
OPTIMAL TRENDS IN MODELS OF ECONOMIC GROWTH 

A.M.Tarasyev*’***il, C.Watanabe**’*** 

* Institute of Mathematics and Mechanics UrB of RAS, 
SKovalevskaya str. 16, Ekaterinburg 620219, Russia 

e-mail: tam@imm. uran.ru 

** Tokyo Institute of Technology, 
2-12-1 Ookayma Meguro-ku, 152 Tokyo, Japan 

e-mail: chihiro@me.titech.ac.jp 

*** International Institute for  Applied Systems Analysis (IIASA), 
A-2361 Laxenburg, Austria 

Abstract: The objective of this work is to design control strategies which optimize 
composition of production, technology stock and their rates in a nonlinear model of 
economic growth. The optimal control problem of R&D investment is formulated for a 
discounted utility function which correlates the amount of sales and production diversity. 
The maximum principle of Pontryagin is applied for designing optimal nonlinear 
dynamics. Quasioptimal feedbacks of the rational type for balancing the dynamical 
system are constructed. Properties of techno-economic trajectories are examined for 
different tangent slopes generated by R&D intensities. These properties correspond to 
the trends of economic growth intrinsic to econometric data. 
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1. INTRODUCTION 

Optimal regulation of R&D investment is a reasonable 
statement of the problem in models of economic 
growth. This question naturally arises due to presence 
of growth and decline trends in interaction between 
production and technology. Investment to R&D, from 
the one hand, generates new sales in the market 
competition, but, from the other hand, leads to the 
redistribution of resources between production and 
technology stock and introduces the risky factor of 
innovation. The discounted utility function correlates 
the amount of sales and production diversity in 
the model. The amount of sales is determined by 
the production growth and the production diversity 
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depends on the accumulated and current R&D 
investment. Qualitatively the utility function expresses 
preferences of investors in the simultaneous growth of 
production, technology stock and technology rate. 

The problem of optimal R&D investment is to find 
optimal innovation policy which maximizes the utility 
function and optimizes composition of production, 
technology stock and their rates. Such statement is 
connected with the classical problems of economic 
growth and optimal allocation of resources (see 
(Arrow, 1985), (Leitmann and Lee, 1999)), and 
refers to the endogenous growth theory (Grossman 
and Helpman, 1991). Unlike models (Grossman 
and Helpman, 1991) which treat dynamics of the 
knowledge stock as a function of the price for 
technology output we deal with dynamics which 
connects growth of sales with R&D investment. 
This dynamics comes naturally from adjustment of 
marginal productivities to the real econometric time 
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series (Watanabe, 1992). For description of utility 
we use the discounted integral with the consumption 
index of the logarithmic type and equal elasticity 
of substitution of invented products (Grossman and 
Helpman, 1991), (Intriligator, 1971). 

We apply the Pontryagin maximum principle 
(Pontryagin et al., 1962) to find the optimal R&D 
investment level. We show that the Hamiltonian 
system of the maximum principle has the unique 
equilibrium of the saddle type and the optimal 
trajectories should converge to this equilibrium. 
In analysis of the Hamiltonian dynamics we refer 
to the theory of nonlinear differential equations 
(Hartman, 1964). We use also qualitative methods 
for construction of optimal feedbacks in control 
problems and differential games with discounted 
payoff integrals (Dolcetta, 1983), (Tarasyev, 1999). 

We propose several explicit approximations of the 
rational type - suboptimal feedbacks. The obtained 
suboptimal feedbacks have reasonable interpretations 
in terms of econometric characteristics. We examine 
growth and decline properties of suboptimal feedbacks 
for different tangent slopes generated by possible 
R&D intensities. 

2. THE SYSTEM MODEL 

We consider a nonlinear growth model which 
describes dynamics of aggregated production y = y ( t )  
and technology (accumulated R&D investment) 
T = T ( t )  depending on the control parameter - the 
current level of R&D investment r = r ( t )  

One can treat dynamic process (1) as the balanced 
equations of spending resources between the 
productivity rate j, / y and R&D intensity r / y. 
Function fi ( t )  presents the non-R&D contribution 
to the production growth rate r / y. The term f2(t) 
(T/y)Y shows the growth effect of the technology 
intensity T / y on production rate y / y. Coefficient 
y, 0 5 y 5 1 is the elasticity parameter of the growth 
effect. The negative sign -g ( t ) ,  g ( t )  > 0 of the net 
contribution by R&D means that in the short-run 
spending into R&D prevails on the rate of return. 

