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Abstract 

A first-order moment closure, the mean-field assumption that organisms encounter one 

another in proportion to their spatial average densities, lies at the heart of much 

theoretical ecology. This assumption ignores all spatial information and, at the very 

least, needs to be replaced by a second-order closure to gain understanding of ecological 

dynamics in spatially structured populations. We describe a number of conditions that a 

second-order closure should satisfy and use these conditions to evaluate some closures 

currently available in the literature. Two conditions are particularly helpful in 

discriminating among the alternatives: that the closure should be positive, and that the 

dynamics should be unaltered when identical individuals are given different labels. On 

this basis, a class of closures we refer to as 'power-2' turns out to provide a good 

compromise between positivity and dynamical invariance under relabelling. 
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1 Introduction 

The topic of moment closures for population dynamics sounds at first sight a 

somewhat esoteric subject for ecologists. Yet the subject provides a key to unlock the 

formal structure of population dynamics in continuous space (Bolker, 1999; Bolker & 

Pacala, 1997, 1999; Bolker et al., 2000; Dieckmann & Law, 2000; Law & Dieckmann, 

2000a, b; Law et al., 2003a; Murrell & Law, 2000, 2003; Pacala & Levin, 1997). 

Dynamics in discrete space also need moment closures (Boots & Sasaki, 1999; Ellner, 

2001; Filipe & Gibson, 2001; Filipe & Maule, 2003; Harada et al., 1996; Matsuda et al., 

1992; Rand, 1999; Sato & Iwasa, 2000; Sato et al., 1994; van Baalen, 2000); therefore, 

many of the results presented in this paper are expected also to be of direct relevance for 

such models. 

The reason why moment closures are important becomes evident when 

dynamical systems of spatial moments are derived from underlying stochastic models of 

individual births, deaths, and movements (Bolker & Pacala, 1997; Dieckmann & Law, 

2000; Rand 1999; Sato et al., 1994). The dynamics of the first spatial moment (average 

over space of population density) turn out to have flux terms involving the second 

moment (a spatial covariance or pair density; see Section 2.1). The dynamics of the 

second spatial moment have flux terms involving the third moment (a density of triplets; 

see Section 2.1). And so on. The dynamics of each spatial moment are coupled to the 

next spatial moment in the hierarchy. 

To close the dynamical system, the next spatial moment in the hierarchy must, at 

some stage, be replaced with an expression containing only lower-order moments. This 

expression is a moment closure. The simplest closure, at order one, is used whenever 

the second moment is replaced by a product of two first moments (mean densities); this 
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is the mean-field assumption that individuals encounter one another according to their 

average densities over space, like molecules in an ideal gas. The mean-field assumption 

has certainly served ecology well for the last eighty years, but it does ignore all spatial 

information. Arguably ecological theory now needs a closure that operates at least at 

order two, to deal with the spatial structure increasingly recognized as important in 

studies of ecological dynamics (Dieckmann et al., 2000; Hubbell et al., 2001; Keeling, 

1999; Norris et al., 2001; Stoll & Prati, 2001; Tilman & Karieva, 1997). With such a 

closure, we would be in a position to describe crucial aspects of spatial patterns, 

including, in particular, the spatial aggregation and segregation of organisms.  

A moment closure is an assumption. But there are certain qualities that, 

desirably, a closure should have, if it is to be a reasonable replacement for a higher-

order moment. In this paper we describe all the qualities we are aware of and, on this 

basis, evaluate a number of closures that have been suggested in the literature. 

 

2 Preliminaries 

2.1 A spatial pattern and its moments 

For notational simplicity, we consider a single-species population; the extension 

to a multispecies spatial pattern is straightforward (Dieckmann & Law, 2000; Law & 

Dieckmann, 2000a). The population lives in a continuous spatial region of size A; for 

convenience, the space is taken as two-dimensional and large enough for edge effects to 

be negligible. An individual  at location l ( )lll xxx 21 ,=  is denoted by a Dirac delta 

function )(x
lxδ with a peak at  and zero elsewhere; the spatial pattern of individuals 

 is then the sum of all the delta functions (Dieckmann & Law, 2000: 416-417). 

lx

)(xp
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The first spatial moment  is simply the mean density, familiar as the state 

variable of mean-field population dynamics, 

)( pN

)( pN       = ∫ dxxp
A

)(1    .      (1) 

This first moment of course does not hold any information on how individuals are 

distributed across space.  

To measure second-order spatial structure, we use the second moment, 

),( pC ξ     = [ ] dxxxpxp
A x∫ +−+ )()()(1 ξδξ    .   (2) 

This measures the density of pairs with a spatial displacement ( )21,ξξξ =  from the first 

to the second individual in the pair. Such a pair density is closely related to the central 

spatial covariance, spatial autocorrelation, and semi-variance measures more commonly 

used in the ecological literature (see Burrough, 1995; Dale, 1999; Wiegand & Moloney 

2004); in the context of moment dynamics, the pair density has the advantage of being a 

particularly simple and immediately intuitive measure of second-order spatial structure. 

The Dirac delta function )( ξδ +xx  removes the self-pair terms that arise when the 

spatial displacement ξ is zero. 

The first and second spatial moments above are just the first two terms in a 

hierarchy of moments. The next term, 

),,( pT ξξ ′   = [ ][ ]∫ ′+−′+−′++−+ + dxxxxpxxpxp
A xxx )()()()()()(1 ξδξδξξδξ ξ    , (3) 

is the density of triplets with the triplet’s second individual displaced from the first by 

( 21, )ξξξ = , and the third by ( )21,ξξξ ′′=′ , as shown in Figure 1. The delta functions 
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again remove self-pairs that would otherwise arise when ξ , or ξ ′ , or both are zero. The 

extension to higher-order moments continues in the same way. 

