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PREFACE

This report is one of a series describing HIASA research into approaches for comparing
alternative models that could be applied to the establishment of control policies to meet
water-quality standards. In addition to model evaluation, this project has focused on prob-
lems of optimization and conflict resolution in large river basins,
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ABSTRACT

Sensitivity theory is applied in this paper to a class of generalized Streeter-Phelps
models in order to predict the variations induced in BOD by the variations of some para-
meters characterizing the river system,

The paper shows how simple and elegant this technique is, and at the same time
proves that many relatively complex phenomena can be explained by Streeter-Phelps models.






Sensitivity Analysis of Streeter-Phelps Models

INTRODUCTION

The aim of this paper is twofold. First we show how the
sensitivity of a given river-quality model can be analyzed by
means of the so-called sensitivity theory. For this we first
survey the main ideas of sensitivity theory and then as an exer-
cise apply it to simple Streeter-Phelps models. Second, we point
out that the result of this study proves that Streeter-Phelps
models are flexible and abound with relevant consequences if one

knows how to analyze them.

A SIMPLE TECHNIQUE FOR SENSITIVITY ANALYSIS

Here, we discuss how a given model is influenced by the
variations of some of its main parameters (sensitivity analysis).
This can be done in two different ways depending upon the purpose
of the sensitivity analysis. One way is to simulate the system
several times for different parameter values that cover the
expected range of parameter variations and then compare the dif-
ferent solutions. The second way consists in calculating, at a
nominal parameter value, the derivatives of the system solution
with respect to the parameter. If the purpose of the sensitivity
analysis is, for example, to make sure that an oxygen standard
is not violated if temperature or flow rate varies over a certain
range, one can show by decision-theoretical arguments that the
first type of sensitivity analysis should be preferred (Stehfest,
1975a). If the sensitivity is to be discussed in general, with-
out reference to a particular application, calculation of the
derivative is most appropriate, because the result can be pre-
sented more succinctly than in the other case. Therefore, this
approach is used in the following for a sensitivity discussion

of the Streeter-Phelps model. Before doing this, however, we



briefly present the elements of this type of sensitivity analy-

sis (see, for example, Cruz, 1973).

Assume that a continuous, lumped parameter system is de-

scribed by the vector differential equation
x(t) = £(x(t),6,t) , (1)

where x is an n-th order vector and 6 is a constant parameter
with nominal value 6, and let the initial state x, of the sys-
tem depend upon the parameter, i.e.

Xy = %, (0) (x_ = x_(6)) . (2)

The solution of Eg. (1) with the initial condition (2) is a

function

x = %x(t,8)

which, under very general conditions, can be expanded in series

in the neighborhood of the nominal value of the parameter, i.e.

x(t,0) = x(t) + |ox(t,0) (8 - B) + .. .
96 5

where x(t) = x(t,8) is the nominal solution. The vector
[3x/89]§ , namely the derivative of the state vector with respect
to the parameter, is called the sensitivity vector (or sensitiv-

ity coeffietent) and from now on will be denoted by s, i.e.

s(t) = [-g%]_
G}



Thus the perturbed solution of Eq. (1) can be easily obtained as

x(t,8) = x(t) + s(t)(6 - 8)

once the sensitivity vector is known.

When there are many parameters 61,62,...,6q, the knowledge
of the sensitivity vectors sl,sz,...,sq allows the association
of specific characteristics of the system behavior with particu-
lar parameters. If, for example, the nominal solution X (t) of
a first-order system is the one shown in Figure 1, where sl(t)
and sz(t) are the sensitivity coefficients of x with respect to
two parameters el and 62, one can say that the first parameter
is responsible for the overshoot of x while the second is
responsible for the asymptotic behavior of the system. This
characterization of the parameters very often turns out to be
of great importance in the validation of the structure of a
model; in fact some of the best-known methods of parameter

estimation are based on manipulation of the sensitivity vectors.
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Figure 1. Nominal solution X and sensitivity coefficients s} and so.



