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Abstract

This paper (motivated by recent works on optimization of long-term economic growth)
suggests some further developments in the theory of first-order necessary optimality con-
ditions for problems of optimal control with infinite time horizons. We describe an ap-
proximation technique involving auxiliary finite-horizon optimal control problems and use
it to prove new versions of the Pontryagin maximum principle. A special attention is paid
to behavior of the adjoint variables and the Hamiltonian. Typical cases, in which standard
transversality conditions hold at infinity, are described. Several significant earlier results
are generalized.
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The Pontryagin Maximum Principle for

Infinite-Horizon Optimal Controls

Sergei Aseev (aseev@iiasa.ac.at)
Arkadii Kryazhimskii (kryazhim@aha.ru)

1 Introduction

We deal with an infinite-horizon optimal control problem referred to as problem (P ), in
which an integral goal functional is maximized across the set of controls and trajectories
of a nonlinear finite-dimensional dynamical system operating over an unbounded interval
of time. Problems of this type emerge in mathematical economics; they are closely related
to the concept of economic sustainability (see, e.g., [39]) and arise in numerous studies
on optimization of economic growth (see [1], [2], [16], [17], [23], [32], [37]). A progress
in this field of economics was initiated by Ramsey in the 1920s [34], and fundamental
contributions were made by Koopmans [27] and Solow [40] in the 1960s.

Throughout this paper, ‖·‖ and 〈·, ·〉 denote, respectively, the norm and scalar product
in a finite-dimensional Euclidean space, ∗ stands for the matrix transposition, and “a.a.”
replaces “almost all with respect to the Lebeague measure”.

Using standard notations of control theory, we represent the optimal control problem
(P ) as follows.

Problem (P ):
ẋ(t) = f(x(t), u(t)); (1.1)

u(t) ∈ U ;

x(0) = x0; (1.2)

maximize J(x, u) =

∫ ∞
0

e−ρtg(x(t), u(t))dt. (1.3)

Here t is time varying in [0,∞); (1.1) is the equation of a dynamical control system;
x(t) = (x1(t), . . . , xn(t))∗ and u(t) = (u1(t), . . . , um(t))∗ are the current values of system’s
states and controls treated as column vectors in the n- andm-dimensional Euclidean spaces
Rn and Rm, respectively; U is a nonempty convex compactum in Rm, which constrains
the values of the controls; x0 is a given initial state; and ρ ≥ 0 is a given parameter. The
functions f : G × U 	→ Rn and g : G × U 	→ R1, are differentiable; here G is an open
set in Rn such that x0 ∈ G. The matrix ∂f/∂x = (∂f i/∂xj)i,j=1,...,n (here f i is the ith
coordinate map for f) and the gradient ∂g/∂x = (∂g/∂x1, . . . , ∂g/∂xn)∗ are assumed to
be continuous on G× U .

As usual a control (in system (1.1)) is identified with an arbitrary (Lebeague) measur-
able function u : [0,∞) 	→ U . A trajectory (of system (1.1)) corresponding to a control u

*This work was partially supported by the Russian Foundation for Basic Research (projects # 99-01-
01051 and # 03-01-00737) and by the Fujitsu Research Institute (IIASA-FRI contract # 01-109).
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is a Charatheodory solution x to (1.1), which satisfies the initial condition (1.2). The con-
tinuous differentiability of f implies that if a trajectory corresponding to a certain control
exists, then it is unique. We assume that for any control u the trajectory x corresponding
to u exists on [0,∞) and takes values in G. Any pair (u, x) where u is a control and x

is the trajectory corresponding to u will further be called an admissible pair (for system
(1.1)). An admissible pair (u∗, x∗) that maximizes the integral (1.3) across the set of all
admissible pairs (u, x) is said to be optimal (in problem (P )); its components u∗ and x∗
are called an optimal control (in problem (P )) and an optimal trajectory (in problem (P )),
respectively.

Our basic assumptions are the following.

(A1) There exists a C0 ≥ 0 such that

〈x, f(x, u)〉 ≤ C0(1 + ‖x‖2) for all x ∈ G and all u ∈ U.

(A2) For each x ∈ G the function u 	→ f(x, u) is affine, i.e.,

f(x, u) = f0(x) +
m∑
i=1

fi(x)u
i for all x ∈ G and all u ∈ U

where fi : G 	→ Rn, i = 0, 1, . . . , m, are continuously differentiable.

(A3) For each x ∈ G the function u 	→ g(x, u) is concave.

(A4) There exist positive-valued functions µ and ω on [0,∞) such that µ(t)→ 0, ω(t)→ 0
as t→∞ and for any admissible pair (u, x)

e−ρtmax u∈U |g(x(t), u)| ≤ µ(t) for all t > 0; (1.4)∫ ∞
T

e−ρt|g(x(t), u(t))|dt≤ ω(T ) for all T > 0. (1.5)

Remark 1.1 As shown in [14] (Theorem 3.6), assumptions (A1) – (A4) guarantee the
existence of an admissible pair optimal in problem (P ).

Remark 1.2 Assumption (A1) is conventionally used in existence theorems in theory of
optimal control (see [20], [22]). Assumptions (A2) and (A3) imply that problem (P ) is
“linear-convex” in control; the “linear-convex” structure is important for the implemen-
tation of approximation techniques. Assumption (A4) (see (1.5)) implies that the integral
(1.3) converges absolutely for any admissible pair (u, x), which excludes any ambiguity in
interpreting problem (P ). Finally, we note that assumptions (A1) – (A4) are satisfied for
typical problems arising in economic applications.

In this paper we analyze conditions necessary for the optimality of an admissible pair
in problem (P ).

In theory of optimal control standard necessary conditions of optimality are given by
the Pontryagin maximum principle [33]. Well-known are classical versions of the Pontrya-
gin maximum principle, holding for problems of optimal control with finite time horizons.

For infinite-horizon optimal control problems without discounting factor (ρ = 0) the
Pontryagin maximum principle was stated in [33] under the constraint limt→∞ x(t) = x1
where x1 is a prescribed terminal state. However, the latter constraint is not critical for
the proof given in [33], which, therefore, provides a version of the Pontryagin maximum
principle for problem (P ) in case of ρ = 0. For infinite-horizon optimal control problems
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involving the discounting factor (ρ > 0), a rigorous proof of a general statement on the
Pontryaginmaximum principle was given in [24]. In application to problem (P ), the formu-
lations of [33] and [24] are, however, incomplete, since they establish only “core” relations
of the Pontryagin maximum principle and do not suggest any analogue of the transver-
sality conditions, which constitute an immanent component of the Pontryagin maximum
principle for classical finite-horizon optimal control problems with nonconstrained termi-
nal states. The issue of transversality conditions for problem (P ) is in the focus of our
study.

Note that such characteristic features of problem (P ) as the lack of constraints on
behavior of optimal trajectories in a neighborhood of infinity, and the involvement of a
nontrivial discounting factor in the goal functional (if ρ > 0) prevent the efficient use of
the standard needle variations technique [33] for proving analogues of the transversality
conditions.

For problem (P ), the “core” relations of the Pontryagin maximum principle are as
usual formulated in terms of the Hamilton-Pontryagin function H : Rn × [0,∞) × U ×
Rn × R1 	→ R1 and the maximized Hamilton-Pontryagin function, or Hamiltonian H :
Rn × [0,∞)×Rn ×R1 	→ R1 defined by

H(x, t, u, ψ, ψ0) = 〈f(x, u), ψ〉+ ψ0e−ρtg(x, u)

and
H(x, t, ψ, ψ0) = sup

u∈U
H(x, t, u, ψ, ψ0).

The formulation involves an admissible pair (u∗, x∗) and a pair (ψ, ψ0) of adjoint variables
associated with (u∗, x∗) (in problem (P )); here ψ is a (Caratheodory) solution to the adjoint
equation

ψ̇(t) = −
[
∂f(x∗(t), u∗(t))

∂x

]∗
ψ(t)− ψ0e−ρt

∂g(x∗(t), u∗(t))

∂x
(1.6)

on [0,∞) and ψ0 is a nonnegative real; (ψ, ψ0) is said to be nontrivial if

‖ψ(0)‖+ ψ0 > 0. (1.7)

We give the formulation in the following form. We shall say that an admissible pair
(u∗, x∗) satisfies the core Pontryagin maximum principle (in problem (P )) together with
a pair (ψ, ψ0) of adjoint variables associated with (u∗, x∗) if (ψ, ψ0) is nontrivial and the
following maximum condition holds:

H(x∗(t), t, u∗(t), ψ(t), ψ0) = H(x∗(t), t, ψ(t), ψ
0) for a.a. t ≥ 0. (1.8)

Of special interest is the case where problem (P ) is not abnormal, i.e., the Lagrange
multiplier ψ0 in the core Pontryagin maximum principle does not vanish. In this case
we say that the normal-form core Pontryagin maximum principle holds. More accurately,
we shall say that an admissible pair (u∗, x∗) satisfies the normal-form core Pontryagin
maximum principle together with a pair (ψ, ψ0) of adjoint variables associated with (u∗, x∗)
if (u∗, x∗) satisfies the core Pontryagin maximum principle together with (ψ, ψ0) and,
moreover, ψ0 > 0. In this case we do not lose in generality if we set ψ0 = 1 (indeed,

multiplying both ψ and ψ0 by 1/ψ0, we get the new pair of adjoint variables, (ψ, ψ
0
) =

(ψ/ψ0, 1), associated with (u∗, x∗) and such that (u∗, x∗) satisfies the normal-form core

Pontryagin maximum principle together with (ψ, ψ
0
)).
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Therefore, we simplify the previous definition as follows. Define the normal-form
Hamilton-Pontryagin function H̃ : Rn × [0,∞)× U × Rn 	→ R1 and normal-form Hamil-
tonian H̃ : Rn × [0,∞)× Rn 	→ R1 by

H̃(x, t, u, ψ) = H(x, t, u, ψ, 1) = 〈f(x, u), ψ〉+ e−ρtg(x, u)

and
H̃(x, t, ψ) = H(x, t, ψ, 1) = sup

u∈U
H̃(x, t, u, ψ).

Given an admissible pair (u∗, x∗), introduce the normal-form adjoint equation

ψ̇(t) = −
[
∂f(x∗(t), u∗(t))

∂x

]∗
ψ(t)− e−ρt

∂g(x∗(t), u∗(t))

∂x
(1.9)

(representing the adjoint equation (1.6) where ψ0 = 1). Any (Caratheodory) solution ψ to
(1.9) on [0,∞) will be called an adjoint variable associated with (u∗, x∗). We shall say that
an admissible pair (u∗, x∗) satisfies the normal-form core Pontryagin maximum principle
together with an adjoint variable ψ associated with (u∗, x∗) if the following normal-form
maximum condition holds:

H̃(x∗(t), t, u∗(t), ψ(t)) = H̃(x∗(t), t, ψ(t)) for a.a. t ≥ 0. (1.10)

In the context of problem (P ), [24] states the following (see also [19]):

Theorem 1.1 If an admissible pair (u∗, x∗) is optimal in problem (P ), then (u∗, x∗) sat-
isfies relations (1.6)–(1.8) of the core Pontryagin maximum principle together with some
pair (ψ, ψ0) of adjoint variables associated with (u∗, x∗).