Change T = r in technology T due to time lag 
m and obsolescence effect (T in technology, is not 
precisely equal to the current R&D investment rt 
and is connected mainly with the R&D investment in 
initial stage 

3. UTILITY OF THE SYSTEM TRAJECTORIES 

We formulate now the utility principle for evaluating 
the quality of economic trajectories (y (.) , T (.) , r (.)). 
For this purpose we introduce the discounted integral 
which measures utility in the long-run term (see, for 
example, (Arrow, 1985), (Grossman and Helpman, 
1991)) 

Ut = lm e-p(s-t) In D ( s ) d s  (3) 

Here natural logarithm of the consumption index 
D (s) represents instantaneous utility of products 
(technologies) at time s, p is the discount rate, s is 
the running time, t is the fixed initial time. For the 
consumption index D we choose a specification that 
imposes a constant and equal elasticity of substitution 

& = l / ( l - a ) > l ,  O < a < l  (4) 
between every pair of products 

D (  s) = (In(') (y ( s ) /n ( s ) ) "d j ) ' / "  

Assuming that quantity of invented products n 
depends on the accumulated R&D investment T and 
the technology rate r (see (Watanabe, 1992)) 

( 5 )  
we arrive to the following expression for the utility 
function 

0 

n = n ( s )  = bTP1rP2, T = T(s), r = r ( s )  

U = ePPS(lny(s) + a1 lnT(s)  + a2 lnr(s))ds  

ai = A/&, i = 1 , 2 ,  A = (I - C Y ) / C Y  (6) 

Here coefficients pi > 0, i = 1 , 2  are parameters of 
elasticity. 

We may assume that there exists lower bounds yi, TZ 
for production y and technology T 

O < Y i < Y ,  O < Z < T  (7) 

One can introduce upper and lower bounds ri, r ,  for 
R&D intensity r / y 

0 < rz 5 r / y  < r, < +cc (8) 

4. OPTIMALITY PRINCIPLES 

The problem is to find the optimal level ro of 
investment, the corresponding optimal production yo 
and the optimal accumulated R&D investment T o  
subject to dynamics (l), (8) which maximize the utility 
function (6). For its solution one can use the maximum 
principle of Pontryagin (see (Pontryagin et al., 1962)). 

Remark 1. It is proved in (Aseev et al., 2001) that 
the optimal control problem (l), (8), (6) has solution 
(YO(.), To(% To( . ) )  

max r U ( y ,  T, r )  = U(yo, To, r o )  (9) 
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Let us compose the Hamiltonian of the problem (l), 
(6) 

Let us note that boundaries rl, r, in restrictions 
on control parameter r is given not precisely and 
scarcely can be identified from the real econometric 
data. Therefore, we will be interested in such regimes 
of optimal control ro which are realized at points 
of global maximum of the Hamiltonian H (10) for 
technology rates r > 0 

d H / d r  = a2/r - g$1 + $2 = 0 (1 1) 

So the maximum value is attained at the optimal 
technology rate ro 

To = a2/(9$1 - $2) (12) 

Combining dynamics of real y, T and adjoint 
variables $1, $2 with the maximum condition for 
the Hamiltonian (12) we obtain the following closed 
system of differential equations 

Let us introduce notations for costs of production y 
and technology T 

zi = $IY, z2 = $zT, = zi + ~2 (14) 

On the finite horizon [t, 61 the transversality conditions 
can be written in terms of costs 

z ( 6 )  = 0, Z i ( 6 )  = 0, i = 1 , 2  (15) 

Proposition 1. The cost z = z ( s )  satisfies the 
following differential equation 

PO = (a1 + a2 + l ) / p  (16) i ( s )  = P ( z ( s )  - P O ) ,  

Its solution which meets transversality conditions (1 5 )  
can be presented by Cauchy formula 

= pO(1 - e p P ( ' p s ) )  (17) 

Remark 2. Solution z (17), its components z i ,  and 
adjoint variables $i ,  i = 1 , 2  are bounded 

It means that for times 6 + +cc there exists a 
sequence of components of optimal solutions yk (.), 
Tk(.) ,  ~'(0, ?,/I!(.), $(.), i = 1 , 2  for the problems 
with finite horizons 6 k  which converges to the optimal 

solution of the problem (l), (6) with the infinite 
horizon. 

