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Summary 

This report deals with the following questions: which dynamic 
models and which advanced methods of identification theory are used 
or could be used in urban traffic control systems analysis; and which 
problems are still unsolved. A survey of basic approaches is presented, 
and particular attention is devoted t o  the state and input-outpul models. 
Their significance for the analysis of traffic control systems is then dis- 
cussed. Finally, the paper reports on real-time identification methods 
for the determination of input-output model parameters. The imple- 
mentation of the methodology is illustrated by a case study. 
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Traffic Control Systems Analysis by Means of 

Dynamic State and Input-Output Plodels 

MOTIVATION* 

A general systems analysis approach to transportation 

involves three levels: 

- transportation systems planning (from a socio-economic 

point of view) ; 

- operational planning (scheduling, routing); and 

- control and guidance. 

For an analysis of the problems occurring at these levels, a set 

of specific mathematical models is needed to enable us to de- 

scribe the dynamics of the relevant processes. This paper deals 

with the dynamic models needed for an analysis of the lowest 

level of the hierarchy, i.e. large-scale computerized traffic 

control and guidance systems restricted to urban street and 

freeway traffic. The main consideration is which dynamic models 

and which advanced methods of identification theory are already 

used or could be used in traffic control systems analysis, and 

which problems are still unsolved? For this purpose, a survey 

of basic approaches of dynamic traffic flow modelling is given 

first, and the significance of the different state and input- 

output models then discussed, with respect to the role these 

models play in the analysis of traffic control systems. The 

conclusion is that the real-time identification of input-output 

model parameters, though important for the implementation of 

route guidance and other advanced traffic control systems, so 

*parts of this report have been presented in an invited paper 
entitled "Application of Parameter and State Identification 
Methods in Traffic Control Systems" at the 4th IFAC Symposium 
"Identification and Systems Parameter Estimation" held in 
Tbilisi, USSR, September 21-27, 1976, as well as in a survey 
paper presented at the IFAC-IIASA Workshop "Optimization Applied 
to Transportation Systems" held in Vienna, Austria, February 
17-19, 1976. 



far did not set much interest in fundamental or applied research. 

The second part of the paper is therefore a case study of the 

application of explicit and implicit identification methods for 

determining input-output models of road sections, long streets 

with signals at intersections, and street networks. 

PART I: DYNAMIC TRAFFIC FLOW MODELS: A SURVEY 

STATE MODELS 

The dynamic behavior of a system can be described by two 

different types of models [70] : 

- State models, which describe the relations between a set 

of input signals or control variables, a set of output signals or 

measurable reactions, and a set of state variables characterizing 

the state of a system in a rather general sense. One obtains 

these models by means of laws valid for specific systems, e.g. 

the Maxwell or Kirchheff laws for electrical systems, the Newton 

laws for mechanical systems, the laws of traffic flow for traffic 

systems, etc. The so-called state equations, in the form of a 

system of linear or nonlinear differential or difference equations 

of first order, result. 

- Input-output models, which describe only the relations 

between the input or control variables and the output variables, 

i.e. they do not consider the state variables in an explicit form. 

Hence, input-output models can describe the dynamics of a system 

completely, only 

- if all state variables can be changed by the input 

(control) variables in a prescribed manner, i.e. if 

the system is controllable, and 

- if all state variables can be reconstructed by eval- 

uating the (measurable) output variables, i.e. if the 

system is observable. 

Therefore an input-output model can describe only a system which 

is controllable and observable, or the observable and controllable 



part of a general system, respectively*. On the other hand, 

input-output models have the advantage that they can be designed 

in many cases without a detailed knowledge of the mathematical 

laws valid for the specific system. This is of special interest 

in those systems (e-g. social, environmental) for which such 

mathematical laws are not available, so that the model can be 

constructed only on the basis of sets of input-output data. As 

a result of the application of a parameter identification pro- 

cedure, one obtains 

- nonparametric models, in the form of impulse responses 

or frequency responses (in the linear case), or Volterra 

expansions (in the nonlinear case), or 

- parametric models, in the form of linear or nonlinear 

differential or difference equations of the nth order, 

transfer functions, Hammerstein models, Wiener models, 

etc. (see [70] for more details). 

In this section the description of traffic by state models 

is discussed; input-output models are the subject of the next 

section. The following two basic approaches may be used for 

obtaining dynamic traffic flow models [19]: 

- Description of the traffic flow starting from a model 

of the movement of the individual vehicles ( m i c r o s c o p i c  

t r a f f i c  f l o w  m o d e l s ) ;  

- Consideration of the traffic as a fluid continuum ( m a c r o  

s c o p i c  t r a f f i c  f l o w  m o d e l s ) .  

By these two approaches, a fairly well developed and documented 

traffic flow theory evolved during the fifties and sixties (cf. 

[lo, 17-19, 22-24, 27, 33, 34, 36, 45, 60-62, 771). The follow- 

ing consideration uses those elements of the traffic flow theory 

important to dynamic modelling of freeway and street traffic. 

*Mathematical conditions for observability and controllability 
were presented by Kalman at the beginning of the sixties[70]. 



Microscopic Traffic State Models 

In the microscopic traffic modelling approach, it is assumed 

that every driver who finds himself in a single-lane traffic sit- 

uation reacts according to the relation: 

reaction of driver i at time t = Ai{stimulus at time t - T.) 

to a stimulus from his immediate environment, especially from the 

car, i - 1, in front of his own car, i (Figure 1  ) . The reaction . . 
of the driver may be expressed by the acceleration, si(t), of his 

car. hi describes the sensitivity of the driver's reaction to a 

given stimulus, and is a reaction time lag. It has been shown 

that the main stimulus is caused by the speed difference, 

vi-l (t) - vi (t) = 6 .  (t) - si (t) , resulting in the nonlinear 
1- 1 

state {car-following) model 

with 

containing the position, s. and the speed, vi, of car i as state 
1 

variables, and the speed, v. of the leading car, i - 1 ,  as the 
1-1 

control (input) variable. Equation (2) describes the observa- 

tions that the sensitivity of the reaction of a driver depends 

on the speed, s = vi, of his own car, and the distance, s. - s. i 1-1 1' 

between his own car and that in front of him. This is illustrated 

by the signal flow diagram shown in Figure 2a for a system of two 

cars only. In the case of a string of N vehicles, one has to 

couple N of these driver-car models, resulting in a highly non- 

linear model for the whole system that is very difficult to handle 
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I I CARMODEL 1 I DRIVER MODEL L -----,------------ J L ------ J 

Figure 2a. Nonlinear car-following model for a system of  two cars 
(cf. equations ( 1 )  and (2)). 

System 
v l  (t)  VI ,-q v 2 , 9  V ~ S ~  - - 

(7 m '.. CS ' * - 
/ / 1 1 1 1 1 1 / / )  1 1 1 / 1 1 / 1 1  
L 

Model - - r1-~2 - P - .  P I - b 

- SN 

- 
v~ 

Figure 2b.  Linear car-following model for a string of N cars 
(cf. equations (3) and (4)). 



in studying traffic flow dynamics. Therefore, a special case 

of Ai from Equation (2) with L = m = 0 is very often preferred. 

The so-called linear car-following model, 

is obtained, which, for a string of N cars, results in the gen- 

eral state model 

with the state vector 

T x (t) = (s2 (t) ,v2 (t) , . . . tsN(t) ,vN(t) ) r - 

the systems matrix 

and the control variable u(t) . This equals the speed of the 

leading car, 

and the input matrix (B), which in this special case is a vector 



of  t h e  s imp le  form 

( c f .  F i g u r e  2 b ) .  

A s  shown i n  F i g u r e s  2a and 2b, t h i s  model of  t r a f f i c  f low may 

be  cons ide r ed  a s  a  series of i n t e r c o n n e c t e d  c o n t r o l  loops .  

Each c o n t r o l  l oop  can  become u n s t a b l e  f o r  c e r t a i n  v a l u e s  

of  t h e  t i m e  d e l a y s ,  T ~ ,  and t h e  s e n s i t i v i t y  c o e f f i c i e n t s ,  ' i0 .  
I n s t a b i l i t y  means i n  t h i s  c o n t e x t  t h a t  c o l l i s i o n s  w i l l  o ccu r  

even i f  one c o n s i d e r s  a  system of two c a r s  on ly .  On t h e  o t h e r  

hand, s t a b i l i t y  o f  t h e  i n d i v i d u a l  c o n t r o l  l o o p s  shown i n  F i g u r e  

2b w i l l  n o t  g i v e  any g u a r a n t e e  t h a t  a  c o l l i s i o n  w i l l  n o t  happen 

i n  a  long  s t r i n g  of v e h i c l e s .  To check t h e  c o n d i t i o n s  f o r  t h e  

o c c u r r e n c e  of  c o l l i s i o n s  i n  a  queue of N c a r s ,  one ha s  t o  s tudy  

t h e  t i m e  r e s p o n s e s  of t h e  d i s t a n c e s ,  A s i  = s .  - s .  between 
1- 1  1' 

t h e  c a r s  r e s u l t i n g  from changes  of t h e  c o n t r o l  v a r i a b l e  ( 4 d ) ,  

i. e. of t h e  speed of  t h e  l e a d i n g  c a r .  The model ( ( 3 )  t o  (4e) ) 

p e r m i t s  such  s t u d i e s  o n l y  i f  e s t i m a t e s  of t h e  model pa r ame te r s  

xi  and A i O  a r e  a v a i l a b l e .  By means of  s p e c i a l  expe r imen t a l  

s t u d i e s  on t h e  d r i v e r - c a r  performance,  Herman and h i s  co-workers 

( c f .  [19,  p.  89 f f . ] )  have o b t a i n e d  f o r  8  d i f f e r e n t  d r i v e r s  t h e  

f o l l o w i n g  e s t i m a t e s  f o r  A ,  T ,  and A T  and t h e  mean v a l u e s  h ,  
;, and z: 

0.17 s-' - < A i O  - < 0.74 s-' w i t h  T o  = 0.17 S" 

1 .0  s < - i < 2.2 s w i t h  7 = 1.55 s - 

0.18 - < A i O ~ i  2 1.04 w i th  A = 0.56 . 
0  

For  more d e t a i l s  on mic ro scop i c  t r a f f i c  models see [ l o ,  19,  22- 

24, 33,  341. 