By taking the total derivative of Eg. (1) it can be con-
cluded that the sensitivity vector s(t) satisfies the following

vector differential equation:

. 3f (x,0,t) 3f (%,0,t) (3
% ;)

with initial conditions

on
o~ |3 5 (4)

Thus, the sensitivity vector is the state vector of the system (3),
called sensitivity system, which is always a linear system, even
if system (1) is nonlinear. Because of this property the sensi-
tivity vectors can often be analytically determined. 1In any case,
they can always be computed by means of simulation following the

scheme shown in Figure 2.
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Figure 2. Computation of sensitivity vectors.



In the following we apply this methodology to some very
particular but interesting sensitivity problems of river pollution.
The model we use is the well-known Streeter-Phelps model or some
suitable modification of it. To simplify the discussion we deal
with the parameters one at a time. Obviously, this does not imply
that our results are not general, since in the case of many para-
meters 61,92,... the perturbed solution of Eq. (1) can be simply
obtained as

x(ty 07,65,...) = X(t) + s ) +

+ sz(t)(e2 -8,

where sl(t),sz(t),... are the sensitivity vectors.

BOD VARIATIONS

Let us first analyze the effects of a variation of the BOD
load discharged into the river at a particular point. By writing
the Streeter-Phelps model in flow time T we obtain that the sys-
tem is described by

c = - klb + k2(cS - )

where b and ¢ stand for BOD and DO, cg is the oxygen saturation
level and kl and k2 are the characteristic parameters (BOD decay
and re-aeration coefficients, respectively) of the model. The

initial conditions are



if we assume that the oxygen content of the effluent is negligi-

ble. Thus, the sensitivity system is given by

Sp = - klsb (5a)

we

I

|
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I
=

c 15 25¢ (5b)

and its initial conditions are

- b _ -
Sb = [ ﬁ] =1 sc =0 .
[o) o)

38 5
The solution of Eg. (5a) with s, =1 is given by
o
-k, T

sb(r) e 1 .
which can be introduced in Eq. (5b) together with s, = 0, thus
giving °©

—klr _ e—kzr .
s (1) =k, & (6)
c 1 K. - Xk
1 2

The sensitivity coefficient Sq given by Eq. (6) is always nega-

tive, as shown in Figure 3, and has a minimum for

x - ln(kZ/kl) 7
Tk, -k . )
2 1

This means that a positive perturbation of the BOD load at a

point on the river implies that all the river downstream from
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Figure 3. The sensitivity of dissolved oxygen concentration to BOD load.

that point becomes worse as far as its oxygen content is con-
cerned. This is the conclusion one can derive from the Streeter-
Phelps model which does not represent a priori the behavior of a
real river. Indeed, it can be shown (see, for instance, Stehfest,
1975b) that because of the mechanisms of the food chain, it could
sometimes be expected that the conditions of the river are bet-

tered at some particular point by an increase of the BOD load.

FLOW VARIATIONS

Let us now suppose that we are interested in predicting the
variations induced in BOD and DO in a stream by variations of
flow rate (see, for example, Loucks and Jacoby, 1972). 0Of course
we cannot consider flow time as the independent variable and we
must therefore write the Streeter-Phelps model in the form



L - Kl(Q)b
dc (8)
Ie - "~ K (@b + Ky (Q) (cg - <)

where & is distance, Q is flow rate and the two new characteris-

tic parameters are given by

K, = k, (Q)/v(Q) K, = kz(Q)/v(Q) ,

v(Q) being the average stream velocity.

