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PREFACE 

This report is one of a series describing IIASA research into approaches for comparing 
alternative models that could be applied to  the establishment of control policies to  meet 
water-quality standards. In addition to model evaluation, this project has focused on prob- 
lems of optimization and conflict resolution in large river basins. 





ABSTRACT 

Sensitivity theory is applied in this paper to  a class of generalized Streeter-Phelps 
models in order to  predict the variations induced in BOD by the variations of some para- 
meters characterizing the river system. 

The paper shows how simple and elegant this technique is. and at the same time 
proves that many relatively complex phenomena can be explained by Streeter-Phelps models. 





Sensitivity Analysis of Streeter-Phelps Models 

INTRODUCTION 

The aim of this paper is twofold. First we show how the 

sensitivity of a given river-quality model can be analyzed by 

means of the so-called sensitivity theory. For this we first 

survey the main ideas of sensitivity theory and then as an exer- 

cise apply it to simple Streeter-Phelps models. Second, we point 

out that the result of this study proves that Streeter-Phelps 

models are flexible and abound with relevant consequences if one 

knows how to analyze them. 

A SIMPLE TECHNIQUE FOR SENSITIVITY ANALYSIS 

Here, we discuss how a given model is influenced by the 

variations of some of its main parameters (sensitivity analysis). 

This can be done in two different ways depending upon the purpose 

of the sensitivity analysis. One way is to simulate the system 

several times for different parameter values that cover the 

expected range of parameter variations and then compare the dif- 

ferent solutions. The second way consists in calculating, at a 

nominal parameter value, the derivatives of the system solution 

with respect to the parameter. If the purpose of the sensitivity 

analysis is, for example, to make sure that an oxygen standard 

is not violated if temperature or flow rate varies over a certain 

range, one can show by decision-theoretical arguments that the 

first type of sensitivity analysis should be preferred (Stehfest, 

1975a). If the sensitivity is to be discussed in general, with- 

out reference to a particular application, calculation of the 

derivative is most appropriate, because the result can be pre- 

sented more succinctly than in the other case. Therefore, this 

approach is used in the following for a sensitivity discussion 

of the Streeter-Phelps model. Before doing this, however, we 



b r i e f l y  p r e s e n t  t h e  e l e m e n t s  o f  t h i s  t y p e  o f  s e n s i t i v i t y  a n a l y -  

s i s  ( s e e ,  f o r  example,  Cruz,  1 9 7 3 ) .  

Assume t h a t  a  c o n t i n u o u s ,  lumped p a r a m e t e r  sys tem i s  de-  

s c r i b e d  by t h e  v e c t o r  d i f f e r e n t i a l  e q u a t i o n  

where  x i s  a n  n - th  o r d e r  v e c t o r  and 8 i s  a  c o n s t a n t  p a r a m e t e r  

w i t h  nominal  v a l u e  8 ,  and l e t  t h e  i n i t i a l  s t a t e  xo o f  t h e  s y s -  

t e m  depend upon t h e  p a r a m e t e r ,  i . e .  

The s o l u t i o n  o f  Eq. (1) w i t h  t h e  i n i t i a l  c o n d i t i o n  ( 2 )  i s  a  

f u n c t i o n  

which,  under  v e r y  g e n e r a l  c o n d i t i o n s ,  c a n  be  expanded i n  s e r i e s  

i n  t h e  neighborhood o f  t h e  nominal  v a l u e  o f  t h e  p a r a m e t e r ,  i . e .  

where  x ( t )  = x ( t , 8 )  i s  t h e  nominal s o l u t i o n .  The v e c t o r  

[ax/aOlg , namely t h e  d e r i v a t i v e  o f  t h e  s t a t e  v e c t o r  w i t h  r e s p e c t  

t o  t h e  p a r a m e t e r ,  i s  c a l l e d  t h e  s e n s i t i v i t y  v e c t o r  ( o r  s e n s i t i v -  

i t y  c o e f f i c i e n t )  and f rom now on w i l l  b e  deno ted  by s ,  i . e .  



Thus the perturbed solution of Eq. (1) can be easily obtained as 

once the sensitivity vector is known. 