Macroscopic  T r a f f i c  S t a t e  Models 

Macroscopic  t r a f f i c  f low t h e o r y  was founded by L i g h t h i l l  

and Whitham [45] and by Richards  [62] d u r i n g  t h e  f i f t i e s .  They 



c o n s i d e r e d  a  t r a f f i c  s t r e am a s  a f l u i d  continuum d e s c r i b e d  by 

t h e  3 agg rega t ed  t r a f f i c  v a r i a b l e s  

- volume x B ( s , t )  ( c a r s / h )  

- d e n s i t y  xD ( s ,  t )  (cars /km) 

and 

- speed x V ( s , t )  (km/h) 

( c f .  F i g u r e  1 ) .  S ince  t h e s e  t h r e e  v a r i a b l e s  a r e  r e l a t e d  t o  

e ach  o t h e r  by 

it i s  s u f f i c i e n t  t o  i n t r o d u c e  o n l y  two of  them, e . g .  xD and xV, 

a s  s t a t e  v a r i a b l e s .  Hence o n l y  two d i f f e r e n t i a l  e q u a t i o n s  of 

t h e  f i r s t  o r d e r  a r e  needed f o r  a  t r a f f i c  s t a t e  model of a  s i n g l e  

l ong  l a n e  f o r  which o v e r t a k i n g  may n o t  be  p e r m i t t e d .  Using t h e  

p r i n c i p l e  o f  c o n s e r v a t i o n  of c a r s ,  one g e t s  t h e  f i r s t  s t a t e  

e q u a t i o n  i n  t h e  form of t h e  well-known p a r t i a l  d i f f e r e n t i a l  

e q u a t i o n  

For t h e  second s t a t e  e q u a t i o n ,  which ha s  t o  d e s c r i b e  t h e  a c c e l -  

e r a t i o n  of  t h e  t r a f f i c  s t r e am,  Payne 1551 and I s a k s e n  and Payne 

[ 3 9 1  have proposed t h e  r e l a t i o n  

where t h e  te rm c o n t a i n i n g  v r e p r e s e n t s  t h e  ave r age  r e a c t i o n  of 

d r i v e r s  t o  a  change i n  d e n s i t y  ahead .  The pa r ame te r s  v and T 

may be cons ide r ed  a s  t h e  s e n s i t i v i t y  c o e f f i c i e n t  and t h e  r e a c t i o n  

t ime  c o n s t a n t ,  r e s p e c t i v e l y .  The f i r s t  t e rm on t h e  r i gh t -hand  

s i d e  o f  e q u a t i o n  ( 8 )  t a k e s  i n t o  account  t h e  ave r age  behavior  

o f  d r i v e r s  t o  keep t h e  speeds  of t h e i r  c a r s  c l o s e  t o  t h e  speed 



x (x  ) t h a t  o c c u r s  under c o n s t a n t  t r a f f i c  c o n d i t i o n s .  For t h i s  
V D 

speed ,  t h e  so -ca l l ed  Greenshie lds  model 

can  be determined by means of t h e  l i n e a r  ca r - fo l lowing  model 

( 3 ) ,  where xf i s  t h e  f r e e  t r a f f i c  speed and Gmax, t h e  jam con- 

c e n t r a t i o n  [19, 771 ( c f .  F i g u r e  3 ) .  The non l inea r  car - fo l lowing  

model ( 2 )  d e l i v e r s ,  f o r  L = 1  and m = 0, t h e  so -ca l l ed  Greenberg 

model [27, 22, 191 

There a r e ,  o f  cou r se ,  f u r t h e r  p o s s i b i l i t i e s  f o r  d e s c r i b i n g  t h e  
- - 

i n t e r r e l a t i o n  between t h e  s t a t i o n a r y  v a l u e s ,  xV and xD, of speed 

and dens i ty - - fo r  example, t h e  equa t ion  

used s u c c e s s f u l l y  by I s aksen  and Payne [381 wi th  n  = 3 f o r  t h e  

Los Angeles Freeway, t h e  r e l a t i o n  

w i t h  -1 ( a 5 1  ( c f .  [541) , o r  t h e  exp re s s ion  

s u c c e s s f u l l y  a p p l i e d  f o r  s t u d i e s  i n  New York 's  Lincoln Tunnel 

by Sze to  and Gazis  [76 ] .  These s t a t i c  models r e p r e s e n t ,  t oge the r  

w i t h  t h e  equa t ion  



for the traffic volume (see equation (6)), the "fundamental 

diagram of traffic" (see Figure 3) which explains some essential 

traffic flow phenomena as shock waves (see [lo, 18, 19, 33, 431 

for more details). 

Equations (6)-(14) describe a nonlinear distributed param- 

eter model that can be applied for the analysis of traffic con- 

trol systems in a simplified, i.e. aggregated, form only. 

INCREASED SENSITIVITY 
TO DISTLIRBANCES 

CONGESTION 

-. 

DENSITY iD [veh./km] ' ~ m a x  

Figure 3. Fundamental diagram of traffic. 

Aggregated Macroscopic Traffic State Models 

The necessary simplification is effected by dividing the 

freeway, the tunnel, or the bridge into sections, Asi, of the 

length, and by introducing the aggregated state variables (cf. 

Figure 1) 

i 
section density, xDi(k) = - xD(s1tk)ds I (15) 

s. 
1 

and 

s .+As. 

section speed, xVi (k) = - A J xV(sltk)ds I (16) 
S i 

in the form of spatial means of x (s,t) and xV(s,t) for discrete D 
time intervals tk = kAt. For the traffic volume at the section 



boundaries, the temporal means, 

1 j k  x . (k) = - 
B1 At xB(s,t)dt , 

are used. With these definitions, it is possible to approximate 

the partial differential equation (7) by the simple difference 

equation 

At 
xDi (k + 1) = x Dl . (k) + -Ex . (k) - x . (k) ) , Asi B1 B1+1 (18) 

if axD/at is replaced by ExDi(k + 1) - xDi(k))/At and axB/as by 

EXBi - X~i+l )/Asi. This equation illustrates the principle of 

conservation of cars. It is quite obvious that the number of 

cars, As.x .(k + I), at time (k + 1)At in section i results from 
1 Dl 

the number of cars, AsixDi(k), stored at kAt, plus the difference 

of the numbers of cars entering, AtxBi(kl, and leaving, A t ~ ~ + ~ ( k ) ,  

the section during the time interval (k - 1)At < t ( kAt. For 

a freeway section connected with on- and off-ramps carrying the 

traffic volumes ui (k) and wi (k) (cf. Figure 1 for level IIC) , 
equation (18) has to be enlarged to the more general relation 

If the same simplification method as used in equation (71 is ap- 

plied to (8), then the nonlinear difference equation 

with As . = s - s .  
r 7' 

is obtained (see [54, 551 for more details). 
r7 



The second term introduced on the right-hand side of this 

equation allows for the section speed, xVi(k), possibly changing 

at the section boundary, i.e. for xVi (k) # x ~ ~ - ~  (k) (cf. Figure 1) 

For the first section (i = I), it is obviously justified to choose 

xVO = xV1 and to neglect that term, while for the last section 

(i = N), it is reasonable to assume that xDN is equal to x ~ ~ + ~  

and to exclude the term involving the sensitivity coefficient, v. 

In this way, with 

(cf. equation ( 6 ) )  for a three section freeway as an example 

(cf. Figure 11, one gets the state equations 

and 



representing a nonlinear traffic state model of the form 

with the six-dimensional state vector 

T 
(k) = (xDl (k)xVl (k)xD2 (k)xV2 (k)xD3 (k)xV3 (k) ) (24) - 

and the three-dimensional control vector 

This freeway traffic model can be changed to a tunnel or bridge 

traffic model by putting ui = w = 0 and introducing the input i 
traffic volume xgl(k) at the first section as a control variable, 

ul (k) . 
The aggregated traffic model (19)-(22) is still complicated, 

especially because of the nonlinear equation (20). In specific 

applications, it may be necessary and possible to substitute a 

further simplified expression for this relation. Nahi and 

Trivedi [52], in connection with a density estimation problem 

in one freeway section, have used the difference equation 

here ~ ( k )  is a stochastic disturbance causing speed changes. 

For the solution of the same problem in tunnel traffic, Szeto 

and Gazis [76] successfully applied static model (13) as a dy- 

namic model after introducing a noise term ((k): 

xD(k) 2 
xv(k) = b exp 1 - 1 + 5 (k) . 

The application of equations (20), (211, (261, and (27), given 

here as models of the speed behavior of a traffic stream, is 

not possible in the case of urban street networks containing 

signals at intersections. The dynamics of traffic flow in urban 



s t r e e t s  changes  r a p i d l y  w i t h  t r a f f i c  volume, and s o  it i s  n o t  

p o s s i b l e  t o  p r e s e n t  one dynamic model v a l i d  f o r  a l l  p o s s i b l e  

t r a f f i c  c o n d i t i o n s .  

A r e l a t i v e l y  s i m p l e  model c a n  be d e s i g n e d  f o r  t h e  compli-  

c a t e d  c a s e  o f  a  network o f  o v e r s a t u r a t e d  i n t e r s e c t i o n s  c h a r a c -  

t e r i z e d  by t h e  t r a f f i c  s u p p l y  b e i n g  s m a l l e r  t h a n  t h e  t r a f f i c  

demand s o  t h a t  queues  o f  c a r s  a r e  a lways w a i t i n g .  I n  t h i s  spe-  

c i a l  c a s e ,  t h e  t r a v e l  t i m e  between i n t e r s e c t i o n s  i s  much s m a l l e r  

t h a n  t h e  w a i t i n g  t i m e  a t  t h e  i n t e r s e c t i o n s ,  and s o  t h e  speed  

dynamics  i n  e q u a t i o n  (20)  c a n  be n e g l e c t e d ;  o n l y  t h e  p r i n c i p l e  

o f  c o n s e r v a t i o n  o f  c a r s  e x p r e s s e d  by e q u a t i o n  ( 1 9 )  need be u s e d .  

T h i s  a p p l i e d  t o  t h e  s i m p l e  one-way network shown i n  F i g u r e  1 ,  

f o r  example,  r e s u l t s  i n  t h e  s t a t e  model 

where 1 . ( k )  is  t h e  number of  c a r s  w a i t i n g  i n  l i n k  i a t  t h e  
D 1 

c o r r e s p o n d i n g  i n t e r s e c t i o n ,  i i i ( k ) ,  t h e  c o n t r o l  v a r i a b l e  ( i . e .  

t h e  number o f  c a r s  l e a v i n g  t h e  l i n k  when t h e  g r e e n  t r a f f i c  

l i g h t  i s  f l a s h i n g ) ,  and GBi(k) ,  t h e  number of  c a r s  a r r i v i n g  a t  

l i n k  i d u r i n g  t h e  t i m e  i n t e r v a l  ( k  - 1 ) A t  < t 2 kAt. The param- 

e t e r s  s and r d e s c r i b e  t h e  p e r c e n t a g e  o f  c a r s  i i . ( k )  g o i n g  i i 1 

s t r a i g h t  ahead ,  s .  o r  t u r n i n g  t o  t h e  r i g h t  o r  l e f t ,  r (see 
1' i 

13, 16 ,  20, 46, 731 f o r  more d e t a i l s ) .  

I f  it is n o t  r e a s o n a b l e  t o  n e g l e c t  t h e  t r a v e l  t i m e s  T ~ ,  

t h e n  e q u a t i o n  ( 2 8 )  h a s  t o  be changed t o  t h e  more c o m p l i c a t e d  



as shown by Singh, et al. [68] . 
For light traffic conditions, without permanent queues at 

the intersections, the dynamics of the group of cars (platoons) 

formed at intersections with signals have to be considered. Pla- 

toon models, however, are discussed in the following paragraph 

on input-output models. 

