, the means test of long-term care policies is simulated in a 
microsimulation model and the results are fed into the macro-model of future care 
demands and costs, thereby including the issue of cost incidence into the analysis.  

Areas of possible application of the microsimulation approach 

The areas of possible application and/or integration of the microsimulation 
approach can be illustrated by starting from a very simple cell-based spreadsheet model 
of health care demand, benefits and finance, for a given time period. This stylized 
model distinguishes three types of health care needs (A, B, C) that can be measured in 
care units with unit costs specified separately for the three types. Care demand of type A 
can be provided informally or formally, the other types (e.g., medication, 
hospitalization) can only be provided formally. The health care system is financed by a 
PAYG system with the contribution rate set in order to balance the system in each 
single period. Additionally, formal care is financed by a deductible of a given 
percentage of costs. To be able to determine the contribution rate from earnings in order 
to balance the system, the following information has to be given: 

- the number of people; 

- average earnings; 

- average care needs per type (A-C); 

- the share of informal care of type A; 

- the unit costs of care per type (A-C); 

- the deductible. 

In order to allow accounting for demographic changes, the first four parameters 
are given in the form of age-specific vectors, with age-cohorts being the only 
distinguished cells of this simple model. The following graphic illustrates this model, 
with all exogenous variables being highlighted in the colored box, and the four 
exogenous age-vectors also being graphically represented in figures A-D.  
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Illustration: A cell based (spreadsheet) calculation model of health care demand and 
finance for a given period in a balanced PAYG system. Benefits and contributions are 
calculated for given population numbers, average earnings, care (unit) needs and 
informal care provision rates per age group as well as unit costs and a deductible rate.  

 

In order to use this calculation model for forecasts, all exogenous information has 
to be provided for each period considered. For this purpose, forecasts are needed with 
regard to the age composition of the future population, future earnings, future care 
needs, the future availability of informal care supply, future unit costs and, if applicable, 
distributional information if deductibles are subject to a means test. In this context, 
models can be distinguished by: 

- the extent to which they produce these forecasts by themselves or import them 
from other sources; 

- the degree to which the interactions between demographic, health and economic 
processes are considered; 

- the degree to which distributional aspect are included in order to allow for 
detailed policy simulations including progressive schemes and the inclusion of 
dependents into health care systems; 
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- the flexibility with regard to accounting, i.e., the extent contributions and 
benefits can be attributed to different cohorts or individuals. 

Regarding population forecasts, these are usually available in the form of 
“official central scenario” projections of population by age and sex and most models 
import these projections or try to internally reproduce the same numbers in order to 
make the results comparable with other models. This also applies to most 
microsimulation models that are frequently aligned to such “official” forecasts or are 
parameterized in order to reproduce them internally.  

The idea to model demographic and income processes (including income 
distributions) in one single model by microsimulation goes back to the first dynamic 
microsimulation model DYNASIM (‘dynamic simulation of income model’) developed 
by Orcutt (1957). While such models are able to account for detailed micro-
characteristics such as educational attainment, household composition and health in the 
determination of human capital and labor supply, and might therefore be suitable to 
model income differentials, they typically only cover the supply side of the labor 
market. Various approaches exist in order to link micro-models of the household sector 
with macro-economic models, the German DMMS (Darmstadt Micro Macro Simulator, 
Heike et al., 1994) being one example. A similar approach was also followed by 
Spielauer (2001) in the context of a stylized demonstrational model, linking a dynamic 
micro-population with (a simplified version of) the IIASA social security accounting 
model.  

Many models focus on future costs of health care systems and set projected costs 
in relation to forecasted macro-indicators, like the GDP.  

