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We present a critical review of current trends in research of spatio-temporal 

development of forests. The paper addresses (1) field methods for the development of 

spatially-explicit models of forest dynamics and their integration in models of forest 

dynamics, (2) strengths and limitations of traditional patch models versus spatially-explicit, 

individual-based models, and (3) the potential for moment-based methods in the analysis of 

forest dynamics. These topics are discussed with reference to their potential for solving open 

questions in the studies of forest dynamics. The study of spatio-temporal processes provides a 

link between pattern and process in plant communities, and plays a crucial role in 

understanding ecosystem dynamics. In the last decade, the development of spatially-explicit, 

individual-based models shifted the focus of forest dynamics modelling from the dynamics of 

discrete patches to the interactions among individual organisms, thus encapsulating the theory 

of “neighbourhood” dynamics. In turn, the stochastic properties and the complexity of 

spatially-explicit, individual-based models gave rise to the development of a new suite of so-

called moment-based models. These new models describe the dynamics of individuals and of 

pairs of individuals in terms of their densities, thus directly capturing second-order 

information on spatial structure. So far, this approach has not been applied to forests; we 

indicate extensions needed for such applications. Moment-based models may be an important 

complement to spatially explicit individual-based models in developing a general spatial 

theory of forest dynamics. However, both kinds of models currently focus on fine scales, 

whereas a critical issue in forest dynamics is to understand the interaction of fine-scale 

processes with coarser-scale disturbances. To obtain a more complete picture of forest 

dynamics, the relevant links and interactions between fine-, intermediate-, and coarse-scale 

processes ought to be identified. Intensive links between modelling work and field studies 

 
 

2



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

designed across different scales are a promising means to create a new perspective on forest 

dynamics. 

 

Introduction 

Studies of forest dynamics, i.e., of the changes of forest composition and structure 

over time, have received much scientific attention since the early concepts of forest 

succession by Cowles and Clements (Cowles 1899, Clements 1916; cited in Glenn–Lewin 

and van der Maarel 1992). The spatio-temporal development of forests may be described as 

changes of tree populations due to birth and colonization, growth, and death of trees. This 

biotic development is driven by disturbance events set on a stage of a spatially heterogeneous 

environment (White 1979, Pickett and White 1985, Spies and Turner 1999). 

Spatio-temporal processes involve the development of spatial patterns over time, thus 

providing a link between pattern and process in plant communities, and playing a crucial role 

in understanding ecosystem dynamics. An important cornerstone in the study of spatio–

temporal dynamics was Watt’s synthesis “Pattern and process in the plant community” (Watt 

1947). He described plant communities as a mosaic of patches in different phases, with an 

orderly time sequence of phases at a given place. Watt’s (1947) findings from his long-term 

field studies were extraordinarily influential during the second half of the last century 

(Leibundgut 1959, van der Maarel 1996). In particular, Watt’s identification of phases in the 

dynamics of beech forests laid the foundation for the concept of gap-phase dynamics, which 

has become a dominant theme in forest ecology (Urban and Shugart 1992). Research on gap-

phase dynamics originally focused on ecosystems in humid climates, where natural 

disturbances were generally of low intensity and small spatial extent (e.g., Runkle 1985, 

Brokaw 1985). At the same time, scientists working in more xeric ecosystems were 
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documenting the pervasive role of coarse-scale disturbance by fires in structuring the spatio-

temporal dynamics of entire landscapes (Lertzman et al. 1998). 

These two lines of inquiry were united through the development of a theory of patch 

dynamics, in which the spatio-temporal dynamics of the system were described through a 

demographic analysis of the birth, growth, and death of patches rather than of individual 

organisms (Levin and Paine 1974, Shugart and West 1977, Urban 1990, Belsky and Canham 

1994, Weishampel and Urban 1996). In its basic form, the theory treats ecosystems as 

mosaics of discrete and internally homogeneous patches created by disturbance events, 

embedded in a relatively uniform “matrix”. Through succession, disturbance patches 

gradually fade into the background matrix. This approach has now been applied to a wide 

range of terrestrial and aquatic ecosystems, ranging from tropical savannas to coastal sea-

grass communities (Botts 1997, Loucks et al. 1985, Dayton et al. 1994, Ramage and Schiel 

1999, Sousa 1985, Jensen and Bell 2001). It has also had wide application in conservation 

biology (Pickett and Thompson 1978, Shugart and West 1981, White 1987, Baker 1992). As a 

first approximation, patch dynamics provide an apt and useful conceptual model for many 

ecosystems and landscapes. 

