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Abstract

We evaluate two methods allowing the prediction of age at maturation from the widths
of annual growth layers in scales (or otoliths) in a case study on Norwegian spring-
spawning herring. For this stock, scale measurements have been collected routinely for
many decades. We compare the performance in classifying age at maturation (at 3, 4, ...,
9 years) between conventional discriminant analysis (DA) and the new methodology of
artificial neural networks trained by backpropagation (NN) against a ‘control’
comprising historical estimates of age at maturation obtained by visual examination of
scales. Both methods show encouraging, and about equally high classification success.
The marginal differences in performance are in favour of DA, if the proportion of
correctly classified cases is used as criterion (DA 68.0%, NN 66.6%), but in favour of
NN if other criteria are used including the prediction errors (error >1 year: DA 5.2%,
NN 2.9%) and the average degree of under- or overestimation (DA: underestimation
1.1% of mean; NN: overestimation 0.2% of mean). We provide evidence that both
methods approach the a� priori limits to maximal classification success, caused by
overlapping combinations of predictor variables between maturation groups. These
methods will allow studies on age at maturation in this important fish stock over a very
long time-span including periods well before, during, and after its collapse to
commercial extinction. Similar techniques might well be applicable to any other fish
stock with long-term data on scale or otolith growth layers available.
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Introduction

Age at maturation, or the age at which animals attain the capacity to reproduce, is tightly
linked to lifetime reproductive success of individuals (Stearns, 1992; Bernardo, 1993). At
population level, age at maturation is thus a key factor influencing stock productivity.
The large fluctuations in many commercially important fish stocks may be better
understood if long-term trends in age at maturation can be established (e.g. Godø, 2000
on the dynamics of maturation in Northeast Arctic cod, Gadus� morhua L.).
Unfortunately, for many major fish stocks such knowledge is relatively limited or absent.
By contrast, data on length and age composition are often routinely collected, normally
based on studies of the annual growth layers in either scales or otoliths.

Can routine growth layer measurements be used to predict age at maturation, with a
satisfactory degree of confidence? This question is addressed here for Norwegian spring-
spawning herring, Clupea� harengus L., a large herring stock of primary commercial
significance and characterised by substantial fluctuations in biomass (Hjort, 1914;
Toresen and Østvedt, 2000). From high abundance in the 1940s, this stock declined
drastically during the 1950s and 1960s probably due to a combination of overfishing and
unfavourable climatic conditions, until it collapsed to near-commercial extinction in the
late 1960s. Since then it has recovered, slowly during the 1970s, but more rapidly since
the late 1980s; it is now considered fully recovered (Toresen and Østvedt, 2000). It is
known that the stock size fluctuations were often accompanied by pronounced changes in
the patterns of growth and maturation (Runnström, 1936; Toresen, 1990). The long-term
patterns of maturation in this stock, however, have not yet been properly described, and
are particularly poorly known for the most recent three decades.

Age at maturation varies considerably in Norwegian spring-spawning herring, largely
due to the wide range of environmental conditions experienced by the juveniles
(Dragesund et al., 1980). The spawning areas are distributed over a wide latitudinal
gradient along the west coast of Norway between 58°N and 69°N (Devold, 1963; Hamre,
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1990). After hatching, the juveniles drift northeastward with the Norwegian coastal
current and so either reach the fjords of western and northern Norway, or the Barents Sea
(Dragesund, 1970). Those ending up in the temperate waters along the Norwegian west
coast generally grow rapidly, and usually spend only 1-2 years in the nursery areas before
migrating to the Norwegian Sea to mix with shoals of older fish. By contrast, those
ending up in the Arctic water masses of the Barents Sea grow slowly usually remaining
for about 3-5 years in the nursery areas (Barros and Holst, 1995). After, usually, 1-2
summers during which the herring forage and live more pelagically in the Norwegian
Sea, the animals mature. This results in ages at maturation that can vary between 3 and 9
years, with the majority of individuals maturing at ages 4 to 8 (Runnström, 1936).

