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ABSTRACT 

Given n attributes, it is shown that if two subsets of 

these attributes overlap and are each utility independent 

of their respective complements, then their union, inter- 

section, symmetric difference, and two differences are 

each utility independent of their complements. A chain- 

ing theorem using this result indicates how to simplify 

the assessment of a multiattribute utility function to 

the maximum extent possible, subject to any specific set 

of utility independence assumptions. 





1. INTRODUCTION 

This paper presents some general results which permit one 

to decompose multiattribute utility functions. Given a set of 

attributes X E {X OIXII...IXn~I we illustrate how arbitrary sets 

of utility independence assumptions among the Xi, i = 1, ..., n 
imply a von Neumann-Morgenstern utility function of the form 

where xi is a specific amount of Xi, h is a scalar valued 

function, and u. (x.) is a utility function over Xi. These 
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results relate to forms of (1) which have been derived for 

specific sets of preference assumptions by ~ishburn [1,2,31, 

Meyer [9], Pollak [10], Raiffa [I 1 I and Keeney [5,6,7]. Note 

from (1) that xo plays a different role than the other xi. 

The organization of the paper is as follows. Section 2 

defines terms and specifies our notation. A basic result 

relating two overlapping utility independence assumptions is 

given in Section 3. This is the building block for the main 

result of the paper in Section 4. Section 5 discusses the 

relevance of the results. The results in this paper are com- 

pletely analogous to those of Gorman [4], who used the 

riskless analog to utility independence. He referred to this 

as separability. In this paper, we will call it preferential 

independence. 

2. NOTATION 

Let the consequence space XoxX1 x ... xXn represent a closed 
and bounded rectangular subset of a finite dimensional Euclidean 

space. Each Xi may be a vector or scalar attribute, implying that 



x may be either a vector or a scalar. Then x E (xo,xl, ..., xn) i 

is a consequence. We are interested in specifying functional 

forms of the utility function u(x) that are consistent with 

various sets of assumptions about the decision maker's prefer- 

ences. It is assumed that u(x) is continuous in each xi. 

Given the complete set of attributes X = {X~,X~,...,X,}, we 

will refer to any two subsets Y1 and Y2 which partition X as 

complementary sets of attributes. The complement of Y will be 

designated as 7. 

Definition. Attribute Y, where Y C XI is utility independent 

(UI) of its complement 7 if the conditional preference order 

for lotteries involving only changes in the levels of attributes 

in Y does not depend on the levels at which the attributes in 

7 are held fixed. If Y is utility independent of 7, then, 

since utility functions and unique up to positive affine 

transformations, 

u(y,y) = f (7) + g(y)u(y,yl) , for all y and y , (2) 

where g(y) > 0 and y' is an arbitrarily chosen specific amount 
- 

0 .  Y .  Rather than repeatedly saying that Y is utility independent 

of its complement 7 we will simply write Y is UI. 

We will set the origin of the utility function by 

where yo and yo are least preferred levels of Y and ?. Then, 

0 0 - by evaluating (2) at y , we find f (y) = u(y ,y), so condition 

(2) can be written as 



where we have chosen to set y '  in (2) equal to yo. Equation 

( 4 )  will be used in our proofs. 

Definition. Attribute Y, where Y C X, is preferentially 

independent (PI) of its complement Y if the preference order 

of consequences involving only changes in the levels in Y 

does not depend on the levels at which attributes in Y are 

held fixed. 

Preferential independence implies the conditional indif- 

ference curves over Y do not depend on attributes Y .  The con- 

cept concerns the decision maker's preferences for consequences 

where no uncertainty, is involved. By definition, it follows 

that if Y is UI, then Y is PI. The converse is not necessari- 

ly true. This relationship can be seen by noting that de- 

generate lotteries, those involving no uncertainty, are the 

same things as a consequence. Hence, the preferential in- 

dependence condition could be stated in terms of the preference 

order for degenerate lotteries only, and since the utility 

independence condition holds for all lotteries, the former is 

implied by the latter. Utility independence is the stronger 

condition. 