The reason why Watt (1947) treated plant communities as a mosaic of patches was 

pragmatic: he found it “impractical” to describe communities in “terms of their characters” 

(the individual plants) and “their spatial relations to each other”. More than 50 years after 

Watt’s (1947) seminal paper, advances in spatial ecology allow for quantifications of both, 

the effects on and the responses of individual plants to their local spatial structure (Pacala 

1997). The importance of local processes in plant interactions and of their effects on 

community dynamics is now widely acknowledged (Silander and Pacala 1985, Tilman 1994, 

Lehman and Tilman 1997, Murrell and Law 2003, Amarasekare 2003), giving rise to the 

development of a neighbourhood-oriented perspective in plant community dynamics (Stoll 

 
 

4



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

and Weiner 2000, Purves and Law 2002). In forest dynamics, recognition of neighbourhood 

processes has so far mainly been in terms of the growth response of target trees to 

surrounding competitors (Biging and Dobbertin 1992, Stoll et al. 1994, Soares and Tomé 

1999, Ledermann and Stage 2001). The community response to neighbourhood interactions, 

however, has rarely been characterised. Consequently, forest dynamics research faces major 

challenges (i) to describe vegetation development and spatial structures; (ii) to identify the 

relevant processes that generate spatial structures, e.g., disturbances, dispersal, species 

interactions, or herbivory; and (iii) to understand the consequences of the so generated spatial 

structures for community dynamics. The third challenge entails integrating processes acting at 

different scales, e.g., by studying the interaction of fine-scale neighbourhood processes with 

coarser-scale disturbances. To better understand the complex interplay of these processes and 

of their different intensity in driving forest dynamics in different systems and, within systems, 

at different temporal and spatial scales, forest ecologists have collected a variety of empirical 

information. This includes information on disturbance regimes (Lorimer 1984, Pickett and 

White 1985, Lorimer and Frelich 1989, Duncan and Stewart 1991, Veblen et al. 1994, 

Parshall 1995, Villalba and Veblen 1997, Mast et al. 1998, Fischer et al. 2002) and on biotic 

processes and life-history traits of tree species in relation to heterogeneous habitats and 

disturbances (Runkle 1981, Lusk and Smith 1998, Lavorel and Chesson 1995, Lertzman 

1995, Lehmann and Tilman 1997). 

At the same time, the need for a comprehensive representation of the complex 

processes and their potential for simulation called for the application of computer models. The 

conceptual shift in forest dynamics described above, from the patch to the individual, was 

paralleled by the development of models of ecosystems dynamics. Starting from patch 

models, rapid advances in computing power over the past 20 years have led to a proliferation 

of spatially explicit individual-based models (DeAngelis & Gross 1992, Judson 1994, Grimm 
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1999). These models allow some degree of mechanistic realism to be incorporated into the 

modelling of neighbourhood interactions. Most recently, developments in moment-based 

methods in discrete and continuous space have sought to bridge the gulf between 

oversimplified, analytical mean-field models and highly complex, individual-based simulation 

models. Moment-based methods enable analysis of the nonlinear, spatially localized, 

stochastic processes that underlie biologically generated spatial patterns (Pacala and Levin 

1997, Dieckmann and Law 2000). Yet, with the exception of a pair-approximation model on a 

spatial lattice (Iwasa 2000), such approaches have not yet been applied to forest dynamics.  

Although the need for intensive integration of empirical and modelling approaches  is 

increasingly acknowledged (Jeltsch and Moloney 2002), examples of such integration in 

forest dynamics research are still rare. This also applies to the large body of spatial ecological 

theory which remains poorly tested by empirical methods (Amarasekare 2003, Murrell et al. 

2001). 

In this review we first present an overview of current field methods for studying biotic 

processes and disturbances. We stress the importance of including spatial processes in studies 

of forest dynamics and present two different modelling approaches that incorporate a 

neighbourhood-oriented perspective on forest dynamics by discussing, in turn, spatially-

explicit, individual-based models and a new class of moment-based models. We particularly 

emphasize the latter family of models, because, so far, they have hardly been applied to forest 

dynamics studies and are not as well known to the ecological community. We suggest ways to 

strengthen the link between ecological theory and forest dynamics studies and discuss options 

for better integrating empirical work and modelling in addressing future challenges in forest 

dynamics research. 
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There are three basic approaches available for collecting information on change of 

forests with time: retrospective (e.g., “historical” photographs, pollen records), prospective 

(e.g., permanent sample plots), and space-for-time approaches (e.g., chronosequences). In the 

absence of long time series on permanent sample plots (PSPs), retrospective methods and 

chronosequences are most frequently used for studies of forest dynamics. The use of 

chronosequences requires the existence of similar sites, a precondition which is hard to meet. 

Pickett (1991) mentioned the suitability of space-for-time substitutions for getting insight into 

trends in life-history types, the order of dominant species, stages of succession, and regional 

differences. Which approach is the most appropriate depends mainly on the studied 

ecosystem, the research question, the available data, and also on the spatial scale of the 

studied processes. The formulation of a research question and the subsequent design of a field 

study always include a decision about grain and extent, even if not explicitly stated. The 

selection of the appropriate scale for the research question in mind is probably the most 

crucial decision that has to be made beforehand. However, such a decision is not always 

straightforward, particularly when the scale of the studied process is unclear. 