INPUT-OUTPUT MODELS 
-- 

An overview of models is now presented where the state vari- 

ables are not considered explicitly, and where the main interest 

is in the dynamic relations between certain control or input vari- 

ables of the system and the reactions of the system measured by 

output variables. 

Microscopic Input-Output Models 

If one introduces as the input signal the speed of the lead- 

ing car, xe(t) = vl(t), and as the output signals the speed, 

x (t) = vN(t), and the position, xa2 (t) = sN(t) , of the Nth car a I 
in a string of N cars, then the linear car-following model illus- 

trated by Figure 2b results in the two transfer functions: 

-PT i 
z(vN(t) 1 N hiOe 

- xal (PI GI (PI = = n - -  
z(vl (t) 1 i=2 -pTi ~,(PI 

P + hioe 

and 

These input-output models have not yet attracted much 

attention in traffic flow theory literature (cf. [lo, 19, 3311, 

though they provide an excellent basis for the application 



of the well-developed classical control theory on stability and 

collision analysis. 

Macroscopic Input-Output Models 

This approach to dynamic traffic flow modelling has so far 

been studied only by a rather small number of authors (cf. [ll, 

7 4 1 ) .  The input-output model describes the interrelations between 

macroscopic traffic variables at those points of a freeway, tun- 

nel, rural road, or even urban street network that are of special 

interest and may be defined as inputs and outputs of the traffic 

system. Traffic volume will be introduced here as the input and 

output variables. 

First, a single traffic link and a long street including 

intersections, or a freeway with on- and off-ramps will be 

considered. 

The Traffic Route Model 

For a single driving route, it is reasonable to introduce 

as input and output variables the number of cars entering, 

xBe (k) , or leaving, xBa (k) , the route during the time interval 
(k - 1)At < t - < kAt (cf. Figure 5). According to 

the output traffic volume x (k) consists of the number of cars 
0 

Ba 
coming from the input, x (k), and the number of cars entering 

Ba 
the route through other access points, xBz(k). x (k) may be 

0 
BZ 

considered as a disturbance, while xBa(k) is assumed to depend 

on those values xBe(k - m),.. .,xBe(k - n) of the input traffic 
volume x (k) that are delayed by the travel time interval Be 

in comparison with the time tk = kAt: 



By developing f{ . . . I  into a Taylor series and neglecting the 

nonlinear terms, one obtains 

where the parameters ?j(s,k) describe the percentage of cars 

reaching the output within the travel time interval (s - 1)At 
< TR ( sat. If we assume that the expectations, ~{G(s,k)} = 

g(s), of the time varying parameters are constant, then it is 

reasonable to use the model 

where the sum 

characterizes the proportion of cars with a travel time TR 5 sat, 
and h(n) describes the number entering the route via the input 

and leaving it via the output. This parameter h(n) (henceforth 

called the "split coefficient") can take values within the in- 

terval 

For h(n) = 1, no car out of xBe(k) leaves the route before 

reaching the output; for h (n) = 0, all cars xBe (k) leave the 

route before reaching the output. 

From h (n) and g(s) , it is possible to obtain the relation 



for the probability distribution of the travel time TR = sAt, 

and the corresponding formula for the density 

resulting in 

for the mean travel time, Tm, that the traffic stream takes to 

pass between input and output (cf. Figure 5). 

The coefficients, g(s), in equation (31) may be considered 

as discrete values of the impulse response, g(t), of the street. 

Thus, equation (31) results, with g(s) = 0 for s = 0,. . . ,m-1 ,n+l , 
..., in the convolution sum 

or in Duhamel's convolution integral 

m 

(t) = /g(r)xBe(t - i)di = g(t) *xBe(t) BMa 
0 

if very smcll sampling time intervals, At, and continuous time 

functions are used. Two interesting statements can thus be made: 

The impulse response of the route is proportional to 

the travel time probability density function (cf. equa- 

tion (35)) 

The step response of the road describes the probability 

distribution function according to equation (34), with 

the final value h(n) being the split coefficient that 

characterizes the percentage of cars passing the whole 

route between the input and the output without leaving 

it anywhere (cf. Figure 5). 



System 

P 

Figure 4. Parametric input-output model obtained from Robertson's [63] 
platoon model. 

System xg,lk)  

x B e ( k )  

v + 

I M o d e l  

Figure 5. Macroscopic input-output model illustrated for the North-South- 
Connection in Dresden (At = 10,p= electronic traffic detectors). 



The model (38) obtained here is a nonparametric one [70], 

giving rise to questions about the applicability of parametric 

models in the form of difference or differential equations. 

The so-called platoon dispersion model 

with T = NAt = 0.8Tm and F = 1/{1 + 0.5~1, proposed by Robertson 
[63] (see Figure 4), may be considered as kuch a parametric model 

that has been successfully used for the simulation of platoon 

dynamics, i.e. for traffic links connecting neighboring inter- 

sections. For small sampling intervals, At, the difference 

equation (38) can be approximated by the differential equation 

x (t) + FxBMa(t) = @xBe(t - T )  , BMa ( 3 9 )  

with F = ??/At, resulting in the well-known transfer function 

The applicability of other parametric models, e.g. of the astr6m- 

model (see [70] ) , has been studied by Doormann [I 1 1 .  

The Traffic Network Model 

The traffic route model (31) can be enlarged to a network 

model by using 

where * is the convolution symbol. For the network shown in 

Figure 6, for example, one obtains for output 1 



X ~ a l  (k) = 2 '3, (s)xBej (k - S) + XBzl (k) . (42) 

Figure 6.  Macroscopic input-output model of a traffic network. 

The percentage of cars traveling from the input xBej to the Out- 

put xBai is given by the split coefficient 

n.. 

s =m i j 

and for the corresponding travel time distribution functions 

one obtains the general expression 

2 

resulting in 

n.. 

T = 2 (sAt) f. . (s) 
j 1 I 

s=m . 
1 j 



f o r  t h e  mean t r a v e l  t i m e  Tm t h a t  t h e  i n d i v i d u a l  t r a f f i c  
i j 

s t r e a m s  need f o r  g o i n g  from t h e  i n p u t  j t o  t h e  o u t p u t  i. 

THE ROLE OF STATE AND INPUT-OUTPUT MODELS I N  THE ANALYSIS OF 

TRAFFIC CONTROL SYSTEMS 

W e  now d e s c r i b e  what r o l e  t h e  models summarized i n  t h e  two 

p r e c e d i n g  s e c t i o n s  a l r e a d y  p l a y  o r  a r e  e x p e c t e d  t o  p l a y  i n  t h e  

a n a l y s i s  o f  compute r ized  t r a f f i c  c o n t r o l  s y s t e m s .  A b r i e f  sum- 

mary o f  t h e  e x i s t i n g  fundamenta l  t r a f f i c  c o n t r o l  c o n c e p t s  is  

g i v e n  f i r s t .  

T r a f f i c  C o n t r o l  Concep ts  

The b a s i c  c o n c e p t s  p roposed  f o r  f reeway  and a r e a  t r a f f i c  

c o n t r o l  may be c o n s i d e r e d  a s  h i e r a r c h i c a l l y  s t r u c t u r e d  c o n t r o l  

sys tems  c o n t a i n i n g  t h r e e  l e v e l s  ( c f .  [71,  721 and F i g u r e  1 ) :  

- Optimal  g u i d a n c e  o f  main t r a f f i c  s t r e a m s  t h r o u g h  a  

network o f  f reeways  and s e r v i c e  streets ( r o u t e  c o n t r o l )  

- Optimal  t r a f f i c  f l o w  c o n t r o l  on f r e e w a y s ,  i n  t u n n e l s ,  

on b r i d g e s ,  and i n  u r b a n  s t reet  ne tworks  

- V e h i c l e  movement c o n t r o l ,  e .g .  merging c o n t r o l  and 

d i s t a n c e  r e g u l a t i o n  i n  a  s t r i n g  o f  moving v e h i c l e s .  

A s u r v e y  o f  t h e  s t a t e  o f  implementa t ion  o f  t h e s e  c o n c e p t s  

and t h e  e x p e r i e n c e s  g a i n e d  from r e a l  a p p l i c a t i o n s  i s  g i v e n  by 

S t r o b e 1  i n  [71 ,  721. Here o n l y  t h o s e  m e t h o d o l o g i c a l  a s p e c t s  o f  

i n t e r e s t  from t h e  i d e n t i f i c a t i o n  v i e w p o i n t  a r e  d e s c r i b e d .  

Models Needed f o r  Route  C o n t r o l  A n a l y s i s *  

A r o u t e  c o n t r o l  sys tem a s s i s t s  d r i v e r s  i n  f i n d i n g  t h e  ( i n  

some s e n s e )  b e s t  r o u t e  from a c e r t a i n  o r i g i n  t o  a  d e s i r e d  d e s -  

t i n a t i o n .  Due a c c o u n t  i s  t a k e n  of  changing  t r a f f i c  c o n d i t i o n s  

i n  d i f f e r e n t  p a r t s  o f  t h e  network c a u s e d ,  f o r  example,  by a c -  

c i d e n t s ,  w e a t h e r ,  and main tenance  o p e r a t i o n s  ( c f .  F i g u r e  1 ,  

l e v e l  I C ) .  

*These a r e  d e s c r i b e d  i n  [ 2 ,  4, 7 ,  14 ,  53, 64, 71, 72, 811. 



A computing system is provided and, from information given 

by traffic detectors, it evaluates the traffic situation and 

determines the optimal routes in real-time operation. These 

routes are shown to drivers by changeable computer-controlled 

road signs located at freeway off-ramps and essential intersec- 

tions of the arterial street network [I, 8, 121. The use of 

displays within cars [15, 31, 501 is sometimes included. 

For the determination of an optimal route, two criteria 

should be taken into account: 

- Minimization of mean travel times between origin and 

destination points (Wardrop's first principle) 

- Minimization of traffic density in different parts of 

the network, i.e. of the weighted sum of all densities 

(Wardrop's second principle). 

In route control systems so far installed, the travel time 

criterion is preferred in general. Thus, a route control algo- 

rithm contains the following two parts: 

- An identification part dealing with the estimation of 

the mean travel times, and the split coefficients de- 

scribing the distribution of the traffic streams within 

the network. This task has to be solved in an on-line 

real-time operation mode with the use of traffic detec- 

tor data only. 

- A real-time optimization part dealing with the selection 

of optimal routes. 

It is quite obvious that the solution of the identification 

task of the first part needs a traffic model similar or equal to 

that presented in the section on macroscopic input-output models. 

But it is interesting that none of the route control systems im- 

plemented in the past have used such a macroscopic input-output 

model. One may conclude that the application of input-output 

models in route control systems presents an unsolved problem 

which is a subject of fundamental research (cf. [ll, 741). 



Models Needed for Flow Control Analysis 

Freeway and Tunnel Traffic* 

The capacity of a traffic lane decreases if the traffic 

density gets larger than an optimal value. This well-known 

phenomenon, illustrated by the fundamental diagram in Figure 3, 

explains the occurrence of natural congestion on freeways and 

in tunnels when too many cars enter traffic links. The aim of 

a traffic flow control system is therefore to maintain traffic 

demand along all parts of the freeway below the critical level 

by restricting freeway access by means of traffic lights at the 

entrance ramps. The necessary traffic light control algorithm 

requires the solution of the following two optimization problems. 