———Figure 1 near here——— 

 

2.2 Dynamical system of spatial moments 

The spatial pattern and the moments above deal with the state of a single 

population at an instant in time, t. In reality, the spatial pattern changes over time as 

individuals are born, die, and move around. Moreover, because births, deaths, and 

movements are stochastic events, rerunning the stochastic process from the same 

starting conditions would not give rise to exactly the same pattern at t.  The spatial 

moments at t thus have their own probability distributions, and we can describe the 

population dynamics in terms of the statistics of these distributions. To emphasize the 

distinction between the spatial moments of a particular spatial pattern above, and the 

dynamics of a moment obtained by averaging over many realizations of a stochastic 

process below, the argument p is only used in the former but not in the latter case. 

For simplicity, we develop ideas in the context of a spatial dynamical system of 

just one species, a logistic-like model of population growth with births, deaths, and 

movement at birth (Law et al., 2003a). The dynamical system has the first and second 

moments as state variables, and has been derived analytically from a stochastic, 

individual-based process of births, deaths and movements in a continuous space 

(Dieckmann & Law, 2000; see also a related derivation by Bolker & Pacala, 1997). 

Dynamics of the first moment are given by 

N&  =    − Ndb )( − ∫′ ξξξ dCwd )()(    .   (4)  
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In this equation, individuals have constant intrinsic rates of birth and death, b and d, 

respectively. In addition, there is a death rate dependent on the density of neighbouring 

individuals with terms as follows. First )(ξw  is a competition kernel, normalized so that 

the integral over all displacements is one; this describes how the effect of neighbours 

attenuates with the displacement ξ . Second, )(ξC  holds the pair density at 

displacement ξ ; the integral thus adds up the effect of individuals at all displacements. 

Third,  is a parameter that scales the overall effect of these neighbours on the death 

rate. 

d ′

Eqn (4) shows how the dynamics of the first moment are coupled to those of the 

second moment through )(ξC . To close the dynamical system at order one, the mean-

field assumption, )(ξC  = , is traditionally used; this turns eqn (4) into a closed 

dynamical system, familiar as the logistic equation (Pearl & Reed, 1920). 

2N

Extending the dynamics to the second moment gives 

)(ξC&   = Nmb )(2 ξ  

       +        + ∫ ′′+′ ξξξξ dCmb )()( ∫ ′′+−′ ξξξξ dCmb )()(  

       − )(2 ξCd  

       −   − ∫ ′′+′′ ξξξξξ dTwd ),()( ∫ ′′′′ ξξξξ dTwd ),()(  

      − )()('2 ξξ Cwd    .     (5) 

The second-order dynamics are more intricate because they have to account for all 

events that affect individuals in a pair. Despite the complexity, the only new ecological 

information here is a dispersal kernel )(ξm  describing the probability density with 

which newborn offspring are displaced by an amount ξ  from their parents. Notice that, 
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as in eqn (4), these dynamics are coupled to those of the next spatial moment in the 

hierarchy through ),( ξξ ′T .  To close the dynamical system at order two, a moment 

closure is needed that expresses T  in terms of N and C . It is the appropriate choice of 

this closure that is the subject of this paper. 

ξ

0

 

3 Desirable qualities of moment closures 

Moment closures ultimately have to be selected based on their quantitative 

performance when describing specific spatial ecological dynamics. Yet there are a 

number of qualitative features that desirably a moment closure should possess. Since 

moment closures are approximations, it is immediately clear that not all such desiderata 

can be met by all possible closures. It is therefore instructive to pry out the advantages 

and shortcomings of moment-closure candidates based on a general analysis of these 

qualitative features (Section 4), before focusing on their quantitative performances in 

specific circumstances (Section 5). The present section serves to give an overview of the 

desiderata and to elucidate the logical relations between them. 

 

3.1 Qualities from definition of the third moment 

Positivity. Because the third moment describes the density of triplet 

configurations (and accordingly is obtained as a product of three densities all of which 

are non-negative, eqn (3)) the third moment predicted by a closure, ),(~ ξξ ′T , must be 

non-negative for all  and ξ ′ , 

D1: ),(~ ≥′ξξT    . 
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As a product of three densities, valid moment closures must also furnish the predicted 

third moment with the cube of the physical dimension in which density is measured; for 

instance, in the case of a two-dimensional space, the dimension must be length-6. 

Invariance under interchanging triplet members. It can be seen from Figure 1 

that, in a purely static and descriptive context, it is immaterial from which corner of the 

triangle the third moment is measured (three choices are possible). Moreover, the 

sequence in which the second and third member of a triplet are numbered is arbitrary 

(two choices possible). For this reason third moments possess a six-fold symmetry (D. 

Grey, pers. comm.). It would be desirable for third moments predicted by moment 

closures also to have this property, i.e., 

D2: T  . ),(~),(~),(~),(~),(~),(~ ξξξξξξξξξξξξξξξξ ′−′−=′−′−=−−′=−′−=′=′ TTTTT

We return to this issue in the context of dynamics at the start of Section 4, where the 

corners do have distinct meanings as a result of modelling interactions. 

 

3.2 Qualities from averaging and large-distance limits 

Consistency under well-mixed conditions. When considering patterns in which 

the second moment is uniform, thus capturing no spatial structure whatsoever, a 

moment closure is not supposed to predict such structure in the third moment. We 

therefore want to ensure that 

D3:  implies 2NC = 3~ N=T    . 