Models of spatio-temporal processes rely heavily on empirical data that characterize 

the following processes in both space and time: (i) colonization (seed production, seed 

dispersal, and germination requirements), (ii) growth (growth potentials, competitive 

relationships), and (iii) death (mortality rates). Below, we briefly review field methods for 

collecting empirical data for these demographic processes and for characterizing disturbance 

regimes. 
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Phenological observations and seed traps provide basic information on minimum 

diameters (or age) of maturation, flowering patterns, as well as the timing, frequency, and 

quantity of seed production for many species. More difficult to obtain is quantitative 

information on dispersal distances and patterns of dispersed seeds. Seed rain studies usually 

estimate seed production and dispersal from randomly placed seed traps in forest stands or in 

open areas using some regular orientation of seed traps around or adjacent to the potential 

seed source (e.g., Clark et al. 1999). This is based on assumptions on the origin of seeds in the 

trap which may bias the results (Nathan and Mueller-Landau 2000). More precise predictions 

of seed dispersal patterns can be gained through the development of mechanistic models of 

seed dispersal (Nathan and Mueller-Landau 2000, Nathan et al. 2001). A second approach is 

to measure distance and distribution of already germinated seeds. Inverse modelling 

approaches using maximum-likelihood estimation were successfully used to estimate 

distribution and numbers of recruits relative to the distribution of parent trees in a stand 

(Ribbens et al. 1994). Problems with all these methods arise in dealing with far dispersers and 

stochastic (extreme) events that transport seeds over long distances, but may be very 

important for the survival and distribution of a particular species. Mechanistic models that 

couple seed release with aerodynamic processes are the most promising approach to derive 

dispersal distances of wind dispersed seeds of far dispersers (Greene and Johnson 1993, Clark 

et al. 1999, Jongejans and Telenius 2001, Nathan et al. 2001, Nathan et al. 2002, Nathan et al. 

2003). While these models describe the movement of seeds from point sources, Cousens and 

Rawlinson (2001) showed that both the shape of plant canopies and the position of seeds 

within canopies influence the shape of seed shadows, particularly for species with short 

dispersal distances. More complexity is added when considering secondary dispersal or 

differential seed deposition patterns on different microsites, caused by different roughness of 
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surfaces or preferences of zoochorous dispersed seeds (Nathan and Mueller-Landau 2000). 

Methods using already germinated seeds simultaneously account for non-random seed 

distribution and germination requirements, such as availability and distribution of safe sites, 

but the underlying processes are then very difficult to interpret. 

Growth 

In many models growth is included as the potential growth for an individual tree 

relative to its size and reduced by a competition factor, the latter being estimated based on the 

distance to neighbouring trees (e.g., Wykoff and Monserud 1987) or through direct light 

measurements (Pacala et al. 1993). The potential growth rate of a species is relatively easy to 

obtain using standard methods of growth and yield research, e.g., height-growth curves 

developed from stem analysis of top-height trees of even-aged stands (e.g., Heger 1968, 

Carmean and Lenthall 1989, Chen et al. 1998). However, actual growth varies from year to 

year mainly due to age (and size) related growth pattern, climate fluctuations, and changes in 

the light environment due to disturbances. Growth measurements on seedlings, saplings, and 

mature trees on permanent plots, in relation to measurements of local resources, provide the 

best source of data for characterizing the response of species to resource variation. This can 

also include the feedback of neighbouring trees on resource availability. In the absence of 

long-term data, the use of tree rings to measure past growth along resource gradients provides 

a means for quantifying species-specific growth-responses (e.g. Pacala et al. 1994). 

Mortality 

Mortality is best studied in PSPs as they follow tree and cohort development through 

time, thus measuring mortality directly. In the absence of PSPs, dendrochronological methods 

can provide estimates of past mortality rates (Dynesius and Jonsson 1991). Alternatively, 

growth-mortality relationships for various tree species can be established using growth as an 
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indicator of tree vigour and thus of mortality risk (Kobe et al. 1995, Wyckoff and Clark 2000, 

Gratzer et al. 2004). 

Disturbance regimes 

Depending on the system and type of disturbance, methods to reconstruct disturbance 

history include (1) descriptions and measurements of change in forest horizontal structure 

(Tanaka and Nakashizuka 1997, Valverde and Silvertown 1997), (2) age structure analysis 

(Duncan and Stewart 1991, Quigley and Platt 1996), and (3) dendroecological reconstructions 

of fire histories and gap creation events (Lorimer and Frelich 1989, Cherubini et al. 1996, 

Brown and Swetnam 1994, Villalba and Veblen 1997, Nowacki and Abrams 1997). A variety 

of methods have been developed for quantifying interactions between different types of 

disturbances (e.g., Veblen et al. 1994, Fischer 1992) and between weather patterns and 

disturbance events (Villalba and Veblen 1997, 1998, Mast et al. 1998), especially for forest 

fires and insect outbreaks. Except for studies using charcoal records and pollen data (e.g., 

