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Abstract 

  This paper introduces a dynamic model of optimization of  R&D intensity under 

the effect of technology assimilation. The model involves R&D investment, technology 

stock, production, and technology productivity as main variables. The model 

characterizes the “growth” and “decline” trends that describe interaction between R&D 

investment and transformation process of production factors. The technology stock is 

constructed as a function of indigenous and exogenous technology stocks and their 

growth rates. The research focuses on the issue of a reasonable balance between the 

indigenous  technology stock and assimilated technology flow. The maximum principle 

of Pontryagin is applied to construct an optimal R&D investment policy. The existence 

and uniqueness result for the saddle-type equilibrium is obtained. The optimal solution 

is constructed analytically and its properties are investigated. The model is calibrated 

on the  aggregate data of Japan’s automotive industry over the period 1982-2000.  
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Dynamic Optimization of R&D Intensity under the Effect 
of Technology Assimilation: Econometric Identification  
for Japan’s Automotive Industry 
Bernadetta Kwintiana Ane 
Alexander Tarasyev 
Chihiro Watanabe 

1. Introduction 
The paper is devoted to characterizing the impact of technology assimilation on 

optimization of R&D investment policy for a growing economy. The focus is on the 

issue of a reasonable balance between the indigenous technology stock and assimilated 

technology flow. Such statement is closely connected with the problem of optimal  

allocation of resources (Arrow and Kurz, 1970 [2]; Arrow, 1985 [3]; and Leitmann and 

Lee, 1999 [17]).  

The efficiency of utilization of technology depends on an assimilation capacity 

of an economy to absorb the exogenous technology stock from the global market place. 

It is assumed in this paper that the assimilation capacity is conditioned by the 

development of the world market technology stock and the ability to maximize benefits 

of a learning exercise. Consequently, the assimilation capacity is a function of the level 

of the indigenous technology stock and the assimilated spillover technology, and the 

growth rates of these parameters.  

To date, a number of studies have analyzed the measurement of technology 

formation and its stock as well as an expected return of R&D investment. Scherer (1965 

[23], 1983 [24]), Hall et al. (1988 [10]), Hall, Griliches and Hausman (1983 [11], 1986 

[12], and 1984 [13]), Pakes and Griliches (1984 [18]), and Acs and Audretsch (1989 

[1]) have thoroughly analyzed the effects of R&D investment on technology stock 

formation and productivity growth. In this paper we combine an econometric procedure  



 2

for identification of the assimilation capacity with dynamic optimization of R&D 

investment policy. 

The proposed model includes the growth and decline trends of R&D investment. 

The growth of the indigenous technology stock requires R&D expenditures inducing 

decrease in production rate in the short run. In the long run, R&D investment leads to 

increase of sales and production diversity. The dynamic model includes an integral 

utility function that correlates accumulative R&D investment and production diversity.  

The endogenous growth theory (Grossman and Helpman, 1991 [8]) is referred here as a 

tool for studying control models of optimal resources allocation with the utility 

functions of the logarithmic type. The discounted utility functions with the consumption 

index of the logarithmic type and equal elasticity of substitution of invented products 

have been used also in the papers (Tarasyev and Watanabe, 2001a [27], 2001b [28]; 

Watanabe et al., 2001 [32]; Tarasyev et al., 2002 [29]; Reshmin et al., 2002 [21]; and 

Izmodenova-Matrossova et al. (2003 [15]).  

The problem is to find an optimal R&D investment policy that maximizes the 

utility function in presence of “growth” and “decline” trends in dynamics of R&D 

investment and production. The optimal control problem for trajectories of technology 

growth under the technology assimilation effect is analyzed and the main qualitative 

features of optimal trajectories are characterized basing on concavity properties of the 

Hamiltonian function for the corresponding dynamic system of techno-economic 

growth. The impact of technology assimilation on the optimal R&D level is revealed in 

formulas of the Pontryagin's maximum principle (Pontryagin et al., 1962 [19]). The 

existence and uniqueness result for equilibrium of the corresponding Hamiltonian 

system of differential equations is proved. The Hamiltonian system is linearized around 

the equilibrium point, and eigenvalues and eigenvectors of the Jacobi matrix are 

estimated. This standard analysis demonstrates the saddle type of the equilibrium point. 

The optimal trajectories are constructed as paths leading the system to equilibrium.  

The synthetic trends of optimal trajectories reflect properly the real economic 

tendencies of technology development. This conclusion is confirmed by econometric 

analysis of the real data on Japan’s automotive industry over the period 1982-2000. The 

calibration procedure employing elements of the sensitivity analysis adjusts the model 
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to the qualitative trends in the empirical time series for technology, production, 

technology productivity, and R&D intensity.  