As far as the initial conditions are concerned, let us sup-
pose that the water coming into the reach under consideration is
perfectly oxygenated and with zero BOD. Thus, after mixing with

the effluent discharge in point £ = 0 we have

by = b_(Q) = c

so that the initial conditions of the sensitivity vector turn out

to be given by

s - b’ = Bbo <0
b o 30 |= ’ Sc =0 ,

0 o

while the sensitivity system (3) is given by

o
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(9)



where parameters Kl and K2 are evaluated in nominal conditions

(0 = Q) and the ’ means derivative with respect to the parameter,

) ()
K17 7a |; 2 T {7 5
s 10

The solution of Egs. (8,9) can easily be found and the sensitiv-

i.e.

ity coefficients Sy and s, are given by

' , K, 4
sb(l) = (bO - Klbol)e

-K. %  -K,% , =K 2 , K. 2
sc(l) = Afe 1 e 2 ) + BZ(Kle R K2e 2 )

where

The sensitivity coefficient Sp is negative for all values of ¢
while a typical situation for S is shown in Figure 4. The deri-
vative of s. at the initial point £ = 0 is always positive since
Ki < 0, and this implies that in the part of the reach immediately
downstream from the effluent point, the oxygen concentration is

an increasing function of flow rate. On the contrary, if we con-
sider points that are sufficiently downstream we may obtain exact-
ly the opposite result as shown in the example in Figure 4. Nev-
ertheless, roughly speaking we can conclude that the higher the
values of the flow rate, the better the global conditions of the

river, since the improvement due to an increment of flow rate is
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obtained where the oxygen conditions are worse; this fact is
actually the motivation for the use of low-flow augmentation

(see Loucks and Jacoby, 1972) in river-quality control.

» [
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Figure 4. The sensitivity of dissolved oxygen concentration to flow rate.

TEMPERATURE VARIATIONS

Let us now discuss the influence of the temperature on the
dissolved oxygen of a river. To simplify the discussion let us
assume we are discharging a given amount of BOD at a particular
point of a perfectly clean and oxygenated river. Moreover, sup-
pose that the steady-state (equilibrium) temperature T of the
water is constant in space. Thus, the initial conditions of the
stretch are given and depend upon the temperature T of the water
since the oxygen saturation level Cq is a decreasing function of

T. Under these assumptions the system is described by

b

-k (Mb (10a)

Qe
Il

-k (T)b + k2(T)(cs(T) -c) ., (10b)
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where the independent variable is again flow time T.

conditions of system (10) are

Sy = - klsb - kib
Sc = = kysy -~ kps - kib + (kye )’ - ki
with initial conditions
s, =0 s, =¢. .
o o

where ’ as before means derivative with respect to T.

tion of the sensitivity system is given by

- —le
Sp(T) = - kibore
k,ks - kik -k, T -k, T
s (1) =c¢’ + 172 172 b _ (e 1. e 2 o+
c s (k. - k )2 o]
2 1
k =k,T ~k,T
]_ _—
t g Botlkje b - kje 2 .
2 1
From this expression it follows that
. _ e P _ - ’ .
sc(O) = - kjb, s, (=) = s, SI

The initial

The solu-
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and since ki < 0 and cé < 0, one obtains that the DO sensitivity
coefficient Se is always characterized by the following three

properties:

s.(0) <0 5.(0) <0 s (=) <0 -
Two possible sensitivity curves s, are shown in Figure 5, the
first one (a) being all negative and the second one (b) showing
that along a segment of the river (segment AB) the conditions are
bettered by an increment of the temperature. This surprising

fact can be explained by noticing that curve (b) could be obtained
under the assumption that re-aeration can be drastically improved
by increasing the temperature. Nevertheless, even under these
hypothetical conditions the dominant effect is a decrease of the
dissolved oxygen concentration with the temperature of the water;
and this is why in order to be safe, high temperature conditions
are often selected as the reference conditions in the design of
wastewater treatment plants or other river pollution control
facilities.

(b)

Figure 5. The sensitivity of dissolved oxygen concentration to temperature.
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HEAT DISCHARGE

As a final example we now discuss in very simple and per-
haps crude terms the effects that heat pollution has on the bio-
chemical process. This matter has been discussed for a long time,
and it is somehow surprising that some of the main conclusions on
which people agree today were already contained in the Streeter-
Phelps model.