Qualitatively, this formulation is weaker than the corresponding statement known for
finite-horizon optimal control problems with nonconstrained terminal states. Indeed, con-
sider a following finite-horizon counterpart of problem (P ),

Problem (P ∗):
ẋ(t) = f(x(t), u(t));

u(t) ∈ U ;

x(0) = x0;

maximize J∗(x, u) =
∫ T
0

e−ρtg(x(t), u(t))dt;

here T > 0 is a fixed positive real. The classical theory [33] says that if an admissible pair
(u∗, x∗) is optimal in problem (P ∗), then (u∗, x∗) satisfies the core Pontryagin maximum
principle together with some pair (ψ, ψ0) of adjoint variables associated with (u∗, x∗), and,
moreover, (ψ, ψ0) satisfies the transversality conditions

ψ0 = 1, ψ(T ) = 0 (1.11)

(in shorter words, for (u∗, x∗) and (ψ, ψ0) the normal-form core Pontryagin maximum
principle is satisfied; we use the extended formulation just to make it closer to Theorem
1.1). In Theorem 1.1 any analogue of the transversaility conditions (1.11) is missing.

Information provided by the transversality conditions (1.11) is substantial. As noted in
[33], the core Pontryagin maximum principle represented by the system equation (1.1) (for
(u, x) = (u∗, x∗)), the adjoint equation (1.6) and the maximum condition (1.8), together
with the transversality conditions (1.11), form a complete system of equations, in which
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the number of equations equals the number of the unknowns in them. Situations where
this system of equations has a unique solution (u∗, x∗, ψ) are quite common; in such
situations problem (P ∗) is resolved uniquely. Conversely, the system of equations of the
core Pontryagin maximum principle not complemented by the transvesality conditions
has, generically, infinitely many solutions. In other words, for problem (P ∗) the core
Pontryagin maximum principle is essentially less informative unless it is complemented by
the transversality conditions.

The situation is different for problems with constrained terminal states. Consider the
following

Problem (P
∗
):

ẋ(t) = f(x(t), u(t));

u(t) ∈ U ;

x(0) = x0;

x(T ) = x1; (1.12)

maximize J∗(x, u) =
∫ T
0

e−ρtg(x(t), u(t))dt;

here x1 is a prescribed terminal state in a fixed terminal time T > 0. For problem (P
∗
)

the classical necessary optimality conditions [33] include the core Pontryagin maximum
principle and do not involve any additional (transversality) conditions. However, due to
the additional terminal constraint (1.12), the core Pontryagin maximum principle is as
informative for problem (P

∗
) as the core Pontryagin maximum principle together with the

transversality conditions for problem (P ∗).
Thus, the core Pontryagin maximum principle is “complete” for problem (P

∗
) (with

constrained terminal states) and is “incomplete” for problem (P ∗) (with non-constrained
terminal states) unless it is complemented by the transversality conditions.

As mentioned above, the core Pontryagin maximum principle representing a necessary
condition of optimality for problem (P ) was stated in [33] under the assumption that the
goal functional does not involve the discounting factor e−ρt (or ρ = 0), which made the
problem fully stationary. In case of a nondegenerate discounting factor (ρ > 0), the needle
variations technique used in [33] is not applicable to problem (P ) directly. However, in
this case the core Pontryagin maximum principle can be stated using simple manipulations
with the core Pontryagin maximum principle for approximating finite-horizon problems
(P
∗
) with large horizons T . Indeed, every admissible pair (u∗, x∗) optimal in problem

(P ) is, clearly, optimal in problem (P
∗
) where x1 = x∗(T ). Hence, in problem (P

∗
)

(u∗, x∗) satisfies the core Pontryaginmaximum principle together with some pair of adjoint
variables. Letting T → ∞ and taking the limit, we find that in problem (P ) (u∗, x∗)
also satisfies the core Pontryagin maximum principle together with some pair of adjoint
variables (see [24] and [19] for details).

The lack of analogues of the transversality conditions in the formulations of the Pon-
tryagin maximum principle is a generic feature of infinite-horizon optimal control prob-
lems with nonconstrained terminal states. In case of no discounting (ρ = 0), illustrating
counter-examples were given in [24] and [36], and for problems with discounting (ρ > 0)
in [13] and [30]. In Section 2 we construct a set of further counter-examples for problem
(P ) (which, generally, differs from the settings analyzed in [13] and [30]).

There were numerous attempts to find specific situations, in which the infinite-horizon
Pontryagin maximum principle holds together with transversality conditions at infinity
(see [13], [15], [18], [21], [26], [30], [35], [38]). The major results were established under
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rather severe assumptions of linearity or full convexity, which made it difficult to ap-
ply them to particular meaningful problems (see, e.g., [28] discussing application of the
Pontryagin maximum principle to a particular infinite-horizon optimal control problem).

In this paper we develop necessary optimality conditions for problem (P ), which com-
plement the core Pontryagin maximum principle by non-trivial conditions characterizing
behavior of the adjoint variables and Hamiltonian; under some reasonable assumptions
these conditions take the form of a natural extension of the finite-horizon transversality
conditions (1.11). In our analysis we follow the approximation approach suggested in
[10] − [12]. We approximate problem (P ) by a sequence of finite-horizon optimal control
problems (Pk) whose horizons go to infinity. As we noted earlier, the use of finite-horizon
approximating problems (P

∗
) with constrained terminal states leads to the core Pon-

tryagin maximum principle (Theorem 1.1) but is unable to provide any analogues of the
transversality conditions. Unlike problems (P

∗
), problems (Pk) impose no constrains on

the terminal states, in this sense, they inherit the structure of problem (P ); on the other
hand, problems (Pk) are not plain “restrictions” of problem (P ) to finite intervals like
problem (P ∗): the goal functionals in problems (Pk) include special penalty terms associ-
ated with a certain control optimal in problem (P ). These key features of our technique
allow us to find limit forms of the classical transversality conditions for problems (Pk) and
formulate conditions that complement the core Pontryagin maximum principle and hold
with a necessity for every admissible pair optimal in problem (P ).

Earlier, similar approximation approach was used to derive necessary optimality condi-
tions for various nonclassical optimal control problems (see, e.g., [3] – [6], [8], [31]; and also
survey [7]). Basing on relevant approximation techniques and the methodology presented
here, one can extend the results of this paper to more complex infinite-horizon problems
of optimal control such as problems with nonsmooth terminal constraints, problems with
state constraints, problems for systems described by differential inclusions, etc. In this
paper, our primary goal is to show how the regularized approximation approach allows
us to resolve the major singularity emerging due to the infinitness of the time horizon.
Therefore, we restrict our consideration to the relatively simple nonlinear infinite-horizon
problem (P ), which is smooth, “linear-convex” in control and free from any constraints
on the system’s states. The results presented here generalize [10]–[12].

Finally, we note that the suggested regularized approximation methodology, appropri-
ately modified, can be used directly in analysis of particular nonstandard optimal control
problems with infinite time horizons (see, e.g., [9]).

2 Transversality conditions: counter-examples

Considering problem (P ) as the “limit” of finite-horizon problems (P ∗) whose horizons T

tend to infinity, one can expect the following “limit” transversality conditions for problem
(P ):

ψ0 = 1, lim
t→∞

ψ(t) = 0; (2.13)

here (ψ, ψ0) is a pair of adjoint variables satisfying the core Pontryagin maximum principle
together with an admissible pair (u∗, x∗) optimal in problem (P ). Relations

ψ0 = 1, lim
t→∞
〈ψ(t), x∗(t)〉 = 0 (2.14)

represent alternative transversality conditions for problem (P ), which are frequently used
in economic applications (see, e.g., [16]). The interpretation of (2.14) as transversality
conditions for problem (P ) is also motivated by Arrow’s statement on sufficient conditions
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of optimality (see [1], [2] and [35]), which (under some additional assumptions) asserts that
if (2.14) holds for an admissible pair (u∗, x∗) and a pair (ψ, ψ0) of adjoint variables, jointly
satisfying the core Pontryagin maximum principle, then (u∗, x∗) is optimal in problem (P )
provided the superposition H(x, t, ψ(t), ψ0) is concave in x.

Generally, for infinite-horizon optimal control problems neither of the “natural” transver-
sality conditions (2.13) and (2.14) holds; illustrating counter-examples were given in [24]
and [36] for problems without discounting (ρ = 0). Here, we provide a set of further
counter-examples for problem (P ), in the case when discounting ρ is positive.

Example 1 is a slight modification of an example given in [30]; it shows that problem (P )
can be abnormal, i.e., in the core Pontryagin maximum principle the Lagrange multiplier
ψ0 may necessarily vanish (which contradicts both (2.13) and (2.14)).

Example 1. Consider the optimal control problem

ẋ(t) = (2x(t) + u(t))φ(x(t));

u(t) ∈ U = [−1, 0];

x(0) = 0;

maximize J(x, u) =
∫ ∞
0

e−t(2x(t) + u(t))dt.

Here φ is smooth, nonnegative, bounded and such that φ(x) = 1 if |x| ≤ 1 and φ(x) = 0
if |x| ≥ 2.

Viewing the above problem as problem (P ) and setting G = R1, we easily find that
assumptions (A1) – (A4) are satisfied. It is easily seen that (u∗, x∗) where u∗(t) = 0 and
x∗(t) = 0 for all t ≥ 0 is the unique optimal admissible pair1. Indeed, any control u taking
negative values in any set whose Lebeague measure is positive produces a negative value
of the goal functional, wehereas J(u∗, x∗) = 0. The Hamilton-Pontryagin function is given
by

H(x, t, u, ψ, ψ0) = ψ(2x+ u)φ(x) + ψ0e−t(2x+ u) = (ψφ(x) + ψ0e−t)(2x+ u).

Let (ψ, ψ0) be an arbitrary pair of adjoint variables such that (u∗, x∗) satisfies the core
Pontryagin maximum principle together with (ψ, ψ0). The adjoint equation (1.6) has the
form

ψ̇(t) = −2(ψ(t) + ψ0e−t),

and the maximum condition (1.8) implies

ψ(t) + ψ0e−t ≥ 0 for all t ≥ 0. (2.15)

Solving the adjoint equation, we get

ψ(t) = −2ψ0e−t + (ψ(0) + 2ψ0)e−2t.

Thus, if ψ0 > 0, then for all t > 0 large enough

ψ(t) + ψ0e−t = −ψ0e−t + (ψ(0) + 2ψ0)e−2t < 0

which contradicts (2.15). Consequently, ψ0 = 0 with a necessity.

1Here and in Examples 2, 3 and 4 the uniqueness of u∗ implies that every optimal control is equivalent
to u∗ with respect to the Lebeague measure on [0,∞).
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The next example shows that for problem (P ) the limit relation in (2.13) may be
violated, whereas the alternative transversality conditions (2.14) may hold.

Example 2. Consider the optimal control problem

ẋ(t) = u(t)− x(t);

u(t) ∈ U = [0, 1];

x(0) = 1/2;

maximize J(x, u) =
∫ ∞
0

e−t ln
1

x(t)
dt.

We set G = (0,∞) and treat the above problem as problem (P ). Assumptions (A1) –
(A4) are, obviously, satisfied. For an arbitrary trajectory x we have e−t/2 ≤ x(t) < 1 for
all t ≥ 0. Hence, (u∗, x∗) where u∗(t) = 0 and x∗(t) = e−t/2 for all t ≥ 0 is the unique
optimal admissible pair. The Hamilton-Pontryagin function is given by

H(x, t, u, ψ, ψ0) = (u− x)ψ − ψ0e−t lnx.