A uniform second moment can arise, for instance, from eqns (4) and (5) when the 

neighbourhood sizes of competition and movement are made sufficiently large; 

alternatively, if individuals can move at times other than at birth, a population becomes 
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well mixed and thus lacks any spatial structure if the rate of this movement is 

sufficiently large. Notice that relation D3 is presented for the limit of an infinite area, 

; otherwise the delta functions in eqns (2) and (3) that remove self-pairs cannot 

be neglected. 

∞→A

Mutual consistency of singlet and pair dynamics. Averaging a pair density )(ξC  

over all distances ξ  must obviously yield the total density of pairs,  

for ; this follows from the definition of the pair density in eqn (2). If pair 

densities settle on a constant value at large distances, the integral above implies that 

∫−1 )( dCA ξξ = 2N

∞→A

2)lim N=(C∞→ ξξ ; this is simply because the integral is dominated by the asymptotic 

value (and the effect of self-pairs on this asymptotic value is negligible, since we have 

also to take the limit ). This in turn implies ∞→A NN dt
d2Cdt

d )(lim =∞→ ξξ . We can 

see that singlet and pair dynamics must thus be giving mutually consistent rates. Since 

the pair dynamics depend on the chosen moment closure, this consistency requirement 

imposes a constraint on feasible closures. It can be shown (Dieckmann & Law, 2000: 

439) that the consistency constraint is fulfilled if and only if 

D4: )(),(~lim ξξξξ
′=′

∞→ NCT    . 

Note that this constraint requires pair densities to tend to a constant value 

( 2)( NC =∞→lim ξξ ); a sufficient condition for this is the absence of large-scale spatial 

structure. 

Integral constraints. Also, certain consistency conditions should apply when 

averaging triplet densities over one or both arguments. These conditions are again stated 

most conveniently for , ∞→A
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D5a:    , and ∫ ′=′− )(),(~1 ξξξξ NCdTA

D5b: ∫ =′′− )(),(~1 ξξξξ NCdTA    . 

These relations follow directly from the definition of triplet densities (eqn 3). Notice 

that, keeping in mind the integral constraint for pair densities, ∫ =− 21 )( NdCA ξξ , both 

D5a and D5b imply . 32 ),(~ NddTA =′′∫∫− ξξξξ

Asymptotic constraints. For triplet densities settling on a constant value at large 

distances, i.e., when the triplet density is constant in ξ  as ξ  becomes large and 

constant in ξ ′  as ξ ′  becomes large, constraints D5 above are fulfilled if and only if 

D6a: )(),(~lim ξξξξ
′=′

∞→ NCT    , and 

D6b: )(),(~lim ξξξξ NCT =′
∞→′    . 

Notice that D6a turns out to be identical to D4. A sufficient condition for triplet 

densities to settle on constant values at large distances is the absence of large-scale 

spatial structure. As in the case of the two integral constraints D5a and D5b, both D6a 

and D6b imply 3
, ),(~lim , given the asymptotic constraint for pair 

densities, 

NT =′
∞→′ ξξξξ

2)( NC =∞→lim ξξ . 

 

3.3 Qualities from dynamical invariance under relabelling 

A relabelling transformation amounts to partitioning, according to some recipe, 

the set of individuals of a single spatially-distributed population into subsets by 

assigning a label (e.g., 1, 2,…) to each individual. We refer to the original set of 
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individuals as the ‘total population’ and to the newly created subsets as 

‘subpopulations’. Relabelling is the only alteration made (Figure 2); it leaves the 

location of individuals unchanged, and the kernels and parameters of the subpopulations 

identical. Because the assigned labels have no bearing on the ecological dynamics 

(Arditi & Michalski 1996), 

R: The dynamics of the total population must be identical to those obtained by 

summing the dynamics of the subpopulations. 

Hence we can ask to what extent approximate dynamics, based on particular moment 

closures, can succeed in preserving this dynamical invariance under relabelling. 

———Figure 2 near here——— 

The simplest relabelling transformations are binary, dividing up the total 

population into two subpopulations, with individuals taking labels 1 or 2. This entails 

the following relations between the singlet, pair, and triplet densities of the total 

populations and of the two subpopulations: 

R1:    , 21 NNN +=

R2:    , and  22211211 CCCCC +++=

R3: 222221212211122121112111 TTTTTTTTT +++++++=    . 

Notice that R2 implies R1; this can be seen by integrating the terms in R2 with respect 

to ξ using the relation . In a similar way, R3 implies both R1 and 

R2; this is evident from integrating the terms in R3 as 

∫ =−
jiij NNdCA ξξ )(1

∫ ′=′− )(),(1 ξξξξ jkiijk CNdTA  

and factorising the sum in terms of R1 and R2. Although we here focus on binary 

relabelling, any higher-order relabelling (using three or more different labels to define 
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subpopulations) can be achieved through a sequence of binary relabelling 

transformations. 

If the elementary interactions between individuals are pairwise, such as in the 

stochastic process on which eqns (4) and (5) are based, pair dynamics depend on triplet 

densities but not on any higher moments (see Discussion). Summing the pair dynamics 

of subpopulations, based on equations like (5), then shows that these dynamics are 

invariant under relabelling (in the sense of condition R) if and only if condition R3 is 

met. This means that any moment closure for triplet densities according to which R2 

implies R3 ensures dynamical invariance under relabelling. 