Long et al. 1998, Calcote 1995), most of these methods are limited in the time domain, as 

they cannot provide information on events dating back to before the last stand-replacing 

disturbance. Limitations in space are imposed by the extent and grain of the study and the 

data available for the reconstruction. These limitations must be made explicit since 

disturbance regimes can only be defined for a particular area. Consequently, results obtained 

through such studies are only valid at the observed scale, while, e.g., extrapolating results to 

larger scales will underestimate coarse-scale disturbances (Wimberly et al. 2000). 
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Patch models 

The numerous patch models available in the literature can be subdivided into two 

major categories: 

• Finite state automata (Shugart 1998) or state-transition models classify vegetation on a 

given patch into a finite number of states and assign transition probabilities from one 

state to another, depending on the presence of a system-driving operator. The most 

common operator in these models is the passage of time, but others can readily be 

considered, for instance, disturbances such as fire (e.g., Kessel and Potter 1980, 

Gullison and Bourque 2001). 

• Individual tree models keep track of the birth, growth, and death of each individual 

tree on the simulated patches (e.g., Botkin et al. 1972, Shugart and West 1977, Kienast 

1987, Leemans and Prentice 1989, Bugmann 1994). The earliest of these models were 

developed in forestry to predict the growth of forest stands (e.g., Newnham 1964). 

Most patch models based on individual trees follow the concept of the JABOWA 

model pioneered by Botkin, Janak and Wallis in the 1970s. The model was originally 

developed as part of the Hubbard Brook Ecosystem study in the north-eastern forests of the 

US to explain species composition and succession at sites along an altitudinal gradient under 

current climate (Botkin et al. 1972, Botkin 1993). The key assumptions of JABOWA are: 

• The forest consists of many small patches of land each 0.01-0.1 ha in size which is 

approximately the area an adult individual tree can dominate. On the one hand this 

allows for an individual to achieve maximum size, on the other hand the death of a 

single large tree significantly influences the light regime at a patch.  
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• No interaction among the simulated patches is considered (i.e., the forest is either 

envisaged as a mosaic of independent patches or the simulated patches are taken to be 

independent samples from the entire forest). 

• The position of each tree on a simulated patch is unknown. Horizontally, the model 

assumes homogeneous competition throughout the entire patch. 

• All leaf biomass of each simulated tree is located at the top of the tree in an infinitely 

thin layer. 

Over the years, there have been many modifications to the original model formulation. 

For comprehensive reviews see, for instance, Bugmann (2001), Price et al. (2001), and Keane 

et al. (2001). Because of the relative ease of parameter estimation, numerous models were 

developed for a diverse range of ecosystems, including models for alpine tundra (Humphries 

et al. 1996) and prairie (Coffin and Lauenroth 1990). A major reason for ongoing model 

development and application is the need for individual-based simulators of vegetation change 

sensitive to climate, to assess the likely impacts of global climate change on forest 

composition and structure. Several review papers questioned the applicability of classical gap 

models for research on impacts of climate change due to erroneous scaling assumptions and 

misleading parameterization schemes (e.g., Schenk 1996, Loehle and LeBlanc 1996). Besides 

attempts to add more physiological realism with particular emphasis on a more mechanistic 

representation of carbon fixation and allocation (e.g., Prentice et al. 1993, Friend et al. 1993, 

Bugmann et al. 1997, Lasch et al. 2003), model variants were developed that consider spatial 

interaction between patches. Amongst the earliest of these spatially explicit model variants 

was the ZELIG-model (Smith and Urban 1988, Urban 1990) where the patches are arranged 

on a rectangular grid corresponding to a total area of up to several hectares. Such model 

variants are useful for examining seed dispersal and other landscape processes that involve 
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spatial interactions between patches, such as fire and insect outbreaks (e.g., Lexer and 

Hönninger 2001). 

Spatially explicit individual-based models 

Spatially explicit, individual-based models (SEIBs) such as ZELIG (Urban et al. 

1989), and SORTIE (Pacala et al. 1996), shift the focus from dynamics of discrete patches to 

interactions among individual organisms, and allow a more detailed treatment of  

environmental heterogeneity at a variety of spatial scales. 

Specifically, models such as ZELIG, which operates within the patch model paradigm 

of homogeneous competition within patches, and SORTIE,  where dynamics evolve as a 

result of local dispersal and local competition, treat forests as sets of individual trees rather 

than as mosaics of discrete gaps. In changing the focus, these models encapsulate an emerging 

theory of “neighbourhood” dynamics, in which fine-scale spatial interactions regulate the 

demography of component tree species (Pacala et al. 1996). The specific mechanisms for 

these spatial processes take many forms: 

• Seed dispersal and seedling recruitment are highly localized processes for many forest 

trees. Estimates of the mean seed and seedling dispersion distances away from parent 

trees are less than 20 m for many temperate tree species (Ribbens et al. 1994, Clark et 

al. 1998, LePage et al. 2000), although longer distance dispersal is also important 

(Greene and Johnson 1993, Clark et al. 1999). Stand structure and the presence of 

gaps within a stand also influences effective seed dispersal distances (LePage et al. 