A sensitive area is the modeling of future care demand. Cell-based approaches 
typically associate a specific average “demand mix” with population-cells. This 
association of a care-mix with cells creates a trade-off between two problems. If only 
relatively few cells are built according to “easy to project” population characteristics 
like age and sex, the “demand mix” associated with these cells will typically change 
over time and a series of assumptions has to be made in order to capture these changes. 
The other extreme would be to define cells by specific care needs, which moves the 
problem to modeling the processes that change the association of people to these cells. 
A typical “way out” is the definition of cells by age groups (and other variables) with 
care needs attached as observed today, but with future cohorts not automatically 
associated with cells corresponding to their age. A prominent example is the “Brookings 
scenario” that associates future cohorts with an assumed lower mortality to cells 
currently associated with younger age groups.  

The approach to use current health information of people pertaining to specific 
groups or cells in order to project the future health care demand could be directly 
"translated" into a microsimulation model. Following this approach, each individual in 
each period would draw his health status or care need by random sampling from the 
equivalent age and risk group of the last period. While this approach might be 
appropriate when no fundamental changes in health behaviors are expected, information 
could be lost if behavioral changes and individual data that can be observed today are 
not or can not be incorporated. If the sample size allows for more detailed grouping 
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(e.g., current health status and diseases, history information), this approach might lead 
to a model that distributes care needs adequately to single individuals and would 
therefore also allow for (meaningful) individual accounting. Such a model could 
constitute a logical starting point for health care modeling based on existing microdata 
of social security carriers. A similar approach was already used in the first dynamic 
microsimulation model DYNASIM (Orcutt, 1957), in which detailed health information 
is imputed to a simulated future cross-section sample of the US population. One of the 
main strengths of microsimulation lies, of course, in the fact that it allows to go beyond 
this approach due to the incorporation of individual-level health models, e.g., models 
derived by event history analysis of available micro-level health history data.  

In order to forecast future health care costs, forecasts are also needed with regard 
to the future availability of informal care supply. Macro-approaches typically 
distinguish different household types (e.g., living with a partner and/or with children) in 
order to account for future changes regarding the population composition by household 
type, which is assumed to be of key importance with regard to the availability of 
informal care. This moves the problem to the question of how to produce household 
projections, if not "given" from other sources. Microsimulation is especially powerful in 
this kind of modeling, as it can keep track of kinship links and is therefore suitable for 
detailed kinship projections (also including information on relatives not living in the 
same household). Future informal care supply will probably also be influenced by a 
series of other characteristics, such as the employment status of potential providers of 
informal care. The availability of informal care can be expected to be sensitive 
especially to changes of female labor market participation. Again, microsimulation 
might be the appropriate modeling option as it allows to include much more detailed 
information. Good references regarding kinship microsimulation modeling include 
Wachter (1995, 1998), Wachter et al. (1998) and Tomassini and Wolf (1999a, 1999b). 

Another uncertainty concerns future unit costs of health care services. While 
microsimulation models might be useful to model future labor supply (many health care 
services are especially labor intensive), prices are typically estimated exogenously or 
derived from steady-state assumptions regarding future growth rates. 

The last parameter of the stylized model given above is the deductible. As far as 
such a deductible is concerned, microsimulation can be used for detailed policy analysis 
regarding its distributional effect and, if subject to a means test, it might be the only 
modeling approach that allows for the simulation of such detailed policies. An example 
for such an approach was already given above with the NCCSU microsimulation model 
(Hancock, 2002). This model is used to simulate the means test of long-term care 
policies, while the results are fed into a macro-model of future care demands and costs.  

Figure G of the Illustration given above shows the resulting contributions and 
benefits (for hypothetic numbers) for a balanced PAYG heath care system. For a given 
period, such a system will typically redistribute resources from the "healthier" young to 
the older age cohorts. It might be desirable to allow for more detailed accounting over 
the whole life cycles of cohorts (or individuals with different characteristics and 
behaviors) in order to distinguish inter-and intra-personal redistributions. While this 
kind of accounting is essential for the study of the distributional impact of health care 
systems, it might also be essential for assessing the sustainability of such a system. This 
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holds true especially if such a system is newly introduced and initial entrants differ in 
their contribution and benefit patterns from the population to be covered in the long run.  