Let (ψ, ψ0) be an arbitrary pair of adjoint variables such that (u∗, x∗) satisfies the core
Pontryagin maximum principle together with (ψ, ψ0). The adjoint equation (1.6) has the
form

ψ̇(t) = ψ(t) + ψ0e−t
1

x∗(t)
= ψ + 2ψ0,

and the maximum condition (1.8) implies

ψ(t) ≤ 0 for all t ≥ 0. (2.16)

Assume ψ0 = 0. Then ψ(0) < 0 and ψ(t) = etψ(0) → −∞ as t → ∞, i.e., the limit
relation in (2.13) does not hold. Let ψ0 > 0. With no loss of generality (or multiplying
both ψ and ψ0 by 1/ψ0), we assume ψ0 = 1. Then ψ(t) = (ψ(0) + 2)et − 2. By (2.16)
only two cases are admissible: (a) ψ(0) = −2 and (b) ψ(0) < −2. In case (a) ψ(t) ≡ −2,
and in case (b) ψ(t) → −∞ as t → ∞. In both situations the limit relation in (2.13) is
violated. Note that ψ(t) ≡ −2 (t ≥ 0) and ψ0 = 1 satisfy the alternative transversality
conditions (2.14).

The next example is complementary to Example 2; it shows that for problem (P ) the
limit relation in (2.14) may be violated, whereas (2.13) may hold.

Example 3. Consider the following optimal control problem:

ẋ(t) = 1 + u(t); (2.17)

u(t) ∈ U =

[
−1
2
, 0

]
;

x(0) = 0;

maximize J(x, u) =

∫ ∞
0

e−t(1 + γ(x(t)))(1+ u(t))dt. (2.18)

Here γ is a nonnegative continuously differentiable real function such that

I =
∫ ∞
0

e−tγ(t)dt <∞. (2.19)
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We set G = R1 and view the above problem as problem (P ). Clearly, assumptions
(A1) – (A3) are satisfied. Below, we specify the form of γ and show that assumption (A4)
is satisfied too.

The admissible pair (u∗, x∗) where u∗(t) = 0 and x∗(t) = t for all t ≥ 0 is optimal.
Indeed, let (u, x) be an arbitrary admissible pair. Observing (2.17), we find that ẋ(t) > 0
for almost all t ≥ 0. Taking τ(t) = x(t) for a new integration variable in (2.18), we get
dτ = (1 + u(t))dt and

t(τ) =

∫ τ
0

1

1 + u(t(s))
ds for all τ ≥ 0.

As far as ∫ τ
0

1

1 + u(t(s))
ds ≥ τ,

we get

J(x, u) =
∫ ∞
0

e−t(1 + γ(x(t)))(1+ u(t))dt

=
∫ ∞
0

e
−
∫ τ
0

1
1+u(t(s))

ds
(1 + γ(τ))dτ

≤
∫ ∞
0

e−τ (1 + γ(τ))dτ

= J(u∗, x∗).

Hence, (u∗, x∗) is an optimal admissible pair. It is easy to see that there are no other
optimal admissible pairs. The Hamilton-Pontryagin function has the form

H(x, t, u, ψ, ψ0) = (1 + u)ψ + ψ0e−t(1 + γ(x))(1+ u).

Let (ψ, ψ0) be an arbitrary pair of adjoint variables such that (u∗, x∗) satisfies the core
Pontryagin maximum principle together with (ψ, ψ0). The adjoint equation (1.6) has the
form

ψ̇(t) = −ψ0γ̇(t)e−t.
If ψ0 = 0, then the maximum condition (1.8) implies ψ(t) ≡ ψ(0) > 0; hence, ψ(t)x∗(t) =
ψ(0)t→∞ as t→∞, and the limit relation in (2.14) is violated.

Suppose ψ0 > 0, or, equivalently, ψ0 = 1. The adjoint equation (1.6) takes the form

ψ̇(t) = −γ̇(t)e−t

and we have

ψ(t) = ψ(0)−
∫ t
0

γ̇(s)e−sds.

The limit relation in (2.14) has the form limt→∞ tψ(t) = 0. Let us show that one can
define γ so that the latter relation is violated i.e., for any ψ(0) ∈ R1

p(t) �→ 0 as t→∞ (2.20)

where
p(t) = tψ(t).

We represent p(t) as follows:

p(t) = tψ(0)− t

∫ t
0

γ̇(s)e−sds

= tψ(0)− t

[
γ(s)e−s|t0 +

∫ t
0

γ(s)e−sds
]

= tψ(0)− tγ(t)e−t + tγ(0)− tI(t)
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where

I(t) =

∫ t
0

γ(s)e−sds.

Introducing
ν(t) = γ(t)e−t, (2.21)

rewrite:

I(t) =

∫ t
0

ν(s)ds, (2.22)

p(t) = tψ(0)− tν(t) + tν(0)− tI(t). (2.23)

Note that
lim
t→∞

I(t) = I (2.24)

due to (2.19).
Now let us specify the form of ν. For each natural k we fix a positive εk < 1/2 and

denote by ∆k the εk-neighborhood of k. Clearly, ∆k ∪∆j = ∅ for k �= j. We set

ν(k) =
1

k
for k = 1, 2, . . . ;

ν(t) = 0 for t �∈ ∪∞k=1∆k;

ν(t) ∈
[
0,

1

k

]
for t ∈ ∆k (k = 1, 2, . . .).

Moreover, we require that
∞∑
k=j

∫
∆k

ν(t)dt ≤ 1

j2
. (2.25)

This can be achieved, for example, by letting

2εk
k
≤ ak

k2

where
∑∞
k=1 ak = 1, ak > 0. Indeed, in this case

∞∑
k=j

∫
∆k

ν(t)dt ≤
∞∑
k=j

2εk
k
≤
∞∑
k=j

ak
k2
≤ 1

j2

∞∑
k=j

ak ≤
1

j2
,

i.e., (2.25) holds. Note that for j = 1 the left hand side in (2.25) equals I (see (2.19));
thus, (2.25) implies that assumption (2.19) holds.

Another fact following from (2.25) is that

lim
t→∞

t(I − I(t)) = 0. (2.26)

Indeed, by (2.22)

I(j + εj) =
j∑
k=1

∫
∆k

ν(t)dt,

hence, due to (2.25),

I − I(j + εj) =
∞∑

k=j+1

∫
∆k

ν(t)dt ≤ 1

(j + 1)2
.

For t ∈ [j + εj , j + 1 + εj+1]
I(j + εj) ≤ I(t) ≤ I,
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therefore, for t ≥ 1

0 ≤ I − I(t) ≤ 1

(j + 1)2
≤ 1

(t− εj+1)2
≤ 1

(t− 1/2)2
,

which yields (2.26). The given definition of ν (see (2.21)) is, clearly, equivalent to defining
γ by

γ(k) =
ek

k
for k = 1, 2, . . . ;

γ(t) = 0 for t �∈ ∪∞k=1∆k; (2.27)

γ(t) ∈
[
0,

ek

k

]
for t ∈ ∆k (k = 1, 2, . . .)

and requiring (2.25). Let us show that assumption (A4) is satisfied. Let (u, x) be an
arbitrary admissible pair. By (2.17) t/2 ≤ x(t) ≤ t for all t ≥ 0. Hence, by the definition
of ν

ν(x(t)) ≤
(
t

2
− 1

)−1
=

2

(t− 2)
for all t > 2.

Hence, due to (2.21),

0 ≤ e−ρtmax u∈U [(1 + γ(x(t))(1+ u)] = e−ρt(1 + γ(x(t)))

≤ µ(t) = e−ρt +
2

(t− 2)
→ 0 as t→∞.

Thus, condition (1.4) holds. Furthermore, introducing the integration variable τ(t) = x(t)
and taking into account (2.21), we get∫ ∞

T
e−t(1 + γ(x(t)))(1+ u(t))dt =

∫ ∞
x(T )

e
−
∫ τ
0

1
1+u(t(s))

ds
(1 + γ(τ))dτ

≤
∫ ∞
x(T )

e−τ (1 + γ(τ))dτ

≤ ω(T ) =

∫ ∞
T
2

e−t(1 + γ(t))dt→ 0 as T →∞.

Hence, condition (1.5) holds. We stated the validity of assumption (A4).
By the definition of γ, for t ∈ ∆k, k = 1, 2, . . . we have

0 ≤ tν(t) ≤ k + εk
k

≤ 1 +
1

k
.

Hence,
0 ≤ tν(t) ≤ 2 for all t ≥ 0, (2.28)

i.e., the function tν(t) is bounded. Furthermore, kν(k) = 1, and due to (2.27) for any
sequence tk →∞ such that tk ∈ [k, k+ 1] \ (∆k ∪∆k+1) we have tkν(tk) = 0. Therefore,
limt→∞ tν(t) does not exist.

Using ν(0) = 0, we specify (2.23) as

p(t) = tψ(0)− tν(t)− tI(t). (2.29)

If ψ(0) > I , then, in view of (2.24), limt→∞ t(ψ(0)+I(t)) =∞, which implies limt→∞ p(t) =
∞, since tν(t) is bounded. Similarly, we find that if ψ(0) < I , then limt→∞ p(t) = −∞.
Let, finally, ψ(0) = I . Then

lim
t→∞

t(ψ(0)− I(t)) = lim
t→∞

t(I − I(t)) = 0
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as follows from (2.26). Thus, in the right hand side of (2.29) the sum of the first and
third terms has the zero limit at infinity, whereas the second term, tν(t), has no limit at
infinity, as we noticed earlier. Consequently, p(t), the left hand side in (2.29), has no limit
at infinity. We showed that (2.20) holds for every ψ(0) ∈ R1.

Thus, the limit relation in the transversality conditions (2.14) is violated. Note that
setting ψ0 = 1 and ψ(0) = I , we make the adjoint variable ψ satisfy the transversality
conditions (2.13). Indeed, in this case ψ(t) = p(t)/t = ψ(0)− I − ν(t) for all t > 0, and
the conditions ψ(0) = I and (2.28) imply that ψ(t)→ 0 as t→∞.

Examples 1, 2 and 3 show that assumptions (A1) – (A4) are insufficient for the validity
of the core Pontryagin maximum principle together with the transversality conditions
(2.13) or (2.14) as necessary conditions of optimality in problem (P ). Below, we find mild
additional assumptions that guarantee that necessary conditions of optimality in problem
(P ) include the core Pontryagin maximum principle and transversality conditions (2.13)
or (2.14).

3 Basic constructions

In this section we define a sequence of finite-horizon optimal control problems (Pk) with
horizons Tk →∞; we treat problems (Pk) as approximations to the infinite-horizon prob-
lem (P ). Unlike the “natural” approximation problem (P

∗
) (see Section 1), problems (Pk)

are explicitly associated with a fixed control u∗ optimal in problem (P ). Following the
approximation scheme of [10] – [12], we complement the goal functional in problem (Pk)
by a penalty term −αkΩk where αk is a positive parameter tending to 0 as k → ∞ and
Ωk is a functional of a control u in system (1.1):

Ωk(u) =

∫ Tk
0

e−(ρ+1)t‖u(t)− zk(t)‖2dt (3.30)

where zk is an appropriate smooth approximation to u∗. The convergences αk → 0,
Tk →∞ and zk → u∗ imply that problems (Pk) approximate problem (P ) more and more
“accurately” as k → ∞. Our basic approximation lemma (Lemma 3.1) states that any
sequence of controls optimal in problems (Pk) L

2-converges to u∗ on every bounded interval
(in this context, one can notice a certain parallelism with the Tikhonov regularization
method widely used in theory of ill-posed problems [41]).