2000). 

• The spatial distribution and abundance of tree seed predators can be strongly 

influenced by the spatial distribution of seed sources (particularly of large-seeded tree 
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species), with potentially significant effects on patterns of tree seedling establishment 

(Schnurr et al. 2002, Schnurr et al. submitted). 

• The activity of even large herbivores such as white-tailed deer (Odocoileus 

virginianus) may be influenced by fine-scale spatial variation in both soil nutrient 

availability and the abundance and nitrogen content of saplings that form a critical 

winter food source (Tripler et al. 2002). 

• Resource competition between sessile plants is clearly a spatial process. In the case of 

competition for light, the geometry of both solar radiation and plant canopies interacts 

with the spatial distribution of individuals to determine the availability of light to 

individuals in a forest (Canham et al. 1994, 1999). There is a large literature on tree 

competition based on phenomenological analyses of the distance to, size, and species 

of neighboring trees (e.g., Bella 1971). Non-spatial models are often effective in 

describing relatively uniform and even-aged stands, but spatial models provide distinct 

advantages in more heterogeneous stands (e.g., Lorimer 1983). 

• Tree species vary significantly in their effects on soil chemistry and soil nutrient 

availability (Zinke 1962, Finzi et al. 1998). The effects of mixtures of different tree 

species are not necessarily additive (Finzi and Canham 1998). When species effects 

are non-additive, non-spatial models are likely to either overestimate or underestimate 

average resource conditions within a stand. 

The shift to SEIB models has been facilitated by the development of new methods of 

examining field data, in which measurements of environmental factors (e.g., light) and critical 

demographic rates (e.g., recruitment, growth, and mortality) are analyzed in terms of the 

spatial distributions of neighbouring trees and of physical environmental factors (i.e., Ribbens 

et al. 1994, Pacala et al. 1994, Kobe et al. 1995, Canham et al. 1994, 1999, LePage et al. 
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2000, Canham et al. submitted), as outlined in the section on field methods above. These 

methods allow a tight linkage between the models and the parameterization of these models 

based on field data, thus allowing quantification of uncertainty in both parameter values and 

model predictions (Pacala et al. 1996).  
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The shift to a neighbourhood perspective has also had important implications for 

analysis of forest disturbance regimes.  Past studies of wind disturbance have tended to focus 

on the extremes of a gradient in windstorm severity, from very small, isolated treefall gaps 

with discrete edges (e.g. Runkle 1985, Brokaw 1985), to large, catastrophic disturbance in 

which most canopy trees are felled (e.g. Canham and Loucks 1984, Peterson 2000).  It is 

becoming increasingly clear that the wind disturbances which most frequently drive forest 

ecosystem dynamics in many temperate and tropical forests falls in between these extremes 

(e.g. Walker et al. 1991).  Intermediate-severity storms (e.g. hurricanes, typhoons, extra-

tropical cyclones, severe thunderstorms) create a wide range of damage across large regions, 

as a result of heterogeneity in topography and the meteorology of the storm event (e.g. 

Peterson and Pickett 1995, Boose et al. 1994), and because of variation among species and 

tree sizes in susceptibility to mortality or damage from winds of a given severity (e.g. 

Zimmerman et al. 1994, Canham et al. 2001).  The extremely heterogeneous patterns of 

canopy disturbance created by these events are very difficult to incorporate in traditional 

patch models or theories.   Patch dynamic models (i.e. Levin and Paine 1974) have 

traditionally used patch size as a metric of the magnitude of disturbance effect.  This becomes 

untenable for intermediate-severity storms, in part because of the difficulty of identifying 

discrete edges to patches, but more fundamentally because it ignores the pronounced 

heterogeneity at a wide range of spatial scales that is so distinctive in intermediate-severity 

disturbance events.    
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SEIB models have two properties, stochasticity and complexity, that cause difficulties 

when trying to extract succinct ecological predictions from these models. Stochasticity stems 

from the fact that – at the level of the individual – colonization, growth, and death are random 

events: in the corresponding models, no two realizations of a spatio-temporal process, based 

on different sets of random numbers, will give the same results. This can be instructive, for 

example, in estimating the expected natural range of variability in a finite-sized plot. But 

stochasticity also hides the underlying ecological signal, unless a great many realizations are 

carried out to obtain reliable averages. The complexity of SEIB models is evident from the 

intricate mechanisms they often try to incorporate, as noted above. Given the scope for 

incorporating such complexity, investigations by different groups of scientists will almost 

always differ in at least a few structural details, making it difficult to compare results and to 

assess reliably the structural stability of SEIB models (Grimm 1999). 

