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PREFACE

The problem of how to make a “fair division™ of resources among
competing interests arises in many areas of application at IIASA. One of
the tasks in the System and Decision Sciences Area is the systematic
investigation of different criteria of fairness and the formulation of
allocation procedures based thereon.

A particular problem of fair division having wide application in
governmental decision-making is the epportionment problem. An appli-
cation has recently arisen in the debate over how many seats in the
European Parliament to allocate to the different member countries.
Discussions swirled around particular numbers, over which agreement
was difficult to achieve. A systematic approach that seeks to establish
bases for agreement on the criteria or “principles’ for fair division should
stand a better chance of acceptance in that it represents a scientific or
system-analytic approach to the problem.
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ABSTRACT

1t has recently been pointed out that there exists more than one
house monotone apportionment method satisfying quota.

This paper gives a simple characterization of all such methods as
an immediate consequence of the Quota method’s existence. Further,
a manner of exposition is formulated which unites several key house
monotone apportionment methods, thus clearly showing their connec-
tions.
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Quotatone Apportionment Methods

1. INTRODUCTION

Let p = (p1,...,ps) be the populations of s states, where
each p; > 0, and h > 0 the number of seats in the house. The
problem is to find, for any p and all h, an apportionment for
h, that is, an s~tuple of non-negative integers a= (a1,...,as)
whose sum is h. A solution of the apportionment problem is
therefore a function f which to every p and all h associates a
unique apportionment for h, a; = f,(p,h) > 0 where Ziai = h.
If £ is a solution and h a house size then gh is the function

g restricted to the domain (p,h'), where 0 < h' < h. fh is

called a solutZon up to h and f is called a; extension of fh.
A specific apportionment "method" may give several differe;t
solutions, for "ties" may occur when using it, for example when
two states have identical populations. For this reason it is

useful to define an apportionment method M as a non-empty set of
solutions. A method M is the unique one satisfying given prop-

erties if any other collection of solutions with these properties

is a collection of M-solutions.

Let p = Zipi be the total population. The exact quota of
state j is qj(g,h) = pjh/p, its lower quota 1is lqj(p,h)J (the
largest integer less than or equal to qj), and its upper quota
is [qj(g,h)] (the least integer greater than or equal to qj).
An apportionment method is said to satisfy lower quota if, for
each of its solutions £, f;(p,h) > lqi(g,h)J, to satisfy upper
quota if fi(E’h) < [qi(g,h)], and to satisfy quota if it satis-—
fies both lower and upper quota. A method is said to be hocuse
monotone if, for each of its solutions g, f(g,h+1) > g(E,h).

A method g is quotatone if M is house monotone and satisfies

quota.

The existence of a quotatone method was first established in
[1,4]. This method, called the Quota Method, was also shown %o
be the unique such method satisfying a certain property of mathe-

matical consistency (subject to satisfying quota).



On the other hand, not every quota, house monotone appor-
tionment solution is a Quota method solution: indeed, it suf-
fices to find just one example in which some Quota solution may
be "twiddled" slightly (e.g. by interchanging the order in which
some two states receive successive seats) while still satisfying
house monotonicity and quota. Of course, such solutions will
have a certain arbitrariness about them, and in particular will
not be "consistent," thus violating an intrinsic idea of what

is meant by a "method."

Nevertheless, it is interesting to ask how far some arbi-
trary, quotatone solution may deviate from a Quota method solution.

+iil [6] has given a characterization of all such solutions;
here we shall give a simpler characterization that relates the
class of guota, house monotone solutions to the Quota method

and, at a further remove, to the Jefferson method, J.

2. THE DECK OF CARDS

Given p we define the Jefferson deck, D = {(i,a,pi/a)}, as
a sequence of "cards," each card bearing the name of a state i,
a number of seats a, and the average district size pi/a if a
seats are apportioned to state i, stacked, in decreasing order,

by the values pi/a, 1 <1<s, and a > 1 integer.

In the sequel we drop any redundant mention of the popula-

tions p.

Any house monotone method may be described in terms of 9 as
follows. At house size h = 0, set a = 0 and begin with the full
deck D = D(0,0). Given any apportionme;t a for h, an apportion-
ment for h + 1 is found by withdrawing a card of form (i,ai+1,
pi/(ai+1)) from the remaining deck Q(g,h) and giving ai+-] seats

to state 1i.