Let us describe the data defining problems (Pk). Given a control u∗ optimal in problem
(P ), we fix a sequence of continuously differentiable functions zk : [0,∞) → Rm and a
sequence of positive σk such that

sup
t∈[0,∞)

‖zk(t)‖ ≤ max u∈U‖u‖+ 1; (3.31)

∫ ∞
0

e−(ρ+1)t‖zk(t)− u∗(t)‖2dt ≤
1

k
; (3.32)

sup
t∈[0,∞)

‖żk(t)‖ ≤ σk <∞; (3.33)

σk →∞ as k →∞

(obviously, such sequences exist). Next, we take a monotonically increasing sequence of
positive Tk such that Tk →∞ as k→∞ and

ω(Tk) ≤
1

k(1 + σk)
for all k = 1, 2, . . . ; (3.34)
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recall that ω is defined in (A4). For every k = 1, 2, . . . we define problem (Pk) as follows.

Problem (Pk):
ẋ(t) = f(x(t), u(t));

u(t) ∈ U ;

x(0) = x0;

maximize Jk(x, u) =
∫ Tk
0

e−ρtg(x(t), u(t))dt− 1

1 + σk

∫ Tk
0

e−(ρ+1)t‖u(t)−zk(t)‖2dt (3.35)

(the last integral in (3.35) represents the penalty term −αkΩk(u) with Ωk(u) given by
(3.30) and αk = 1/(1 + σk)). As usual, any admissible pair (uk, xk) maximizing (3.35)
across all admissible pairs (u, x) is said to be optimal in problem (Pk); its components
uk and xk are called an optimal control in problem (Pk) and an optimal trajectory in
problem (Pk), respectively. By Theorem 9.3.i of [20] for every k = 1, 2, . . . there exists
an admissible pair (uk, xk) optimal in problem (Pk). We assume that this optimal pair
(uk, xk) is extended to the whole infinite time interval [0,∞) by an arbitrary admissible
way.

The above defined sequence of problems, {(Pk)} (k = 1, 2, . . .), will be said to be
associated with the control u∗.

We are ready to formulate our basic approximation lemma.

Lemma 3.1 Let assumptions (A1) – (A4) be satisfied; u∗ be a control optimal in problem
(P ); {(Pk)} be the sequence of problems associated with u∗; and for every k = 1, 2, . . . uk
be a control optimal in problem (Pk). Then for every T > 0 it holds that uk → u∗ in
L2([0, T ], Rm) as k →∞.

Proof. Take a T > 0. Below ‖ · ‖L2 stands for the norm in L2([0, T ], Rm). Let k1 be
such that Tk1 ≥ T . For every k ≥ k1 we have

Jk(xk, uk) =
∫ Tk
0

e−ρt
[
g(xk(t), uk(t))− e−t

‖uk(t)− zk(t)‖2
1 + σk

]
dt

≤
∫ Tk
0

e−ρtg(xk(t), uk(t))dt−
e−(ρ+1)T

1 + σk

∫ T
0
‖uk(t)− zk(t)‖2dt

where xk is the trajectory corresponding to uk. Hence, introducing the trajectory x∗ cor-
responding to u∗ and taking into account the optimality of uk in problem (Pk), optimality
of u∗ in problem (P ) and conditions (1.5), (3.32) and (3.34), we find that for all sufficiently
large k

e−(ρ+1)T

1 + σk
‖uk − zk‖2L2 =

e−(ρ+1)T

1 + σk

∫ T
0
‖uk(t)− zk(t)‖2dt

≤
∫ Tk
0

e−ρtg(xk(t), uk(t))dt− Jk(x∗, u∗)

≤
∫ Tk
0

e−ρtg(xk(t), uk(t))dt− J(x∗, u∗) +

ω(Tk) +
∫ ∞
0

e−(ρ+1)t

1 + σk
‖u∗(t)− zk(t)‖2dt

≤
∫ Tk
0

e−ρtg(xk(t), uk(t))dt− J(x∗, u∗) +
2

k(1 + σk)

≤ J(xk, uk)− J(x∗, u∗) +
3

k(1 + σk)

≤ 3

k(1 + σk)
.
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Hence,

‖uk − zk‖2L2 ≤
3e(ρ+1)T

k
.

Then in view of (3.32)

‖uk − u∗‖L2 =

(∫ T
0
‖uk(t)− u∗(t)‖2dt

)1/2

≤
(∫ T
0
‖u∗(t)− zk(t)‖2dt

)1/2
+

(∫ T
0
‖uk(t)− zk(t)‖2dt

) 1
2

≤
(
e(ρ+1)T

k

)1/2
+

(
3e(ρ+1)T

k

)1/2

= (1 + 31/2)

(
e(ρ+1)T

k

)1/2
.

Therefore, for any ε > 0 there exists a k2 ≥ k1 such that ‖uk − u∗‖L2 ≤ ε for all k ≥ k2.
The lemma is proved.

Remark 3.3 In the above proof we used estimates (3.32) and (3.34), and did not use
(3.31) and (3.33); these estimates will be utilized in the proof of Lemma 3.2.

Now, basing on Lemma 3.1, we derive a limit form of the classical Pontryaginmaximum
principle for problems (Pk), which leads us to the core Pontryagin maximum principle for
problem (P ). It is important that the adjoint variables involved in the latter core “infinite-
horizon” Pontryagin maximum principle are designed as limits of the adjoint variables
emerging in the “finite-horizon” Pontryagin maximum principle for problems (Pk); in this
seance, the limit “infinite-horizon” adjoint variables carry some “limit” information on the
transversality conditions in problems (Pk).

We use the following formulation of the Pontryagin maximum principle [33] for prob-
lems (Pk). Let an admissible pair (uk, xk) be optimal in problem (Pk) for some k. Then
there exists a pair (ψk, ψ

0
k) of adjoint variables associated with (uk, xk) such that (uk, xk)

satisfies relations (1.6)–(1.8) of the core Pontryagin maximum principle (in problem (Pk))
together with (ψk, ψ

0
k) and, moreover, ψ0k > 0 and the transversality condition

ψk(Tk) = 0 (3.36)

holds; recall that ψk is a (Caratheordory) solution on [0, Tk] to the adjoint equation asso-
ciated with (uk, xk) in problem (Pk), i.e.,

ψ̇k(t) = −
[
∂f(xk(t), uk(t))

∂x

]∗
ψk(t)− ψ0e−ρt

∂g(xk(t), uk(t))

∂x
for a.a. t ∈ [0, Tk],

(3.37)
and the core Pontryagin maximum principle satisfied by (uk, xk) together with (ψk, ψ

0
k)

implies that the following maximum condition holds:

Hk(xk(t), t, uk(t), ψk(t), ψ0k) = Hk(xk(t), t, ψk(t), ψ
0
k) for a.a. t ∈ [0, Tk]; (3.38)

here Hk and Hk given by

Hk(x, t, u, ψ, ψ0) = 〈f(x, u), ψ〉+ ψ0e−ρtg(x, u)− ψ0e−(ρ+1)t
‖u− zk(t)‖2

1 + σk
; (3.39)
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Hk(x, t, ψ, ψ0) = sup
u∈U
Hk(x, t, u, ψ, ψ0)

are, respectively, the Hamilton-Pontryagin function and the Hamiltonian in problem
(Pk); note that in [33] it is shown that (3.37) and (3.38) imply

d

dt
Hk(xk(t), t, ψk(t), ψ

0
k) =

∂Hk
∂t

(xk(t), t, uk(t), ψk(t), ψ
0
k) for a.a. t ∈ [0, Tk]. (3.40)

Lemma 3.2 Let assumptions (A1) – (A4) be satisfied; (u∗, x∗) be an admissible pair op-
timal in problem (P ); {(Pk)} be the sequence of problems associated with u∗; for every
k = 1, 2, . . . (uk, xk) be an admissible pair optimal in problem (Pk); for every k = 1, 2, . . .
(ψk, ψ

0
k) be a pair of adjoint variables associated with (uk, xk) in problem (Pk) such that

(uk, xk) satisfies relations (3.37), (3.38) of the core Pontryagin maximum principle in
problem (Pk) together with (ψk, ψ

0
k); and for every k = 1, 2, . . . one have ψ0k > 0 and

the transversality condition (3.36) hold. Let, finally, the sequences {ψk(0)} and {ψ0k} be
bounded and

‖ψk(0)‖+ ψ0k ≥ a (k = 1, 2, . . .) (3.41)

for some a > 0. Then there exists a subseguence of {(uk, xk, ψk, ψ0k)}, further denoted
again as {(uk, xk, ψk, ψ0k)}, such that

(i) for every T > 0

uk(t)→ u∗(t) for a.a. t ∈ [0, T ] as k →∞; (3.42)

xk → x∗ uniformly on [0, T ] as k →∞; (3.43)

(ii)
ψ0k → ψ0 as k→∞ (3.44)

and for every T > 0

ψk → ψ uniformly on [0, T ] as k →∞, (3.45)

where (ψ, ψ0) is a nontrivial pair of adjoint variables associated with (u∗, x∗) in problem
(P );

(iii) (u∗, x∗) satisfies relations (1.6)–(1.8) of the core Pontryagin maximum principle
in problem (P ) together with (ψ, ψ0);

(iv) the stationarity condition holds:

H(x∗(t), t, ψ(t), ψ
0) = ψ0ρ

∫ ∞
t

e−ρsg(x∗(s), u∗(s))ds for all t ≥ 0. (3.46)

Remark 3.4 Convergence (3.45) is defined correctly, since for all k large enough the
interval [0, Tk] on which ψk is defined contains T .

Proof of Lemma 3.2. Lemma 3.1 and the Ascoli theorem (see, e.g., [20]) imply
that, selecting if needed a subsequence, we get (3.42) and (3.43) for every T > 0. By
assumption the sequence {ψ0k} is bounded; therefore, selecting if needed a subsequence,
we obtain (3.44) for some ψ0 ≥ 0.

Now our goal is to select a subsequence of {(uk, xk, ψk)} such that for every T > 0
(3.45) holds and (ψ, ψ0) is a nontrivial pair of adjoint variables associated with (u∗, x∗)
(we do not change notations after the selection of a subsequence).

Consider the sequence {ψk} restricted to [0, T1]. Observing (3.37), taking into account
the boundedness of the sequence {ψk(0)} (see the assumptions of this lemma), using the
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Gronwall lemma (see, e.g., [25]) and selecting if needed a subsequence denoted further
as {ψ1k}, we get that ψ1k → ψ1 uniformly on [0, T1] and ψ̇1k → ψ̇1 weakly in L1[0, T1]
as k → ∞ for some absolutely continuous ψ1 : [0, T1] → Rn; here and in what follows
L1[0, T ] = L1([0, T ], Rn) (T > 0).

Now consider the sequence {ψ1k} restricted to [0, T2]. Taking if necessary a subsequence
{ψ2k} of {ψ1k}, we get that ψ2k → ψ2 uniformly on [0, T2] and ψ̇2k → ψ̇2 weakly in L1[0, T2]
as k → ∞ for some absolutely continuous ψ2 : [0, T2] → Rn whose restriction to [0, T1]
coincides with ψ1.