When there are many parameters 81,82,...,8q, the knowledge 

of the sensitivity vectors s 1,~2r...r~q allows the association 

of specific characteristics of the system behavior with particu- 

lar parameters. If, for example, the nominal solution x(t) of 

a first-order system is the one shown in Figure 1, where sl(t) 

and s2 (t) are the sensitivity coefficients of x with respect to 

two parameters €I1 and €I2, one can say that the first parameter 

is responsible for the overshoot of x while the second is 
responsible for the asymptotic behavior of the system. This 

characterization of the parameters very often turns out to be 

of great importance in the validation of the structure of a 

model; in fact some of the best-known methods of parameter 

estimation are based on manipulation of the sensitivity vectors. 

Figure 1. Nominal solution ii and sensitivity coefficients s l  and sg. 



By t a k i n g  t h e  t o t a l  d e r i v a t i v e  of Eq. (1) it can  be con- 

c luded  t h a t  t h e  s e n s i t i v i t y  v e c t o r  s ( t )  s a t i s f i e s  t h e  fo l lowing  

v e c t o r  d i f f e r e n t i a l  equat ion:  

wi th  i n i t i a l  cond i t i ons  

Thus, t h e  s e n s i t i v i t y  vec to r  i s  t h e  s t a t e  vec to r  of t h e  system (31,  

c a l l e d  s e n s i t i v i t y  system, which i s  always a  l i n e a r  system, even 

i f  system (1) is  non l inea r .  Because of  t h i s  p rope r ty  t h e  s e n s i -  

t i v i t y  v e c t o r s  can o f t e n  be  a n a l y t i c a l l y  determined.  I n  any c a s e ,  

t hey  can always be computed by means of s imu la t ion  fo l lowing  t h e  

scheme shown i n  F igu re  2 .  

Figure 2. Computation of sensitivity vectors. 
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I n  t h e  f o l l o w i n g  we a p p l y  t h i s  methodology t o  some v e r y  

p a r t i c u l a r  b u t  i n t e r e s t i n g  s e n s i t i v i t y  problems of  r i v e r  p o l l u t i o n .  

The model we u s e  i s  t h e  well-known S t r e e t e r - P h e l p s  model o r  some 

s u i t a b l e  m o d i f i c a t i o n  o f  it. To s i m p l i f y  t h e  d i s c u s s i o n  we d e a l  

w i t h  t h e  p a r a m e t e r s  o n e  a t  a  t i m e .  Obvious ly ,  t h i s  d o e s  n o t  imply 

t h a t  o u r  r e s u l t s  a r e  n o t  g e n e r a l ,  s i n c e  i n  t h e  c a s e  of many para -  

meters 81 ,82 , . . .  t h e  p e r t u r b e d  s o l u t i o n  o f  E q .  (1) can  b e  s imply  

o b t a i n e d  a s  

where s l ( t ) , s 2 ( t ) ,  ... a r e  t h e  s e n s i t i v i t y  v e c t o r s .  

BOD VARIATIONS 

L e t  u s  f i r s t  a n a l y z e  t h e  e f f e c t s  o f  a  v a r i a t i o n  o f  t h e  BOD 

l o a d  d i s c h a r g e d  i n t o  t h e  r i v e r  a t  a  p a r t i c u l a r  p o i n t .  By w r i t i n g  

t h e  S t r e e t e r - P h e l p s  model i n  f low t i m e  T we o b t a i n  t h a t  t h e  s y s -  

tem i s  d e s c r i b e d  by 

where b  and c s t a n d  f o r  BOD and DO, cs i s  t h e  oxygen s a t u r a t i o n  

l e v e l  and kl and k2 a r e  t h e  c h a r a c t e r i s t i c  p a r a m e t e r s  (BOD decay  

and r e - a e r a t i o n  c o e f f i c i e n t s ,  r e s p e c t i v e l y )  o f  t h e  model. The 

i n i t i a l  c o n d i t i o n s  a r e  



i f  we assume t h a t  t h e  oxygen c o n t e n t  o f  t h e  e f f l u e n t  i s  n e g l i g i -  

b l e .  Thus, t h e  s e n s i t i v i t y  sys tem i s  g i v e n  by 

and i t s  i n i t i a l  c o n d i t i o n s  a r e  

The s o l u t i o n  o f  Eq. ( 5 a )  w i t h  sb = 1 i s  g i v e n  by 
0 

which can b e  i n t r o d u c e d  i n  Eq. (5b)  t o g e t h e r  w i t h  s = 0, t h u s  