To say an apportionment a for h satisfies lower quota is

equivalent to saying a; + 1> pih/p or



(1 pi/(ai+1) < p/h ,

while to say a satisfies upper quota is eguivalent to saying

a; - 1< pih/p or (for h » 0 and a; 2 1)

(2) p;/(a;-1) > p/h .

In this paper pi/o will be interpreted as having value plus in-
finity. 8o, knowing the position of p/h relative to the Jefferson

deck, D determines the apportionments which satisfy quota at h.

3. THE JEFFERSON METHOD

The Jefferson method J [3,4] may be described as follows:

(i) fi(O) =0 , 1<1<s and D(0,0) =D

(ii) 1If fi(h) = a, 1 < i< s, is an apportionment for h
and P(a,h) the remaining deck, let k be the name of
the state on the topmost card. Then remove that card
and let fk(h+1) = ak4-1 and fi(h+1) = a; for i # k.

Notice that the number of seats on the discarded card is pre-
cisely equal to ak+-1. Huntington [5] described J and certain

other methods in essentially this manner.

J is clearly house monotone. It also satisfies lower quota.

For, suppose not: then there is some state j with pj/(aj+1) pd

p/h (see (1)). Thus pj/aj > p/h and
poliPi Py By
h~ ¥ oa, >min =T =3 !
i9i i i L

imply.ng pj/(aj+1) > pl/az. This is a contradiction, since then
the card (j,aj+1,pj/(aj+1)) would have been chosen before the
card (R,al,pl/al).



It has been shown that house monotonicity and satisfying
lower quota together with a "consistency" property (see Section 8)

uniquely characterizes J [31.

4. THE QUOTA METHOD

Let U(a,h) be the set of states which are eligible to re-
ceive an extra seat in a house of size h+ 1 without violating
upper quota, U(a,h) = {i:pi/ai > p/(h+1)}. These states can
be ascertained by looking at the ordered deck of discarded
cards.

The Quota methoed Q [1,4] may be described as follows:

(1) fi(O) =0 , 1 <1i<s and D(0,0) =D .

(ii) 1f fi(h) = aj. 1 <1i< s, is an apportionment for h
and D{a,h) the remaining deck, let k be the name of
the state on the topmost card that belongs to U(a,h).
Then, remove that card and let fk(h+1) = a, +1 and

k
fi(h+1) = a; for i # k.
It has been shown that house monotonicity and satisfying
guota together with a weakened "consistency" property uniquely

characterize Q [4].

5. QUOTATONE METHODS

Let D be the Jefferson deck. For any house h > 0 and ap-
portionment a for h let o(a,h) be the first integer a 2 1 such
that there are at least o cards in the remaining deck D(a,h)
with value 2 p/(h+a), and let L(g,h) be the set of all~s£ate
names appearing on the first a(g,h) cards. If no such ¢ exists
then set o = =« and let L(g,h) be the set of all states (not all
o need be checked; see below).

The meaning of o = a(a,h) is the following: if ¢ < o,
f(g,h) = a is some apportionment at h, and the (h+1)St seat is
given to some state k tL(g,h), then there can be no monotone

. h . e
extension g of £ such that g satisfies lower guota at house



h + a. The reason is that the allocation by g of each seat from
h + 1 to h + o corresponds to the removal of a card from the re-
maining deck, so (by choice of a) at h + o there is still at
least one card remaining corresponding to some state j e L(a,h)
and having value pj/b > p/(h+a). Now, since at h + o state j

has b' < b seats we have
py/(b'+1) > py/b > p/(hta)

which shows by (1) that state j violates lower quota at h + o.

Therefore if f is a quotatone apportionment solution, then f

satisfies
(i) f£(p,0) =0 ,
(ii) if f(p,h) = a and fk(g,h+1) = ak+-1, then

ke L(a,h)N U(a,h).

The significance of o(a,h) was to determine which states
belonged to L(g,h). If the;e is no "first" a, then all states
must belong to L{a,h). It is clearly unnecessary to inspect
values of a larger than those which assure that every card of
form (i,ai+1,pi/(ai+1)) has value greater than or equal to
p/ (h+a). Define, then, Bi to be the least positive integer
satisfying pi/(ai+1) > p/(h+B;), that is B; = fp(a;+1)/p; - hi
and B = maxiBi. Then L(a,h) may be defined as before with this
modification: if there is no first integer B > o > 1 for which
at least o cards in Q(Q,h) have value > p/(h+a), then let L(g,h)

be the set of all states.

Let Q be the class of all solutions f satisfying (i) and

(ii).