Since the early 1900s, extensive collections of Norwegian spring-spawning herring
scales have been made by the Institute of Marine Research, Bergen, Norway (Hjort,
1914). In herring scales, the formation of gonads, characterising the process of
maturation, is reflected by a subtle change in width and microstructure of the
corresponding annual growth layer (Lea, 1928; Runnström, 1936). This, however, can
only be observed in well-preserved scales from the lateral side of the body. Prior to circa
1970, the sampled herring were mainly caught using drift-nets and purse-seines,
techniques that result in relatively minor scale loss, allowing the collection of scales in
good condition. Experienced scale readers routinely counted the number of spawning
rings based on visual evaluation of the scale structure, so that the age at maturation could
directly be derived from observation. Since the 1970s, however, samples have mainly
been taken from purse-seiners and to an increasing extent from pelagic trawlers. This has
resulted in higher scale loss and hence, a relatively large proportion of scales of poorer
quality. Direct observation of age at maturation from scales was, therefore, discontinued
in 1974.

In contrast, we do have information on the widths of annual growth layers in
Norwegian spring-spawning herring scales over a very long period, starting in the 1930s
and extending to the present day. If it is possible to predict age at maturation from such
data it would allow the establishment of a long-term time series on this important life-
history characteristic. Such information will be particularly valuable in the light of
changes in the stock, that may have occurred when it collapsed in the 1960s. The goal of
the present paper is to describe and evaluate the efficiency of two methods, discriminant
analysis and artificial neural network analysis, to classify age at maturation in adult
Norwegian spring-spawning herring, based on the widths of annual growth layers in
scales.

Materials and Methods

Data collection

The two classification methods were evaluated using mature individuals of Norwegian
spring-spawning herring, collected by the Institute of Marine Research between 1935 and
1973. Samples of 100-200 herring were collected from drift-net, beach-seine, purse-seine,
or trawl catches, caught by both commercial and research vessels. For each fish, standard
measurements were taken, including body mass, total length, sex, and maturity stage.



3

When available, up to four scales were collected from the skin just behind the operculum,
along the lateral body line. Scales were mounted on microscopic glass plates coated with
gelatine and thus conserved for later analysis. By microscopic examination of the scales
shortly after preparation, scale readers determined the age, based on the total number of
growth layers (Lea, 1911) and moreover, the age at maturation, based on observations on
each of the growth layers (Lea, 1928, 1929; Runnström, 1936). This implied a distinction
between (1) ‘coastal’ rings corresponding to the juvenile stage (rather narrow to very
wide summer zones divided by either diffuse or sharp winter rings), (2) ‘oceanic’ rings
corresponding with the late immature stage when the animals live in the Norwegian Sea
(wide summer zones divided by diffuse winter rings), and (3) ‘spawning’ rings
corresponding to years during which the herring spawned (narrow to very narrow outer
summer zones divided by sharp winter rings) (Fig. 1).

For a large number of these historical scale samples (collected before 1974),
measurements on annual growth layers were carried out recently (during the 1990s).
These measurements followed the new methodology of scale examination that has been
in practice at the Institute of Marine Research since 1974 and has replaced the older
method described above, which distinguished between ‘coastal’, ‘oceanic’, and
‘spawning’ rings. The new method was described by Barros and Holst (1995) and
involves the measurement of the total radius of the scale and of the radius of each annual
growth layer up to the 9th along a line running from the focus to the edge of the scale, by
means of a stereomicroscope fitted with an ocular micrometer (Fig. 1).

Description of the data

The data used here included 45 386 individuals, that satisfied the following conditions:
(1) they had been classified as mature based on evaluation of the gonads; (2) age and age
at maturation had been interpreted by observation of the scales; and (3) the widths of
annual scale increments had been quantified by direct measurement (unit: mm).

For classifying age at maturation, it is required that the data be stratified according to
age for two simple reasons. First, the number of measured scale increments and as a
result, that of explanatory variables is dependent on age. Second, while a mature
individual caught at, say, age 4 can only have matured at an age of either 3 or 4, an
individual caught at, say, age 11 may have matured at any age between 3 and 9. An
overview of the age-stratified dataset is given in Table 1.�

Discriminant analysis (DA)

Discriminant analysis is a well-known statistical procedure used to build predictive
models of group membership based on observed characteristics of each individual. Two-
group discriminant analysis generates one discriminant function based on linear
combinations of the predictor variables that result in the best discrimination between two
groups. Multiple discriminant analysis allows the discrimination between more than two
groups by generating a set of discriminant functions. These functions are generated
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Figure�1. Lateral scale from a 9-year-old herring caught in February. The widths of annual
growth layers are measured along the imaginary line indicated, which runs from the focus of the
scale of its periphery. Note that this scale shows 3 wide ‘coastal’ rings separated by sharp winter
rings; 2 wide ‘oceanic’ rings separated by a diffuse winter ring; and 4 narrow ‘spawning’ rings
separated by sharp winter rings. Thus, the age at maturation is 5.

from individuals with known group membership; the functions can then be applied to
other individuals of unknown group membership; given that measurements for the
predictor variables are available.