Remark 3. The uniform estimate is valid for the 
sequence z k  (.) 

sup le-pszk(s) - e-psp" = e - p * k  P 0 (19) 
s>t 

For the terminal times growing to infinity 6 k  + 
+cc the sequence of costs {e--Ps z k ( s ) }  converges 
uniformly to the optimal cost e-0' po  and therefore 
the constant 

(20) z = p  
is the limit function for costs {z ' ( . )} .  The constant 
function (first integral) z = po is the unique solution of 
diffcrcntial cquation (16) which mccts thc wcll known 
transversality condition (see (Arrow, 1985) ) 

0 

Transversality condition (2 1) means that the total cost 
z ( s )  should not grow faster than exponent ePs. 

Our further task is to analyze the optimal dynamics 
(13) with condition (20) for cost z and estimates (1 8) 
for costs z i ,  i = 1,2.  

5 .  EQUILIBRIUM SOLUTION 

Let us pass to analysis of nonlinear system (13) 
with transversality conditions (20) and estimates (1 8). 
Proofs of the main results are contained in (Tarasyev 
and Watanabe, 2001). 

Assume that function f l ,  f 2 ,  g in dynamics (1) are 
constants and can be obtained, for example, as average 
values of the real econometric time series. 

We introduce new variables 

5 1  = y/T,  5 2  = ?,biy, 5 3  = 1/T, 5 4  = ?,bsT (22) 

Taking into account the first integral the system of 
new variables (22) and the first integral (20) we reduce 
system (1 3) to the three dimensional system with the 
block structure 

In our analysis we assume that the following 
inequalities hold 

O I y I l ,  f 1 - p = v > O  (24) 

Proposition 2. Assume that the growth conditions (24) 
hold. Then system (23) has stationary points xo with 
the following properties 
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0 < r1 < x: 5 u1, 0 5 7-2 < x: 5 po ( 2 5 )  

<ix: -pox: > 0,  <1 = X: + 9, Z! = 0 (26) 

Here parameters T I ,  u1 are unique positive solutions 
of the following equations 

Parameter 7-2 is defined by relation 

7-2 = po m i n { l -  y, I - a l / ( f l p n  + I)} 
If the growth rate y and the corresponding transition 
coefficient f 2  are sufficiently small 

f2y2  5 (a2/p0)  min{l,g(a1 + l)/a21 (27) 

then point xo is unique. 

6. OPTIMAL TRAJECTORIES 

In order to describe properties of the optimal control 
ro (12) we analyze stability of stationary point xo. 
More precisely, we indicate the saddle character of 
this equilibrium and show the existence of optimal 
trajectories which converge to it. To this end we 
calculate the Jacobi matrix D F  = {dFi /dz : j } ,  
i, j = 1 , 2 , 3  of the right hand side of system (23). 

Proposition 3. The Jacobi matrix D F  has at least 
one eigenvalue with positive real part and hence the 
stationary point xo is unstable. 

Let us introduce the following assumptions for 
parameter a1 and growth rate y 

a1 5 1, y 5 Yo = min{ l / 2 ,  P / f l )  (28) 

Proposition 4. Assume that conditions (24), (27), (28) 
hold. Then the Jacobi matrix D F  has real eigenvalues: 
one - positive, and two - negative. Hence the stationary 
point xo is a saddle point. 

Remark 4. If discriminant of the Jacobi matrix D 
is negative then the positive eigenvalue p1 provides 
the greater growth rate for trajectories of system (23) 
than the growth rate p, p1 > p > 0, and the negative 
eigenvalue p2 can be presented through the positive 
one p2 = - (PI - p)  < 0. 

Remark 5. Eigenvectors hl ,  h2 corresponding to 
eigenvalues PI ,  p2 have positive coordinates 

1. Equilibrium xo is the unique saddle point. 

2. For any pair x ; ,  x: there exists the unique 
component x; such that initial position x* is 
located on the plane generated by eigenvectors ha, 
h3 corresponding to negative eigenvalues p2, p3. 
Trajectory x * ( . )  of the linearized system starting at 
initial position x* tends to equilibrium xo .  