Repeating this procedure sequentially for [0, Ti] with i = 3, 4, . . ., we find that there
exist absolutely continuous ψi : [0, Ti] → Rn (i = 1, 2, . . .) and ψik : [0, Ti] → Rn (i, k =
1, 2, . . .) such that for every i = 1, 2, . . . the restriction of ψi+1 to [0, Ti] is ψ

i, the restriction
of the sequence {ψi+1k } to [0, Ti] is a subsequence of {ψik} and, moreover, ψik → ψ uniformly
on [0, Ti] and ψ̇ik → ψ̇i weakly in L1[0, Ti] as k→∞.

Define ψ : [0,∞) 	→ Rn so that the restriction of ψ to [0, Ti] is ψi for every i = 1, 2, . . ..
Clearly, ψ is absolutely continuous. Furthermore, without changing notations, for every
i = 1, 2, . . . and every k = 1, 2, . . . we extend ψik to [0,∞) so that the extended function is
absolutely continuous and, moreover, the family ψ̇ik (i, k = 1, 2, . . .) is bounded in L1[0, T ]
for every T > 0. Since Ti →∞ as i→∞, for every T > 0 we get that ψkk converges to ψ

uniformly on [0, T ] and ψ̇kk → ψ̇ weakly in L1[0, T ] as k →∞. Simplifying notations, we,
again, write ψk instead of ψkk and note that for ψk (3.37) holds (k = 1, 2, . . .). Thus, for
every T > 0 we have (3.45) and also get that ψ̇k → ψ̇ weakly in L1[0, T ] as k →∞. These
convergences together with equalities (3.37) and convergences (3.42) and (3.43) (holding
for every T > 0) yield that ψ solves the adjoint equation (1.6). Thus, (ψ, ψ0) is a pair of
adjoint variables associated with (u∗, x∗) in problem (P ). The nontriviality of (ψ, ψ0) (see
(1.7)) is ensured by (3.41).

For every k = 1, 2, . . . consider the maximum condition (3.38) and specify it as

〈f(xk(t), uk(t)), ψk(t)〉+ ψ0ke
−ρtg(xk(t), uk(t))− ψ0ke

−(ρ+1)t ‖uk(t)− zk(t)‖2
1 + σk

=

max u∈U

[
〈f(xk(t), u), ψk(t)〉+ ψ0ke

−ρtg(xk(t), u)− ψ0ke
−(ρ+1)t ‖u− zk(t)‖2

1 + σk

]
(3.47)

for a.a. t ∈ [0, Tk].

Taking into account that Tk →∞ and σk →∞ as k →∞ and using convergences (3.44),
(3.45), (3.42) and (3.43) (holding for every T > 0), we obtain

〈f(x∗(t), u∗(t)), ψ(t)〉+ψ0e−ρtg(x∗(t), u∗(t)) = max u∈U
[
〈f(x∗(t), u), ψ(t)〉+ ψ0e−ρtg(x∗(t), u)

]
for a.a. t ≥ 0

as the limit of (3.47); this is equivalent to the maximum condition (1.8). Thus, (u∗, x∗)
satisfies the core Pontryagin maximum principle together with the pair (ψ, ψ0) of adjoint
variables associated with (u∗, x∗).

Now we specify (3.40) using the form of Hk (see (3.39)). We get

d

dt
Hk(xk(t), t, ψk(t), ψ

0
k) =

∂Hk
∂t

(xk(t), t, uk(t), ψk(t), ψ
0
k)

= −ψ0kρe−ρt
[
g(xk(t), uk(t)) + (ρ+ 1)e−(ρ+1)t

‖uk(t)− zk(t)‖2
1 + σk

]
+

2ψ0ke
−(ρ+1)t 〈uk(t)− zk(t), żk(t)〉

1 + σk
for a.a. t ∈ [0, Tk]. (3.48)
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Take an arbitrary t > 0 and an arbitrary k such that Tk > t and integrate (3.48) over
[t, Tk] taking into account the boundary condition (3.36). We arrive at

Hk(xk(t), t, ψk(t), ψ
0
k) = ψ0ke

−ρTkmax u∈U

[
g(xk(Tk), u)− e−ρTk

‖u− zk(Tk)‖2
1 + σk

)

]
−

ψ0kρ

∫ Tk
t

e−ρsg(xk(s), uk(s))ds+

ψ0k(ρ+ 1)
∫ Tk
t

e−(ρ+1)s
‖uk(s)− zk(s)‖2

1 + σk
ds+

2ψ0k

∫ Tk
t

e−(ρ+1)s
〈uk(s)− zk(s), żk(s)〉

1 + σk
ds.

Now we take the limit using convergences (3.44), (3.45), (3.42) and (3.43) (holding for
every T > 0), and also estimates (3.31) – (3.33). We end up with (3.46). The lemma is
proved.

Remark 3.5 Relation (3.46) stated in Lemma 3.2 is a reflection of the fact that the limit
“infinite-horizon” pair of adjoint variables, (ψ, ψ0), carries some “limit” information on
the transversality conditions in the finite-horizon approximating problems (Pk). Indeed,
(3.46) cannot be derived from the core Pontryagin maximum principle in problem (P ); we
proved it using the transversality conditions (3.36).

Relation (3.46) implies the asymptotic stationarity condition introduced in [30]:

lim
t→∞

H(x∗(t), t, ψ(t), ψ
0) = 0. (3.49)

Indeed, (3.49) follows strightforwardly from (3.46) and assumption (A4) (see (1.5)). How-
ever, assuming that (u∗, x∗) satisfies the core Pontryagin maximum principle in problem
(P ) together with (ψ, ψ0) (see Lemma 3.2, (iii)), one can easily state that (3.46) and
(3.49) are equivalent. Indeed, let (u∗, x∗) satisfy the core Pontryagin maximum principle
in problem (P ) together with (ψ, ψ0) and (3.49) hold. Taking into account that ψ solves
the adjoint equation (1.6) and using the maximum condition (1.8), we get

d

dt
H(x∗(t), t, ψ(t), ψ

0) =
∂H
∂t

(x∗(t), t, u∗(t), ψ(t), ψ
0)

= −ψ0ρe−ρtg(x∗(t), u∗(t))

for a.a. t ≥ 0. The integration over an arbitrary interval [t, T ] where T > t ≥ 0 yields

H(x∗(t), t, ψ(t), ψ
0) = H(x∗(T ), T, ψ(T ), ψ0) + ψ0ρ

∫ T
t

e−ρsg(x∗(s), u∗(s))ds.

Letting T →∞ and using (A4) and (3.49), we obtain (3.46) for any t ≥ 0.

The corollary given below specifies Lemma 3.2 for the case where the Pontryagin
maximum principle for problems (Pk) is taken in the normal form (implying that the
corresponding Lagrange multipliers ψ0k equal 1 [33]). We use the following formulation
of the normal-form Pontryagin maximum principle for problems (Pk). Let an admissible
pair (uk, xk) be optimal in problem (Pk) for some k. Then there exists an adjoint variable
ψk associated with (uk, xk) such that (uk, xk) satisfies the normal-form core Pontryagin
maximum principle (in problem (Pk)) together with ψk and the transversality condition
(3.36) holds; here ψk is a (Caratheordory) solution on [0, Tk] of the normal-form adjoint
equation associated with (uk, xk) in problem (Pk), i.e.,

ψ̇k(t) = −
[
∂f(xk(t), uk(t))

∂x

]∗
ψk(t)− e−ρt

∂g(xk(t), uk(t))

∂x
for a.a. t ∈ [0, Tk], (3.50)
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and the normal-form core Pontryagin maximum principle satisfied by (uk, xk) together
with ψk implies that the following normal-form maximum condition holds:

H̃k(xk(t), t, uk(t), ψ(t)) = H̃k(xk(t), t, ψk(t)) for a.a. t ≥ 0; (3.51)

here H̃k and H̃k given by

H̃k(x, t, u, ψ) = 〈f(x, u), ψ〉+ e−ρtg(x, u)− e−(ρ+1)t
‖u− zk(t)‖2

1 + σk
;

H̃k(x, t, ψ) = sup
u∈Ũ
H̃k(x, t, ũ, ψ)

are, respectively, the normal-form Hamilton-Pontryagin function and normal-form Hamil-
tonian in problem (Pk); note that (3.40) takes the form

d

dt
H̃k(xk(t), t, ψk(t)) =

∂H̃k
∂t

(xk(t), t, uk(t), ψk(t)) for a.a. t ∈ [0, Tk].

The next corollary follows from Lemma 3.2 straightforwardly.

Corollary 3.1 Let assumptions (A1) – (A4) be satisfied; (u∗, x∗) be an admissible pair
optimal in problem (P ); {(Pk)} be the sequence of problems associated with u∗; for every
k = 1, 2, . . . (uk, xk) be an admissible pair optimal in problem (Pk); and for every k =
1, 2, . . . ψk be an adjoint variable associated with (uk, xk) in problem (Pk) such that (uk, xk)
satisfies relations (3.50), (3.51) of the normal-form core Pontryagin maximum principle in
problem (Pk) together with ψk and the transversality condition (3.36) holds. Let, finally,
the sequence {ψk(0)} be bounded. Then there exists a subseguence of {(uk, xk, ψk)}, further
denoted again as {(uk, xk, ψk)}, such that

(i) for every T > 0 (3.42) and (3.43) hold;
(ii) for every T > 0 (3.45) holds where ψ is an adjoint variable associated with (u∗, x∗)

in problem (P );
(iii) (u∗, x∗) satisfies relations (1.9), (1.10) of the normal-form core Pontryagin maxi-

mum principle in problem (P ) together with ψ;
(iv) the normal-form stationarity condition holds:

H̃(x∗(t), t, ψ(t)) = ρ

∫ ∞
t

e−ρsg(x∗(s), u∗(s))ds for all t ≥ 0. (3.52)

4 Maximum principle and stationarity condition

In this section and in Sections 5 and 6 specific necessary conditions of optimality in
problem (P ) are derived. Our basic instruments are Lemma 3.2 and Corollary 3.1 providing
limit relations in the Pontryagin maximum principle for the approximating finite-horizon
problems (Pk) associated with a given control u∗ optimal in problem (P ).

The next theorem which is in fact an immediate corollary of Lemma 3.2 is an adaptation
of a result of [30] to problem (P ).

Theorem 4.2 Let assumptions (A1) – (A4) be satisfied and (u∗, x∗) be an admissible pair
optimal in problem (P ). Then there exists a pair (ψ, ψ0) of adjoint variables associated
with (u∗, x∗) such that

(i) (u∗, x∗) satisfies relations (1.6)–(1.8) of the core Pontryagin maximum principle
together with (ψ, ψ0), and

(ii) (u∗, x∗) and (ψ, ψ0) satisfy the stationarity condition (3.46).
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Remark 4.6 Theorem 4.2 (which is, evidently, stronger than Theorem 1.1) suggests the
most complete formulation of the Pontryagin maximum principle for problem (P ) under
assumptions (A1) – (A4). Formally, the necessary optimality conditions given by The-
orem 4.2 are equivalent to those stated in [30], in application to setting (P ). One can,
though, anticipate that beyond this setting (for example, for problems of infinite-horizon
optimal control of systems with non-smooth right-hand sides or systems described by dif-
ferential inclusions) (3.46) complementing the core Pontryagin maximum principle can be
substantially stronger than the asymptotic stationarity condition (3.49) stated in [30].