For our application to predict age at maturation from scale measurements, it was
practical to stratify the data according to age (Table 1). This implied that for each age
group (age 3, 4, ..., 8, 9+) distinct discriminant analyses were carried out. Predictor
variables were the widths of annual scale increments up to the 9th, after log-
transformation of the data to obtain normality and increase the homogeneity of variance.
Dependent variable was age at maturation (at 3, 4, ..., 9 years), defined a�priori based on
the direct observations by scale readers. The discriminant analyses were carried out using
the SPSS 10.0.7 Windows package (SPSS Inc., 1989-1999).
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Table�1. Sample sizes for herring individuals where both scale increments were measured and
age at maturation was determined based on the observation of ‘spawning rings’, used to obtain
the proposed procedures for classifying age at maturation.

Age at maturation

Age 3 4 5 6 7 8 9 All

3

4

5

6

7

8

9+

129

52

68

47

37

26

65

2 865

1 164

1 163

950

1 033

1 968

3 658

1 330

2 429

2 597

4 948

3 602

1 233

2 071

5 879

1 946

650

2 768

972

1 358 378

129

2 917

4 890

6 142

6 595

7 349

17 364

All 424 9 143 14 962 12 785 5 364 2 330 378 45 386

Artificial neural network (NN)

Artificial neural networks were also tried as an alternative method to predict age at
maturation from scale measurements in Norwegian spring-spawning herring. Such neural
networks imitate human neuron functioning, transforming an activating variable into a
non-linear response. They can be applied as an alternative to various statistical
procedures, and are particularly useful in cases of non-linear relationships between
predictor and dependent variables (Fausett, 1994; Basheer and Hajmeer, 2000). Several
recent studies showed that, for the purpose of classification, artificial neural networks
often have superior predictive performance when compared to conventional statistical
procedures, i.e. discriminant analysis and logistic regression (e.g. Edwards and Morse,
1995; Simmonds et al., 1996; Lek et al., 1996; Özesmi and Özesmi, 1999; Manel et al.,
1999a, 1999b).

We constructed artificial neural networks written in the programming language C. For
each of the age groups (age 3, 4, ..., 8, 9+), separate neural network analyses were carried
out (as was the case in discriminant analyses). These networks could be characterised as
three-layer feed-forward neural networks, and the architecture is described in the
Appendix to this paper. The networks were trained by means of the back-propagation
learning algorithm (Rumelhart et al., 1986). The prediction of age at maturation from
scale measurements by use of neural networks occurred in two major phases. First, during
the training� phase internal parameters within the network (weights) were adjusted
iteratively such that the performance of the network, equivalent to accurately predicting
age at maturation, was maximised; this stage continued until there was no further increase
in network performance, or classification success (see Appendix for more detail on the
training procedure). Second, during the prediction� phase the final, optimal network
obtained during the training phase was used to predict age at maturation for all
individuals in the database.
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Performance of classification methods

We used three indicators to judge the quality of the results obtained using discriminant
analysis and neural networks:

(1) Classification�success, defined as the proportion of correctly classified individuals,
assessed per age group, as a general indicator of classification success.

(2) Prediction� errors, defined as the absolute differences between observed and
predicted values for age at maturation, and expressed either as the mean prediction error
averaged over all cases, or as the proportion of cases where age at maturation was
misclassified by more than 1 year.

(3) Degree� of� under-� or� overestimation. Using the Wilcoxon signed-rank test, we
examined to what extent there was a tendency for estimated values for age at maturation,
predicted using either DA or NN, to be either higher or lower than the observed values.