Invariance under random relabelling. Among the many relabelling recipes 

which could be used when testing for condition R, the simplest is to assign a label 

 to each individual with probability , with 2,1=i ip 121 =+ pp . We call this ‘random 

relabelling’ because labels are assigned to individuals irrespective of their 

neighbourhood structure and independently between individuals, as is illustrated in 

Figure 2b. Random relabelling entails relations between the singlet, pair, and triplet 

densities of the total population and two subpopulations stricter than those given in 

conditions R1 to R3: 

R1':    , NpN ii =

R2':    , and CppC jiij =

R3':    . TpppT kjiijk =

Evidently R1' implies R1, R2' implies R2, and R3' implies R3. Accordingly, moment 

closures T~  that ensure dynamical invariance under random relabelling are characterized 

by the following condition, 
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D7a:  and C  imply TNpN ii = Cpp jiij = Tppp kjiijk

~~ =    . 

Invariance under non-random relabelling. Many other, non-random, relabelling 

schemes can be considered for which labelling depends on the local neighbourhood 

structure of individuals. For example, label 2 might be assigned to individuals that tend 

to experience more than average local competition, resulting from a high number and 

proximity of neighbouring conspecifics, with the remaining individuals receiving the 

label 1; this is illustrated in Figure 2c. Under such a non-random scheme, conditions R2' 

and R3' would not generally hold with NNp ii /= . In particular, the pair densities C , 

, and C  would exhibit differences beyond those captured by the label 

frequencies , with  showing a higher degree of short-range auto-correlation than 

 and C  showing a corresponding lower degree. By contrast, conditions R1 to R3 

can always be relied upon, even under non-random relabelling. 

11

2112 CC =

C

22

ip 11C

22

Since, up to third order, there are actually no logical constraints on non-random 

relabelling transformations other than R1 to R3, we can use these to specify the general 

condition for dynamical invariance under non-random relabelling as 

D7b:  and C  imply ∑=
i iNN ∑=

ij ijC ∑=
ijk ijkTT ~~    . 

Here the sums extend over all labels considered, i.e., in the simplest case i . 2,1,, =kj

Convergence of per capita growth rates under relabelling. Since the 

subpopulations generated by relabelling are ecologically equivalent by definition, their 

average per capita growth rates can only differ inasmuch as the subpopulations 

experience systematically different local neighbourhoods, as arising, for instance, from 

non-random relabelling. Since, again by definition, no dynamical forces exist that 
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preserve these differences over the course of time, we should expect moment closures to 

reflect this feature by meeting the following qualitative condition: 

D8: In the wake of a non-random relabelling transformation, per capita growth rates 

of the resulting subpopulations, as predicted by a moment closure T~ , should all 

equalize as time goes on. 

 

4. Properties of candidate closures 

To describe candidate closures for the third moment, it helps to have in mind the 

geometry of the locations of three individuals (Figure 1); it is the density of a triplet of 

this kind that the third moment and its closures describe. In the dynamics, the corners of 

the triplet have distinct meanings and are not interchangeable. As we can see from eqn 

(5), line 4, the individual at corner k, displaced from corner i by ξ ′ , serves as an ‘actor’ 

affecting the birth or death event at i without itself being part of the focal pair ij, the 

density of which eqn (5) describes. Accordingly, the individual at corner i serves as a 

‘reactor’, while the individual at corner j, displaced from corner i by ξ , only serves as a 

‘watcher’ of the interaction between individuals i and k. Yet, individual j is crucial: 

through the density of triplets it determines how likely individuals k are to occupy 

positions at various locations around the focal pair ij. 

This non-interchangeability of corners suggests that, within the context of eqn 

(5), the symmetry D2 is not essential. With this in mind, we allow corners to have 

different weights where possible in the closures that follow. It is helpful to allow this 

extra flexibility because our experience has been that different weights can lead to quite 

different dynamics (see appendix of Law et al., 2003a, the online address of which is 
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given in Law et al. 2003b, as well as in the list of references below). Removing the 

sixfold symmetry also means that D5b and D6b do not hold. Clearly, closures satisfying 

symmetry D2 are a special case of this more general weighting. It is interesting that the 

classical pair approximation, the closure assumption often used in lattice ecological 

models, ignores correlations in the jk pair altogether (Sato & Iwasa, 2000: 346) and thus 

also does not satisfy D2. 

Classes of closure below are called power-1, power-2, and power-3 according to 

the number of pair densities multiplied together (Dieckmann & Law, 2000: 441). The 

closures and their performance with respect to qualities D1 to D7 are described below 

(summarised in Table 1), and extend those given previously (Dieckmann & Law, 2000: 

438 et seq.).  We test D8 by numerical methods in Section 5. 

———Table 1 near here——— 

 

4.1 Power-1 closures  

Power-1 closures are suggested from an assumption, made on several occasions 

in the literature on moment dynamics, that the third central moment is zero (Bolker, 

1999; Bolker & Pacala, 1997, 1999; Bolker et al., 2000). Power-1 closures take as their 

building blocks just one pair density along an edge of the triplet and multiply it by the 

density at the opposite corner; this product ensures that the closure has the correct 

dimensions. The building blocks are summed and, if symmetry of the closure (D2) is 

not the overriding concern, they may have different weights, say α, β, γ for corners i, j, 

and k respectively. To satisfy the conditions for averaging and large-distance limits (D3, 

D4, D5a, and D6a), an extra term needs to be introduced, giving the closure 
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),(~ ξξ ′ijkT   = )(1 ξξα
β

−′



jkiCN  + )(ξβ ′ikjCN   + )(ξγ ijkCN   −    . (6) 




+ kji NNN)( γα

This closure is fully invariant under relabelling and thus satisfies conditions D7a and 

D7b. However, the negative term in eqn (6) is potentially rather large, and there is a 

danger of the closure becoming negative unless α and γ are both small, thereby 

violating D1. (Fulfilling D3, D4, D5a, and D6a by multiplication rather than by 

subtraction might seem to avoid this problem (Keeling 2000), but turns out to be 

impossible without upsetting the factorisation needed for D7b.) The completely 

symmetric case, α = β = γ, is equivalent to assuming the central third moment is zero 

(Dieckmann & Law, 2000: 442). 