- Static optimization and open-loop control [26, 38-40, 581 : 

With the use of demand patterns obtained from historical 

data, nominal values for the input flow rates, u. have 
1 

to be determined in such a way that the overall traffic 

throughput is maximized. These control variables, u. 
1' 

are, of course, no longer the optimal ones if distur- 

bances, e.g. an accident, occur. For such situations, 

one uses: 

- Dynamic optimization and feedback control [21, 35, 37-40, 

47, 59, 771: The task of this control system is to min- 

imize deviations between the nominal, precomputed state 

variables density, xDi, and speed, x . and their actual v1' 
values, by real-time computation of corrections to the 

nominal values that take account of control variables, 

ui (cf. Figure 1, level IIC). 

Fundamental contributions to the solution of these problems 

were presented by Isaksen, Payne and their associates [29, 30, 

37-40, 49, 55-59]. They used for the first time the aggregated 

macroscopic state model (19)-(25). The application of this 

model requires the solution of the following state and parameter 

identification problems which is still a subject of fundamental 



research [5, 9, 25, 28, 30, 35, 42, 491 511 52, 54-57]: 

The parameters of the dynamic equations (20) and (22), 

and of the static models (9) - (1 3), change with weather 
conditions, traffic incidents, etc. They have to be 

determined by means of an on-line real-time method. 

It is not possible to take direct measurements of the 

state variables section density, xDi(k), and section 

speed, xVi(k). Traffic detectors measure traffic volumes, 

xgi(k), and mean speeds only at fixed points, i.e. at the 

section boundaries (cf. Figure 1). 

One has to deal therefore with a combined state and para- 

meter estimation problem, leading to the application of the 

extended Kalman filter [13]. This problem has been studied by 

Orlhac, et al. (541 for the three section freeway model (22). 

The complicated form of this model has not yet permitted algo- 

rithms reliable and robust enough for practical application to 

be developed. Thus this problem, too, is still a subject of 

fundamental research, especially with respect to the use of 

decentralized principles for control and identification [54, 

57, 671. The situation is different if one considers only one 

freeway section and tries to solve the state identification 

problems for the individual sections independently of each 

other. First successful applications of modern identification 

methodology to this simplified problem have been reported by 

Gazis and his co-workers [5, 25, 761 and later by Nahi [51, 521. 

Szeto and Gazis [76] used equations (18) and (28) for a model 

of a tunnel section and introduced the time varying model param- 

eters, a and b, as additional state variables with the simple 

state equations 

a k+l = ak and bk+l = bk 

Experimental tests carried out for New York's Lincoln Tunnel 

delivered reliable and sufficiently accurate estimates for the 

section density and speed by the application of the extended 

Kalman filter (see [25, 761 for more details). Similar promising 



results have been obtained by Nahi and Trivedi [51, 521 for a 
freeway section with the use of a recursive minimum square esti- 

mator, and model equations from relations (18) and (27). 

Urban Street Networks* 

The most widely used traffic control concept is traffic 

light control and coordination. The methods in use can be 

class if ied under : 

- Precomputation of optimal signal programs for time-of- 

day, open-loop control by heuristic methods, mathemati- 

cal programming methods, or simulation techniques; 

- traffic-responsive signal program selection, i.e. 

adaptive open-loop control; 

- traffic-responsive signal program modification and 

generation, i.e. feedback control (cf. [lo, 19, 36, 

48, 65, 781). 

Problems of parameter and state estimation do not play an 

important role for the first two methods. A particular excep- 

tion is the application of simulation programs for the determi- 

nation of optimal signal programs. These simulation programs 

use a simple model describing the principle of the conservation 

of cars at intersections (cf . equation (1 8 ) ) , and a platoon dis- 
persion model simulating the traffic flow between intersections. 

This is true, for example, for the well-known and widely used 

TRANSYT simulation program of Robertson [63] which contains the 

input-output model (38) as the platoon model. 

Situations where modern identification methods are going 

to be an important and useful tool occur under complicated 

traffic conditions that require implementation of feedback con- 

trol algorithms. In such situations, the traffic control problem 

must be handled by a multicriterion approach with consideration 

of the following hierarchy of criteria [36] : 

- stoppage mode for light traffic, 



- d e l a y  mode f o r  medium t r a f f i c ,  

- c a p a c i t y  mode f o r  s a t u r a t e d  i n t e r s e c t i o n s ,  

- queue mode f o r  v e r y  d e n s e  t r a f f i c ,  and 

- jam mode f o r  c o n g e s t e d  c o n d i t i o n s .  

The f i r s t  two c r i t e r i a  a r e  g e n e r a l l y  used  f o r  t h e  p r e -  

c o m p u t a t i o n  o f  s i g n a l  programs [ l o ,  1 7 - 1 9 ,  3 6 ,  4 8 ,  6 5 ,  7 8 1 .  

The l a s t  t h r e e ,  needed f o r  heavy t r a f f i c  c o n d i t i o n s ,  c a n  b e  

implemented o n l y  a s  a  feedback  c o n t r o l  a l g o r i t h m .  For  t h e  l a s t  

c r i t e r i o n ,  f o r  example,  a n  o p t i m a l  c o n t r o l  s t r a t e g y  f o r  t i m e  

o p t i m a l  c o n g e s t i o n  removal  c a n  be o b t a i n e d  by means of  t h e  s t a t e  

model ( 2 8 )  w i t h  t h e  u s e  o f  P o n t r a g i n ' s  maximum p r i n c i p l e  [ 1 6 ,  4 6 ,  

7 3 1 .  Here t h e  i d e n t i f i c a t i o n  problem c o n s i s t s  i n  t h e  d e t e r m i -  

n a t i o n  o f  p a r a m e t e r s  s . a n d  ri, i . e .  o f  t h e  p e r c e n t a g e  o f  c a r s  

d r i v i n g  s t r a i g h t  ahead ,  and t u r n i n g  t o  t h e  r i g h t  and l e f t .  A s  

shown e a r l i e r ,  s u c h  a  t a s k  i s  t h e  same a s  t h e  i d e n t i f i c a t i o n  o f  

t h e  s p l i t  c o e f f i c i e n t ,  h . .  ( n . . ) ,  a c c o r d i n g  t o  e q u a t i o n  ( 4 3 )  and 
1 3  1 3  

t h e  macroscopic  i n p u t - o u t p u t  model ( 4 2 ) .  

The same i s  t r u e  f o r  t h e  model ( 2 9 )  t h a t  h a s  been used  f o r  

t h e  d e s i g n  of  c o n t r o l  s t r a t e g i e s  f u l f i l l i n g  t h e  t h i r d  and f o u r t h  

o p t i m i z i n g  c r i t e r i a  ( c f .  [ 6 8 ]  ) . For b o t h  models ( 2 8 )  and ( 2 9 1 ,  

a  s t a t e  e s t i m a t i o n  problem o c c u r s  i f  o n e  h a s  t o  d e t e r m i n e  t h e  

queue l e n g t h s ,  i . e .  t h e  numbers, ZDi(k) ,  o f  w a i t i n g  c a r s  a t  d i f -  

f e r e n t  i n t e r s e c t i o n s ,  by means o f  n o i s y  d e t e c t o r  measurements 

o f  t r a f f i c  volume a t  s e l e c t e d  p o i n t s  a l o n g  t h e  t r a f f i c  l i n k s  

[ 7 3 ,  7 6 1 .  

Models Needed f o r  V e h i c l e  Movement C q n t r o l  A n a l y s i s *  

The l o w e s t  l e v e l  o f  t h e  c o n t r o l  h i e r a r c h y  shown i n  F i g u r e  

1  main ly  c o n c e r n s  t h e  problem o f  d i s t a n c e  r e g u l a t i o n  i n  a  s t r i n g  

of  moving highway v e h i c l e s ,  w i t h  t h e  aim of  r e d u c i n g  t h e  danger  

o f  c o l l i s i o n s  and i n c r e a s i n g  t h e  f reeway c a p a c i t y .  I t  i s  obvious  

t h a t  s u c h  problems r e q u i r e  t h e  a p p l i c a t i o n  of  m i c r o s c o p i c  models  

and t h e  m i c r o s c o p i c  t r a f f i c  f l o w  models  d i s c u s s e d  e a r l i e r  c a n  

*These a r e  d e s c r i b e d  i n  [ 6 ,  3 2 ,  6 9 ,  7 1 ,  7 2 ,  7 5 ,  7 8 1 .  



be used to illustrate the significance of the problem. The 

linear car-following model ( (1 ) , (3) , and (4) ) , for example, 
permits the phenomenon of traffic queue instability to be 

explained. It can be shown by equations (3) and (4) that a 

system of two cars is unstable for A .  r .  > ~ / 2 ,  and that 
10 1 

oscillations with damped amplitude for l/e < Xiori < ~ / 2  result. 

Instability and oscillations occur if a driver reacts too slowly 

(large -ri) or too much (large Xio) to speed changes of the lead- 

ing car. Small speed changes of that car are amplified result- 

ing, in long strings of vehicles, in collisions of the cars at 

the end of the queue. If one assumes the same model for all 
- drivers, i.e. /Iio - X,ri = T, then this result occurs as soon as 

Xr > 0.5--a value of the same order of magnitude as the experi- 

mentally determined values given in equation (5). This agrees 

with the feeling of many drivers that, when driving in long 

strings of vehicles at high speeds, they are often close to the 

limit of stability. To reduce this danger of collision, one 

should provide the drivers with certain driving aids that would 

assist them to have stable control parameters, Xio and r.. 

Radar distance measuring devices [69] and special head-up driver 

displays might fulfill this task [75], but since these problems 

are the subject of fundamental research, certain identification 

problems may occur concerning the simulation of driver behavior. 

On the other hand distance regulation systems already play a 

significant role today in the development of so-called "auto- 

mated guideway transit systems" (cf. 171, 721). 

Conclusions 

The following conclusions may be drawn from the state-of- 

the-art survey presented above: 

- The essential foundations for dynamic traffic flow 

modelling were created by the development of the micro- 

scopic and macroscopic traffic flow theory during the 

fifties and sixties 110, 19, 331. The application of 

modern identification methods, however, has been the 

subject of theoretical and experimental studies carried 



o u t  d u r i n g  t h e  l a s t  f i v e  y e a r s  o r  s o ,  and is  s t i l l  a  

s u b j e c t  o f  fundamental  r e s e a r c h  work. 