Quantification of overlap between maturation groups

If the different maturation groups show considerable overlap in (combinations of) the
explanatory variables (i.e. scale measurements), then it can be expected that classification
success will be a�priori limited to a certain extent, regardless of the classification method
used. We examined the a�priori�limitations to classification success for both discriminant
and neural network analyses, by quantifying the degree of overlap in the
multidimensional character space between the different maturation groups.

Overlap was quantified as follows. For all individuals belonging to a certain age group
(age 3, 4, ..., 9+), the coordinates describing their locations in the multidimensional
character space were determined by their values for the scale measurements. Next, for
each individual (1) the number of ‘neighbouring’ individuals situated closer to it than a
certain maximal distance in the multidimensional character space was calculated; and (2)
out of these, the fraction of similar�neighbours was computed (i.e., other individuals
characterised by the same age at maturation as the focal individual). The fraction of
similar neighbours within a certain multivariate distance was then averaged over all
individuals in a given age group. This procedure, simplified to a two-dimensional
character space, is visualised in Figure 2.

The mean fraction of similar neighbours situated within a very small multivariate
distance will provide an indication of the hypothetical limitations to maximal
classification success. Unfortunately, when the distance defining neighbourhood
decreases, also the total number of neighbours will decrease; as a result, the estimation of
the fraction of similar neighbours will become less accurate when distance decreases.
Therefore, the procedure was repeated for a range of different neighbourhood-defining
distances (0.05, 0.10, 0.15, ..., 2.50 mm). The results were plotted and examined
graphically.
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Figure�2. Two-dimensional visualisation of the procedure used to quantify the degree of overlap
in scale measurement data between different herring maturation groups. For 30 individuals aged
5, the multidimensional character space (widths of all scale increments) is here reduced to a two-
dimensional character space (widths of increments 4 and 5 only). Open squares, filled squares,
and triangles represent the coordinates of individuals that matured at ages 3, 4, and 5,
respectively. For each individual, (1) the number of ‘neighbours’ situated within a certain
multivariate, neighbourhood-defining distance is computed (e.g., within either 0.1 mm, 0.3 mm,
or 0.5 mm, as illustrated here for one focal individual); and (2) out of these, the fraction of
neighbours similar in age at maturation is computed. Fractions of similar neighbours are then
averaged over all individuals, for different neighbourhood-defining distances.

Results

Classification success

The overall proportion of correct classifications of age at maturation in herring based on
scale measurements was 68.0% if discriminant analysis (DA) was used, and 66.6% if
neural networks (NN) were used. The overall success rate was only marginally, but
nevertheless significantly (P < 0.0001) higher for DA than for NN (Table 2).

An assessment of classification success per age group (Table 2) shows that the
proportion of successful classifications, as expected, decreased with age, from 100% in
mature fish caught at age 3 (only maturation at age 3 possible) to 56.4% (DA) or 54.9%
(NN) in mature fish caught at age 9 or higher (maturation at all ages from 3 to 9
possible). For all age classes, there were only minor differences in classification success
based on the two proposed methods. In particular, methodological differences were
negligible for fish caught at ages 3-6; for fish caught at higher ages, classification success
was marginally higher using DA than using NN.

Prediction errors

Performance as indicated by prediction errors was marginally better for NN than for DA
(Table 3). The overall mean prediction error, defined as the absolute difference between
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Table�2. Classification success (proportion of correct classifications) of age at maturation in
herring based on scale measurements, using either discriminant (DA) or neural network (NN)
analysis. The Wilcoxon signed-rank test is used to examine for differences in classification
success between the two methods; positive values of Z indicate higher success for DA. Values of
P�<�0.05 are emboldened.�

DA NN Wilcoxon

Age n� Correct n Correct % Correct n Correct % Z P

3

4

5

6

7

8

9+

129

2 917

4 890

6 142

6 595

7 349

17 364

129

2 867

4 074

4 880

4 536

4 596

9 788

100.0 %

98.3 %

83.3 %

79.5 %

68.8 %

62.5 %

56.4 %

129

2 868

4 055

4 912

4 193

4 514

9 540

100.0 %

98.3 %

82.9 %

80.0 %

63.6 %

61.4 %

54.9 %

0

−0.180

1.420

−1.482

8.760

1.988

3.652

1

0.857

0.156

0.138

<�0.0001

0.047

0.0003

All ages 45 386 30 870 68.0 % 30 211 66.6 % 7.138 <�0.0001

observed and predicted values for age at maturation, was 0.382 year when using DA, and
0.367 year when using NN. The proportion of cases where the prediction error was over 1
year was higher when using DA (5.2%) than when using NN (2.9%). The difference in
prediction errors between the two methods was small but significant (P < 0.0001; Table
3).