g i v i n g  0 

The s e n s i t i v i t y  c o e f f i c i e n t  s g i v e n  by Eq. ( 6 )  i s  always nega- 
C 

t i v e ,  a s  shown i n  F i g u r e  3 ,  and h a s  a  minimum f o r  

T h i s  means t h a t  a  p o s i t i v e  p e r t u r b a t i o n  o f  t h e  BOD l o a d  a t  a  

p o i n t  on t h e  r i v e r  i m p l i e s  t h a t  a l l  t h e  r i v e r  downstream from 



Figure 3. The sensitivity of dissolved oxygen concentration to ROD load. 

t h a t  p o i n t  becomes worse a s  f a r  a s  i t s  oxygen c o n t e n t  i s  con- 

c e r n e d .  T h i s  i s  t h e  c o n c l u s i o n  o n e  can  d e r i v e  from t h e  S t r e e t e r -  

P h e l p s  model which d o e s  n o t  r e p r e s e n t  a  p r i o r i  t h e  b e h a v i o r  of  a  

r e a l  r i v e r .  Indeed ,  it  can b e  shown ( s e e ,  f o r  i n s t a n c e ,  S t e h f e s t ,  

1975b) t h a t  b e c a u s e  of  t h e  mechanisms o f  t h e  food c h a i n ,  i t  c o u l d  

sometimes b e  e x p e c t e d  t h a t  t h e  c o n d i t i o n s  o f  t h e  r i v e r  a r e  b e t -  

t e r e d  a t  some p a r t i c u l a r  p o i n t  by an  i n c r e a s e  o f  t h e  BOD l o a d .  

FLOW VARIATIONS 

L e t  u s  now suppose  t h a t  we a r e  i n t e r e s t e d  i n  p r e d i c t i n g  t h e  

v a r i a t i o n s  induced  i n  BOD and DO i n  a  s t r e a m  by v a r i a t i o n s  o f  

f low r a t e  ( s e e ,  f o r  example,  Loucks and Jacoby ,  1 9 7 2 ) .  Of c o u r s e  

w e  c a n n o t  c o n s i d e r  f low t i m e  a s  t h e  independent  v a r i a b l e  and we 

must t h e r e f o r e  w r i t e  t h e  S t r e e t e r - P h e l p s  model i n  t h e  form 



where L i s  d i s t a n c e ,  Q i s  f l o w  r a t e  and t h e  two new c h a r a c t e r i s -  

t i c  p a r a m e t e r s  a r e  g i v e n  by 

v(Q)  b e i n g  t h e  a v e r a g e  s t r e a m  v e l o c i t y .  

A s  f a r  a s  t h e  i n i t i a l  c o n d i t i o n s  a r e  concerned ,  l e t  u s  sup- 

pose  t h a t  t h e  w a t e r  coming i n t o  t h e  r e a c h  u n d e r  c o n s i d e r a t i o n  i s  

p e r f e c t l y  oxygenated and w i t h  z e r o  BOD. Thus, a f t e r  mixing w i t h  

t h e  e f f l u e n t  d i s c h a r g e  i n  p o i n t  L = 0 we have 

s o  t h a t  t h e  i n i t i a l  c o n d i t i o n s  o f  t h e  s e n s i t i v i t y  v e c t o r  t u r n  o u t  

t o  be g i v e n  by 

w h i l e  t h e  s e n s i t i v i t y  sys tem ( 3 )  is  g i v e n  by 



where parameters K1 and K2 are evaluated in nominal conditions 

(Q = 5 )  and the ' means derivative with respect to the parameter, 
i.e. 