These considerations motivate the development of theory in which the deterministic 

ecological signal embedded in SEIB models is itself the state variable, and in which 

mechanistic detail is subsumed by standard model components (Bolker and Pacala 1997, Law 

and Dieckmann 2000b). So-called moment-based models are a promising step in this 

direction, and are currently being developed by translating earlier work in statistical physics 

into the context of biological populations of interacting individuals. The models jointly deal 

with the dynamics of the density  of individuals of type i, and of the density of pairs  

of individuals of type i and j that are situated a distance r apart in space (types i  and 

ip )(rpij

j  could 

represent species for instance, or states such as size classes, or both). These densities are the 

first two moments of a spatial distribution of individuals, calculated by integration over the 

spatial distribution. The pair density is a member of a class of second-order statistics widely 
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used in spatial pattern analysis (Dale et al. 2002, Wiegand and Moloney 2004); other related 

statistics include Ripley's K, the semi(co)variance, and the spatial covariance (Ripley 1977, 

Burrough 1995). One can think of moment-based models as stepping from the static 

description of spatial pattern to the dynamics of how spatial structures changes over time. 

Since the density of individuals lies at the core of nonspatial ecological theory, moment-based 

models contain the traditional nonspatial theory of population dynamics as a special case. 

Since the original work on moment-based models in physics had focused on lattices, it 

was natural that lattice-based ecological models, the so-called pair approximation models, 

were also developed first (Matsuda et al. 1992). These models describe the densities  of ij 

pairs where j is in a neighbourhood (of constant size z) of i on a lattice; there is no 

dependence on r in this case as all individuals in the neighbourhood are equivalent. Since the 

density of individuals can be obtained from the density of pairs by summing over partners, 

, the former need not to be treated separately. To describe the dynamics 

ijp

∑=
j iji pp ijdt

d p  of 

pair densities, the pair approximation assumes that the densities of triplets with a focal 

individual  can simply be expressed as 

13 

14 

i kijijk ppp = . This can be interpreted by saying that 

the pair approximation only traces spatial correlations among neighbours and that, 

accordingly, any correlations of higher order or at longer distance are ignored. Despite this 

simplification, pair approximation models have been applied successfully to a fairly wide 

spectrum of ecological settings (e.g., Harada and Iwasa 1994, Satō et al. 1994, Harada et al. 

1995, van Baalen 2000) and so far provide the only moment-based models that have been 

applied to forests (Iwasa 2000). 
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Individual trees, however, do not grow naturally on neatly arranged lattices, and 

therefore it is helpful to extend moment-based methods to spatial patterns given by collections 

of points in continuous space (Bolker and Pacala 1997, Dieckmann and Law 2000, Law and 
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Dieckmann 2000a). Moment-based models in continuous space can be based on different 

assumptions about how to express the density of triplets  in terms of pair 

densities. Such assumptions are called “moment closures” and have recently been investigated 

in some detail (e.g., Dieckmann and Law 2000, Murrell et al. 2004). They are all based on the 

idea that the dynamics of triplet densities equilibrate more quickly than those of pair densities, 

such that, after a short transitory period, pair densities are sufficient to characterize the spatial 

structure of a system. While this time scale separation is often justified, certain spatio-

temporal processes may defy such simplification, especially when containing long-range 

spatial structures. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

),,( kijkijijk rrrp

Moment-based models in continuous space typically involve so-called dispersal and 

interaction kernels. As noted earlier, dispersal kernels are already well established in forest 

ecology and simply describe the probability density with which a seed of type  ends up at 

distance 

i

r  from its parent. In animal ecology, a dispersal kernel can also be used to describe 

the movement of individuals throughout their life. An interaction kernel c  weighs the 

impact of an individual 

13 

14 )(rij

j  on an individual i  over a spatial distance r . Such impact may lead, 

for example, to decreased growth or fecundity, or to increased mortality. Integrating the 

weights c  over all distances 

15 

16 

)(rij r , we recover the interaction coefficients 

 of traditional ecological models such as the Lotka-Volterra model of 

competition (Begon et al. 1996). By contrast, for spatially structured populations the 

interaction coefficients are given by 

17 

18 

19 

rdraij π~
0∫
∞

= r 2)(cij

rdrrprca ijijpij π2)()(
0∫
∞

=

)(rij

p ji

1

p

 and, importantly, thus turn 

out to directly depend on the pair densities  that serve as the state variables of moment-

based models in continuous space. An interaction kernel thus allows for summing over all 

interacting pairs in a neighbourhood with the appropriate weights and thus formally brings 
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such sums into a description of the spatio-temporal population dynamics. By defining SEIB 

models in terms of dispersal and interaction kernels and by then studying the resultant 

dynamics of pair densities, moment-based models help to establish a more canonical 

modelling platform. This is likely to aid the systematic comparison of results between models 

of different systems. 

Moment-based models can account for two types of corrections relative to nonspatial 

models (Dieckmann and Law 2000). First are correlation corrections, arising from the non-

random distribution of individuals, as measured by pair densities. The traditional nonspatial 

models do not consider spatial correlations, which implies jiij pprp =)(  and thus ijij aa ~= . 