Theorem 1. Q is precisely the set of all quotatone

solutions.



Proof. We know that every quotatone solution is in g, hence

Q C g. Further, every f € g satisfies upper quota, by definition.
Suppose f(p,h+1) = b violates lower quota at h + 1 for state k.
Then p,/(b,+1) > p/(h+1) by (1), and card d; = (k,by+1,py/ (by+1))
is in D(b,h+1), hence also in D(f(h),h). Therefore a(f(h),h) =1,
hence the (h+1)St card removed, dh+1' also had value greater

than or equal to p/(h+1), and dh+1 # do. Hence a(f(h-1),h-1) < 2
so dh (the hth card removed) had value greater than or equal to
p/ (h+1). In general, a(f(h'),h') + h' < h+1 for h' h, and in

<
D there were h + 2 cards d,,d,,. with values 2 p/(h+1).

++dp4
But then no house monotone solution can satisfy quota at h + 1,

contradicting the fact that Q D Q # ¢.0

Thus every quotatone solution is a variant of a Quota method
solution in the following sense: instead of giving the addi-
tional seat at each successive house to the first state satis-
fying upper quota, give it to some state satisfying upper quota
among the first o states. The problem is to decide which of the
o states to select: the selection of the first one (satisfying
upper quota) turns out to be the only resolution that is "con-

sistent" (see Section 8) subject to satisfying quota.

6. GENERALIZED LOWER QUOTA

It is necessary to generalize definitions, methods and
theorems to the need for any admissible apportionment a to sat-—
isfy certain minimum requirements r= (r1,...,rs), whe;e the
integer r; 2 0 is the minimum number of seats which must be
accorded to state i by mandate. Letting h* = Ziri' an appor-
tionment for h > h* is an n-tuple of integers a = (ai,...,as),
with a > r and Ziai = h. A solution is a function f(p,r,h)
which to every p and r, and all h 2 h* = }.r., associates a unique
apportionment for h, a; = fi(p,x,h) 2 r;, where Eiai = h. The
concepts method, extension, solution up to h are defined analo-
gously to the pure (r=0) case.

It is impossible, for certain values r, to ask for solutions



satisfying quota. Thus, this definition must be modified. The
motivation is this. Suppose the exact quota of state i at h is
less than or equal to ri: then it deserves no more than Ty seats,
but is required to receive at least ry seats, Therefore, we
reason, it should receive exactly Ty seats, and we say its lower
and upper quota should be exactly r, . Eliminate these states
whose apportionment is fixed, and subtract the corresponding ri's
from h = h0 to obtain h1 seats which must be distributed among
the remaining states. Using this smaller house h1, compute

exact quotas, that is, compute the proportional share of h, that

each of the remaining states deserves, and iterate.

Specifically, let J, = J,(h) = {1,...,8}, h, h(>h*) and
define J; = J,(h) = {ie J07pih0/zJ0pj> ri} and h,

hg - Zinfi'

In general, JB+1 = JB+1(h) = {ie JB;pihB/ZJBpj3>ri} and hB+1 =

h, - Zi¢J8+1ri < hB' the process stopping with I, when Tyer = Ty
Thus, J, (h)>D J, (h):)...:DJu (h) = J(h) and h = h, > h1>...>hu, with
pihu/zJupj > r; for ie Ju = J. We define the (generalized)

exact quota qi(g,g,h) of state i to be
qi(g,f,h) = ry for i¢ J(h)

= pihu/zJ(h)pj for i € J(h)

Thus, the (generalized) lower quota of state i is li(h) =

lqi(g,f,hj and the (generalized) upper quota is u; (h) = [qi(p,
f,h)]. This means, in particular, that li(h) = ui(h) = r; for
ig J(h). Note that this definition is slightly more natural

than that given previously in [#] and simplifies the proof of

Theorem 4 in that paper.

There is a more direct way of computing J(h). By definition,

(3) pihB/ZJBpj sy foriedg~Jgy » OB <



Therefore,

B+1 B_ZJ ~J

and so

Ly, P3/er1 2 1o P5/Me

or

) p./(h—-h*+ r.) 2 7. p./(th-h¥+J_r.)
Tgeq ) EE g Jg 2

From this and (3) we deduce

L3 (n)P;
h-hx*+ Z

> p /1, for all ieJ(h), k¢J(h)
Jh)55

But (4) uniquely determines J(h) by the following procedure.