A result linking preferential independence and utility 

independence which we will use is 

Lemma 1. Given three attributes {x~,X~,X~}, if {x1,X2} is 

preferentially independent of Xo and if X1 is utility indepen- 

dent of {X~,X~}, then { x ~ , X ~ }  is utility independent of Xo. 

A proof of this result is found in Keeney [ 7 1 .  



3. FGZLATIONSHIPS AMONG UTILITY INDEPENDENCE ASSUMPTIONS 

If Y C X and Y is UI, the order of the UI condition is 

defined as the number of Xi's in Y. We are interested in 

implying higher order utility independence conditions from 

lower order conditions. 

Definition. Let Y1 and Y2 be subsets of X E {X0,X1,X2,...,Xn~. 

Attributes Y1 and Y2 overlap if their intersection is not 

empty and if neither includes the other. 

Theorem 1. Let Y1 and Y2 be overlapping attributes included 

in X E {X O,X1,...,Xn}. If Y1 and Y2 are each UI, then 

(i) Y1 u Y 2 ,  the union of Y1 and Y2, is UI, 

(ii) Y1 0 Y2, the intersection of Y1 and Y2, is UI, 

(iii) (Yl n 7,) LJ (7, n Y,), the symmetric difference of 

Y, and Y2, is UI, 

(iv) Y, n f2 and Y1 n Y2, the differences, are each UI. 

Note before proof. If utility independence is replaced by the 

weaker preferential independence in both the premise and result 

of Theorem 1, we have Gorman's theorem [41. 

Proof. Since Xi can designate a vector attribute, the general 

case can be proven by considering the special case where 

X = {X 0 ,X 1 IX21X3}, Y1 = {X1,X2}. and Y2 = {x~,X~}, and where 

Y1 and Y2 are each assumed to be UI. Since UI implies PI, each 

set of attributes in (i) through (iv) is PI using Gorman's 

theorem. We now show that XI, X2, and Xj are each UI and the 

proof follows from Lemma 1. 

From (4), our hypotheses can be written respectively as 



and 

where we have taken the liberty to delete arguments of u, c, 

and d when they are at their least preferred levels and no 

misunderstanding can result; that is, when xi = x 
0 
i ' Hence, for 

0 0 instance, u (xl ,x2) and d (xo) will denote u (xo,xl ,x2 ,x3) and 

0 d (xOtx1 ) respectively. 

Substituting (6) into (5) and then (5) into (6) gives us, 

respectively, 

and 

U(X) = u(xO) + c(xO) u(xl) + ~ ( x ~ , x ~ ) [ u ( x ~ )  + ~ ( ~ 3 1  u(x2)1 

(8) 
Equating (8) and (9) with x3 = xo indicates 

3 

0 0 
Similarly, equating (5) and (6) with xo = xo and x2 = x2 indicates 1 

U(X ) + c(x3) u(xl) = u(xl) + d(xl) ~ ( ~ 3 1  t 3 

which can be rearranged to yield 

c(x3) - 1 d(xl) - 1 
- - = k , u(xi) f 0 , i = 1,3, (11) 

u (x,) u (xl 

where k is a constant since (11) has a function of x3 equal to 

a function of xl. If u(xl) = 0, from (lo), it follows that 

d (xl ) = 1 , and similarly c (x ) = 1 when u (x ) = 0. Thus, from 3 3 

(ll), one sees 



and 

Substituting ( 9 ) ,  (121, and (13) into (8) yields 

from which one sees that XI, X2, and X3 are each UI, which con- 

pletes the proof. 

4.  A CHAINING THEOREM 

Roughly speaking, the more utility independence properties 

we can identify, the simpler the assessment of the utility func- 

tion becomes. It is important to specify the simplest functional 

form of the multiattribute utility function consistent with an 

arbitrary set of utility independence assumptions. With this in 

mind, we want to generalize the results of Section 3 by construc- 

ting a "chaining theorem" using Theorem 1 as the building block. 

Definition. A utility independent chain is a collection of sets 

{yl t - I yRI, where (1) Y is UI, j = 1 ,..., R, and (2) there is 
j 

an ordering of Y1 through YR such that each Y (other than the 
j 

first in .the ordering) overlaps at least one of its predecessors 

in the ordering. 