 

4.2 Power-2 closures  

Power-2 closures were originally suggested (Dieckmann & Law, 2000) in 

analogy to the classical pair approximation, used with some success as a closure in 

ecological lattice models (Sato & Iwasa, 2000). These closures take as their building 

blocks the product of two pair densities belonging to adjacent edges in the triangle ijk 

and divide by the density at the corner the pairs have in common; again this ensures the 

closures have the correct dimensions. As before, if symmetry D2 is not the overriding 

concern, the closure can be a weighted sum of the building blocks, using weights α, β, γ 

for corners i, j, and k respectively. To satisfy conditions D3, D4, D5a, and D6a, for 

averaging and large-distance limits, again an extra term needs to be subtracted, giving 

the closure 

),(~ ξξ ′ijkT  = 



+ γα
1

i

ikij

N
CC )()( ξξ

α
′
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+ 
j

jkij

N
CC )()( ξξξ

β
−′

 

+ 
k

jkik

N
CC )()( ξξξ

γ
−′′

  −     . (7) 



kji NNNβ

The negative term means that it is still possible for the closure to go negative, thereby 

violating D1; but, unlike in the power-1 closure, the negative term has only to balance 

one positive term. 

 While the closure above is invariant under random relabelling, and thus fulfils 

D7a, it does not meet the more stringent condition D7b for non-random relabelling 

unless the following discrepancy vanishes, 

 ∑ ′



ijk ijkT

NN
N ),(~

21

ξξ    −  


′),(~ ξξT

 = α 







−

2

2

1

1 )()(
N

C
N

C ξξ       






 ′
−

′

2

2

1

1 )()(
N

C
N

C ξξ
  

        + β 






 −
−

−

2

2

1

1 )()(
N

C
N

C ξξ







 −′
−

−′

2

2

1

1 )()(
N

C
N

C ξξξξ  

       + γ 
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where C . Notice that the terms on the right-hand side are non-zero only 

when the two types have different per capita growth rates. This can be seen by, for 

instance, subtracting the per capita growth rate of type 2 from type 1 in eqns (4) after 

relabelling; the difference is 

21 iii CC +=

( ) ξξξξ dNCNCw − 2211 /)(/)()(

2/) N

∫ , which means that terms 

of the form C 21 (C1 /)( N ξξ −  must tend to zero as the per capita growth rates 
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equalize. Thus, although there is an initial period during which D7b does not hold, the 

system moves to a state that satisfies D7b, as long as D8 is satisfied. 

Weights for α, β, and γ  considered in the literature include the completely 

symmetric case (α = β = γ: Dieckmann & Law, 2000), a case in which the i-corner is 

given a higher weight (α = 4, β = γ = 1: Law et al., 2003a; Murrell & Law, 2003), and 

an extreme case of asymmetry (α = 1, β = γ = 0: Dieckmann & Law, 2000; Law & 

Dieckmann, 2000a) akin to the classical pair approximation. Another power-2 closure 

was used for animal movement in a heterogeneous landscape (Murrell & Law, 2000), 

but is not appropriate in a circumstance when there are births and deaths (i.e., when the 

first moment can change). 

 

4.3 Power-3 closure  

The power-3 closure has its roots in theoretical physics, where it is known as the 

Kirkwood superposition approximation (Kirkwood, 1935; see, e.g., Ziman, 1979). The 

closure takes the product of all three pair densities and divides by the product of 

densities at all three corners; again this ensures the closure has the correct dimensions. 

There is only one building block here, and therefore the symmetry condition D2 always 

applies. Conditions D3, D4, D5a, D5b, D6a, and D6b for averaging and large-distance 

limits are satisfied without any extra term, so we have simply 

),(~ ξξ ′ijkT   = 
kji

jkikij

NNN
CCC )()()( ξξξξ −′′

   .   (9) 

The absence of a correction term means that positivity D1 always applies. The above 

closure is invariant under random relabelling, D7a, but it does not pass the more 

stringent condition for non-random relabelling, i.e., D7b is not met. 
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4.4 Comparison of candidate closures 

 As summarized in Table 1, there is little to choose between the candidate 

closures as far as conditions D2 to D6 are concerned. Where the closures differ is in 

positivity (D1) and in invariance under relabelling (D7). These qualities are crucial: 

positivity because a change in sign would obviously play havoc with the signs of flux 

terms in the dynamics, and invariance because it would be illogical for the dynamics to 

be determined by changes that have no effect on properties of individuals. These two 

qualities in fact trade-off across closure power, power-1 closures doing best with respect 

to relabelling and worst with respect to positivity, the power-3 closure doing the 

reverse, and power-2 closures being intermediate. 