Degree of misclassification, as expected, increased with age at catch (Table 3). In fish
caught at age 4, prediction errors averaged 0.017 year with both methods (range of errors
0-1 year). In fish caught at age 9 or higher, prediction errors averaged 0.521 year if DA
was used, and 0.503 year if the NN was used (range of errors 0-5 year). While differences
in the degree of misclassification between the two proposed methods were negligible for
fish caught at low ages (3-5, 7), the differences were more pronounced for fish caught at
higher ages (6, 8 and higher).

Prediction errors resulting from DA were significantly correlated with those resulting
from NN (Table 3). This implied that if age at maturation for a given individual was
misclassified using DA, it was also likely to be misclassified to a similar extent using
NN.

Degree of under- or overestimation

Over the whole dataset, age at maturation was slightly underestimated using DA, but on
average only by 0.06 year which represented less than 1.1% of the mean age at
maturation (Table 4). When the NN was used for prediction, age at maturation was on
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Table�3. Prediction errors in estimating age at maturation in herring from scale measurements,
using either discriminant (DA) or neural network (NN) analysis. Prediction errors represent the
absolute differences between observed and predicted values for age at maturation. The Wilcoxon
signed-rank test is used to examine if prediction errors were significantly higher (positive values
of Z) or lower (negative values of Z) using DA than using NN. The Spearman rank correlation is
used to examine for associations between prediction errors using either DA or NN. Values of P�<
0.05 are emboldened.

Mean
prediction error

Prediction error
>1

Test Correlation

Age n DA NN DA NN Z P rS P

3

4

5

6

7

8

9+

129

2 917

4 890

6 142

6 595

7 349

17 364

0.000

0.017

0.172

0.224

0.393

0.466

0.521

0.000

0.017

0.173

0.209

0.391

0.428

0.503

0.0 %

0.0 %

0.5 %

1.8 %

7.4 %

7.5 %

6.7 %

0.0 %

0.0 %

0.2 %

0.9 %

2.5 %

3.6 %

4.7 %

0

0.180

−0.205

3.70

0.413

5.43

3.75

1

0.857

0.838

0.0002

0.680

<�0.0001

0.0001

0.682

0.869

0.769

0.520

0.534

0.518

<�0.0001�

<�0.0001�

<�0.0001�

<�0.0001�

<�0.0001�

<�0.0001

All ages 45 386 0.382 0.367 5.2 % 2.9 % 6.24 <�0.0001 0.598 <�0.0001

average overestimated, however to the even lesser extent of 0.01 year (0.2% of mean
age at maturation; Table 4). For the different age groups, age at maturation predicted
using DA or NN was on average either similar to, or slightly lower, or slightly higher
than the averages for the observed values. The degree of under- or overestimation was
always very small, never accounting for more than 2.3% of the average observed values.�

Overlap in scale measurement data between maturation groups

There was considerable overlap in data on scale measurements between the different
maturation groups. This was shown by the analysis, per age group, of the average fraction
of neighbours similar in age at maturation as a function of multivariate distance defining
neighbourhood (Fig. 3). If a relatively low neighbourhood-defining distance was chosen
(range 0.05-0.20 mm), there was close agreement between the percentage of neighbours
similar in age at maturation per age groups (Fig. 3), and classification successes using
both DA and NN (Table 2). As an example, for fish aged 5, within a multivariate distance
of 0.1 mm the mean fraction of neighbours similar in age at maturation was 81.0%, in
accordance with classification successes of 83.3% using DA and 82.9% using NN. For
fish aged 9 or more, the mean fraction of similar neighbours within the same distance was
53.3%, in accordance with classification successes of 56.4% using DA and 54.9% using
NN.
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Table�4. Degree of under- or overestimation of age at maturation, using either discriminant (DA)
or neural network (NN) analysis. Means with standard deviations describe age at maturation as
observed or predicted using DA or NN. The Wilcoxon signed-rank test is applied to examine if
age at maturation is significantly under- or overestimated. Negative and positive values of Z
indicate under- and over-estimation of age at maturation, respectively. Values of P�< 0.05 are
emboldened.