We will be interested in finding utility independent chains 

which consist of as many sets as possible. This will allow us 

to exploit the utility independence properties to the fullest 

extent in simplifying the implied functional form of the utility 

function. 

Definition. Let {Y lf...,YJ) be a set such that Y is UI, 
j 



j = l....,J and let {Y~,...,Y~~, R - < J be a utility independent 

chain. This chain is a maximal utility independent chain if no 

Y j = R + 1, ..., J, overlaps any Y j = 
jr I 

1, ...,R. 

Definition. Let {Y1,Y2, ... ,YR) be a maximal utility independent 
chain. Each Y j j RI partitions X E {x~,X~,...,X~~ into Y 

jr j 
and T 

1. 
There are 2R possible subsets of X created by taking 

intersections formed with either Y or Y for each j 5 R. Each 
j R j  

- - 

nonempty intersection, except for n Y is defined to be an 
i = l  j '  
J .  

element of the maximal utility independent chain {Y1, ... ,YR1. 
An example should help illustrate our definitions. 

Example. Consider the set x = {x~,x~,....x~), and suppose Y is 
j 

UI, j = 1,2, ..., 5, where 

Note that Y2 overlaps Y1 so is a utility independent chain. 

Now Y3 is included in Y1 but Y3 does overlap Y2. Thus, {Y1,Y2,Y31 

is another utility independent chain. Checking Y4, we see it is 

included in Y2 and distinct from both Y1 and Y3. Thus, the 

attribute Y4 does not overlap any of Y1, Y2, or Y3, so it does 

not enter the maximal utility independent chain we are constructing. I 
Also Y5 does not overlap any of yl, y2, or y3, implying that the 

collection of sets { Y ~ , Y ~ , Y ~ }  is a maximal utility independent 

chain on X. In addition, Y5 is itself another maximal utility 

independent chain on X. 

To identify the elements of the maximal utility independent I 
chain {Y1,Y2,Y31, we note Y1Y2y3 = {x31, Y1Y2y3 = {x21. y1T2T3 = 

{xll, T1y2T3 = {xqrX51, and Y1y2T3, P1Y2Y3, and T1T2y3 are empty. 



and {x,+,X~}. For the maximal utility independent chain Y5, there 

is the one element {x,, X8 l . 
Let us return to the general caseandstate an important result. 

Theorem 2. Each possible union of the elements in each maximal 

utility independent chain defined on X = {x~,X,,...,X~~ is 

utility independent of its complement in X. 

Gorman [ 4 ]  also proved a result analogous to Theorem 2 con- 

cerning preferential independence using two overlapping subsets as a 

building block. The reason each possible union of elements in 

any maximal utility independent chain is utility independent is 

that it can be constructed from {Y1, ..., YR} by taking unions, 
intersections, and symmetric differences of overlapping UI sub- 

sets and using Theorem 1. A proof of Theorem 2 using utility 

independence assumptions is found in [8]. 

5. RELEVANCE OF THE RESULTS 
-- 

We will remark on two issues: verification of utility 

independence conditions and representation theorems following 

from Theorem 2. 

First, we would often expect that it would be easier to 

verify lower order utility independence conditions. However, 

for some problem structures, it may seem convenient to group 

particular sets of attributes. For instance, if we had several 

attributes arranged in a matrix, columns may represent time 

periods and rows may characterize different features (e.g., 

cost, pollution). If one could justify UI conditions for certain 

columns and rows, Theorem 2 would be directly relevant. 

Second, suppose C1,C2,...,Cm are each maximal utility 



independent chains on {x~,X~,...,X~} such that Xo is not in any 

C. and each Xi, i = 1, ..., n is in exactly one C j = 1, ..., m. 
I j ' 

Then since each C is UI, it follows from results in [6,8] that 
j 

one can assess u from 

u(x0,x1,. . . ,Xn) = [x0,u1 (cl), U2 (c2), . . . ,um(cm) I 
where X is scalar valued, u is a utility function over the 

j 

attributes Xi in C and c designates a specific level of the 
j j 

attributes Xi in C 
j *  

Furthermore, given Theorem 2, it follows 

from a result in [71 that each. u must be of either the additive 
j 

or multiplicative form in terms of the component utility functions 

over the elements in C 
j 

In this paper, the implications of arbitrary sets of utility 

independence assumptions have been investigated. Because of the 

complexity of considering preferences for various levels of 

several attributes simultaneously, it is important, if not 

essential, to exploit such independence properties in structuring 

utility functions involving multiple attributes. The interested 

reader will find several applications of decomposition results, 

such as those in this paper, in Keeney and Raiffa 181. 