Remark 4.7 Under the assumptions of Theorem 4.2 we have

lim
t→∞

max u∈U〈f(x∗(t), u), ψ(t)〉= 0; (4.53)

the latter follows from (3.46) and assumption (A4).

Remark 4.8 Recall that Example 1 (modifying an example given in [30]) shows that
problem (P ) can be abnormal, i.e., under the assumptions of Theorem 4.2 the nontrivi-
ality condition (1.7) can hold with ψ0 = 0. In Section 5 we find additional assumptions
excluding abnormality of problem (P ).

Proof of Theorem 4.2. Let {(Pk)} be the sequence of problems associated with
u∗ and for every k = 1, 2, . . . (uk, xk) be an admissible pair optimal in problem (Pk). In
accordance with the classical formulation of the Pontryagin maximum principle, for every
k = 1, 2, . . . there exists a pair (ψk, ψ

0
k) of adjoint variables associated with (uk, xk) in

problem (Pk) such that (uk, xk) satisfies the core Pontryagin maximum principle (in prob-
lem (Pk)) together with (ψk, ψ

0
k) and for every k = 1, 2, . . . ψ0k > 0 and the transversality

condition (3.36) holds.
Since ψ0k > 0, the value ck = ‖ψk(0)‖+ψ0k is positive. We keep the notations ψk and ψ0k

for the normalized elements ψk/ck and ψ0k/ck, thus, achieving ‖ψk(0)‖+ψ0k = 1 and, clearly,
preserving the transversality condition (3.36) and the fact that (uk, xk) satisfies the core
Pontryagin maximum principle (in problem (Pk)) together with (ψk, ψ

0
k) (k = 1, 2, . . .).

Now the sequences {ψk(0)} and {ψ0k} are bounded and (3.41) holds with a = 1. Thus,
the sequence {(uk, xk, ψk, ψ0k)} satisfies all the assumptions of Lemma 3.2. By Lemma 3.2
there exists a subseguence of {(uk, xk, ψk, ψ0k)}, further denoted again as {(uk, xk, ψk, ψ0k)},
such that for the pairs (ψk, ψ

0
k) of adjoint variables convergences (3.44) and (3.45) hold

with an arbitrary T > 0; the limit element (ψ, ψ0) is a nontrivial pair of adjoint variables
associated with (u∗, x∗) in problem (P ); (u∗, x∗) satisfies the core Pontryagin maximum
principle in problem (P ) together with (ψ, ψ0); and, finally, (u∗, x∗) and (ψ, ψ0) satisfy
the stationarity condition (3.46). The theorem is proved.

As noted in Remark 3.5, the stationarity condition (3.46) stated in Theorem 4.2 does
not follow from the core Pontryagin maximum principle in problem (P ). In other words,
(3.46) complements the core Pontryagin maximum principle substantially. Example 4
given below illustrates this fact. It shows that the usage of the core Pontryagin maximum
principle may not lead to the specification of an optimal control, whereas the latter can be
selected if one applies the core Pontryagin maximum principle together with (3.46). It is
remarkable that in Example 4 the “natural” transversality conditions (2.13) are violated
(Example 4 deals with the situation of Example 2), i.e., the “additional” information
(3.46) is by no means identical to (2.13).

Example 4. Let us come back to the problem analyzed in Example 2:

ẋ(t) = u(t)− x(t);
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u(t) ∈ U = [0, 1];

x(0) = 1/2;

maximize J(x, u) =

∫ ∞
0

e−t ln
1

x(t)
dt = −

∫ ∞
0

e−t lnx(t)dt,

with G = (0,∞). As noted in Example 2, assmptions (A1) – (A4) are satisfied.
Let an admissible pair (u∗, x∗) satisfy the core Pontryagin maximum principle to-

gether with some pair (ψ, ψ0) of adjoint variables associated with (u∗, x∗). The Hamilton-
Pontryagin function is given by

H(x, t, u, ψ, ψ0) = (u− x)ψ − ψ0e−t lnx;

and the adjoint equation (1.6) has the form

ψ̇(t) = ψ(t) + ψ0e−t
1

x∗(t)
. (4.54)

By assumption ψ solves (4.54). The maximum condition (1.8) yields

u∗(t) = 1 for a.a. t such that ψ(t) > 0;
u∗(t) = 0 for a.a. t such that ψ(t) < 0.

(4.55)

Resolving (4.54), we get

ψ(t) = ψ(ξ)et−ξ + ψ0
∫ t
ξ

et−2s

x∗(s)
ds (4.56)

for all ξ ≥ 0 and all t ≥ ξ.
Suppose ψ0 > 0. Consider three cases:

ψ(0)≥ 0; (4.57)

−2ψ0 < ψ(0) < 0; (4.58)

ψ(0) ≤ −2ψ0. (4.59)

In case (4.57) by (4.56) where ξ = 0 we have ψ(t) > 0 for all t > 0, hence, by (4.55)
u∗(t) = 1 for a.a. t ≥ 0.

Consider case (4.58). Clearly, ζ = sup{t > 0 : ψ(s) < 0 for all s ∈ [0, t]} > 0. By
(4.55) u∗(t) = 0 for a.a. t ∈ [0, ζ) and hence x∗(t) =

1
2e
−t for all t ∈ [0, ζ). Due to (4.56)

we have ζ <∞. Then by (4.56) ψ(t) > 0 for all t > ζ and hence, by (4.55) u∗(t) = 1 for
a.a. t ≥ ζ.

Finally, in case (4.59) by (4.56) where ξ = 0 we get ψ(t) < 0 for all t > 0; hence, by
(4.55) u∗(t) = 0 for a.a. t ≥ 0.

Now suppose ψ0 = 0. By the nontriviality condition (1.7) ψ(0) �= 0 and by (4.56) with
ξ = 0 we have either ψ(t) > 0 for all t > 0, implying u∗(t) = 1 for a.a. t ≥ 0, or ψ(t) < 0
for all t > 0, implying u∗(t) = 0 for a.a. t ≥ 0.

Thus, we showed that if an admissible pair (u∗, x∗) satisfies the core Pontryagin max-
imum principle together with a pair (ψ, ψ0) of adjoint variables associated with (u∗, x∗),
then we have either u∗(t) = 0 for a.a. t ≥ 0, or u∗(t) = 1 for a.a. t ≥ 0, or

u∗(t) =

{
0 for a.a. t ∈ [0, ζ);
1 for a.a. t ≥ ζ

(4.60)
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for some ζ ≥ 0. Moreover, both situations are admissible. Indeed, as shown in Example
2, the admissible pair (u∗, x∗) where u∗(t) = 0 for a.a. t ≥ 0 is the unique optimal one;
therefore, (u∗, x∗) satisfies the core Pontryaginmaximum principle together with some pair
(ψ, ψ0) of adjoint variables associated with (u∗, x∗). Our analysis of cases (4.57), (4.58)
shows that the non-optimal admissible pair (u∗, x∗) of the form (4.60) also satisfies the
core Pontryagin maximum principle together with a corresponding pair (ψ, ψ0) of adgoint
variables.

Thus, the core Pontryagin maximum principle (not complemented by (3.46)) is unable
to reject all non-optimal controls of form (4.60).

Let us show that we reject all non-optimal controls of form (4.60) if we take into
account (3.46). Let (u∗, x∗) be some admissible pair such that u∗ is given by (4.60) and let
(u∗, x∗) satisfy the core Pontryagin maximum principle together with some pair (ψ, ψ0) of
adjoint variables associated with (u∗, x∗). Due to (4.60), ẋ∗(t) = 1− x∗(t) for a.a. t ≥ ζ;
it is also clear that 0 < x∗(ζ) < 1. Therefore,

x∗(t) = ce−t+ζ + 1 for all t ≥ ζ, c < 0. (4.61)

By (4.55) necessarily ψ(t) ≥ 0 for all t ≥ ζ; in particular, ψ(ζ) ≥ 0. The latter inequality
together with the nontriviality condition (1.7) and representation (4.56) yield that ψ is
strictly increasing on [ζ,∞). Again using (4.56), we state that

ψ(ν) > 0, ψ(t) ≥ ψ(ν)et−ν for all t > ν. (4.62)

where ν > ζ is some fixed value.
Now suppose (3.46) holds. Using the maximum condition (1.8), we rewrite (3.46) as

H(x∗(t), t, u∗(t), ψ(t), ψ0) = −ψ0
∫ ∞
t

e−s lnx∗(s)ds for a.a. t ≥ 0.

More specifically, we have

(1− x∗(t))ψ(t)− ψ0e−t lnx∗(t) = −ψ0
∫ ∞
t

e−s lnx∗(s)ds for all t ≥ ν. (4.63)

Consider the left-hand side in (4.63). In view of (4.61) 1 − x∗(t) = −ce−t+ζ > 0 for
t ≥ ν, which together with (4.62) yield the following lower estimate for the left-hand side
in (4.63):

(1− x∗(t))ψ(t)− ψ0e−t lnx∗(t) ≥ −ce−t+ζψ(ν)et−ν − ψ0e−t lnx∗(t)

= b− ψ0e−t lnx∗(t) (4.64)

where b = −ceζ−νψ(ν) > 0. By (4.61) 0 < x∗(ζ) ≤ x∗(t) < 1 for all t ≥ ζ; hence,

| lnx∗(t)| ≤ | lnx∗(ζ)| for all t ≥ ζ. (4.65)

The latter implies that e−t lnx∗(t) → 0 as t → ∞. Now (4.64) yields the next lower
estimate for the lower limit of the left-hand side in (4.63):

lim inf
t→∞

[(1− x∗(t))ψ(t)− ψ0e−t lnx∗(t)] ≥ b > 0. (4.66)

For the right-hand side in (4.63), due to (4.65), we have

lim
t→∞

[−ψ0
∫ ∞
t

e−s lnx∗(s)ds] = 0,

which together with (4.66) imply that (4.63) is not possible.
Thus, the core Pontryagin maximum principle in combination with (3.46) is satisfied

by the single admissible pair (u∗, x∗) (where u∗(t) = 0 for a.a. t ≥ 0) together with
some pair (ψ, ψ0) of adjoint variables associated with (u∗, x∗). The latter admissible pair
(u∗, x∗) is the unique optimal one.
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5 Normal-form maximum principle and transversality con-
ditions

As noted in Remark 4.8, Theorem 4.2 holding under assumptions (A1) – (A4) does not
exclude abnormality of problem (P ); in other words, Theorem 4.2 admits that the Pon-
tryagin maximum principle can hold with ψ0 = 0 only. In this section, we suggest an
assumption that excludes abnormality of problem (P ), i.e., ensures that for problem (P )
the normal-form Pontryagin maximum principle (see Section 1) provides a necessary con-
dition of optimality. Moreover, our basic result formulated in Theorem 5.3 states that all
the coordinates of the adjoint variable ψ in the Pontryagin maximum principle are nec-
essarily positive-valued. Basing on Theorem 5.3, we formulate conditions ensuring that
the core Pontryagin maximum principle is complemented by the transversality conditions
discussed in Section 2. The proof of Theorem 5.3 is based on Corollary 3.1.

In what follows, the notation z > 0 (respectively, z ≥ 0) for a vector z ∈ Rn designates
that all coordinates of z are positive (respectively, nonnegative). Similarly, the notation
Z > 0 (respectively, Z ≥ 0) for a matrix Z designates that all elements of Z are positive
(respectively, nonnegative).