Section 2 presents the design of the techno-production model and empirical 

measurements of the technology stock and its dependency on the spillover technology. 

Section 3 analyzes the optimal trajectory of R&D investment on the basis of the theory 

of optimal control and its application to economic models (Pontryagin et al., 1962 [19], 

Krasovskii, A.N., Krasovskii, N.N., 1995 [16], Subbotin, 1995 [25], Intriligator, 1971 

[14]; Watanabe, 1992 [30]; Borisov  et al., 1999 [4]; Crandall and Lions, 1983 [5]; 

Dolcetta, 1983 [6]; Feichtinger and Wirl, 2000 [7]; and Tarasyev, 1999 [26]). Section 4 

summarizes new findings and policy implications. 

2. Technology Stock and Its Dependency on Spillover 
Technology 

2.1. Basic Parameters 

For constructing a dynamic model of interaction between the domestic 

technology stock and the spillover technology the following basic variables are used: 

dT  -  domestic technology stock; 

dt

dT
T d

d =∆  - change in the domestic technology stock; 

d

d

T

T∆=ξ  - the rate of the domestic technology stock; 

sT  - technology spillover pool; 

dt

dT
T s

s =∆  - change in the technology spillover pool; 

s

s

T

T∆=ω  - the rate of the technology spillover pool; 

z - coefficient of the assimilation capacity (assimilation capacity);  

T  -  gross technology stock. 
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2.1.1. Technology Stock 

Following the model of the technological knowledge stock (technology stock) 

by Pakes and Griliches (1984 [18]) we describe the increase in technology stock tiT ,  in 

industry i  at time t  by the regression equation   

, , , ,
0

ˆˆ ( , )
l

i t i t i t i i tT a b t r e f t rτ τ τ
τ

θ − −
=

= + ⋅ + ⋅ + =∑ .                                         (1) 

Here â  is a constant; b̂  is the time coefficient of regression; t  is the time trend 

effect; τθ  are  weights of the lagged variables; tir ,  is R&D investment of industry i  at 

time t ; τ  is the time-lag between R&D investment and its commercialization; and tie ,  

is a disturbance term. It is assumed that the time lag τ  between R&D investment and 

its commercialization varies in the interval l−0  years, 0≥l . Usually the period of 

delay equals to 5  years, 4=l .      

Taking into account the time lag and the obsolescence effect in the R&D 

investment process the domestic technology stock can be measured as follows (see, for 

example, Watanabe, 2000 [31]): 

( ) 1,, 1 −− ⋅−+= timtti TrT ρ .                                                    (2) 

Here mtr −  is R&D investment at time mt − ; m  is the time-lag between R&D 

investment and commercialization; ρ  is the obsolescence rate of technology. 

In this stage, a dynamic autoregressive geometric distributed-lag (AGDL) model 

for the domestic technology dT  is constructed. Let us note that the lagged variables 

should be included into the model explicitly (Gujarati, 1995 [9]; Pyndick and Rubinfeld, 

1991 [20]) due to a substantial period of time that may pass between the economic 

decision-making period and the final impact on a change in R&D investment as a policy 

variable.  

Let us introduce a postulate that R&D investment tr , as well as the accumulative 

technology stock 1, −tdT  of the previous year, significantly contribute into determination 

of the level of the domestic technology stock. Basing on this postulate and taking into 

account equation (1) one can describe the domestic technology stock tdT ,  by the 

following relations 
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( ) )),,((, 1,1,, −−− == tdttdttd TrtfgTTgT τ .                                      (3) 

Let us fix actual 3  years time-lag ( 2=l , 2,1,0=τ ) in Japan’s manufacturing 

industry (Watanabe, 2000 [31]). We specify equation (3) in the following form  

( ) ( ) =+⋅−⋅+⋅+⋅+⋅+⋅+= −−− ttdttttd TrrrtT εραθθααα 1,32
2

1210, 1  

( )∑
=

−− +⋅−⋅+⋅⋅+⋅+=
2

0
1,3210 1

τ
τ

τ εραθααα ttdt Trt ,                                  (4) 

0>θ ,  10 ≤≤ ρ ,  02 ≥α ,  03 ≥α . 

Here tdT ,  is the indigenous technology stock at time t ; t  is the time trend; tr  is 

R&D investment at time t ; θ  is the weight coefficient for the lagged variables; τ  is 

the time lag between R&D investment and commercialization; ρ  is the obsolescence 

coefficient of the technology stock 1, −tdT ; 0α  is the intercept term; 2α  is the calibration 

coefficient for the lagged variables; 1α  and 3α  are regression coefficients of 

explanatory variables; and tε  describes disturbances. Let us note that the weight 

coefficient θ  is a nonstandard regression parameter introduced to describe the net 

effect of R&D investment. The calibration procedure for this model is described in 

detail in the paper by Pyndick and Rubinfeld, 1991 [20].   