The solution of Eqs. (8,9) can easily be found and the sensitiv- 

ity coefficients sb and sc are given by 

where 

The sensitivity coefficient sb is negative for all values of .L 

while a typical situation for sc is shown in Figure 4. The deri- 

vative of sc at the initial point & = 0 is always positive since 

Ki < 0, and this implies that in the part of the reach immediately 

downstream from the effluent point, the oxygen concentration is 

an increasing function of flow rate. On the contrary, if we con- 

sider points that are sufficiently downstream we may obtain exact- 

ly the opposite result as shown in the example in Figure 4. Nev- 

ertheless, roughly speaking we can conclude that the higher the 

values of the flow rate, the better the global conditions of the 

river, since the improvement due to an increment of flow rate is 



o b t a i n e d  where t h e  oxygen c o n d i t i o n s  a r e  worse ;  t h i s  f a c t  i s  

a c t u a l l y  t h e  m o t i v a t i o n  f o r  t h e  u s e  o f  low-flow augmenta t ion  

( s e e  Loucks and Jacoby ,  1972) i n  r i v e r - q u a l i t y  c o n t r o l .  

Figure 4. 'The sensitivity of dissolved oxygen concentration to  flow rate. 

TEMPERATURE VARIATIONS 

L e t  u s  now d i s c u s s  t h e  i n f l u e n c e  o f  t h e  t e m p e r a t u r e  on t h e  

d i s s o l v e d  oxygen o f  a  r i v e r .  To s i m p l i f y  t h e  d i s c u s s i o n  l e t  u s  

assume we a r e  d i s c h a r g i n g  a  g i v e n  amount o f  BOD a t  a  p a r t i c u l a r  

p o i n t  o f  a  p e r f e c t l y  c l e a n  and oxygena ted  r i v e r .  Moreover,  sup- 

p o s e  t h a t  t h e  s t e a d y - s t a t e  ( e q u i l i b r i u m )  t e m p e r a t u r e  T  o f  t h e  

w a t e r  i s  c o n s t a n t  i n  s p a c e .  Thus,  t h e  i n i t i a l  c o n d i t i o n s  o f  t h e  

s t r e t c h  a r e  g i v e n  and depend upon t h e  t e m p e r a t u r e  T o f  t h e  w a t e r  

s i n c e  t h e  oxygen s a t u r a t i o n  l e v e l  c  i s  a  d e c r e a s i n g  f u n c t i o n  o f  s 
T. Under t h e s e  a s s u m p t i o n s  t h e  sys tem i s  d e s c r i b e d  by 



where the independent variable is again flow time T .  The initial 

conditions of system (10) are 

The corresponding sensitivity system is given by 

- 
Sb = - klSb - k;b 

with initial conditions 

where ' as before means derivative with respect to T. The solu- 

tion of the sensitivity system is given by 

From this expression it follows that 



and since ki < 0 and c& < 0, one obtains that the DO sensitivity 

coefficient s is always characterized by the following three 
C 

properties: 

Two possible sensitivity curves s are shown in Figure 5, the 
C 

first one (a) being all negative and the second one (b) showing 

that along a segment of the river (segment AB) the conditions are 

bettered by an increment of the temperature. This surprising 

fact can be explained by noticing that curve (b) could be obtained 

under the assumption that re-aeration can be drastically improved 

by increasing the temperature. Nevertheless, even under these 

hypothetical conditions the dominant effect is a decrease of the 

dissolved oxygen concentration with the temperature of the water; 

and this is why in order to be safe, high temperature conditions 

are often selected as the reference conditions in the design of 

wastewater treatment plants or other river pollution control 

facilities. 

Figure 5. The sensitivity of dissolved oxygen concentration to temperature. 



HEAT DISCHARGE 

As a  f i n a l  example we now d i s c u s s  i n  ve ry  s imple  and per -  

haps c rude  te rms  t h e  e f f e c t s  t h a t  h e a t  p o l l u t i o n  ha s  on t h e  b io-  

chemica l  p roce s s .  Th i s  m a t t e r  ha s  been d i s c u s s e d  f o r  a  long  t i m e ,  

and it i s  somehow s u r p r i s i n g  t h a t  some of  t h e  main c o n c l u s i o n s  on 

which peop l e  a g r e e  today were a l r e a d y  con t a ined  i n  t h e  S t r e e t e r -  

Phe lps  model. 