Strengths and limitations of microsimulation 

One of the central strengths of microsimulation lies in the fact that it permits 
inclusion of more variables than other methods, which is especially important in 
projection and planning applications being of central importance in health studies, as it 
allows for more detailed research. For example, when trying to estimate future demand 
for health care facilities, etc., based on population projections, a large set of household 
characteristics, such as household size, family composition, age and income can be 
used. Microsimulation does not impose limits to variable types, allowing also 
continuous variables or links to other records.  

Microsimulation allows for a broad range of behavioral models of any detail or 
complexity. This flexibility supports the study of the interaction between variables and, 
consequently, the life-course interactions between various parallel carriers and roles, 
such as education, work, partnership and parenthood within a changing socio-economic 
context.  

Microsimulation allows the construction of behavioral models at a level on 
which the relevant decisions are taken, i.e., on the micro-level. There is no need to 
translate behavioral relations from the micro-level to the macro-level. This also implies 
that no information is lost through aggregation. The modeling on the micro level also 
allows for an assessment of the consequences of behavioral changes of specific 
population groups and thus for the contribution of these changes on the aggregate level.  

From the view of policy-makers the main strength of microsimulation lies in its 
ability to test new policies in a virtual world before they are introduced into practice. In 
comparison to more traditional policy evaluation modeling exercises, microsimulation is 
especially powerful in addressing distributional issues, both in a “static” cross-sectional 
way and over time. The latter makes it a powerful modeling option with regard to 
sustainability issues of social security systems in the context of demographic change.  

Based on micro-data, microsimulation allows flexible aggregation as the 
information may be cross-tabulated in any form, while in aggregate approaches the 
aggregation scheme is determined a priori. Simulation results can be displayed and 
accounted for simultaneously in various ways: in aggregate time series, cross-sectional 
joint distributions, and individual and family life paths. Flexible aggregation helps to 
determine “winners and losers” of policy changes by various characteristics. An 
example is the possibility to study and compare contribution and benefit histories over a 
whole individual lifespan, allowing for the calculation of individual rates of return. 

Microsimulation allows to study the interaction between individuals. While 
modeling takes place on the individual level, simulation is used to study the resulting 
dynamics and patterns of change on the macro-level. In the empirical, “data-based” 
tradition of microsimulation, the possibility to study the interaction between individuals 
is mainly used to study changes in family and kinship networks. Direct applications can 
be found in the field of elderly care and other aspects of aging societies, where 
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knowledge of the detailed household and family characteristics is valuable information 
for designing policies. The knowledge of kinship patterns additionally allows for a 
detailed study of intergenerational transfers and bequests, but also of hereditary diseases 
or the heredity transmission of specific health risks. As microsimulation allows for the 
modeling of interactions between individuals, it is also applied to study the transmission 
of diseases like AIDS, including the resulting impact on family systems. An example 
for such a study, projecting the familial impacts of AIDS on the elderly of Thailand, is 
the work of Wachter et al. (2001). 

The advantages described certainly have their price, but fortunately a price that 
decreases over time, at least with regard to two of the most frequently listed drawbacks 
of microsimulation: (1) the usually large investments with respect to both manpower 
and hardware requirements might be considerably reduced over time as hardware prices 
fall and more powerful and efficient object-oriented computer languages become 
available; and (2) data problems are reduced over time, as more and better data, and 
especially longitudinal data, become available. The latter is especially true in the area of 
health, as social security carriers increasingly keep track of their clients' health histories, 
including contributions and benefits, in computer databases that might be used by 
researchers. 