Let us make reference to the case illustrated in Figure 6a
where a river with a flow rate Q1 and temperature Tg receives a

heat discharge with a flow rate 02 and temperature

9 + 9 . .
(Tg + __2{"__AT0)' Then after mixing (at the point 2 = 0) we
1

obtain a flow rate Q = Q) + Q2 and a temperature T; + ATO. The
variation ATO induced in the river by the heat discharge is our
parameter and its normal value ATO is zero, meaning that the nom-
inal conditions refer to the case in which there is no heat dis-
charge. Moreover, we assume that the BOD concentration of the
discharge is the same as that of the river, while where oxygen

is concerned we assume that both the river and the discharge are
in saturated conditions, as shown in Figure 6b, so that the ini-

tial conditions are

T = T* + AT
o e} e}
b = b*
o e}

Q Q Qy + Q

1 2 1 2

cC = ——— ¢ (T*) + —-=—— Cc (T* + ——— AT ) .
o] Q1 + Q2 s "o Ql + Q2 s'To Q2 o

The temperature of the water must now be added as an extra state
variable to the simple Streeter-Phelps model considered so far,

and the model becomes
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Figure 6. Balance equations at the discharge point: (a) flow rate and
temperature, (b) BOD and DO.
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f(T) (11a)
b= - kq (T)b (11b)
c = - kl(T)b + k2(T)(cs(T) - c) (1l1lc)

with initial nominal conditions

=1
1}
=]
*
og|
]
o
O #*
Q
1]
Q
(2]
=}
*
(o]

Sp = f%{p (12a)
. _ _ o A—
Sp = kleT klsb (12b)
& = - 2™ ’ . _ [ - -
Sy ( klb + kzcS + k,cl k2c)sT klsb kzsC ,(12c)
where f’ = [%%]_ and the initidl conditions are
T
s =1 s =0 s =c’ .
To bo CO s

Egs. (11, 12) can be easily solved since they are of triangular
structure. If we assume that TO = T; is a constant solution
of Eq. (lla) we can solve this system of equations analytically,

and the solution gives the three sensitivity coefficients

- Sf'T
Sqp =
k! -k, T f't
g s,=—~b e L(l-e )
£ °
-k, T -k.,T , (f-kI)1 (£ - ké)T .
s =Ae Ly Be 2, C ef T+De 1 + E e
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where the constants A,B,...,E are given by
r
A = ol b
- 1 V7
(k2 kl)f o
! e r 14
5 = _kzcs ) hlkz =, klk2 =L,
- . —F — 7 _ PR _fL
K, £r (k2 ky £7Yyf*f o (k2 kl)(L2 kl £%) o s
14
Cc = kzcsl
k2—f
’ -
D—[k “2 (1+kl)k'] i
=1x k. - rx k. -7
k2 k1 f 1 k2 kl f
,
E = klk%_“_ g
(kz_kl)f o

The corresponding sensitivity curves are shown in Figure 7 for
realistic values of the parameters, and the main conclusion is
that the oxygen concentration is lowered everywhere and in par-
ticular around the minimum of the DO curve. Nevertheless, the
perturbation introduced by the heat discharge is absorbed along
the river, and this is the main distinction between the case of

temperature perturbation and the preceding one.

CONCLUDING REMARKS

Sensitivity theory has been used in this paper to analyze
a class of water-quality models (Streeter-Phelps models). Load
variations, flow rate variations and temperature variations have
been considered, as has the interactions between heat pollution

and biodegradable pollution. The results are of general appli-

cability and are presented in a very simple analytical form. The

main limitation of the study could be the fact that sensitivity
theory makes reference only to small perturbations of the para-

meters, Nevertheless, the direct comparison with the simulation

)
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Figure 7. Sensitivity coefficients of temperature, BOD and DO to
heat discharge.

study carried out by Lin et al. (1973) has shown that the results

obtained in this paper are largely satisfactory for realistic
variations of the parameters of river-quality models.
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