  In this model, R&D investment in respective years contributes distinctly to 

formation of the domestic technology stock in accordance with its weights τθ . The total 

contribution of R&D investment within time τ−t  should be greater than the obsolete 

part of the technology stock of the previous year in order to maintain the steady growth 

of the domestic technology stock. Therefore, it is assumed that parameters of equation 

(4) satisfy the following relation   

01,3

2

0
2 >⋅⋅−⋅⋅ −

=
−∑ tdt Tr ραθα

τ
τ

τ .                                                          (5)

  

Application of constraint (5) implies the following requirement: 

(a) the weights of the geometric lagged explanatory variables τθ  are positive, decline    

in time, and never become zero. 
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 Besides, in the econometric model (4) the standard assumptions on disturbances 

are introduced:   

(b) the disturbance term tε  is normally distributed, independent of variables τ−tr  and 

1, −tdT , and neither serially correlated nor heteroscedastic. 

2.1.2. Spillover Technology and Assimilation Capacity 

Technology has some peculiar properties as an economic commodity that bear 

on its role in the growth process (Romer, 1990 [22]). The partial nonexcludability of 

technology suggests that industrial R&D may generate technology spillover. That 

means: (i) firms can acquire information created by others without paying for that 

information in a market transaction, and (ii) the creators, or current owners of the 

information have no effective sources under the present prevailing legislation to protect 

this information in the case if other firms acquire it and utilize. 

Basing on this postulate one can introduce into the model the technology 

spillover pool sT  which consists of technologies generated by other firms and available 

at the market place.   

To describe the technology spillover pool sT  let us use a modified Cobb-

Douglas type function which includes the lagged variables of the net value of R&D 

funds  

∏
=

−⋅
−

⋅
−

⋅⋅=
2

0

)1(
1,

)(
, )(Im)()~(

τ

σρζτφη
τ

δ
ttrt

t
ts TreAT ,    τφτφ =)( ,                          (6) 

where A  is a scale factor; τ−tr
~  is the net value of R&D funds received and paid to 

outside at time τ−t ; 1, −trT  is  the technology stock generated by R&D investment r~  at 

time 1−t ; tIm  is the technology import at time t ; η  is the coefficient of the lagged 

variable; δ , ζ  and σ  are  the regression coefficients of explanatory variables; τφ  are 

the weights of the lagged variables; and τ  is the time-lag of R&D investment and 

commercialization.  

In the following stage, the assimilation capacity z  is measured according to the 

econometric model proposed in the paper by Watanabe et al.,  2001 [33]   
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dd

ss

sd

TT

TT
TT

z

∆
∆

+
=

1
.                                                           (7)  

  Introducing notations  

0>∆=
d

d

T

Tξ ,    0>∆=
s

s

T

Tω        (8) 

for the rates of the domestic technology stock, dT , and the technology spillover pool, 

sT , one can get the following presentation of the assimilation capacity 

 
s

d

s

d

T

T

T

T
zz ⋅

+
=⋅

+
==

ωξ
ξ

ξ
ωξ

1

1
)( .               (9) 

Then the gross technology stock T at time t  is defined as the total sum of the 

domestic technology stock and the assimilated spillover technology  

tsttdt TzTT ,, ⋅+= .                                                           (10) 

Linearization by the Taylor expansion of the assimilation capacity z  with 

respect to the change rate of the domestic technology ξ  around the fixed rate 00 >ξ  

provides the following approximation   

)()()()( 000 ξξξ
ξ

ξξ −⋅+≈
d

dz
zz ,                                              

where  

s

d

T

T
z ⋅

+
=

ωξ
ξξ

0

0
0 )( ,                                                  (11) 

s

d

T

T

d

dz
⋅

+
=

2
0

0

)(

)(

ωξ
ω

ξ
ξ

.                                              (12) 

Hence, the assimilation capacity z  can be approximated by the following 

equation 

=⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
−⋅

+
+

+
==

s

d

T

T
zz )(

)()(
)( 02

00

0 ξξ
ωξ

ω
ωξ

ξξ  
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=⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
+
⋅+

+
⋅

−
+

=
s

d

T

T
2

0
2

0

0

0

0

)()()( ωξ
ξω

ωξ
ξω

ωξ
ξ

 

s

d

T

T
⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
+
⋅+

+
=

2
0

2
0

2
0

)()( ωξ
ξω

ωξ
ξ

.                                          (13) 