Observed Predicted using DA Predicted using NN

Age n� Mean ±SD Mean ±SD Z P Mean ±SD Z P

3

4

5

6

7

8

9+

129

2 917

4 890

6 142

6 595

7 349

17 364

3.00 ±0.00

3.98 ±0.13

4.73 ±0.47

5.38 ±0.81

5.62 ±1.07

5.71 ±1.21

5.85 ±1.19

3.00 ±0.00

3.99 ±0.11

4.77 ±0.45

5.38 ±0.86

5.55 ±1.09

5.65 ±1.22

5.76 ±1.12

0

2.26

5.66

0.31

−7.89

−6.31

−16.2

1

0.024�

<0.0001

0.758

<0.0001�

<0.0001�

<0.0001

3.00 ±0.00

4.00 ±0.04

4.79 ±0.41

5.39 ±0.80

5.63 ±0.95

5.58 ±1.11

5.93 ±1.01

0

6.71

9.42

1.77

1.05

−14.7

12.0

1

<0.0001�

<0.0001

0.077

0.294

<0.0001�

<0.0001

All
ages

45 386 5.49 ±1.16 5.43 ±1.12 −16.5 <0.0001 5.50 ±1.06 5.64 <0.0001

Discussion

The study shows that age at maturation in Norwegian spring-spawning herring can be
estimated from scale measurements with reasonably high prediction success. Two
entirely different classification methods, discriminant (DA) and neural networks (NN)
analysis, both predicted age at maturation correctly in about 67-68% of all cases (Table
2). These success rates are especially encouraging, if one considers that maturation in
Norwegian spring-spawning herring may occur at no less than 7 different ages, ranging
from 3 to 9 (Runnström, 1936). For adult herring caught at the age of 4, where there are
only two possible ages at maturation (3 and 4), classification success was as high as
98.3% regardless of the method used. There was only a very small fraction of individuals
where the difference between observed and predicted age at maturation was more than 1
year; this fraction was 5.2% using DA and 2.9% using NN (Table 3). Over the whole
dataset there was a significant, but only minor degree of underestimation of age at
maturation if DA was used (by 1.1% of mean age at maturation), and a significant but
even lower degree of overestimation if NN were used (by 0.2% of mean age at
maturation; Table 4). The significant levels of under- and overestimation using DA
�
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Figure�3. Mean percentage of neighbors similar in age at maturation as a function of multivariate
distance defining neighbourhood (compare with Fig. 2), shown separately for age groups 4,5, …,
9+. For neighbours situated within small distances, note high correspondence of percentage
similar neighbour with classification successes of both DA and NN (Table 2).

and NN, respectively, may be explained by our very large sample size (n = 45 386)
rendering it extremely likely that levels of significance are reached even with very small
differences, in particular in the case of paired comparisons. These combined indicators of
classification performance underline that DA and NN are promising tools to predict age
at maturation in herring from routine scale measurements.

The methods described here will therefore allow the analyses of long-term trends in
age at maturation in one of the world’s economically most important fish stocks (ICES,
2001), and in addition will allow studies on the effect of age at maturation on a range of
important parameters, including size and condition at age, recruitment, and the total
number of reproductive events throughout the lifespan of the herring under different
fishing pressures (Beverton, 1992; Beverton et al., 1994; Godø, 2000). Moreover, such
data will allow the analysis of reaction norms for age and size at maturation, with the
possibility for disentangling genetic from phenotypic aspects of maturation (Heino et al.,
2002). It is also important to note that similar methods might well be applicable to other
commercially significant fish stocks, where either scales or otoliths are being collected
routinely and the annuli examined for age reading and growth studies.

In this case study on Norwegian spring-spawning herring, the quality of the results
obtained with either DA or NN was about equally high, and the question as to which
method performed better in classifying age at maturation depended on the performance
criterion used. If classification success, or the total number of cases classified at the
exact, correct age at maturation, was used as performance criterion, then DA gave
marginally but significantly better results than NN (Table 2). The two other performance
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criteria, however, indicated better results with NN. First, prediction errors were slightly,
though significantly lower with NN (Table 3), implying that if a case was misclassified,
the error was likely to be smaller with this method than using DA. Second, using NN age
at maturation was on average overestimated to an (even) lower degree, than it was
underestimated using DA (Table 4). Combined, these differences in classification
performance between the two methods are of such a small magnitude, that DA and NN
may be considered equally successful procedures to derive age at maturation from scale
measurements in Norwegian spring-spawning herring.