Suppose, for simplicity, p1/r1 2 py/ry> ... 2p /r . Given h and
h*, consider A1 = p1/(h-h*-+r1). If A1 > pz/rz, stop, J(h) =
{1}. Otherwise, consider Ay = (p1-+p2)/(h— h* + r,+ r,) > Ag.

If A, 2 p3/r3, stop, J(h) = {1,2}. Otherwise, continue simi-
larly.

Define U(g,h) to be the set of states eligible to receive
an extra seat in a house of size h+ 1 without violating ({(gener-
alized) upper quota, U(a,h) = {i=ai4-1 < ui(h+1)}. Then the
(generalized) Quota method Q(r) [1,3] with requirements is exact-
ly the same as Q except that fi(g,g,h*) = r; for all i, and
P(Erh*) is the original deck D from which has been eliminated
all cards (i,a,pi/a) with a < r; for all 1i.

Still [6] attacks this definition of generalized lower quota
because it "admits apportionments" not satisfying pure lower

quota "even though...no violation of pure lower gquota is necessary



to satisfy the minimum requirements." The following theorem shows

his objection to be inapplicable.

Theorem 2. If there exists an apportionment at h satisfying

pure lower quota then there exists a g—apportionment which does so.

Proof. Suppose that there exists an apportionment at some
h'(>h*= ziri) which satisfies pure lower quotas. Then, surely,

[y max {1p;h'/p),x;} < h', where p = [;p;.

Let p = zipi' Suppose a is a Q-apportionment which does not
satisfy a; > [pih'/pJ for all i. Then there exists j such that

aj < lpjh'/pj, whence pj/(aj + 1) > p/h', and therefore there must
be some 2 with a, > plh'/p.

Let L = {k;ak>pkh'/p} # ¢, and R = {i;ri;pih'/p}. For
any i ¢ L we have a; < lpih'/PJ; in particular, 3y < [pjh'/p].
Further, if we assume LCR then

Lier2i * Lign2i Slier®s* Lign®s <lieri+ Ligplpsh'/p) <b

contradicting the fact that a is an apportionment for h'. Thus,
there exists 2e L~ R, that is, a state for which a, > pzh’/p > Lo
implying

pl/aQ<p/h'ép]/(aJ+1) .

Let hJL be the house at which state % received its alth seat;

and choose % e L~ R such that h, is largest. Clearly hJL <h', since

L
state j is eligible to receive an extra seat at h'. ILet

K = {i; state i received a seat at h, hl <h_<_h0}

By choice of &, 2 ¢ K.

Suppose k € K and a, > pkh'/p; then ke L and k¢ R, but hk >

h a contradiction. Therefore, k € K implies

2,'
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(5) fk(h‘) = a, =< pkh'/p

However, f (hl) < a._ for keK, and so

k k
P/ (£, (hy) + 1) > p /a2 p/h' > pp/ag = pp/f, (),

showing that ke K is ineligible at hR’ that is,

v

pkhl/p for ke K

But, in the interval h, < h < h' exactly h' -h  seats were
: [] - = v
awarded to states in K, so ZK{fk(h ) fk(hl)} h h

Subtracting (6) from (5), then summing over K,

I

h' - hy = J{f, (") - £ ()} < Jp(py/p) (W' - hy),

implying, since h'-—hR > 0, that zka/p > 1, a contradiction

since 2 ¢ K. This completes the proof.

Still's definition [6] of generalized lower quota %(h) may
For h>h*, let %' (h) be de-
(h-1)}, and h' = J2] (). 1n

B+1
i

be given as follows. &(h*) =
fined by ll(h)
B

r.
max{lq; (W), &,
+

> h then let "1 (n) be defined by ¢
B

It

general, if h (h)

0

max {lg(h)- 1, li(h—1)}. Otherwise, if h~ < h, then 2(h)
gB(h). Thus Still successively reduces the pure lower gquota of
every state that can be reduced without going below the previous
generalized lower quota. This is not a proportionally motivated
scheme; in fact, it tends to consistently favor large states ver-
sus small states, as the example of Table 1 illustrates. It
must be realized that a definition of generalized lower quota
imposes de facto a method of apportionment for "small" house
sizes, so this non-proportional bias is important. The Ri(h)

for h = 20,21,22,23,24,25, and 27 sum to h; hence the lower
quotas are in these cases the only admissible apportionments for
h which belong to sStill's class of methods. Consider, in partic-

ular, h = 27, The lower quotas force an apportionment with
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£22/221 = a22/a21 = 6 whereas p22/p21 = 1.9925. This is the
result of neglecting proportionality in defining lower guotas.
In contrast, the proportional approach to lower quotas at h = 27
gives %(27) = (1,1,...,1,2,4), so that the ratio £22/l21 = 2.
This analysis also shows that the Quota method with minimum re-
quirements does not belong to Still's class. However, Still's
generalized lower quota concept has no intuitive appeal, so we
believe his class is not the appropriate one to consider. In-
stead, we generalize the description of quota, house monotone

methods given in Section 5 for our lower quota definition.