ACKNOWLEDGEMENT 

The extensive comments of David E. Bell, Howard Raiffa, 

and Laurence A. Wolsey on drafts of this paper were very helpful. 

Work resulting in an earlier draft of this paper was supported 

in part by the Office of Naval Research under contract 

~00014-67-~-0204-0056 with the MIT Operations Research Center. 



References  

[l] F i s h b u r n ,  P.C. ,  "Independence i n  U t i l i t y  Theory w i t h  
Whole Produc t  S e t s , "  O p e r a t i o n s  Resea rch ,  - 1 3 ,  
28-45, 1965. 

[2J F i s h b u r n ,  P.C.,  " A d d i t i v i t y  i n  U t i l i t y  Theory w i t h  
Denumerable P roduc t  S e t s , "  Econometr ica ,  - 34 ,  500-503, 
1966. 

[3] F i s h b u r n ,  P.C. , " A d d i t i v e  R e p r e s e n t a t i o n s  of  Real-Valued 
F u n c t i o n s  on S u b s e t s  of  P roduc t  S e t s , "  J o u r n a l  of  
Mathemat ica l  Psychology,  - 8 ,  382-388, 1971. 

[4] Gorman, W . M . ,  "The S t r u c t u r e  o f  U t i l i t y  F u n c t i o n s , "  
Review o f  Economic S t u d i e s ,  35 ,  367-390, 1968. - 

[5] Keeney, R.L., " U t i l i t y  Independence and P r e f e r e n c e s  f o r  
M u l t i a t t r i b u t e  Consequences,"  O p e r a t i o n s  Resea rch ,  
1 9 .  875-893. 1971. 

[6] Keeney, R.L., " U t i l i t y  F u n c t i o n s  f o r  M u l t i a t t r i b u t e d  
Consequences,"  Management S c i e n c e ,  - 1 8 ,  276-287, 1972. 

[7] Keeney, R.L., " M u l t i p l i c a t i v e  U t i l i t y  F u n c t i o n s , "  
O p e r a t i o n s  Resea rch ,  - 22,  22-34, 1974. 

183 Keeney, R.L. and H .  R a i f f a ,  Dec i s ion  A n a l y s i s  w i t h  
M u l t i p l e  C o n f l i c t i n g  O b j e c t i v e s ,  Wiley,  N e w  York, 
for thcoming.  

[9] Meyer , R.F. , "On t h e  R e l a t i o n s h i p  Among t h e  U t i l i t y  of 
A s s e t s ,  The U t i l i t y  of Consumption, and Inves tment  
S t r a t e g y  i n  an U n c e r t a i n ,  b u t  T i m e  I n v a r i a n t  World,"  
i n  J.  Lawrence ( e d . ) ,  OR 69: P roceed ings  o f  t h e  F i f t h  
I n t e r n a t i o n a l  Conference  on O p e r a t i o n a l  Resea rch ,  627-64 8 ,  
T a v i s t o c k  P u b l i c a t i o n s ,  London, 1970. 

[lo] P o l l a k ,  R. A. , " A d d i t i v e  von Neumann-Morgenstern U t i l i t y  
F u n c t i o n s , "  Econometr ica ,  35, 485-495, 1967. 

[ll] R a i f f a ,  H .  , " P r e f e r e n c e s  f o r  M u l t i - A t t r i b u t e d  A l t e r n a t i v e s ,  " 

RM-5868-DOT/RC, The Rand Corp. ,  S a n t a  Monica, 
C a l i f o r n i a ,  A p r i l  1969. 

[12] von Neumann, J .  and 0.  Morgens tern ,  Theory o f  Games and 
Economic Behav io r ,  2nd Ed. ,  P r i n c e t o n  U n i v e r s i t y  P r e s s ,  
P r i n c e t o n ,  N e w  J e r s e y ,  1947. 