Once some spatial structure is present, 

9 

ijij aa ~−  is different from zero and measures 

corrections resulting from the spatial correlations present in the ecological pattern. A second 

type of improvement – ignored by nonspatial models but potentially captured by moment-

based models – are fluctuation corrections. These arise from the fact that, even in a 

hypothetical, infinitely large habitat, the number of individuals in a local neighbourhood is 

finite and varies from one neighbourhood to another, with the result that different individuals 

are bound to experience different local environments. Unless the ecological responses of 

individuals to densities in their neighbourhood are linear – which rarely will be the case – 

their response to the average local environment then differs from their average response to the 

different environments. In particular canopy structure and asymmetric competition for light 

are likely to induce such nonlinearities in the response of individuals to their local 

environment. Moment-based models can capture these potentially large differences through 

fluctuation corrections. 
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There still exists an appreciable gap between sufficiently realistic models of forest 

dynamics and models currently amenable to theoretical analyses. Three extensions could 

strengthen the utility of moment-based models for studying forest dynamics: 

• The most important extension needed is systematic incorporation of size structure in 

moment-based models. With such additional structure, pair densities take three 

arguments, , and describe the densities of pairs formed by individuals of 

species  and size  with individuals of species 

),,( rssp jiij

isi j  and size  at distance js r . The 

study of competition kernels has already gone some way towards analyzing these 

dependencies on size and distance (e.g., Biging and Dobbertin 1992, Stoll et al. 1994, 

Soares and Tomé 1999, Ledermann and Stage 2001, Purves and Law 2002b), but their 

effects on population dynamics have still to be explored. 
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• A second important extension will be the incorporation of heterogeneities in local 

environmental conditions . This can be achieved through the introduction of extra 

pair densities into moment-based models,  for density-like environmental 

factors (like nutrient concentrations) or  for other factors (like temperature; 

e.g., Law et al. 2001). 

e

)(rpie

),( reiep

• Thirdly, disturbances could be implemented in moment-based models by describing 

the signature of their impact on pair densities. Depending on their frequency of 

occurrence, such disturbances can be incorporated in moment-based models either as a 

continuous deterministic flow or through discrete stochastic events. 
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Perspectives and Conclusions 1 
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The role of SEIB models 

SEIB models in forest ecology have been a great success: they overcome the often 

artificial spatial discreteness of patch models, respect the discreteness of individuals, and 

encourage a mechanistic representation of factors determining vital rates. It was through the 

development of SEIB models that the importance of neighbourhood processes for forest 

dynamics was demonstrated (Pacala and Deutschman 1995, Kubo et al. 1996, Pacala 1997, 

Jeltsch and Moloney 2002, Purves and Law 2002). The neighbourhood-oriented perspective 

adopted in SEIB models thus provides a general framework for studying and understanding 

forest dynamics by overcoming key limitations of traditional non-spatial models. However, 

SEIB models are computationally demanding and thus limited to stand scales. For 

applications at coarser scales, spatially explicit patch models are currently the only feasible 

modelling approach at hand (Bugmann 2001). 

The application of SEIB models helped to identify a number of fine-scale 

neighbourhood processes as driving forces for tree-population dynamics. However, while 

some of these processes – e.g., seed dispersal (Clark et al. 1999, Pastor et al. 1999, Chave 

1999, Bleher et al. 2002) and competition for light (Canham et al. 1994, 1999, Chave 1999) – 

are well described and readily included, other pattern generating processes – like plant-soil 

feedback or interaction with herbivores – are still only rarely included in tree population 

models, even though they are empirically well documented (e.g., Van Breemen and Finzi 

1998, Binkley and Giardina 1998, Pastor et al. 1999). Thus, if one of the major challenges in 

understanding forest dynamics remains the identification of important pattern-generating 

mechanisms at different spatial and temporal scales (e.g., Levin and Pacala 1997, Parker and 

Pickett 1998), SEIB models through their close linkage with field studies, provide a 
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promising route for this endeavour, because of their rich potential for exploring the 

consequences of intricate spatial interactions. 

The potential of moment-based models 

The promise of moment-based models lies in their canonical structure and greater 

mathematical tractability. As an alternative to including ever more mechanistic detail, 

moment-based models may be a good complement to SEIB models in developing a general 

spatial theory of forest dynamics. Yet, the extensions needed for moment-based models to 

reflect some specific features of forest dynamics are by no means trivial:  for instance, 

incorporating size dependences, environmental heterogeneities, and spatial disturbances pose 

many interesting challenges for theorists and empiricists. Even with the simplification that 

moment-based models allow, there will be intricate couplings of variables in the dynamics. 

While it would be unrealistic to expect general analytical mathematical insights from such 

models in the immediate future, numerical analyses are readily feasible.  