- T h i s  is  e s p e c i a l l y  t r u e  f o r  t h e  a p p l i c a t i o n  o f  t h e  

ex tended  Kalman f i l t e r  and r e l a t e d  methodology f o r  

p a r a m e t e r  and s t a t e  e s t i m a t i o n  problems o c c u r r i n g  w i t h  

t h e  computer c o n t r o l  o f  f reeway and t u n n e l  t r a f f i c  [5 ,  

19,  25,  28-30, 41, 42, 49, 54-57]. Research  a c t i v i t i e s  

have  r e s u l t e d  i n  an  en la rgement  o f  macroscopic  t r a f f i c  

f l o w  t h e o r y  by i n t r o d u c i n g  t h e  Isaksen-Payne model ( ( 8 )  

and ( 2 ) ) .  The p a p e r s  p u b l i s h e d  d u r i n g  t h e  l a s t  2  y e g r s  

g i v e  t h e  i m p r e s s i o n  t h a t ,  i n  s e v e r a l  p a r t s  o f  t h e  wor ld ,  

c o n t r o l  s c i e n t i s t s  a r e  d e a l i n g  w i t h  t h e  a p p l i c a t i o n  o f  

modern i d e n t i f i c a t i o n  methodology t o  t r a f f i c  s t a t e  and 

paramete r  e s t i m a t i o n  problems w i t h  r e s p e c t  t o  t r a f f i c  

f l o w  c o n t r o l  t a s k s  ( c f .  F i g u r e  1 ,  Leve l  I I ) ,  and t h a t  

t h e y  a r e  f o c u s i n g  on t h e  development  o f  d e c e n t r a l i z e d  

a l g o r i t h m s  t h a t  c a n  be implemented by s p a t i a l l y  d i s -  

t r i b u t e d  c d n t r o l  sys tems  w i t h  m i c r o p r o c e s s e s  [35 ,  541. 

- On t h e  o t h e r  hand, it i s  i n t e r e s t i n g  t o  n o t e  t h a t  iden-  

t i f i c a t i o n  problems a t  t h e  f i r s t  l e v e l  ( c f .  F i g u r e  1 )  

have n o t  y e t  had much a t t e n t i o n  from c o n t r o l  s c i e n t i s t s  

( c f .  [ l l ,  7 6 ] ) ,  though ,  a s  shown h e r e ,  t h e  i d e n t i f i c a -  

t i o n  o f  macroscopic  i n p u t - o u t p u t  models c o u l d  p l a y  a n  

i m p o r t a n t  r o l e  f o r  c e r t a i n  h i g h  l e v e l  t r a f f i c  c o n t r o l  

problems,  e . g .  f o r  t h e  c r e a t i o n  o f  r o u t e  g u i d a n c e  s y s t e m s .  

T h e r e f o r e ,  it seems t o  b e  u s e f u l  t o  c o m p l e t e  t h e  g e n e r a l  

s u r v e y  p r e s e n t e d  above by a  s p e c i a l  c a s e  s t u d y  on t h e  i d e n t i f i -  

c a t i o n  o f  macroscopic  i n p u t - o u t p u t  models.  



PART 11: IDENTIFICATION OF DYNAMIC INPUT-OUTPUT 

MODEL PARAMETERS: A CASE STUDY 

THE MODELS AND IDENTIFICATION METHODS STUDIED 

The A i m  of t h e  Case Study 

The knowledge of models (31)  and (41)  desc r ibed  e a r l i e r  

p r e s e n t s  v e r y  v a l u a b l e  i n fo rma t ion  on t h e  d i s t r i b u t i o n  of t r a f -  

f i c  s t reams w i t h i n  a  t r a f f i c  network, and on t h e  cor responding  

mean t r a v e l  t ime.  I f  it were p o s s i b l e  t o  de te rmine  t h e  model 

parameters ,  g ( s )  o r  g i j  ( s ) ,  a u t o m a t i c a l l y ,  by a  computer coupled 

v i a  t r a f f i c  volume d e t e c t o r s  wi th  t h e  s t r e e t  network, t h e n  a  

ve ry  v a l u a b l e  t o o l  f o r  t h e  s o l u t i o n  of s e v e r a l  t r a f f i c  c o n t r o l  

and guidance  problems would have been ob ta ined  ( c f .  t h e  l a s t  

s e c t i o n  of P a r t  I )  . 
The purpose of t h i s  P a r t  i s  t o  i n v e s t i g a t e  i f  t h i s  i d e n t i -  

f i c a t i o n  t a s k  can be so lved ,  and how a c c u r a t e  it would be f o r  

c o n d i t i o n s  near  t o  r e a l  t r a f f i c  s i t u a t i o n s .  

I n t r o d u c t i o n  of S t a t i o n a r y  Inpu t  and Output S i g n a l s  and of 

Modified Model S t r u c t u r e s  

Whether parameter  e s t i m a t i o n  a lgo r i t hms  may be cons idered  

a s  op t ima l  depends mainly on t h e  s t a t i s t i c a l  p r o p e r t i e s  of t h e  

n o i s e  s i g n a l s  and t h e  form of t h e  mathematical  model ( c f .  x B z ( k )  

i n  equa t ions  (31)  and ( 4 1 ) ) .  F igu re  7  shows a  s t o c h a s t i c  d i s -  

t u rbance ,  x B Z ( k ) ,  ob t a ined  a t  t h e  so -ca l l ed  North-South- 

Connection i n  Dresden (F igu re  5 ) .  Th i s  d i s t u r b a n c e  i s  caused 

by t r a f f i c  e n t e r i n g  t h e  r o u t e  v i a  i n t e r s e c t i o n s  l o c a t e d  between 

t h e  two t r a f f i c  d e t e c t o r s  shown i n  F igu re  5. The mean va lue ,  - 
xBZ, of t h e  d i s t u r b a n c e  is ,  of cou r se ,  l a r g e r  t han  zero .  The 

same i s  t r u e  f o r  t h e  mean va lues ,  x and XBa, of t h e  i n p u t  and Be 
o u t p u t  t r a f f i c  volumes ( c f .  F i g u r e  7 ) .  Moreover, t h e s e  mean 

v a l u e s  change i n  t h e  cou r se  of t h e  day.  There a r e  two p o s s i b l e  

ways o f  avoid ing  t h e  a p p l i c a t i o n  of  n o n s t a t i o n a r y  s t o c h a s t i c  

s i g n a l s  i n  an i d e n t i f i c a t i o n  a lgor i thm:  



Figure 7. Traffic volumes, x ~ , .  X B ~ ,  gBa, and x n l ,  and input. xe. 

output. xd .  and noise, z, signals obtained for the 1)resderl 

N - S  -Connectlon (rf. Figure 5 ) .  



- to use the differences between the volumes and their 

mean values according to 

(k) = xBz (k) - " BZ ' 

or--what is more convenient for real time 

computations-- 

- to use the differences between the volumes at times 

kAt and (k - l)At, i.e. 

For the output signals ka(k) and x (k), one now obtains a 
instead of equation (31) the new relation 

1, (k) = g (m)Ie (k - m) + . . . + g (n)Ie (k - n) + Z (k) 

and (with certain approximations) 

In the same manner, one obtains from equation (41) the new 

multivariable model of a street network*: 

*For convenience, here and in the following equations, a restric- 
tion is made to the variables (47). 



xai (k) = xaMi (k) + zi (k) = g. . (SIX . (k - S) + zi (k) 
13 el 

(50) 

for i = l(1) k. 

The noise terms, ?(k) and z(k), may now be considered as 

stationary stochastic discrete signals that are, moreover, ap- 

proximately uncorrelated for kAt and kAt + sAt. This is illus- 

trated by the correlation functions $ (T) and $xBzxBz (T) = Qzz (TI 
- 2 Z Z 

+ xBz shown in Figure 8. The relatively large negative value of 

Figure 8. Estimates of the correlation functions of the noise signals. 
xg,(k) and z(k) (cf. Figure 7). 

+ 
$Zz (T) at T = -At is caused by computing z(k) with the neighbor- 

ing values x (k) and xBz(k - 1) taken from equation (47). In B z 
spite of this, the correlation between z (k) and z(k + s) may be 
considered as low, at least for Is1 > 1, and so the application 

of a minimum squares estimation technique seems to be justified 

if the noise amplitudes z(k) are normally distributed. This is, 

of course, not the case, as can be seen from the frequency dis- 

tribution f (z) (Figure 9) computed by means of the disturbance 

z (k) (Figure 7) , obtained from real traffic measurements (cf . 



Figure 9. Empirically determined frequency distribution of  the noise 
magnitudes. z(k) .  compared with the Gaussian distribution, fG(z) .  

Part I, Conclusions). Nevertheless the principal form of this 

distribution f ( 2 )  and the Gaussian distribution are similar 

(Figure 9). Therefore, it has been decided not to use the 

maximum-likelihood method, but to prefer least squares estima- 

tion techniques. This decision also seems reasonable from the 

viewpoint that the chosen estimation algorithm should be appli- 

cable with acceptable storage and computing time requirements 

in a real-time process computing system. 

The following algorithm has been taken into account: 

The Explicit Methods Used 

For the one-dimensional model ( 4 9 1 ,  one obtains with the 

error equation system 

6 - - E - - - - za (U) 

and the minimization criterion 

Q = g L ~  - = min , 



the well-known normal equation system 

A 

for the estimate b,  where the elements, a.. and a. of the matrix 
1 1 1' 

(A) and the vector a, respectively, are glven by 

N 

a.. = C xe(k - i - v)x (k - j - v) 
1 I e 

v= 0 

These elements are for stationary signals approximately propor- 

tional to the correlation functions 

1 
qx x (s) = - - xelk)xe(k + S) , 
e e 

k= 1 

This leads to the equation 

which is well-known for its application to the estimation of 

discrete impulse response values by correlation analysis [70], 

i.e. the convolution integral ( 3 8 1 ,  and the resulting Wiener- 

Hopf 's integral equation (cf. (67) ) . 



It i s  t o  be expec ted ,  and w i l l  be shown i n  t h e  fo l lowing ,  

t h a t  bo th  e s t i m a t i o n  a lgo r i t hms ,  i . e .  equa t ions  (52)  and (551, 

d e l i v e r  s i m i l a r  e s t i m a t i o n  r e s u l t s  bo th  f o r  t h e  u se  of  r e l a -  

t i o n s h i p  ( 4 7 ) ,  and f o r  s t a t i o n a r y  s i g n a l s  gene ra t ed  by equa- 

t i o n  ( 4 6 ) .  

The I m p l i c i t  (Recurs ive ,  Adaptive)  Methods Used 

The in tended  a p p l i c a t i o n  of a  p roces s  computer r e q u i r e s  

r e c u r s i v e  computing techniques .  I n  g e n e r a l ,  r e c u r s i v e  es t ima-  

t i o n  a l g o r i t h m s  use  t h e  r e l a t i o n  

b ( k  + 1 )  = g ( k )  + r ( k ) ~ ( k  + 1 )  I (56)  

w i th  

T  A 

~ ( k  + 1 )  = x a ( k  + 1)  - g (k + l ) b ( k )  I (56a)  

and 

i , e .  t h e  k  + 1  e s t i m a t e  (k  + 1)  i s  determined by t h e  k t h  e s t i -  

mate ( k )  , p l u s  a  c e r t a i n  c o r r e c t i o n  term c o n t a i n i n g  t h e  model 

e r r o r  E (,k + 1  ) , and a  weight ing  v e c t o r  1 ( k )  . The l a t t e r  can be 

c a l c u l a t e d  i n  t h e  c a s e  of t h e  r e c u r s i v e  l e a s t  squa re s  method by 

t h e  formula 

w i th  

and w = 1. For w < 1,  equa t ion  (57a)  cor responds  t o  t h e  r e -  

c u r s i v e  l e a s t  squa re s  method wi th  "exponen t i a l  f o r g e t t i n g " .  