Table 1. Still's lower quotas.

State P T g(ZO) 2(21) R(22) 2(23) 2(24) g(ZS) 2(26) 2(27)
1 192 1 1 1 1 1 1 1 1 1
2 193 1 1 1 1 1 1 1 1 1
20 211 1 1 1 1 1 1 1 1 1
21 1995 0 0 0 0 0 0 0 o 1
22 3975 0 0 1 2 3 4 5 5 6
10,000 20 20 21 22 23 24 25 25 27

7. GENERALIZED QUOTATONE METHODS

Given minimum requirements (r;,...,r.) = r, let h* = Zri,
and for any h > h* let li(h), ui(h) be the generalized lowdr
and upper quotas for state i, and J(h) the set of "slack" states.
Then an apportionment a for h satisfies (generalized) quota if
and only if for each i, u; (h) > a; > li(h), and a solution f

satisfies quota if all its apportionments do. We note that.,

for i £ J(h), a; > £i(h) is equivalent to
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a. +1>p.(h-h*+ J r.)/ 1 b,
+ . gty P [amy

or

*
(7) py/(a;+1) < J(zh)pj/((h h )+J({h)rj) i

For any given h > 0 and any apportionment a for h consider
the Jefferson deck D(a,h) remaining after all cards (i,ai,pi/ai),
0 < ai < a;, are removed. Define o = a(a,h) to be the first
integer o > 1 such that there are at least o distinct cards in

D(a,h) having value > Z p./((h-h*) + Z r. + a), and let
- J(h+a) 7 J (h+a)

L(a,h) be the set of all state names appearing on the first a
cards. If no such o exists then set a = ®» and let L(g,h) be
the set of all states (see below).

Suppose that g(g,h) = a is some apportionment at h, and
the (h+1)St seat is given to some state k¢4L(§,h). Then o < «,
and in coanstructing a house monotone extension of gh exactly o
cards must be removed in going from h+1 to h+oa. By choice of

o there remains at h+ a some card (j,b ,pj/bj) with value

3

p;/b; > ] p./((h—h'-")+ ) r.+a) ,
3T J(htay J (h+a) 7

and since state j has fewer than bj seats at h+a, it follows
from (7) that lower guota at h+a is violated. Hence if f is
a house monotone apportionment solution satisfying quota (for

the given requirements r), then we must have

(i) £0* =1 ;

and
(ii) if g(h) = a and fk(h+1) = + 1,

then

ax
ke L(a,h)NU(a,h) .

At this point we note that, in the definition of a = a(a,h),
it is unneccesary to inspect values of a larger than those which
assure that the cards (i,ai+1,pi/(ai+1)) have value
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p,/(aj+1) > ¥ pj/ (th-h*) + } r.+a) for each i, 1 < i
J (h+1) J (h+1)

< s, since for any o > 1, J(h+1) € J(h+a), and by (4)

) p./((h—h*) + ] rotw> | p</((h—h*) + ] ri+a)
Jh+1) T J(h+1) 3 J(h+a) © J (h+a) 3

Hence if we define

B = max|{(a.+1) ) bp. i
i [ 1 J(h+1) 31/Ps

-} r. - (h-h*|
J(h+1) J

then L(a,h) may be defined as above with the modification: if
there is no first integer a in the range B > a > 1 satisfying the

condition, let L(a,h) be the set of all states.

Let Q(r) be the class of all solutions f satisfying (i)

and (ii).

Theorem 3. Q(r) is precisely the set of all quotatone

solutions for the requirements r.

The proof parallels that of Theorem 1.

8. CONCLUDING REMARKS

Two fundamental properties of apportionment methods are
dictated by common sense and firmly grounded in the history

of the problem: house monotonicity and satisfying quota.