The assumption complementing assumptions (A1) – (A4) is the following.

(A5) For every admissible pair (u, x) one has

∂g(x(t), u(t))

∂x
> 0 for a.a. t ≥ 0

and
∂f(x(t), u(t))

∂x
≥ 0 for a.a. t ≥ 0.

Remark 5.9 In typical models of regulated economic growth the coordinates of the state
vector x represent positive-valued production factors. Normally it is assumed that the
utility flow and the rate of growth of every production factor increase as all the production
factors grow. In terms of problem (P ), this implies that the integrand g(x, u) in the goal
functional (1.3) together with every coordinate of the right-hand side f(x, u) of the system
equation (1.1) are monotonically increasing in every coordinate of x. These monotonicity
properties (specified so that g(x, u) is strictly increasing in every coordinate of x) imply
that assumption (A5) is satisfied. Note that the utility flow and the rates of growth of
the production factors are normally positive, implying g(x, u) > 0 and f(x, u) > 0. The
latter assumptions, as well as the assumption x > 0 mentioned earlier appear in different
combinations in the formulations of the results of this section.

The next theorem strengthens Theorem 4.2 under assumption (A5) and some positivity
assumptions for f (recall that the formulation of the normal-form Pontryagin maximum
principle for problem (P ) is given in Section 1, where also the normal-form Hamilton-
Pontryagin function H̃ and the normal-form Hamiltonian H̃ in problem (P ) are defined).

Theorem 5.3 Let assumptions (A1) – (A5) be satisfied, there exist a u0 ∈ U such that
f(x0, u0) > 0 and for every admissible pair (u, x) it hold that f(x(t), u(t)) ≥ 0 for a.a.
t ≥ 0. Let (u∗, x∗) be an admissible pair optimal in problem (P ). Then there exists an
adjoint variable ψ associated with (u∗, x∗) such that

(i) (u∗, x∗) satisfies relations (1.9), (1.10) of the normal-form core Pontryagin maxi-
mum principle together with ψ;

(ii) (u∗, x∗) and ψ satisfy the normal-form stationarity condition (3.52);
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(iii)
ψ(t) > 0 for all t ≥ 0. (5.67)

Remark 5.10 Condition (3.52) is the specification of condition (3.46) in Theorem 4.2 for
the case where ψ0 = 1. Condition (5.67) is non-standard for the Pontryagin maximum
principle; it usually arises in problems of optimal economic growth and plays an important
role in our analysis of the transversality conditions for problem (P ) (see Corollaries 5.2
and 5.3).

Proof of Theorem 5.3. Let {(Pk)} be the sequence of problems associated with
u∗ and for every k = 1, 2, . . . (uk, xk) be an admissible pair optimal in problem (Pk).
In accordance with the classical formulation of the normal-form Pontryagin maximum
principle, for every k = 1, 2, . . . there exists an adjoint variable ψk associated with (uk, xk)
in problem (Pk) such that (uk, xk) satisfies the normal-form core Pontryagin maximum
principle (in problem (Pk)) together with ψk and for every k = 1, 2, . . . the transversality
condition (3.36) holds.

Observing assumption (A5), the adjoint equation resolved by ψk (see (3.50)) and
transversality condition (3.36) for ψk, we easily find that ψk(t) > 0 for all t sufficiently
close to Tk. Let us show that

ψk(t) > 0 for all t ∈ [0, Tk). (5.68)

Suppose the contrary. Then for some k there exists a τ ∈ [0, Tk) such that at least one
coordinate of the vector ψk(τ) vanishes. Let ξ be the maximum of all such τ ∈ [0, Tk) and
i ∈ {1, 2, . . . , n} be such that ψik(ξ) = 0. Then

ψk(t) > 0 for all t ∈ (ξ, Tk) (5.69)

and

ψik(t) = −
∫ t
ξ

〈
∂f i(xk(s), uk(s))

∂x
, ψk(s)

〉
ds−

∫ t
ξ

e−ρs
∂gi(xk(s), uk(s))

∂x
ds (5.70)

for all t ∈ [ξ, Tk].

The latter equation and assumption (A5) imply that ψik(t) ≤ 0 for all t ∈ (t∗, Tk), which
contradicts (5.69). The contradiction proves (5.68).

Let us show that the sequence {ψk(0)} is bounded. The equation for ψk (see (3.50))
and maximum condition (3.51) yield

d

dt
H̃k(xk(t), t, ψk(t)) =

∂H̃k
∂t

(xk(t), t, ũk(t), ψk(t))

= −ρe−ρtg(xk(t), uk(t)) + (ρ+ 1)e−(ρ+1)t
‖uk(t)− zk(t)‖2

1 + σk
+

2e−(ρ+1)t
〈uk(t)− zk(t), żk(t)〉

1 + σk
for a.a. t ≥ 0.

Integrating over [0, Tk] and using the transversality condition (3.36), we arrive at

H̃k(x0, 0, ψk(0)) = e−ρTkmax u∈U

[
g(xk(Tk), u)− e−Tk

‖u− zk(Tk)‖2
1 + σk

]
+
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ρ

∫ Tk
0

e−ρtg(xk(t), uk(t))dt−

(ρ+ 1)
∫ Tk
0

e−(ρ+1)t
‖uk(t)− zk(t)‖2

1 + σk
dt−

2
∫ Tk
0

e−(ρ+1)t
〈uk(t)− zk(t), żk(t)〉

1 + σk
dt.

This together with (3.31) – (3.33) imply that H̃k(x0, 0, ψk(0)) ≤ M for some M > 0 and
all k = 1, 2, . . .. Hence, by virtue of

〈f(x0, u0), ψk(0)〉+ g(x0, u0)−
‖u0 − zk(0)‖2

1 + σk
≤ H̃k(x0, 0, ψk(0)),

we have
〈f(x0, u0), ψk(0)〉 ≤M + |g(x0, u0)|+ (2|U |+ 1)2

where |U | = max u∈U‖u‖. The latter estimate, assumption f(x0, u0) > 0 and (5.68) yield
that the sequence {ψk(0)} is bounded.

Therefore, the sequence {(uk, xk, ψk)} satisfies all the assumptions of Corollary 3.1.
By Corollary 3.1 there exists a subseguence of {(uk, xk, ψk)}, further denoted again as
{(uk, xk, ψk)}, such that for every T > 0 one has convergence (3.45) for the adjoint vari-
ables ψk where the limit element ψ is an adjoint variable associated with (u∗, x∗) in problem
(P ); (u∗, x∗) satisfies the normal-form core Pontryagin maximum principle in problem (P )
together with ψ; and, finally, (u∗, x∗) and ψ satisfy the normal-form asymptotic station-
arity condition (3.52). Thus, for (u∗, x∗) and ψ statements (i) and (ii) are proved.

From (3.45) and (5.68) it follows that ψ(t) ≥ 0 for all t ≥ 0. Now the fact that ψ

solves the adjoint equation (1.9) and assumption (A5) imply (5.67), thus, proving (iii).
The theorem is proved.

Remark 5.11 Suppose the dimension n of the state space of system (1.1) is 1. Then
Theorem 5.3 remains true if one removes the assumption that for every admissible pair
(u, x) it holds that f(x(t), u(t)) ≥ 0 for a.a. t ≥ 0. Indeed, in the proof of Theorem 5.3 we
use the latter assumption to state (5.68) only. If n = 1, (5.68) follows straightforwardly
from (3.36), (5.70) and the fact that ∂g(xk(t), uk(t))/∂x > 0 for a.a. t ∈ [0, Tk] (see
assumption (A5)).

Now, using Theorem 5.3, we formulate conditions coupling the normal-form core Pon-
tryagin maximum principle and the transversality conditions discussed in Section 2.

Corollary 5.2 Let the assumptions of Theorem 5.3 be satisfied and

f(x∗(t), u∗(t)) ≥ a1 for a.a. t ≥ 0 (5.71)

where a1 > 0. Then there exists an adjoint variable ψ associated with (u∗, x∗) such
that statements (i), (ii) and (iii) of Theorem 5.3 hold true and, moreover, ψ satisfies
the transversality condition

lim
t→∞

ψ(t) = 0. (5.72)

Remark 5.12 The fact that (u∗, x∗) satisfies the normal-form Pontryagin maximum prin-
ciple (Theorem 5.3, (i)) implies that (5.72) is equivalent to the transversality conditions
(2.13) discussed in Section 2.
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Proof of Corollary 5.2. By Theorem 5.3 there exists an adjoint variable ψ associated
with (u∗, x∗) such that statements (i), (ii) and (iii) of Theorem 5.3 hold true. Let us prove
(5.72). By Remark 4.7 we have (4.53). From (4.53) and (5.71) we get

lim
t→∞
〈a1, ψ(t)〉 ≤ lim

t→∞
max u∈U〈f(x∗(t), u), ψ(t)〉= 0;

the latter together with (5.67) imply (5.72). The corollary is proved.

Corollary 5.3 Let the assumptions of Theorem 5.3 be satisfied,

x0 ≥ 0, (5.73)

g(x∗(t), u∗) ≥ 0 for a.a. t ≥ 0 (5.74)

and
∂f(x∗(t), u∗(t))

∂x
≥ A for a.a. t ≥ 0 (5.75)

where A > 0. Then there exists an adjoint variable ψ associated with (u∗, x∗) such
that statements (i), (ii) and (iii) of Theorem 5.3 hold true and, moreover, ψ satisfies
the transversality condition

lim
t→∞
〈x∗(t), ψ(t)〉= 0. (5.76)

Remark 5.13 The fact that (u∗, x∗) satisfies the normal-form Pontryagin maximum prin-
ciple (Theorem 5.3, (i)) implies that (5.76) is equivalent to the transversality conditions
(2.14) discussed in Section 2.

Proof of Corollary 5.3. By Theorem 5.3 there exists an adjoint variable ψ associated
with (u∗, x∗) such that statements (i), (ii) and (iii) of Theorem 5.3 hold true. Let us prove
(5.76). The system equation (1.1) and normal-form adjoint equation (1.9) yield

d

dt
〈x∗(t), ψ(t)〉 = 〈f(x∗(t), u∗(t)), ψ(t)〉−〈

x∗(t),
[
∂f(x∗(t), u∗(t))

∂x

]∗
ψ(t)

〉
−

e−ρt
〈
x∗(t),

∂g(x∗(t), u∗(t))

∂x

〉
for a.a. t ≥ 0. (5.77)

From (5.73), assumption (A5) and (5.74) follows

−e−ρt
〈
x∗(t),

∂g(x∗(t), u∗(t))

∂x

〉
≤ 0 ≤ e−ρtg(x∗(t), u∗(t)).