Yet, whenever a wide range of complex ecological mechanisms is to be considered 

simultaneously, or when a tactical match with the quantitative details of a particular 

ecosystem is required and sufficient data is available for model parameterisation, individual-

based models are likely to prove superior because of their essentially unlimited flexibility. In 

other cases, moment-based models may offer a useful middle ground. 

Links between field studies and models 

Even with more models developed and parameterised, empirical studies will remain 

fundamental to progress in understanding forest dynamics. Both SEIB and moment-based 

models have stimulated recent empirical work in forest dynamics by highlighting the need for 

quantifying certain mechanistic assumptions about, e.g., competition and dispersal. The 

development of new methods of analysis of field data is largely triggered by the current gaps 
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in our knowledge, which become evident in the process of parameterising the corresponding 

models. Still, information on resource-mortality and resource-growth responses, as well as on 

dispersal distances, is missing for many tree species around the world (e.g., Chave 1999, 

Gratzer et al. 2004). Such information is not only necessary for modelling forest dynamics but 

also for its own right and for applications in forest management. 

Future interactions between models and field work will go far beyond the traditional 

unidirectional way of data collection for model development and parameterisation. It is 

already clear now that models will become a more integral part of studies on forest dynamics: 

models will be used for hypothesis generation before empirical studies are devised and carried 

out, for assessing the grain and extent of empirical studies adequate for capturing essential 

properties of the ecological processes under investigation, and for extrapolating results of 

empirical studies to longer time scales. It will thus be fruitful to explicitly plan for the 

interaction between empirical and modelling work by identifying the desired connections in 

advance, allowing for bi-directional feedback and continuous progress. 

One of the crucial problems in understanding forest dynamics is the frequent lack of 

adequate data for validating model results. Long-term ecological studies ought to fill this gap 

by capturing slow phenomena, rare events, as well as subtle and complex processes (sensu 

Pickett 1991). To achieve this in the context of forest dynamics, long-term ecological studies 

will have to extend over decades. 

 

On the interaction of fine scale neighbourhood processes with coarser scale disturbances 

A critical issue in forest dynamics is to understand the interaction of fine-scale 

neighbourhood processes with coarser-scale disturbances. In the section on field methods we 

presented state-of-the-art methods for analyzing disturbance regimes. All of the presented 

 
 

23



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

approaches struggle with temporal and spatial limitations (e.g., Lertzman and Fall 1998). At 

least the former limitation can be overcome by using spatially explicit models. So far, 

however, only few attempts in this direction have been undertaken (e.g., Wiegand et al. 1998, 

Canham et al. 2001, Menard et al. 2002). 

By linking a neighbourhood-oriented perspective on forest development with an 

approach from disturbance ecology, Dube et al. (2001) bridged the gap between these two 

realms of investigating forest dynamics. They characterized canopy gaps according to a 

species’ light requirements and could thus move beyond the (practically useful but 

theoretically often unjustified) geometrical characterization of gaps or expanded gaps. This 

can be seen as an extension of the neighbourhood perspective towards disturbance ecology. 

Most  studies simulating disturbances are based on simply removing trees of different 

diameters (e.g., Menard et al. 2002), even though this practice ignores the specific 

characteristics of disturbance events. In general, disturbances vary not only in size but also 

greatly differ in severity and residuals (Turner et al. 1998): they therefore leave “fingerprints” 

in the landscape that are specific to the characteristics of the disturbance (disturbance agents 

and intensity) but also depend on species- and structure-specific susceptibilities to the 

disturbances. Models of disturbances might have to consider these species-specific feedback 

mechanisms (the creation of micro-sites and the response of regeneration to these spatial 

heterogeneities and to the presence of surviving seed trees) in order to capture the essential 

effects of disturbances on forest dynamics. 

If also interactions between disturbances are to be considered, even more complexity 

has to be added to models. Such complexity across scales requires strategies for dealing with 

scaling issues. The most promising way of addressing this would be an application of 

hierarchy theory (Pattee 1973, Allen and Hoekstra 1992, Ahl and Allen 1996). The theory is 

based on the assumption that ecological systems exhibit a loose vertical and horizontal 
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coupling in structure and function and are thus highly decomposable. Such a loose coupling 

allows for distinguishing between different hierarchical levels (vertical) and subsystems 

(horizontal) at the same vertical level (Wu and David 2002, Wu 1999, Parker and Pickett 

1998). However, whether or not coupling in nature typically are sufficiently loose to justify 

such simplification currently remains an open empirical question. 

Both SEIB models and moment-based methods in continuous space are working on 

fine spatial scales. To obtain a more complete picture of forest dynamics, and to move 

towards a general theory for the spatio-temporal developments of forests, all relevant links 

and interactions between processes at fine, intermediate, and coarse spatial scales must be 

identified and understood. Field studies designed across different scales, in conjunction with 

models describing the spatio-temporal development of forests, would seem to offer the most 

promising means for creating a new perspective on forest dynamics. 
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