3. If relation 0 5 xf 5 po takes place then trajectory 
x* ( . )  meets the condition 0 5 x ; ( t )  5 p", t > t o .  

4. The second component 2 2 ( . )  of other trajectories 
x ( . )  starting at points x = ( X I ,  x2, z;), x2 # zf tends 
to infinity with the exponential growth rate p1 > p. 

According to the Grobman-Hartman theorem (see 
(Hartman, 1964)) nonlinear system (23) as well as the 
linearized system admits a trajectory which converges 
to equilibrium zo. 

Proposition 6. Nonlinear system (23) inherits the 
convergence property of the linearized system. Then 
the solution of optimal control problem (l), (6) exists 
and coincides with equilibrium trajectory zo (.) . 

Remark 6. The third component z! = 1 / T o  
converges to zero z! = 0 (26) with negative velocity 
(23). It means that optimal technology stock To( . )  
monotonically grows to infinity. 

The first component zy = yo / T o  converges to the 
positive equilibrium value zy . It shows that optimal 
production yo = yo@) also grows to infinity with 
the same growth rate as technology To.  In particular, 
this growth property of production yo means that its 
derivative in dynamics (1) is strictly positive ljo > 0. 

If the initial ratio zT is greater than at equilibrium zy, 
zy 5 zT, then the optimal ratio z?(t )  = yo@) / To@) 
is decreasing from the initial state z; to equilibrium 
zy. It indicates that optimal technology stock T o  is 
growing faster than production yo. 

Remark 7. The optimal trajectory zo(.) and 
corresponding optimal control ro (.) can be 
approximated numerically with any degree of 
accuracy in the backward procedure starting from 
points in the neighborhood of equilibrium xo which 
are located on the eigenvector h2 corresponding to the 
negative eigenvalue p2. This numerical approximation 
obtained by means of software RATE (see (Reshmin 
et al., 2002)) is demonstrated on Fig. 1 which shows 
trends of econometric time series for production and 
technology in Japan and optimal synthetic scenarios 
in R&D intensity r / y. Real data is depicted by 
curves with markers and synthetic optimal trajectories 
are shown by solid lines. 

Proposition 5. Under conditions (24), (27), (28) 
linearized system has the following properties. 
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Fig. 1. Trends in optimal R&D intensity r / y. 

7. CONTROL SYNTHESIS 

It should be noted that the problem of searching the 
optimal trajectory xo(.) which leads system (23) to 
the saddle point xo is very complicated due to the 
unstable properties of this equilibrium. We propose 
several analytic procedures for finding a suboptimal 
feedback which leads coordinates XI(.) ,  x3(.) of the 
system to equilibrium xy, x: . To this end we consider 
the linear regime for the second coordinate x2 (.) 

Here parameters d ,  k are determined by relations 

d = gx; - xyAx2, Ax2 = po - xi 
k ( w )  = k l w  + k2, k l  = [I, k2 = -Ax2 

and initial conditions x:, xi should satisfy conditions 

X: 5 XT < X: + Z ~ ( W ) ,  X: > 0 (32) 

:1(w) = 2 d / ( l k ( w ) l +  (k2(w) - 4 W d ) 1 9  

We extract the expression for feedback T = r ( y , T )  
from system (3 1) 

T = a a y / ( d  + k ( w ) A x l  + wA2x1) (33) 

Proposition 7. Assume that the slope coefficient w of 
the second coordinate x2 (30) satisfies conditions 

(34) 0 5 w 5 SPO/J? = w1 

Then the suboptimal rational feedback T*(w) (33) 
leads trajectories x*(.) of system (31) from initial 
conditions x? , xi to equilibrium xy, xi. 

Remark 8. The third component xi = 1 / T* 
converges to zero in the suboptimal regime (31). It 
means that technology stock T* monotonically grows 
to infinity with the asymptotic growth rate lp31 > ( f l  
- p)  > 0. 

The first component x; = y* / T* converges to the 
positive equilibrium value x?. It shows that suboptimal 
production y* also grows to infinity with the same 
growth rate as technology T *. 