Following the idea of Still that the class of all methods
having these two properties are in some sense describable, we
have shown that in fact they may all be described by using the
Jefferson deck and choosing a card "near the top" that satisfies
upper guota. If minimum requirements are given, we have shown
that the quota idea has a natural generalization, and that the
class of all house monotone (generalized) quota methods is again
describable in a natural way in terms of the Jefferson deck.

By contrast, the approach to generalized quotas proposed by
Still, and the methods corresponding to them, were shown to

lead to unnatural results.
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Nevertheless, since there is a multiplicity of apportion-
ment methods which satisfy the above two properties, the problem
remains: which among these methods should be used? Here a third
principle comes into play, which has its basis in the pioneering
work on apportionment methods by E.V. Huntington in the early
part of this century [5] and touches on the idea of what is
meant intuitively by "method". Briefly stated, if for some
problem and M-solution f one state, having population p and a
seats at house h, gets the "next" (i.e. (h+1)St) seat before
another state having population p* and a* seats, then the first
state has priority over the second state, written (p,a) 2 (p*,a*).
If in another problem we also have (p*,a*) > (p,a), then we say
the states are tied, written (p*,a*) ~ (p,a). The method M is
said to be consistent if it treats tied states equally with re-
spect to receiving one more seat; that is, there must be an
alternate M-solution f' which is an extension of gh and gives
the (h+1)St seat instead to the p*-state. The essence of the
idea is that a "method" should not change priorities between a
pair of states if the data of some other state populations are
altered.

The five methods proposed by Huntington, as well as their
generalizations [2], all have this property. Moreover it may
be shown that every house monotone, consistent method is neces-
sarily a Huntington method, that is, uses a "rank index" r(p,a)
that tells which state (with population p and number of seats

a) most deserves to receive one more seat. Specifically,

(i) £(0) =0 ,

and

(ii) if £{h) = a and k is some one state maximizing

r(pk,ak), then

fk(h+1) ak-+1 ’ fi(h+1) = a; all i # k
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The desirable features of these methods are: first, they
are eminently computable, and second, they are based on the
natural idea of comparing the states pairwise to determine
which is worst off, hence most deserving of an extra seat.

On the other hand, none of the Huntington methods satisfies

quota [4].

Given the precedent -- in the political context —- of the
two principles, house monotonicity and satisfying quota, it is
natural to ask whether there is some modification of the con-
sistency concept that leads to a computationally simple method.
Indeed there is. Let consistency be modified to apply between
pairs of states only when both states are eligible (i.e. both
are in U(g,h)). Then the Quota method is the unique method
that is quota, house monotone, and consistent in this weaker
sense [4]. (Note that with the present definition of general-
ized upper quotas, the restriction in [4] to unbiased require-
ments is unnecessary.) Moreover it is clear from the preceding
that the Quota method Q is the computationally simplest and most
natural within the class g. If the concept is weakened still
further to apply only between pairs of states that are both
eligible and among the first a(g,h) states, that is in L(g,h)ﬂ
U(aih), then we may expect that this property, together with
house monotonicity and satisfying quota, determines precisely
the class of methods defined as follows.

Let r(p,a) be a rank index and let r be a given set of
minimum requirements, h* = } r;. Define the quotatone method
1
M based on r(p,a) to be the set of all solutions £ obtained as

follows. For any r,

(i) £t*» =r ;

(ii) if g(h) = a and k is some one state that maximizes
r(pk,ak) over all ke L(a,h)Nn U(a,h) then let

£ (ht1) =a + 1 , £,(h+1) = a; all i % k.

Thus, for example, Q is the quotatone method basen on p/(a+1).
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Among the class of all such methods Q is the simplest and
most natural, since it does not depend on the computation of
L(a,h), which in general is complex. Furthermore, although
computers make possible the calculation of quotatone apportion-
ments for any rank-index, it is nevertheless of paramount impor-
tance that political men both understand and feel comfortable
with any method that is used. It may be that the set L(g,h) is
simply beyond political understanding.

There are several criteria which are clearly of primary
importance in choosing an apportionment method: satisfying quota,
house monotonicity, consistency, and "simplicity." The de-
siderata cannot be met simultaneously. The question is to find
a satisfactory reconciliation. Consistency and house monoton-
icity determine Huntington methods, which are simple but do not
satisfy quota. A slightly weakened consistency notion together
with satisfying quota gives the Quota method, which has an in-
tuitive simplicity. A considerably weakened consistency idea
leads to quotatone methods based on some r(p,a) which, it seems,

have mathematical appeal but lack simplicity.
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