In fact, it appears that both methods approach the maximal, hypothetical limits to
classification as imposed a�priori by the overlap in the predictor variables between the
different groups to be classified. A clear indication of this was given by the analysis
quantifying the degree of overlap in scale measurement data in the multidimensional
character space between maturation groups (Fig. 3). At small neighbourhood-defining
distances, the mean fraction of neighbours similar in age at maturation did not increase to
approximately 100% as it would be expected were there no overlap in explanatory
variables between the different groups. By contrast, for each of the age groups 4-9 this
fraction, with decreasing neighbourhood-defining distances, approached percentages very
similar to those characterising classification success using either DA or NN (Table 2).
This implies that the DA and NN approach the limit to classification success imposed by
the nature of the predictor data, and that no considerable improvement may be expected
from any classification method.

To some extent, the overlap in scale data between maturation groups could be due to
measurement inaccuracy when the radii of the scale annuli were measured, since the
smallest unit of measurement was approximately 0.05 mm. Moreover, even though
several skilled readers in a team with many years of experience were involved in the
original process of observing age at maturation, some ‘judgement’ was often necessary in
the distinction between typical ‘oceanic rings’ in the scale corresponding with the late
immature stage (relatively wide summer zones separated by diffuse winter rings) and
‘spawning rings’ corresponding with the mature stage (narrow summer zones separated
by sharp, fine winter rings: Lea, 1928; Runnström, 1936). The observations may
therefore not always have provided the correct classifications for age at maturation. In
particular, the annulus corresponding to the process of maturation is often intermediate in
width to ‘spawning’ and previous ‘oceanic’ rings. Although generally the processes of
maturation such as gonad formation and the first spawning migration lead to a
considerable reduction in body growth rate, there are also many individuals that in the
year of maturation form only (very) small gonads (Slotte, 2000) or may migrate to less
distant spawning grounds (Slotte, 1999). This will result in a lower reduction in the rate
of body growth and a less clear ‘mark’ of maturation in the scale structure (Runnström,
1936). Environmental influences in the year of maturation and natural variation in
maturation between individuals are other possible causes of overlapping scale data among
groups.

The very similar performances of NN and DA in predicting age at maturation did not
agree with several recent studies, that report better, sometimes far better, classification
results obtained with the relatively newly developed NN techniques when compared to
the conventional, statistical methods of classification, discriminant analysis and logistic
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regression (e.g., Lek et al., 1996; Özesmi and Özesmi, 1999; Manel et al., 1999a, 1999b).
In solving other biological problems, NNs also appear to be a superior alternative when
compared to parametric modelling techniques such as multiple linear regression (e.g.,
Lek et al., 1995; Mastrorillo et al., 1997; Baran et al., 1999; Chen and Ware, 1999). In
general, the high predictive power of NNs can be attributed to their ability to handle non-
linear relationships between predictor and dependent variables particularly well, through
the presence of many intervening information-processing units that each use the binary
logistic activation function (Fausett, 1994; Basheer and Hajmeer, 2000). This advantage
of NNs over parametric statistics, however, probably does not apply to our data, since the
relationship between maturation and growth (and hence, scale structure) appears to be
rather linear, or log-linear (Holst, 1996; Slotte, 1999). A further advantage of NNs is the
small impact of extreme values on prediction success, and the absence of any specific
assumptions on the distribution of the data (although data transformation may improve
computational speed), while Gaussian data is an important assumption to be met in DA.
Indeed, the data on scale increments, if log-transformed, were normally distributed, with
virtually no extreme values.