Taking this into account and using assumption (A5), the normal-form maximum condition
(1.10) and assumption (5.75), we continue (5.77) as follows:

d

dt
〈x∗(t), ψ(t)〉 = 〈f(x∗(t), u∗(t)), ψ(t)〉 −〈

x∗(t),

[
∂f(x∗(t), u∗(t))

∂x

]∗
ψ(t)

〉
+ e−ρtg(x∗(t), u∗(t))

≤ −〈Ax∗(t), ψ(t)〉+ H̃(x∗(t), t, ψ(t)) for a.a. t ≥ 0.
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Therefore, by (5.75) for some θ > 0 we have

d

dt
〈x∗(t), ψ(t)〉 ≤ −θ〈x∗(t), ψ(t)〉+ α(t)

where
α(t) = H̃(x∗(t), t, ψ(t))→ 0 as t→∞

(see (3.52)). Then, taking into account (5.73) and (5.67), we get

0 ≤ 〈x∗(t), ψ(t)〉 ≤ e−θt〈x0, ψ(0)〉+ e−θt
∫ t
0

eθsα(s)ds. (5.78)

Furthermore,

α̇(t) =
d

dt
H̃(x∗(t), t, ψ(t)) =

∂

∂t
H̃(x∗(t), t, u∗(t), ψ(t))

= −ρe−ρtg(x∗(t), u∗(t)) ≤ 0 for a.a. t ≥ 0

(here we used (5.74)). Therefore,

∫ t
0

eθsα(s)ds =
1

θ
[eθtα(t)− α(0)] +

1

θ

∫ t
0

eθsα̇(s)ds ≤ 1

θ
(eθtα(t)− α(0)).

Substituting this estimate into (5.78), we get

0 ≤ 〈x∗(t), ψ(t)〉 ≤ e−θt〈x0, ψ(0)〉+ e−θt
1

θ
[eθtα(t)− α(0)]→ 0 as t→∞.

The corollary is proved.

The next theorem is to a certain extent an inversion of Theorem 5.3. It adjoins works
treating the Pontryagin maximum principle as a key component in sufficient conditions of
optimality. Within the finite-horizon setting, this line of analysis was initiated in [29]. In
[1] the approach was extended to infinite-horizon optimal control problems.

Theorem 5.4 Let assumptions (A1) – (A5) be satisfied, x0 ≥ 0 and for every admissible
pair (u, x) it hold that f(x(t), u(t)) ≥ 0 and g(x(t), u(t))≥ 0 for a.a. t ≥ 0. Let (u∗, x∗) be
an admissible pair satisfying (5.75) with some A > 0, and there exist an adjoint variable
ψ associated with (u∗, x∗) such that statements (i), (ii) and (iii) of Theorem 5.3 hold true.
Let, finally, the set G be convex and function x 	→ H̃(x, t, ψ(t)) : G 	→ R1 be concave for
every t ≥ 0. Then the admissible pair (u∗, x∗) is optimal in problem (P ).

We omit the proof, which is similar to the proofs given in [2] and [35].
Combining Corollary 5.3 and Theorem 5.4, we arrive at the following optimality cri-

terion for problem (P ).

Corollary 5.4 Let assumptions (A1) – (A5) be satisfied; x0 ≥ 0; the set G be convex; the
function x 	→ H̃(x, t, ψ) : G 	→ R1 be concave for every t ≥ 0 and for every ψ > 0; there
exist a u0 ∈ U such that f(x0, u0) > 0; and for every admissible pair (u, x) it hold that
f(x(t), u(t)) ≥ 0 for a.a. t ≥ 0, g(x(t), u(t))≥ 0 for a.a. t ≥ 0 and ∂f(x(t), u(t))/∂x≥ A

for a.a. t ≥ 0 with some A > 0. Then an admissible pair (u∗, x∗) is optimal in problem
(P ) if and only if there exists an adjoint variable ψ associated with (u∗, x∗) such that
statements (i), (ii) and (iii) of Theorem 5.3 hold and the transversality condition (5.76) is
satisfied.
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6 Case of dominating discount

In [13] infinite-horizon necessary optimality conditions involving the normal-form core
Pontryagin maximum principle and a characterization of global behavior of the adjoint
variable (alternative to the transversality conditions) were stated; in this work the con-
trol system was assumed to be linear. In this section we use the approximation scheme
developed in Section 3 to prove a nonlinear counterpart of the result of [13].

Following [13], we posit the next growth constraint on g:

(A6) There exist a κ ≥ 0 and an r ≥ 0 such that∥∥∥∥∂g(x, u)∂x

∥∥∥∥ ≤ κ(1 + ‖x‖r) for all x ∈ G and for all u ∈ U. (6.79)

Given an admissible pair (u, x), we denote by Y(u,x) the normalized fundamental matrix
for the linear differential equation

ẏ(t) =
∂f(x(t), u(t))

∂x
y(t); (6.80)

more specifically, Y(x,u) is the n × n matrix-valued function on [0,∞) whose columns yi

(i = 1, . . . , n) are the solutions to (6.80) such that yji (0) = δi,j (i, j = 1, . . . , n) where
δi,i = 1 and δi,j = 0 for i �= j; for every t ≥ 0, ‖Y(u,x)(t)‖ stands for the standard norm of
Y(u,x)(t) as a linear operator in Rn. Similarly, given an admissible pair (u, x), we denote
by Z(u,x) the normalized fundamental matrix for the linear differential equation

ż(t) = −
[
∂f(x(t), u(t))

∂x

]∗
z(t). (6.81)

Note that
[Z(u,x)(t)]

−1 = [Y(u,x)(t)]
∗. (6.82)

Introduce the following growth assumption:

(A7) There exist a λ ∈ R1 a C1 ≥ 0, a C2 ≥ 0 and a C3 ≥ 0 such that for every admissible
pair (u, x) one has

‖x(t)‖ ≤ C1 +C2e
λt for all t ≥ 0 (6.83)

and
‖Y(u,x)(t)‖ ≤ C3e

λt for all t ≥ 0. (6.84)

Remark 6.14 It is easily seen that assumption (A6) implies that there exist a C4 ≥ 0
and a C5 ≥ 0 such that for every admissible pair (u, x)

|g(x(t), u(t)| ≤ C4 +C5‖x(t)‖r+1 for all t ≥ 0. (6.85)

Furthermore, (6.83) and (6.85) imply that

e−ρt|g(x(t), u(t)| ≤ C6e
−ρt + C7e

−(ρ−(r+1)λ)t

holds for every admissible pair (u, x) with C6 ≥ 0 and C7 ≥ 0 not depending on (u, x).
Therefore, assumptions (A6) and (A7) imply (A4) provided ρ > (r + 1)λ. The latter
inequality implying that the discount parameter ρ in the goal functional (1.3) dominates
the growth parameters r and λ (see (6.79) and (6.83)) is a counterpart of a condition
assumed in [13].
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The next theorem is a nonlinear extension of Theorem 1 of [13]. The proof is based on
Corollary 3.1.

Theorem 6.5 Let assumptions (A1) – (A3), (A6) and (A7) be satisfied and ρ > (r+1)λ.
Let (u∗, x∗) be an admissible pair optimal in problem (P ). Then there exists an adjoint
variable ψ associated with (u∗, x∗) such that

(i) (u∗, x∗) satisfies relations (1.9), (1.10) of the normal-form core Pontryagin maxi-
mum principle together with ψ,

(ii) (u∗, x∗) and ψ satisfy the normal-form stationarity condition (3.52);
(iii) for every t ≥ 0 the integral

I∗(t) =
∫ ∞
t

e−ρs[Z∗(s)]
−1∂g(x∗(s), u∗(s))

∂x
ds (6.86)

where Z∗ = Z(u∗,x∗) converges absolutely and

ψ(t) = Z∗(t)I∗(t). (6.87)

Proof of Theorem 6.5. Let {(Pk)} be the sequence of problems associated with
u∗ and for every k = 1, 2, . . . (uk, xk) be an admissible pair optimal in problem (Pk).
In accordance with the classical formulation of the normal-form Pontryagin maximum
principle, for every k = 1, 2, . . . there exists an adjoint variable ψk associated with (uk, xk)
in problem (Pk) such that (uk, xk) satisfies the normal-form core Pontryagin maximum
principle (in problem (Pk)) together with ψk and for every k = 1, 2, . . . the transversality
condition (3.36) holds.

Let us show that the sequence {ψk(0)} is bounded. Using the standard representation
of the solution ψk to the linear normal-form adjoint equation (3.50) with the zero boundary
condition (3.36) through the fundamental matrix Zk = Z(uk,xk) of the corresponding linear
homogeneous equation (see (6.81)), we get

ψk(0) =

∫ Tk
0

e−ρs[Zk(s)]
−1∂g(xk(s), uk(s))

∂x
ds.

We have (see (6.82))

[Zk(s)]
−1 = [Y(xk,uk)(s)]

∗, ‖[Y(xk,uk)(s)]
∗‖ = ‖Y(xk,uk)(s)‖ for all s ≥ 0. (6.88)

Therefore,

‖ψk(0)‖ ≤
∫ Tk
0

e−ρs‖Y(xk,uk)(s)‖
∥∥∥∥∂g(xk(s), uk(s))∂x

∥∥∥∥ ds
and due to assumptions (A6) and (A7) (see (6.84))

‖ψk(0)‖ ≤
∫ Tk
0

(C8e
−(ρ−λ)s + C9e

−(ρ−(r+1)λ)sds

where C8 ≥ 0 and C9 ≥ 0 do not depend on k. Now assumption ρ > (r+1)λ implies that
the sequence {ψk(0)} is bounded.

Therefore, the sequence {(uk, xk, ψk)} satisfies all the assumptions of Corollary 3.1.
By Corollary 3.1 there exists a subseguence of {(uk, xk, ψk)}, further denoted again as
{(uk, xk, ψk)}, such that for every T > 0 one has convergences (3.42) and (3.43) for the
admissible pairs (uk, xk) and convergence (3.45) for the adjoint variables ψk where the
limit element ψ is an adjoint variable associated with (u∗, x∗) in problem (P ); (u∗, x∗)
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satisfies the normal-form core Pontryagin maximum principle in problem (P ) together
with ψ; and, finally, (u∗, x∗) and ψ satisfy the normal-form stationarity condition (3.52).
Thus, for (u∗, x∗) and ψ statements (i) and (ii) are proved.

Consider the integral I∗(t) (6.86) for an arbitrary t ≥ 0. Convergences (3.42) and
(3.43) imply

Zk(s)→ Z∗(s) for all s ≥ 0. (6.89)

Hence,

I∗(t) = lim
T→∞

∫ T
t

e−ρs[Z∗(s)]
−1 ∂g(x∗(s), u∗(s))

∂x
ds

= lim
T→∞

lim
k→∞

∫ T
t

e−ρs[Zk(s)]
−1 ∂g(xk(s), uk(s))

∂x
ds.

Furthermore, from (6.88) it follows that for all s ≥ 0

e−ρt‖[Zk(s)]−1‖‖
∂g(xk(s), uk(s))

∂x
‖ ≤ C10e

−(ρ−λ)s +C11e
−(ρ−(r+1)λ)s

with some positive C10 and C11. Therefore, I∗(t) converges absolutely. Let us prove
(6.87). Integrate the adjoint equation for ψk (see (3.50)) over [t, Tk] assuming that k is
large enough (i.e., Tk ≥ t) and taking into account the transversality condition (3.36). We
get

ψk(t) = Zk(t)

∫ Tk
t

e−ρsZ−1k (s)
∂g(xk(s), uk(s))

∂x
ds. (6.90)

Convergences (3.42) and (3.43) (holding for every T > 0) imply that xk(s)→ x∗(s) for all
s ≥ 0 and uk(s)→ u∗(s) for a.a. s ≥ 0. The latter convergences, convergences (6.89) and
(3.45) and the absolute convergence of the integral I∗(t) yield that the desired equality
(6.87) is the limit of (6.90) with k→∞. Statement (iii) is proved. The proof is completed.
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