Th i s  u s e s  t h e  minimiza t ion  c r i t e r i o n  



with 

Criterion (58) makes it possible that the latest measured values, 

xa(k + l),xa(k), ... etc., will influence the estimated result 
more than the older ones, i.e. xa (1) ,xa (21,. . . . Figure 10 shows 

this "forgetting" factor wl for 0.950 5 w 5 0.999. One can see 

that for w = 0.980, for example, only the last 20 measured values 

influence criterion (58) with a weight greater than 0.4, while 

this is true for the last 110 measured values for w = 0.996. 

Figure 10. The "forgetting" factor. w; 2 

This property of "forgetting" old measured values is obvi- 

ously very important for nonstationary traffic conditions with 

changing travel times, Tm, and parameters, g(s). 

Besides the recursive least squares method, the following 

simplified algorithms need to be taken into consideration [70]: 

- the stochastic approximation, with 



- t h e  r e l a x a t i o n  method, w i t h  

and 

- t h e  s o - c a l l e d  qu i ck  and d i r t y  r e g r e s s i o n ,  w i th  

I t  h a s  been r e p o r t e d  t h a t  t h e s e  methods r e q u i r e  remarkably 

less computing t i m e  t h a n  t h e  l e a s t  s q u a r e s  method: 8 t i m e s  less 

f o r  t h e  f i r s t  a l go r i t hm,  5  t i m e s  f o r  t h e  second,  and 3 t i m e s  f o r  

t h e  t h i r d  ( c f .  [70,  91 ] ) . 
The methods summarized h e r e  w i l l  be  s t u d i e d  i n  t h e  fo l l owing  

pa r ag raphs  f o r :  

- S t a t i o n a r y  t r a f f i c  c o n d i t i o n s ,  i . e .  t h e  model pa r ame te r s  

g ( s )  and g i j  ( s )  of e q u a t i o n s  ( 4 9 )  and ( 5 0 )  a r e  cons ide r ed  

a s  t i m e  i n v a r i a n t .  

- Nons t a t i ona ry  t r a f f i c  c o n d i t i o n s  w i th  pa r ame te r s  g ( s )  

and g i j ( s )  va ry ing ,  i . e .  t h e  mean t r a v e l  t i m e s  a r e  sup- 

posed t o  be  changed by a c c i d e n t s ,  changing wea ther  con- 

d i t i o n s ,  e tc.  

F i r s t ,  t h e  s t u d i e s  a r e  c a r r i e d  o u t  w i t h  s imu la t ed  t r a f f i c  

p r o c e s s e s .  The r e s u l t s  o b t a i n e d  a r e  t h e n  compared w i t h  t h o s e  

from an  exper iment  c a r r i e d  o u t  under  r e a l  t r a f f i c  c o n d i t i o n s  i n  

t h e  North-South-Connection i n  Dresden ( c f .  F i g u r e  5 ) .  

SIMULATION STUDIES 

S t a t i o n a r y  T r a f f i c  C o n s i d e r a t i o n s  

The measured r e a l  t r a f f i c  volumes x B e ( k ) ,  shown i n  F i g u r e  7,  

a r e  used  i n  t h e  fo l l owing  s t u d i e s  a l s o  a s  i n p u t  volumes, i n  o r d e r  

t o  have s imu la t ed  t r a f f i c  c o n d i t i o n s  s i m i l a r  t o  r e a l  ones .  With 

t h e  u s e  of  xge (k )  and an u n c o r r e l a t e d  d i s c r e t e  n o i s e  s i g n a l ,  

xBz ( k )  , i n p u t ,  xe ( k )  ,ke  ( k )  , and o u t p u t ,  xa ( k )  ,ka ( k )  , s i g n a l s  



have been d e t e r m i n e d  by e q u a t i o n s  ( 4 6 )  - ( 4 9 )  . To d e s c r i b e  t h e  

n o i s e / s i g n a l  r a t i o ,  t h e  c o e f f i c i e n t  

- sum of  c a r s  e n t e r i n s  t h e  r o u t e  
X Bz , between i n p u t  and  o;tput vz  = - - 

5 sum of  c a r s  f l o w i n g  
X Ba from i n p u t  t o  o u t p u t  

i s  used .  For  t h e  t r a v e l  t i m e s ,  a  p r o b a b i l i t y  d i s t r i b u t i o n  a s  

shown i n  F i g u r e  11 is  c o n s i d e r e d  v a l i d .  

Figure 11. Travel time distribution used in simulation studies. 

E x p l i c i t  Methods 

T a b l e  1  summarizes t h e  r e s u l t s  o b t a i n e d  by e x p l i c i t  methods.  

The f o l l o w i n g  c o n c l u s i o n s  may be drawn: 

There  i s  no s i g n i f i c a n t  d i f f e r e n c e  between u s i n g  

e q u a t i o n  (46)  and (47)  f o r  t h e  c r e a t i o n  o f  s t a t i o n a r y  

s i g n a l s  ( c f  . rows Z and  D i n  T a b l e  1  ) , s o  e q u a t i o n  (47)  

i s  used  i n  t h e  f o l l o w i n g .  

As e x p e c t e d ,  t h e r e  a r e  no r e m a r k a b l e  d i f f e r e n c e s  i n  t h e  

e s t i m a t i o n  o f  t h e  mean t r a v e l  t i m e ,  Tw, and t h e  s p l i t  

c o e f f i c i e n t ,  h ( n ) ,  i f  o n e  u s e s  c o r r e l a t i o n  a n a l y s i s  

( c f .  e q u a t i o n  ( 5 5 ) )  i n s t e a d  o f  t h e  l e a s t  s q u a r e s  method 

( c f .  e q u a t i o n  ( 5 2 ) ,  and examples  1 .1  and 2 . 1 ,  w i t h  1 .2  

and  2.2  i n  T a b l e  1 ) .  

For  t h e  u n d i s t u r b e d  sys tem,  w i t h  vz = 0 r e p r e s e n t i n g  a  

street  s e c t i o n  w i t h o u t  i n t e r s e c t i o n s  between i n p u t  



detector and output detector, it is possible to obtain 

very accurate estimates for the impulse response values, 

g(s), as well as for the mean travel time and the split 

coefficient (cf . Table 1 ) . 

Table 1. Application of explicit identification methods (LS, least 
squares estimation; CAI correlation analysis; 2, equation 
(46) used; D l  equation (47) used). 

- For the large noise/signal ratio of vz = 1, i.e. the 

number of cars entering the route via intersections or 

on-ramps between input and output is equal to the num- 

ber of cars flowing from the input to the output, large 

estimation errors occur for g(s) values. If one nor- 

malizes them with respect to the mean value 



t hen  t h e  r e l a t i v e  e r r o r  t a k e s  v a l u e s  w i t h i n  t h e  i n t e r v a l  

-35% ( A Q ( s ) / ~  ( 50%, where n e g a t i v e  e s t i m a t e s ,  @ ( s ) ,  

occur  f o r  g ( s )  = 0  a t  s = 4 and s = 8. S ince  a  nega t ive  

frequency o r  p r o b a b i l i t y  does  n o t  have any p h y s i c a l  mean- 

i n g ,  t h e s e  n e g a t i v e  e s t i m a t e s  of Cj(s) cannot  be used f o r  

t h e  c a l c u l a t i o n  of  f ( s ) ,  and t h e  mean t r a v e l  t ime,  Tm, 

has  t o  be de termined  by means of t h e  non-negat ive e s t i -  

mates of @ (s)  only :  

( 0  f o r  @ ( I )  ( 0  

. n  
= 1 ( s a t ) ;  (s)  . 

s = m  

On t h e  o t h e r  hand, t h e r e  i s  no r ea son  t o  n e g l e c t  t h e  nega- 

t i v e  e s t i m a t e s  of g ( s )  i n  t h e  e s t i m a t e  

f o r  t h e  s p l i t  c o e f f i c i e n t  f i ( n ) .  I f  one assumes t h a t  t h e  est ima- 

t i o n s ,  Q ( s ) ,  a r e  unbiassed ,  i . e .  E{A$(s)} = 0, and t h a t  t h e  e s t i -  

mation e r r o r s ,  A g ( s ) ,  a r e  n e a r l y  u n c o r r e l a t e d ,  t h e n  t h e  de termi-  
- 

n a t i o n  of  t h e  mean va lue ,  $, by equa t ion  (63)  r e s u l t s  i n  a  c e r t a i n  

smoothing e f f e c t  of t h e  s t a t i s t i c a l  e r r o r s ,  A g ( s ) .  The re fo re  one 

may expec t  t h a t  t h e  e s t i m a t e  of t h e  s p l i t  c o e f f i c i e n t  ob t a ined  by 

e q u a t i o n s  (62) and (65) i s  more a c c u r a t e  t han  t h e  e s t i m a t e s  of  

t h e  impulse r e sponse  v a l u e s ,  g ( s ) .  T h i s  s t a t emen t  ho lds  t r u e  

f o r  examples 2.1 and 2.2 where, i n  s p i t e  of  l a r g e  e s t i m a t i o n  e r -  

r o r s ,  A Q ( s ) ,  t h e  r e l a t i v e  e r r o r s  of t h e  s p l i t  c o e f f i c i e n t  l i e  



w i t h i n  t h e  r e l a t i v e l y  smal l  i n t e r v a l  -6% - < Afi(n) ( 3 % .  Even 

more a c c u r a t e  e s t i m a t e s  have been ob ta ined  by equa t ions  (64)  

and (64a)  f o r  t h e  mean t r a v e l  t ime wi th  - 2 . 8 %  ( A ~ ? ~ / T ~  ( -1.5% 

( c f .  Table  1 ) .  

T h i s  i n t e r e s t i n g  r e s u l t  i s  c h a r a c t e r i z e d  by sma l l  t r a v e l  

t ime e r r o r s ,  i n  s p i t e  of l a r g e  e r r o r s  of t h e  impulse response  

v a l u e s ,  and t h e  fo l lowing  exp lana t ion  can be g iven:  I f  one - 
assumes t h a t  a l l  c a r s  need t h e  same t ime,  TR, f o r  t r a v e l i n g  be- 

tween i n p u t  and o u t p u t ,  t hen  one would g e t  a  response  f o r  t h e  

r o u t e  i n  t h e  form of  a  Dirac-impulse wi th  an a r e a  equal  t o  t h e  

s p l i t  c o e f f i c i e n t  h  (n )  : 

S u b s t i t u t i n g  g ( t )  i n  t h e  Wiener-Hopf i n t e g r a l  equa t ion  

one f i n d s  t h e  very  s imple r e l a t i o n  

between au to-  and c r o s s - c o r r e l a t i o n  f u n c t i o n s  i l l u s t r a t e d  by 

F igu re  12. To e s t i m a t e  t h e  t r a v e l  t ime,  TR,  it i s  obvious ly  

s u f f i c i e n t  t o  know only  rough e s t i m a t e s  of t h e  c r o s s - c o r r e l a t i o n  

f u n c t i o n  $ ( r ) .  I t  i s  comple te ly  s u f f i c i e n t  t o  know t h e  pos i -  
X X e  a  

t i o n  of t h e  maximum of $ ( r ) ,  which i n  g e n e r a l  can  be d e t e r -  
X X e  a  

mined r e l i a b l y  wi th  j u s t  a  smal l  number, N ,  of measured v a l u e s  

of x e ( k )  and x , (k ) ,  e . g .  N a 100 a s  i n  t h e  examples of Table  1 .  