Hence, in this study on Norwegian spring-spawning herring the data fulfilled very well
the conditions required for the conventional statistical procedure of DA, and the extra
advantages provided by NNs were relatively small. Such conditions might, however, be
different in the case of other fish stocks where investigations on age at maturation based
on growth layer data are being considered. NNs could still be the preferred option, in
particular if data assumptions for DA are not fulfilled, and/or maturation is related with
scale growth, or otolith growth, in an irregular, non-linear fashion.
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Appendix

Architecture of neural network to derive age at maturation from scale
measurements

The architecture of the artificial neural networks applied here can be described as three-
layer feedforward neural networks trained by backpropagation. The first layer (input
layer) comprises 3-9 input�units containing the information on the predictor variables (i.e.
data on annual scale increments, after log-transformation); the number of input units is
thus equivalent to the number of measured increments. The second layer (hidden layer)
comprises 14-19 hidden�units; the total number of hidden units is chosen based on a
trade-off between limiting computation time and obtaining sufficiently satisfactory
classification results. The third layer (output layer) comprises a single output� unit
determining the output of the network, representing the variable to be predicted (i.e. age
at maturation). All units in the input layer are connected with all units in the hidden layer,
and these in turn are all connected with the output unit. Specific, modifiable weights are
attributed to each of the connection links between units of successive layers. These
weights are the link between the problem and the solution and are therefore said to
contain the ‘knowledge’ of the neural network about the overall problem (Baran et al.,
1996). At the start of the training phase, all weights in the network are initialised to small
random values (−0.1, ..., 0.1); over the course of the training phase, the weights are
gradually modified using the back-propagation learning algorithm until network
performance is optimised (Rumelhart et al., 1986).

Each unit has an activation which determines its output signal. The activations of the
input units are equal to the values for the predictor variables of a given case. The
activations of the hidden units are computed in two steps. First, each of the input units
emits a weighted output signal to all hidden units, equal to its activation multiplied by the
weight associated to the specific connection link. Each of the hidden units summarizes
the weighted input signals to compute its net input, as follows (Fausett, 1994):
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where neth is the net input received by the hth hidden unit, ai is the activation of the ith
input unit, wih is the weight associated with the connection link between input unit i and
hidden unit h, I is the total number of input units, and biash is a bias on hidden unit h. The
bias may be compared to the constant in parametric statistical analyses. Next, each
hidden unit computes its activation ah� by applying the activation function f to its net
input; here, the binary sigmoid function f�(x) = (1 + e�−x) −1 is used, which is one of the
most typical activation functions:
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Next, each of the hidden units sends its weighted output signal to the output unit o, which
summarizes its incoming signals to compute its own net input, as follows:
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where�neto is the net input received by the output unit, ah is the activation of the hth
hidden unit, wh is the weight associated with the connection link between hidden unit h
and the output unit, H is the total number of hidden units, and biaso is a bias on the output
unit. The output unit then applies the binary sigmoid activation function to compute its
activation ao, which is the actual output of the network:

)( oo netfa = (4)

The back-propagation learning rule (Rumelhart et al., 1986) to train the network implies
that weights are modified in a backward sweep, according to the generalised delta rule
(Rumelhart et al., 1986; McClelland and Rumelhart, 1988). First, an error information
term δo is computed for the output unit by comparison of the actual and desired output of
the net:

)(')( oooo netfad −=δ (5)

where do�and ao are the desired and actual activation of the output unit, and f ' is the
derivative of the binary sigmoid activation function; hence, f '(x) = f(x) [1 − f(x)]. The
weights on links from the hidden to the output layer are then corrected, according to the
formula:

hoh aw εδ=∆ (6)

where ∆wh is the weight correction term for the link from hidden unit h to the output unit,
and ε is the learning rate parameter (here, a value of 0.1 was chosen). Next, for each of
the hidden units an error information term δh is computed:

)(' hhoh netfwδδ = (7)

where wh is the weight on the link from hidden unit h to the output unit. The weights on
links from input units to hidden units are then corrected, according to the formula:

ihih aw εδ=∆ (8)

The training phase was terminated based on the mean-squared-error convergence
criterion (McClelland and Rumelhart, 1988). The dataset was divided into a training
subset comprising 67% of the cases, and a testing subset comprising 33% of the cases.
During training epochs, the network is first adapted based on all cases in the training
subset; its performance is then monitored based on the independent testing subset. A
measure of performance is the mean-squared-error (E) calculated over all cases in the
testing subset, as follows:
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where dp and ap are the desired and actual output of the network of a testing example p,
and P is the total number of testing examples. Training epochs continue as long as there
is an increase in the performance of the network for the testing subset, i.e. as long as E
decreases.