If the initial ratio x; of production y* to technology T* 
is greater than the corresponding value at equilibrium 
xy, then the suboptimal ratio xT = y* / T* is 
decreasing from the initial state xT to equilibrium xy. 
It indicates that in this case technology stock T* is 
growing faster than production y*. 

Remark 9. In the expression for suboptimal control 
T *  ( w )  (33) denominator tends to the positive constant 
value (gxg - xy Ax2) > 0, when t + 00, and 
numerator a2 y* is linear with respect to production 
y*. It demonstrates that the value of suboptimal 
control T * ( w )  (33) is also growing to infinity with 
the same asymptotic growth rate as production y* and 
technology T* . 

8. TRENDS OF R&D INTENSITIES 

We examine the question about the evolutionary 
behavior of R&D intensities which is expressed by 
ratios r / y, rtPm / y on suboptimal trajectories. 

Proposition 8. There exists the interval of slopes 

w2 5 w 5 w1, w1 = gpo/<,", w2 = Ax2/<, (35) 
such that suboptimal feedback T * ( w )  (33) leads 
trajectories x*(.) from initial position x;, xi (32) to 
equilibrium x:, x! with evolutionary decline of ratio 
x1 = y / T and growth of ratio r / y. 

Let us consider the natural candidate for the slope 
of the suboptimal feedback (33) - the slope wo of 
eigenvector h2 (29) of the Jacobi matrix D which 
corresponds to the negative eigenvalue p2 

wo = ( a  + p2)lb (36) 

Proposition 9. The slope wo (36) of eigenvector 
h2 (29) corresponding to the negative eigenvalue 
p2 satisfies relations 0 5 wo < w1, and, hence, 
the suboptimal feedback T * ( W O )  (33) with slope wo 
leads trajectories x*(.) from initial position x;, x$ to 
equilibrium xy, x:. 

Proposition 10. There exists a threshold y* > 0 such 
that for parameters 0 5 y < y*, a1 2 0 the optimal 
slope wo satisfies inequalities 0 5 wo 5 w2 

If inequalities 0 < y < y* or a1 > 0 take place then 
relations 0 < wo < w2 are valid. 

It means that the suboptimal control r* (wo) (33) with 
slope wo provides the decline property of ratio r / 
y when x1 tends to equilibrium xy. Moreover, the 
optimal R&D intensity T O  / yo has the same decline 
property, since the difference ( T O  / yo - T / y) 
between optimal and suboptimal R&D intensities is an 
infinitesimal value o(Az1) of high order. 
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Remark 10. Assuming w = 0 in formula (33) one can 
obtain the suboptimal process with the constant value 
for the cost of production 2; 

(37) r = a2y/(Az1(d - Ax,)) 

In the suboptimal process (37) ratio r / y is growing 
while ratio y / T is declining. 

Setting the constant value for coordinate XI = xy in 
formula (37) one can derive the suboptimal process r 
= a2 y / d with the fixed second coordinate 2 2  = x; 
and the constant ratio r / y = a2 / d. 

Suboptimal feedbacks lead trajectories x* (.) of system 
(31) from initial conditions x i ,  x i  to equilibrium xy, 

Let us examine the behavior of intensity rtPm / y in 
the suboptimal regime (33). Ratio rtPm / y is growing 
while ratio 21 = y / T is declining under condition 

2; . 

w 2 ( A m  - Cm(az(1 - a)(.Y))/G = w3 (38) 
which provides the positive sign of derivative 
d ( r t - m / y )  / d z l .  

Remark 11. Summarizing previous results one can 
derive the following properties of the suboptimal 
control r* (w) (33): 

1. if 0 5 w < max (0, w ~ }  then both ratios rtPm / y 
and r / y are declining; 

2. if max (0, w3) 5 w < w2 then ratio rtPm / y is 
growing and ratio r / y is declining. 

3. if w2 5 w 5 w1 then both ratios rtPm / y and r / y 
are growing; 

while 21 is declining to equilibrium xy . 

Remark 12. If slope w satisfies inequality 

w < A X 2 / < 1  + Y f 2 ( 2 ~ ) P ( 1 + Y ) d 2 / ( a 2 g )  = w4 (39) 
then production rate y /y  is growing while parameter 
21 is declining to equilibrium 2:. 
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