Due to the inclusion of stochastic elements - i.e., Monte-Carlo simulation - 
resulting in different outcomes for each individual simulation experiment, 
microsimulation allows for the exploration of the distribution of events rather than its 
point-estimates, thus leading to a more adequate representation of uncertainty and risk. 
As mentioned above, this is not always a “convenient" strength, as it implies that 
simulations have to be run various times and results have to be stored for all simulation 
runs in order to allow for further exploration of the distributional properties of the 
variables. This is burdensome and, in view of computer capacity still being one of the 
main bottlenecks of microsimulation, this can not always be done. As dynamic 
microsimulation models are of a stochastic nature, their outcome is subject to random 
variation. This stochastic nature of microsimulation models leads to one of its main 
problem areas, referred to as ‘randomness’. In microsimulation, various sources of 
randomness can be distinguished. These are: 

- Imperfection randomness: this randomness is not specific to microsimulation but 
also applies to macro-models. Sources are wrong hypothesis on the values of 
exogenous variables as well as the fact that parameters are usually estimated 
from empirical data.  

- Monte Carlo variability is an inherent randomness in microsimulation that does 
not produce the expected value, but a random variable with the expected value.  

- Randomness originating from the initial population database on which the 
simulation is starting. Usually based on a population sample, this starting 
population randomness can only be reduced by increasing the sample size. 

While imperfection randomness is unavoidable in all models, its scope is 
especially large in microsimulation and has thus become a mayor problem of 
microsimulation.. This is especially true for what is also called specification 
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randomness (Pudney and Sutherland, 1994, quoted from Imhoff and Post, 1998) which 
is basically caused or increased by the generally large number of variables introduced in 
most microsimulation models. Measurement errors in the sample accumulate with an 
increasing number of explanatory variables. And, as a microsimulation model generates 
its own explanatory variables, each additional explanatory variable requires an extra set 
of Monte Carlo experiments, with a corresponding increase in Monte Carlo randomness. 
There is a trade-off between specification randomness (“too many variables”) and 
misspecification errors (too few variables, i.e., too simple models) that leads to the fact 
that the degree of detail of a projection does not go hand in hand with the overall 
prediction power of a model. This means that what makes microsimulation especially 
attractive, namely the large number of variables models can include, comes at the price 
of specification randomness and the resulting weak prediction power decreasing with 
the number of variables. This generates, e.g., a trade-off between good demographic 
predictions and a good prediction regarding distributional issues in the long run, which, 
in practice, often leads to the use of alignment techniques in order to align the models' 
aggregate projections to external forecasts. Possible ways out of this “dilemma” are 
investigated in the second part of this study that, based on a review of existing 
microsimulation models, presents some lessons for health-related modeling. 

Summary and conclusions 

This paper constitutes the first part of an investigation of the potential of 
dynamic microsimulation for modeling and projecting health care demand, health care 
finance and the economic impact of health behavior. The main purpose of this paper 
was to provide a brief theoretical background regarding the dynamic microsimulation 
approach and a comparison of the microsimulation approach with the cell-based macro 
approach. Starting with a definition of dynamic microsimulation and a classification of 
the types and approaches, microsimulation modeling was brought into the context of the 
life-course paradigm. This paradigm, meanwhile being the dominant paradigm in 
demography, is seen as a useful organizational principle for the study and projection of 
health-related phenomena using microsimulation. Microsimulation was then compared 
with cell-based approaches, and the potential strengths as well as drawbacks of the 
microsimulation approach regarding health care modeling were investigated. 

This study shows that microsimulation might turn out to be increasingly 
appropriate as a modeling approach in a field that is currently dominated by cell-based 
macro-models. Microsimulation can be used in a wide area of applications ranging from 
very specialized models that might be linked to macro-models to integrated 
microsimulation models. The area of possible applications of the microsimulation 
approach was discussed starting from a simple cell-based macro model. The advantages 
of the microsimulation approach certainly have their price. There is a trade-off between 
specification randomness (“too many variables”) and misspecification errors (too few 
variables, i.e., too simple models). or between the prediction power and the detail of the 
models. This has led to very different ways of how existing microsimulation models 
have been designed and possibly linked with or aligned to other (macro) models. An 
investigation of existing microsimulation models is carried out in the second part of this 
study, that, based on this review, presents some lessons for health-related modeling. 
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