The exp lana t ion  g iven  h e r e  f o r  an i d e a l i z e d  t r a f f i c  s i t u a -  

t i o n  ho lds  t r n e  a l s o  f o r  a  r e a l  one,  a s  was proved by e s t i m a t i o n  

of t h e  t r a v e l  t ime i n  t h e  way shown i n  F igu re  12 f o r  s e v e r a l  s e t s  

of d a t a  ob t a ined  a t  r e a l  t r a f f i c  p roces se s .  



Figure 12. Determination of a rough estimate of the travel time by means 
of the cross-correlation function. 

Implicit Methods 

The implicit methods characterized by equations (56)-(61) 

are studied under the same conditions chosen for example 2.1 

Z of Table 1 for the investigation of explicit methods. The 

results obtained after 100 iterations for the initial estimates 

(GO(s) = 0.2 for s = 5, 6, and 7, and GO(s) = 0 for s = 4 and 

8) are summarized in Table 2. 

Table 2. Estimates of (s) , (s) , ?RM, and fi (n) obtained by 
means of implicit methods (cf . equations (56) - (6 1 ) ) . 



The following conclusions may be drawn: 

- The recursive minimum squares estimation method gives, 

of course, the same results as the explicit version of 

this method (cf. equation (52) and Table 1 ) . 
- The stochastic approximation provided the sufficiently 

accurate estimates shown in Table 2 for a special value 

of c1 in equation (59) only. By several trials, the 

optimal value, cl = 0.005 depending on the statistical 

properties of the noise signal z(k), was found. It 

appeared that even small deviations from this value 

result in serious convergence problems. 
- The same is true for the coefficients c2 and c3 of the 

relaxation method and the quick and dirty regression 

(cf. equations (60) and (61)). Small changes of the 

empirically determined optimal values c2 = 0.1 and 

c = 0.01, for which the results are given in Table 2, 3 
led to quite different estimates of $(s), ?RMr and 

fi(n) . 
Since it seems not possible to precompute reliable values 

of cl, c2, and c3 by means of a priori information available 

from real traffic measurements, the practical applicability of 

equations (59)-(61) is very uncertain. The following studies 

are therefore restricted to the application of the recursive 

regression where the identification of the multivariable model 

(50) is first investigated. 

Identification of Multivariable Models 

For the street network shown in Figure 6, for example, one 

obtains for the output volume, x Ball and the input volumes, 

x Be2r xBe3, and xBeqr the model equation 

n 12 
Xal (k)  = xa (k) = x g1 (s)xe2 (k - s )  

s=m 12 

n 
( 6 9 )  

13 n 14 
+ x g13(s)xe3(k - s, + x g14(s)xe4 (k - S) + Zl (k) , 

S-r;ll 3 s="'l 4 



i f  o n e  u s e s  t h e  d i f f e r e n c e s  x . ( k )  = xBei ( k )  - x (k  - 1 )  and e l  B e i  
xal  ( k )  = xBal ( k )  - xBal ( k  - 1 )  a s  t h e  n e c e s s a r y  s t a t i o n a r y  s i g -  

n a l s  ( c f .  e q u a t i o n  ( 4 7 ) ) .  

For  t h i s  model,  t h e  v e c t o r s  u and  b f rom e q u a t i o n s  ( 5 6 a , b )  

t a k e  t h e  forms 

(70) 
and 

where t h e  t r u e  v a l u e s  o f  g (s)  shown i n  F i g u r e  13 have been 
1 j  

chosen  c o r r e s p o n d i n g  t o  t h e  t r u e  t r a v e l  t i m e s  Tm12 = 60.0 

s e c o n d s ,  Tm13 = 45.0 s ,  TWl4  = 30.0 s and t h e  t r u e  s p l i t  

c o e f f i c i e n t s  h 1 2 ( n 1 2 )  = h ( n  ) = h 1 4  ( n 1 4 )  = 1.00. 
13 13 

The f o l l o w i n g  ~ x a m p l e s  have been s t u d i e d  ( c f .  T a b l e  3 ) :  

Example 1: The n o i s e / s i g n a l  r a t i o ,  v z ,  of  e q u a t i o n  (62)  c a n  be 

r e d u c e d  t o  z e r o  i f  o n e  measures  t h e  whole t r a f f i c  e n t e r i n g  a 

r o u t e  on  a network by volume d e t e c t o r s .  F o r  t h e  network s t u d i e d  

h e r e  ( c f .  F i g u r e  6 ) ,  s u c h  a s i t u a t i o n  o c c u r s  i f  t h e r e  a r e  no 

t r a f f i c  i n p u t  volumes o t h e r  t h a n  t h e  4 v a r i a b l e s  x B e l l  X ~ e 2 '  

x Be3r  and  x Be4.  I f  one  assumes t h a t  t h e  i d e n t i f i c a t i o n  o f  t h e  

mean t r a v e l  t i m e ,  Tm12,  and t h e  s p l i t  c o e f f i c i e n t ,  hnl  2 ( n l  2 )  

i s  o f  p r i m a r y  i n t e r e s t ,  t h e n  t h e  u s e  o f  a d d i t i o n a l  measurements  

f o r  x Be3 and xBe4 should  r e s u l t  i n  a more a c c u r a t e  e s t i m a t e .  

AS shown i n  column 1 of T a b l e  3 and t h e  e s t i m a t e s ,  G l j ( s ) ,  

marked by c r o s s e s  i n  F i g u r e  13 ,  it i s  a c t u a l l y  p o s s i b l e  i n  such  

a c a s e  t o  o b t a i n  unknown p a r a m e t e r s  w i t h  v e r y  s m a l l  e r r o r s .  

Example 2: The exper iment  of  example 1 i s  r e p e a t e d  f o r  a n  un- 

d i s t u r b e d  two-dimensional  model,  i. e. w i t h  g1 ( s )  = 0,  r e s u l t i n g  

a g a i n  i n  v e r y  a c c u r a t e  e s t i m a t e s  ( c f .  T a b l e  3 and example 2a o f  

F i g u r e  1 3 ) .  Next it i s  assumed t h a t  no measurements  a r e  t a k e n  

f o r  x Be3r  i .e .  t h e  number, x ( k ) ,  o f  c a r s  e n t e r i n g  t h e  network Be3 





a t  i n p u t  3  i s  now p l a y i n g  t h e  r o l e  of  a  d i s t u r b a n c e  (example 2b 

of  F i g u r e  1 3 ) .  A comparison of  t h e  e s t i r . a t e s  o b t a i n e d  f o r  t h e s e  

two examples from F i g u r e  13 i l l u s t r a t e s  ( c f .  T a b l e  3 )  t h a t  t h e  

a d d i t i o n a l  d i s t u r b a n c e  caused  by t h e  non-measured i n p u t  volume, 

X Be3 ' l e a d s  t o  much l a r g e r  e s t i m a t i o n  e r r o r s  of  t h e  impulse  

r e s p o n s e  v a l u e s ,  G1 ( s )  , and t h e  s p l i t  c o e f f i c i e n t s ,  g1 ( n 1 2 ) .  

On t h e  o t h e r  hand, t h e  e s t i m a t i o n  e r r o r  f o r  t h e  mean t r a v e l  t i m e  

'PRMl2 remains  s m a l l  ( o n l y  - 0 . 9 8 % ) .  Thus one may c o n c l u d e  t h a t  

t h e  a l g o r i t h m  used i s  c a p a b l e  of w i t h s t a n d i n g  d i s t u r b a n c e s  i n  

t r a v e l  t i m e  e s t i m a t i o n .  T h i s  s t a t e m e n t  h o l d s  t r u e  i f  a d d i t i o n a l  

d i s t u r b a n c e s  o c c u r  ( s e e  examples  3  and  4 b e l o w ) .  

T a b l e  3 .  Est imated  t r a v e l  t i m e s ,  Tmij ,  and s p l i t  c o e f f i c i e n t s ,  

h . . ( n . . ) ,  f o r  t h e  s i m u l a t e d  t r a f f i c  network shown i n  
1 7  1 7  

F i g u r e  6 .  

Example 

vz 

Z 
Rn12 

+m13 

L 1 4  
6T12 ( 8 )  

6~~~ (8) 

6T14 (8) 

h12 ("12) 

h13 ("13) 

h14 ("14) 
6h12 (8) 

6h13 (8) 

6h14 (8) 

w 

1 

0 

60.55 

44,95 

30.03 

+0.92 

-0.11 

+o. 10 

1.014 

1.103 

0.994 

+1.4 

+10.3 

-0.6 
0.996 

2a 

0 

60.01 

45.00 

- 
W.01 

0.00 

- 
0.997 

0.997 

- 
-0-3 

-0.3 

- 
0.995 

2b 

0 

59.51 

- 
- 

-0.98 

- 
- 
1.158 

- 
- 

15.8 

- 
- 

0,995 

3 a 

1.2 

57.55 

47.02 

- 
-4.3 

+4.5 

- 
0.521 

1.094 

- 
-48.0 

+9.4 

- 
0.995 

3 b 

1.2 

57.10 

- 
- 

-4.8 

- 
- 

0.705 

- 
- 

-29.5 

- 
- 

0.995 

4a 

2.3 

69.55 

42.40 

- 

+15.9 

-5-8 

- 

0.646 

0.733 

- 

-35.4 

-26-7 

- 
0.997 

4b 

2.3 

68.08 

- 
- 

+13.5 

- 
- 

0.728 

- 
- 

-27.2 

- 
- 

0.997 



Examples 3 and 4: Here the same two-dimensional model is used 

as for the preceding example, but, instead of vz = 0, a noise/ 

signal ratio of vz = 1.2 (example 3a, 3b) and vz = 2.3 (example 

4a, 4b) is assumed, i.e. the number of cars entering the network 

unobserved and passing output 1, is 1.2 times (example 3a, b), 

or 2.3 times (example 4a, b), the number of cars going from 

input 2 and input 3 to output 1 (cf. Figure 6). Also, under 

these very complicated circumstances, it was possible to obtain 

sufficiently accurate travel time estimates even when large er- 

rors in the estimates of the split coefficients, and even larger 

ones in the impulse response values, were occurring (cf. Figure 

13 and Table 3). 

In summary, one may conclude that the method studied will 

lead to robust and reliable travel time estimates, even under 

complicated traffic conditions, i.e. if many cars are entering 

the analyscd route or network unobserved. But larger estimation 

errors for the split coefficients are to be expected under these 

conditions. 