Le t  u s  make r e f e r e n c e  t o  t h e  c a s e  i l l u s t r a t e d  i n  F i g u r e  6a 

where a  r i v e r  w i t h  a  f low r a t e  Q1 and t empe ra tu r e  T: r e c e i v e s  a  

h e a t  d i s c h a r g e  w i t h  a  f l ow  r a t e  Q 2  and t empe ra tu r e  

Ql + Q2 
(T: + -- ATo). Then a f t e r  mixing ( a t  t h e  p o i n t  R = 0) we 

1 
o b t a i n  a  f low r a t e  Q = Q1 + Q2 and a  t empe ra tu r e  T* + ATo. The 

0 

v a r i a t i o n  ATo induced i n  t h e  r i v e r  by t h e  h e a t  d i s c h a r g e  i s  ou r  

parameter  and i t s  normal v a l u e  is  ze ro ,  meaning t h a t  t h e  nom- 
0 

i n a l  c o n d i t i o n s  r e f e r  t o  t h e  c a s e  i n  which t h e r e  i s  no h e a t  d i s -  

cha rge .  Moreover, we assume t h a t  t h e  BOD c o n c e n t r a t i o n  o f  t h e  

d i s c h a r g e  i s  t h e  same a s  t h a t  of t h e  r i v e r ,  w h i l e  where oxygen 

i s  concerned we assume t h a t  bo th  t h e  r i v e r  and t h e  d i s c h a r g e  a r e  

i n  s a t u r a t e d  c o n d i t i o n s ,  a s  shown i n  F i g u r e  6b,  s o  t h a t  t h e  i n i -  

t i a l  c o n d i t i o n s  a r e  

The t empe ra tu r e  o f  t h e  wa t e r  must now b e  added a s  a n  e x t r a  s t a t e  

v a r i a b l e  t o  t h e  s imple  S t r e e t e r - P h e l p s  model cons ide r ed  s o  f a r ,  

and t h e  model becomes 



Figure 6 .  Ralance equations at the discharge point: (a) flow rate and 
temperature, (b) BOD and DO. 



.i. = f (T )  

w i t h  i n i t i a l  n o m i n a l  c o n d i t i o n s  

- - - 
T  = Tr, 

0 bo = b; c = c ~ ( T * ~ )  
0 

Thus  t h e  s e n s i t i v i t y  s y s t e m  i s  g i v e n  by 

= f l s  
T  T  

= -  
b  k i E s T  - klsb 

6 = ( - k i 6  + k;cs + k2c; - k;E)sT - klsb - k2sc  b  , ( 1 2 ~ )  

w h e r e  f r  = i. and  t h e  i n i t i a l  c o n d i t i o n s  a r e  Pf1 

Eqs.  (11, 1 2 )  c a n  b e  e a s i l y  s o l v e d  s i n c e  t h e y  a r e  o f  t r i a n g u l a r  

s t r u c t u r e .  I f  we a s sume  t h a t  T  = T; i s  a  c o n s t a n t  s o l u t i o n  
0 

o f  Eq. ( l l a )  we c a n  s o l v e  t h i s  s y s t e m  o f  e q u a t i o n s  a n a l y t i c a l l y ,  

a n d  t h e  s o l u t i o n  g i v e s  t h e  t h r e e  s e n s i t i v i t y  c o e f f i c i e n t s  



where the constants A,B,. ..,E are given by 

k2ci k1k5 - B =  kik2 
k2-fr (k2-kl-f.) f' bo + (k2-kl) (i; -k -it,) 

Go + C; 
2 1 

The corresponding sensitivity curves are shown in Figure 7 for 

realistic values of the parameters, and the main conclusion is 

that the oxygen concentration is lowered everywhere and in par- 

ticular around the minimum of the DO curve. Nevertheless, the 

perturbation introduced by the heat discharge is absorbed along 

the river, and this is the main distinction between the case of 

temperature perturbation and the preceding one. 

CONCLUDING REMARKS 

Sensitivity theory has been used in this paper to analyze 

a class of water-quality models (Streeter-Phelps models). Load 

variations, flow rate variations and temperature variations have 

been considered, as has the interactions between heat pollution 

and biodegradable pollution. The results are of general appli- 

cability and are presented in a very simple analytical form. The 

main limitation of the study could be the fact that sensitivity 

theory makes reference only to small perturbations of the para- 

meters. Nevertheless, the direct comparison with the simulation 



Figure 7. Sensitivity coefficients of temperature, BOD and DO to 
heat discharge. 

study carried out by Lin et al. (1973) has shown that the results 

obtained in this paper are largely satisfactory for realistic 

variations of the parameters of river-quality models. 
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