 

5. Numerical analysis of candidate closures 

 To examine the closures further, two numerical analyses follow. The first 

compares the performance of closures in the short term following relabelling of 

populations close to equilibrium. The second compares the asymptotic state predicted 

by different closures in the long term. We used the spatial logistic model (4) and (5) for 

deterministic simulations, and a stochastic process of individual births, deaths, and 

movements for stochastic simulations, the stochastic process being the one on which 

eqns (4) and (5) are based (Law et al., 2003a). These simulations describe dynamics in a 

unit area, and use Gaussian competition and movement kernels  

)(ξw      = )/exp(1 22
2
1

ws
W

ξ−    ,     (10) 
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)(ξm      = )/exp(1 22
2
1

ms
M

ξ−    ,    (11) 

with parameters  and , respectively, describing the width of the kernels; W and M 

are normalization constants that give the right-hand sides a value 1 following 

integration over all displacements 

ws ms

ξ . 

 

5.1 Equilibrium dynamics after relabelling 

A simple test for dynamical invariance under relabelling is to take a spatially 

distributed total population at equilibrium , , and split it up into two subpopulations 

by a relabelling transformation; 'equilibrium' of the total population here refers to the 

coupled system of both singlet and pair dynamics. Such relabelling should obviously 

still leave the total population at rest. 

N̂ Ĉ

The tests of dynamical invariance below used both random relabelling and non-

random relabelling. To achieve random relabelling, we set initial conditions at  = 

−50,  = 50, and 

1N

N̂ 2N )(ξijC  = . To achieve non-random relabelling, 

initial values for first moments were kept the same as those under random relabelling, 

whereas initial values for the second moments differed by subtraction of a term 

2ˆ/)(ˆ NCNN ji ξ

2ˆ/) N2
2 (ˆ)5 CN ξξ−exp(5.0  from C 2112 C=  and by redistributing this difference 

asymmetrically in the ratio 1:3 to  and C , respectively. 11C 22

According to R3, the closure obtained by summing the closures of the 

subpopulations should be the same as the closure of the total population. To test this, we 

considered a scaled deviation,  
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)],(~),(~[)(
   ,  (12) 

at ξ  = 0 because this deviation is expected to be greatest at short displacements ξ . The 

effect of random relabelling is shown in Figure 3a; as expected from R3', the deviation 

 starts at zero for all three types of closure; however, as time goes on, the deviation 

remains at zero only for power-1 and -2 closures, while a systematic discrepancy builds 

up in the power-3 closure. The effect of non-random relabelling is shown in Figure 3b: 

only the power-1 closure is unaffected. The power-2 closure has an initial discrepancy 

(see eqn 8), but this is small and quickly dies out, as the neighbourhoods of type-1 and -

2 individuals equalize. The power-3 closure has a larger initial discrepancy, and this 

grows as it does under random relabelling. Importantly, integration with the power-1 

closure has to be stopped after only a short period of time because negative terms 

appear in the closure at short displacements (i.e., D1 is violated) due to the segregation 

in space of type-1 and -2 individuals; this problem does not arise with the other 

closures. 

)0(∆

———Figure 3 near here——— 

According to D8, the per capita growth rates of the subpopulations should only 

differ insofar as relabelling causes the subpopulations to have different neighbourhoods, 

and these neighbourhoods should themselves equalize as time goes on. Thus, following 

random relabelling, where the neighbourhoods of the subpopulations start equal, the 

first moments ,  of the subpopulations should be unchanged. (The total 

population is already at equilibrium with a per capita growth rate of zero, and this 

should also be true for subpopulations under random relabelling.) Figure 3c shows that 

D8 holds for the power-1 and -2 closures, but not for the power-3 closure. The picture is 

1N 2N
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similar following non-random relabelling (Figure 3d), although there is now a period of 

adjustment of  while the neighbourhoods equalize; after this  behaves as it did 

under random relabelling. 

2N 2N

}

m

These results suggest that the power-3 closure is not altogether satisfactory as a 

closure of the hierarchy of equations. Moreover, although the power-1 closure works 

well under relabelling, it rather easily violates the condition of positivity. The power-2 

closure, being intermediate between the others, thus appears to be a reasonable 

compromise. 

 

5.2 Weights in power-1 and -2 closures  

There is still a question of how the weights ω = { γβα ,, , of power-1 and -2 

closures affect the accuracy of deterministic approximations to the stochastic processes. 

To gain insight into this, we computed the asymptotic value of the first moment under 

contrasting weights by numerical integration of eqns (4) and (5), and compared each 

with the corresponding moment averaged over some stochastic simulations. 

In making this comparison, it is important to be aware that the closures may 

perform differently with different spatial structures. A good closure should be robust to 

change in spatial structure; for this reason we computed the asymptotic state across a 

range of spatial structures from strong aggregation to mild segregation (overdispersion) 

of individuals. This range was achieved by setting the parameters s  and  to all S = 

16 pairwise combinations of the values 0.03, 0.04, 0.05, 0.06; the smallest values of  

give aggregation, and the smallest values of  give overdispersion as long as  is not 

ws

ms

ws ms
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too small (see Law et al., 2003a: fig 6b). For a given set of weights ω, we determined 

the goodness-of-fit in terms of the following deviation measure  

)(ωD        =  ∑ −

s sN
sNsN

S ),(ˆ
|),(ˆ),(ˆ|1

ib

ib

ω
ωω    .   (13) 

Here  is the asymptotic value of the first moment obtained by integrating eqns 

(4) and (5) to steady state using the sth pair of kernel parameters values and weights ω, 

and  is the corresponding value from the underlying individual-based, 

stochastic process, obtained as an average over 100 independent realizations. The 

summation over  then adds up deviations across the range of spatial structures 

obtained with the different kernel parameters. For weights ω, the deviation 

),(ˆ ωsN

),(ˆ
ib ωsN

s

)(ωD  thus 

measures the relative error in predicted first moments compared with actual first 

moments, averaged over a range of spatial structures; low deviations )(ωD  indicate a 

close match. 