Nonstationary Traffic Conditions 

It will be assumed in the following that changes of travel 

time may occur. The question is: How fast and accurately can 

these changes be identified? As is well-known [70], any adaptive 

identification method implies a compromise between the "quickness" 

and the "accuracy" of the identification process. For the recur- 

sive regression method of equations (56)-(57a), this compromise 

has to be made by a suitable choice of the forgetting factor, w 

(cf. Figure 10). A fast reaction to parameter changes requires 

a small value of w; a high accuracy requires a large one that 

deviates only slightly from the maximum value, w = 1. To study 

the problems of choosing a proper forgetting factor is, there- 

fore, the purpose of the investigations presented here. These 

are carried out for the extreme case of a sudden increase in 

travel time from Tm + 35 s for t < 0, to Tm = 75 s for t 2 0, 
i.e. for a sudden change of the impulse response (or travel 

time distribution) values, g (s) , from 



I 0.5 for  s = 3,4 I 0  for  s 7,5,8 
g ( s )  = to g ( s )  = 

0  f o r s < 3 , s z 4  0.5 fo r  s = 7,8 

( c f .  F i g u r e s  14 and 1 5 ) .  The f o l l o w i n g  examples  a r e  c o n s i d e r e d .  

- Road s e c t i o n s  w i t h o u t  i n t e r s e c t i o n s  between i n p u t  and  

o u t p u t ;  i .e .  vz = 0. The c u r v e s  o b t a i n e d  f o r  t h e  es t i -  

m a t e s  $ (s) i n  F i g u r e  14 a n d  qm(O, k )  i n  F i g u r e  15 k  
i l l u s t r a t e  t h a t  f o r  0.986 2 w  5 0.994 t h e  b e g i n n i n g  o f  

a  t r a v e l  t i m e  change c a n  b e  d i s c o v e r e d  a f t e r  20 i t e r a -  

t i o n s .  A f t e r  80 i t e r a t i o n s  t h e  r e m a i n i n g  r e l a t i v e  

t r a v e l  t i m e  e r r o r s  a r e  4% f o r  t h e  s m a l l e r  v a l u e  w  = 

0.986,  and 11% f o r  t h e  l a r g e r  w  = 0.994 ( c f .  F i g u r e  16,  

vz = 0 ) .  For  t h i s  i m p o r t a n t  s p e c i a l  t r a f f i c  p r o c e s s  a  

f o r g e t t i n g  f a c t o r  o f  w = 0.986 o r  even  a  l i t t l e  s m a l l e r  

c o u l d  b e  c o n s i d e r e d  a s  a  s u i t a b l e  c h o i c e .  



4 

Figure 15. Estimates. TRM(k.vz). of the charlgir~g travel tirne. TRM. for 

vz = 0;1;2 and w = 0.986 { a }  and w = 0.984 { b )  . 

- Traffic routes with intersections or on-ramps between 

input and output, i.e. vz = 1 and vz = 2. For these, 

the "step responses" of the travel time identification 

algorithm are shown in Figure 15 (curves 2 and 3 ) ,  while 

Figure 1 6  illustrates the dependence of the travel-time 

error, 6~~ = A ? ~ / T ~  (values and A), and the mean 

impulse response error, 

(valuesoand A), of the forgetting factor w. One ob- 

serves that for large noise/signal ratios (vz = 2), 

small values of w may no longer be considered as prefer- 

able. Nevertheless, a choice of a value of w within 

0 . 9 8 6  5 w 1 0 . 9 9 4 ,  will very likely result in acceptable 

estimates for a wide variety of noise/signal ratios, 

i.e. for very different traffic conditions. 



Figure 16.  Helat~vr rst in~dtion errors. 6 'rR RI a1111 6 g ,  resulting from 
80 iterations. 

AiJAL'iSIS OF A REAL TRAFFIC PROCESS 

The aim of this part of the case study is to check if the 

presumptions made in the simulation studies may be considered 

as realistic. 

The Process Studied 

As a study subject, a 1 0 0 0  m long part of the so-called 

North-South-Connection in Dresden (cf. Figure 5) has been 

chosen, and this has been coupled with a process computer lo- 

cated in the Dresden Hochschule fur Verkehrswesen via traffic 

detectors and telephone lines. Figure 7 shows one of the sets 

of measured traffic volumes, x (k) and xBa(k), obtained by 
~e 

this experimental installation at sampling intervals of 1 0  s, 

and used in the following identification experiments. True 

values of the mean travel time, Tm, and the split coefficient, 

h(n), are needed for these experiments, in order to have a basis 

for judging the accuracy of the estimates. These can be obtained 



v e r y  a c c u r a t e l y  by means o f  a  manual o f f - l i n e  method-- the  so-  

c a l l e d  l i c e n c e  p l a t e  method ( c f .  [44,  8 1 1 ) .  T h i s  u s e s  t h e  f o l -  

lowing  s i m p l e  b a s i c  i d e a :  The l i c e n c e  numbers o f  t h e  c a r s  

p a s s i n g  t h e  i n p u t  and o u t p u t  o f  t h e  r o u t e  a r e  v i s u a l l y  i d e n t i f i e d  

by s p e c i a l  m e a s u r i n g  p e r s o n n e l ,  and immedia te ly  s t o r e d  i n  a  s u i t -  

a b l e  form,  e .g .  o n  a  m a g n e t i c  t a p e  by means o f  a  t e l e x  t y p e w r i t e r .  

Using s t o r e d  i n f o r m a t i o n  f o r  i n p u t  and  o u t p u t  s i m u l t a n e o u s l y ,  a  

d i g i t a l  computer  d e t e r m i n e s  t h e  t r a v e l  t i m e  d i s t r i b u t i o n ,  f ( s ) ,  

t h e  mean t r a v e l  t i m e ,  Tm, and t h e  s p l i t  c o e f f i c i e n t ,  h ( n ) ,  w i t h  
0 h i g h  a c c u r a c y .  Moreover,  it c a n  compute t h e  number, x B a ( k ) ,  o f  

c a r s  g o i n g  from i n p u t  t o  o u t p u t ,  a s  w e l l  a s  t h e  number, x B z ( k ) ,  

o f  c a r s  e n t e r i n g  t h e  r o u t e  between i n p u t  and o u t p u t  and  l e a v i n g  

v i a  t h e  o u t p u t .  Both volumes a r e  shown i n  F i g u r e  7 ,  which il- 
- 

l u s t r a t e s  t h a t  t h e  mean v a l u e ,  xgz ( k )  , o f  t h e  d i s t u r b a n c e ,  xBz ( k )  , 
0 i s  a b o u t  t w i c e  a s  l a r g e  as t h e  mean v a l u e ,  xBa, o f  x B a ( k ) ,  i . e .  

t h e  n o i s e / s i g n a l  r a t i o  o f  e q u a t i o n  ( 6 2 )  i s  a b o u t  2 ,  which i s  of  

t h e  same o r d e r  o f  magni tude  a s  used  i n  t h e  s i m u l a t i o n  s t u d i e s  

d e s c r i b e d  e a r l i e r .  

T h r e e  i n t e r s e c t i o n s  w i t h  s i g n a l s  a r e  l o c a t e d  between t h e  

i n p u t  and o u t p u t  d e t e c t o r s  ( c f  . F i g u r e  5 )  where ,  b e c a u s e  o f  

c e r t a i n  s p e c i a l i t i e s ,  t h e  t r a f f i c  s t r e a m  i n  g e n e r a l  h a s  t o  s t o p  

o n c e  a t  t h e  m i d d l e  i n t e r s e c t i o n .  One c o u l d  a r g u e  t h a t  t h i s  s t o p  

w i l l  c a u s e  p rob lems  c o n c e r n i n g  t h e  a p p l i c a b i l i t y  o f  t h e  i n p u t -  

o u t p u t  model ( 4 9 ) .  But  t h e  r e s u l t s  o b t a i n e d  by t h e  l e a s t  s q u a r e s  

method and p r e s e n t e d  i n  F i g u r e  17 and T a b l e  4,  i l l u s t r a t e  t h a t  

t h o s e  d o u b t s  are n o t  j u s t i f i e d  i n  t h e  t r a f f i c  s y s t e m  a n a l y z e d .  

The R e s u l t s  Obta ined  

One c a n  see t h a t  t h e  e s t i m a t e d  i m p u l s e  r e s p o n s e  v a l u e s ,  

$ ( s ) ,  d e s c r i b e  o n l y  v e r y  r o u g h l y  t h e  s h a p e  o f  t h e  t r u e  v a l u e s ,  

g ( s )  ( c f .  T a b l e  4 ) ,  w h i l e  t h e  f r e q u e n c y  d i s t r i b u t i o n ,  P ( s ) ,  
d e t e r m i n e d  by e q u a t i o n  ( 6 4 )  f i t s  t h e  t r u e  v a l u e s ,  f  ( s ) ,  much 

b e t t e r  ( c f .  F i g u r e  1 7 ) .  T h i s  i s  t h e  r e a s o n  why t h e  e s t i m a t e ,  

9,, of  t h e  mean t r a v e l  t i m e  c a n  b e  d e t e r m i n e d  w i t h  t h e  e x t r a o r -  

d i n a r i l y  s m a l l  e r r o r  o f  1 .6%.  



A 

Flgure 17. Estimated, f(s), and "true". f(s), values of the travel time frequency 
distribution obtained from traffic volumes measured at the North- 
South-Connection in Dresden (cf. Figure 5 and Figure 7). 

T a b l e  4 .  T r u e  v a l u e s ,  g ( s )  a n d  f ( s )  , a n d  e s t i m a t e s ,  6 ( s )  a n d  
E ( s ) ,  o b t a i n e d  f r o m  x a n d  xBa shown i n  F i g u r e  7 f o r  

Be 
t h e  D r e s d e n  N o r t h - S o u t h - C o n n e c t i o n .  

I 

Es t i -  ( g ( s )  

I 
matesIf(s) 

0.11 

0.10 

-0.07 

0 

-0.13 

0 

0.05 

0.05 

0.16 

0.15 

-0.29 

0 

0.25 

0.23 

0.10 

0.09 

0.43 

0.39 

-0.28 

0 

119s 0.33 



From the simulation studies, an error of the order of 5 to 

10% can be expected (cf. Table 3, example 4), and will very 

likely occur if one repeats the identification with different 

sets of data. For the split coefficient h(n), an estimation 

error of about 38% was obtained, which is of a similar order of 

magnitude as in the simulation studies (cf. Table 4 with Table 3 

for example 4). To reduce this error, an additional traffic 

detector should be installed between the input and output of 

the route as shown in Figure 5. Considering the complex struc- 

ture of that route, such an investment is obviously reasonable. 

Nevertheless, the conclusion that the methodology presented 

here for the development of macroscopic traffic input-output 

models and the identification of model parameters, is success- 

fully applicable under real traffic conditions, and delivers 

valuable information for different classes of traffic control 

problems (cf. Part I, last section) is justified. Further studies 

of real traffic processes, e.g. under nonstationary conditions, 

are, of course, necessary and it is intended to carry these out. 
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