Plotting this average deviation for each combination of weights reveals a surface 

with high and low values for both power-1 and power-2 closures (Figure 4). Overall, 

power-2 closures performed better than power-1 closures in two respects. First, the 

deviations between deterministic and stochastic simulations tended to be smaller. 

Second, in power-1 closures it was always the case that the condition of positivity (D1) 

was violated for at least one combination of kernel parameters (such combinations were 

given a value of zero for the first moment). By contrast, this was never the case for the 

power-2 closures over the range of spatial structures investigated. Notice also that the 

denominator in the power-2 closure (eqn 7) leads to a singularity at just one point 
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ω  = , whereas it leads to a full line of singularities ω = { 0,1,0 } { }γα ,0,  in the case of 

power-1 closures (eqn 6). 

———Figure 4 near here——— 

The deterministic dynamics matched those of the stochastic process best if a 

low, but non-zero, value was given to β (Figure 4). The weights α and γ  were largely 

interchangeable, although the very lowest deviations were obtained by making either α 

large relative to γ or γ large relative to α. (not visible at the resolution of Figure 4). An 

asymmetric power-2 closure used previously with ω = { }1,1,4  or, equivalently, ω 

= { }6
1

6
1

3
2 ,,  (Law et al., 2003a; Murrell & Law, 2003) lies within the band of closest 

matches. The symmetric power-2 with ω = { }1,1,1  or, equivalently, ω = { }3
1

3
1

3
1 ,,  

(Dieckmann & Law, 2000) is also quite close to this region, whereas a fully asymmetric 

power-2 closure with ω =  is clearly less satisfactory (Law & Dieckmann, 

2000a). 

{ 0,0,1 }

 

6 Discussion 

Many processes in ecology are local in space and cannot be captured by 

traditional mean-field models of population dynamics. It is therefore important to move 

on from the order-one closure of ecological dynamics (the mean-field assumption) at 

least to closures of order two (Dieckmann & Law, 2000; Filipe & Maule, 2003). 

Although several kinds of second-order closure have been suggested in earlier work, 

discrimination between them by formal methods has been difficult, because they satisfy 

most of the consistency conditions previously available. As a result, evaluation of 

closures has relied largely upon numerical comparisons of stochastic dynamics and 
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deterministic dynamics that incorporate the closures (e.g., Dieckmann & Law, 2000; 

Filipe & Gibson, 2001; Filipe & Maule, 2003; Law et al., 2003a; van Baalen, 2000).  

Here, by extending the toolbox of tests probing properties of third moments, we 

have been able to achieve some further discrimination between closures. Although some 

of the new properties, such as D5, do not improve matters, two criteria do help. The first 

is positivity, D1: because the third moment is a product of three densities, it should 

never be negative. The second is dynamical invariance under relabelling, D7: it would 

not make sense for the dynamics to be changed simply by relabelling identical 

individuals, as the underlying ecology remains unchanged. Power-1, -2, and -3 closures 

in fact trade-off these two properties, with the power-2 closures falling into the middle-

ground. Power-2 closures remain positive except under very strong segregation 

(unpublished results); also, although non-random relabelling introduces an error in the 

case of power-2 closures, this error tends to zero as the neighbourhoods of the relabelled 

individuals equalize, at least in logistic and related models. Conversely, power-1 

closures lose positivity under quite mild overdispersion, and the power-3 closure leads 

to a systematic discrepancy in the dynamics before and after relabelling. Power -2 

closures thus have some merit as a reasonable compromise between positivity and 

invariance under relabelling, unless there are special arguments that call for power-1 

and -3 closures.  

There is still a question as to how best to weight the building blocks of power-2 

closures (or, when used, those of power-1 closures). The condition D2 for sixfold 

symmetry of the third moment calls for equal weighting, and it is certainly feasible to 

hold this in place. But, on the basis that the corners are not interchangeable in the 

dynamical system to which the moment closure is applied, some improvement in the 
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approximation can be achieved by using different weights (Law et al., 2003a). Most 

critical is the weight β relative to α + γ. Weights α and γ act in the same way in power-1 

and power-2 closures: either they both appear in the closure’s negative term (power-1 

closure, eqn 6), or neither of them does (power-2 closure, eqn 7); this distinguishes 

them from β. Thus the tendency of contours of the deviation measure shown in Figure 4 

to run approximately along lines of constant α + γ is not surprising; the smallest 

deviations require a relatively low value of β. Importantly, deviations are not minimized 

by the equal weights that would result in symmetric closures. 

The problem of closure applies as much in discrete lattice space as it does in 

continuous space.  In fact, the so-called classical pair-approximation (Matsuda et al., 

1992; Sato & Iwasa, 2000) is a closure based on the i-corner of the triangle in Figure 1 

(Filipe & Maule, 2003), which motivated the fully asymmetric power-2 closure 

introduced by Dieckmann & Law (2000). Other closures in discrete space have since 

been used (Filipe & Gibson, 2001; Filipe & Maule, 2003; Rand 1999; Sato & Iwasa, 

2000; van Baalen, 2000), including a power-2 closure that focuses on only the j-corner 

(Rand 1999: 108), but nothing analogous to the general form of the power-2 closures in 

eqn (7) has yet been considered. In view of the variable success of pair approximations 

(Filipe & Gibson, 2001; Filipe & Maule, 2003; van Baalen, 2000), it would be 

interesting to extend the results here to discrete space. 

 At the heart of the moment hierarchy described in Section 2 is an assumption 

that the dynamics of the nth moment depend on the (n+1)th moment. It is important to 

realise that this is not a matter of mathematics: it is a biological assumption that 

individuals interact in pairs. The effect of neighbours on the fate of a single individual is 

assumed to be the sum of the interactions with each neighbour, and thus involves pair 
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densities. The fate of a pair of individuals is the sum of the interactions the individuals 

in the pair have with each neighbour, and thus involves triplet densities, and so on. 

More generally, if the fate of an individual depends non-additively on m other 

individuals, the dynamics of the nth moment depend on the (n+m)th moment. The 

simple n+1 hierarchy is obviously much more tractable than the alternatives. Yet the 

fate of one individual can depend on more than one other individual, or on another 

individual and the physical environment. Dynamical systems could be devised for such 

interactions (Seabloom, Bolker and Bjørnstad, personal communication), but they 

would inevitably be much more intricate than those in which individuals interact in 

pairs. 

 Ultimately, a second-order moment closure is an assumption, just as the 

traditional, first-order, mean-field closure is. The motivation for moving to second-order 

closures is to link dynamics to spatial structure, a coupling that becomes important 

when individuals interact with close neighbours. However, truncation of the moment 

hierarchy at order two necessarily limits the types of spatial structure that can be 

successfully approximated. Spatial structures with significant amounts of information in 

spatial moments at higher orders obviously make order-two closures poor 

approximations. Thus caution is needed when using order-two closures; for instance, 

landscapes with spatial heterogeneity generated by topographic or anthropogenic factors 

could readily contain information at higher orders. 
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Table 1.  Summary of performance of power-1, power-2 and power-3 closures with 

respect to qualities D1 to D8 (defined in Section 3).  

 

 power-1 power-2 power-3 

D1 No under moderate 

overdispersion 

Yes, unless there is 

strong overdispersion 

Yes 

D2 Yes, if α=β=γ Yes, if α=β=γ Yes 

D3 Yes Yes Yes 

D4 Yes Yes Yes 

D5a Yes Yes Yes 

D5b Yes, if α=β=γ Yes, if α=β=γ Yes 

D6a Yes Yes Yes 

D6b Yes, if α=β=γ Yes, if α=β=γ Yes 

D7a Yes Yes Yes 

D7b Yes Yes, except during an 

initial transient 

No 

D8 Yes Yes No 
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Figure legends 

Figure 1. Geometry of a triplet of three individuals labelled as in the text. The third 

moment describes the density ),( ξξ ′T  of such triplets, and closures of the third 

moment predict this density in terms of the densities N and C of singlets and 

pairs, respectively. In a purely static and descriptive context the corners of the 

triplet are interchangeable, whereas in the context of dynamics the corners 

assume different roles and, accordingly, are labelled reactor, watcher, and actor 

(see Section 4). 

Figure 2. Two relabelling transformations. (a) Total population prior to transformation. 

(b) Two subpopulations created by random relabelling of individuals into type 1 

and type 2. (c) Two subpopulations created by non-random relabelling; 

individuals with fewer neighbours are more likely to be type 1, and those with 

more neighbours are more likely to be type 2. In (b) and (c), filled circles 

indicate individuals of type 1, open circles those of type 2. 

Figure 3. Effect of relabelling transformations. Prior to relabelling, a numerical 

integration of eqns (4), (5) was carried out for 200 time units to get the first and 

second moments close to equilibrium. Fifty indviduals per unit area were 

relabelled at time 0, creating type 2; integration continued for a further 30 time 

units following relabelling. Scaled deviation )(ξ∆  at ξ  = 0 shown under (a) 

random relabelling, (b) nonrandom relabelling; the arrow points to the small 

initial deviation in the case of the power-2 closure. Population density  

shown under (c) random relabelling, and (d) non-random relabelling. Symmetric 

power-1 closure: thick dotted lines; Symmetric power-2 closure: thin continuous 

lines; power-3 closure: thin dashed lines. Integration of the power-1 closure was 

2N
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terminated when a closure value returned a negative value. Parameter values: 

, d , 4.021 == bb 2.021 == d 001.012212211 =′=′=′=′ ddd

)(

d , . 06.0== mw ss

ωD

{ }γβα ,,

}1,1,4 }6
1

6
1 ,,3

2

Figure 4. Effect of weights α, β, and γ on the deviation between the equilibrium 

densities of a stochastic spatial logistic model and its deterministic 

approximation. (a) Power-1 closure. (b) Power-2 closure. Triangular graphs are 

used because weights multiplied by a common factor yield the same closure, so 

that only weights on the simplex α + β + γ = 1  need be considered.  Each 

rectangle represents the value of the deviation  for a particular choice of 

ω = , with lighter shades representing a better match. Black squares 

with a white cross indicate infeasible weights that lead to a division by 0. Open 

circles denote the point at which weights are symmetric; in (b), the special case 

ω = { previously used in the literature (equivalent to { ) is denoted by 

a filled circle. Using ω = {4,1,1} reduces D to 0.081 from D = 0.197 for 

symmetric weights in the power-2 closure. Note that D = 0.049 for ω = {1,3,8} 

represents the minimum. Kernel parameter values are as described in the text; 

other parameter values as in Figure 3. 
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