Thus, the gross technology stock T  after linearization of the assimilation 

capacity z  can be presented as follows: 

( ) =⋅⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
+
⋅+

+
+== s

s

d
d T

T

T
TTT

2
0

2
0

2
0

)()( ωξ
ξω

ωξ
ξξ  

=⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
+

∆⋅
+

+
+= d

dd
d T

TT
T

2
0

2
0

2
0

)()( ωξ
ω

ωξ
ξ

 

dd TT ∆⋅
+

+⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
+

+=
2

0
2

0

2
0

)()(
1

ωξ
ω

ωξ
ξ

 .                                   (14) 

Introducing notations for coefficients  

1
)(

1 2
0

2
0 ≥

+
+=

ωξ
ξµ ,     

ωωξ
ων 1

)( 2
0

≤
+

=                            (15) 

one can obtain the following presentation for the gross technology stock  

dd TTT ∆⋅+⋅= νµ .                                                        (16) 

2.2. Empirical Analysis 

2.2.1. Indigenous Technology  

By means of regression analysis applied to the period 1982-2000 one can 

identify  the model coefficients (4) for the domestic technology stock  

∑
=

−− ⋅−⋅+⋅+=
2

0
1,, )1(07.4)48.1(73.1772160

τ
τ

τ ρ tdttd TrT ,    (17) 

 

981.0. 2 =Radj , 34.1=DW .       

(97.99) (8.25) (1.88) (4.48) 



 9

Here the symbol 2.Radj  denotes the adjusted coefficient of determination, the 

symbol DW  denotes the Durbin-Watson test statistic, and figures in the brackets denote 

the Student's t -statistic of the corresponding regression coefficients. The value of the 

obsolescence coefficient ρ  is identified at the level 105.0=ρ  in the paper by 

Watanabe, 2000 [31], on the basis of the 5.10  years data for the actual obsolescence 

rates of technology in the Japanese manufacturing industry.  

The statistical result in equation (17) demonstrates that all identified coefficients 

are statistically significant. The corresponding data is given Appendix A.1. which 

describes trends in R&D expenditure and technology import in Japan’s Automotive 

Industry at current prices. 

2.2.2. Technology Spillover Pool  

Using the similar regression analysis over the same period one can obtain the 

model coefficients (6) for the technology spillover pool  

∏
=

−⋅
−

⋅
−

⋅−=
2

0

06.0)1(67.0
1,

)(99.088.4
, )(Im)()~(

τ

ρτφ
τ ttrt

t
ts TreT , ττφ )97.0()( = ,  (18)    

 

990.0. 2 =Radj , 26.1=DW .     

Equation (18) also demonstrates statistical significance with respect to all 

identified coefficients. 

  Conceptually, the technology spillover pool can be decomposed into three 

components as illustrated in Figure 1: the net value of R&D funds received and paid to 

outside and the accumulative technology stock generated from it; the technology 

import; and  the time trend effect of the economy. 

 

 

 

 

 

(-16.13) (6.69) (6.78) (3.90)  (8.64)   
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Figure 1. Econometric Trajectory of Technology Spillover Pool. 

 

Let us note that the time trend effect of the economy, teA δ⋅ , fluctuates quite 

small. Thus, when its value is compared to the contribution value of net R&D funds, 

∏
=

⋅
−

2

0

)()~(
τ

τφη
τtr , and accumulative technology stock generated by R&D investment r~  at 

time (t-1), )1(
1, )( ρς −⋅

−trT , or technology import, σ)(Im t , it can be depicted linearly as it is 

shown on Fig. 1. 

2.2.3. Assimilation Capacity 

Let us introduce dummy variables, iD , 3,2,1=i , into equation (13) for the 

assimilation capacity, z . The dummy variables, iD  3,2,1=i , describe restructuring of 

the time series trends and correspond to the periods before, during and after the bursting 

of the bubble economy in the Japanese manufacturing industry, respectively:   

11 =D  in the period 1982-1986, 01 =D  in other years;  

12 =D  in the period 1987-1990 , 02 =D  in other years;  

13 =D  in the period 1991-2000, 03 =D  in other years.     (19) 

One can consider the following model for identification of the rate of the 

indigenous technology stock, 0ξ ,  

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

ln
 T

s
Technology import

T ime trend effect of the economy

Net R&D funds
and accumulative technology 

t k
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+⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
+
⋅+

+
⋅+⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
+
⋅+

+
⋅==

s

d

s

d

T

T
D

T

T
Dzz

2
0

2
0

2
0

22
0

2
0

2
0

1 )()()()(
)(

ωξ
ξω

ωξ
ξ

ωξ
ξω

ωξ
ξξ  

 

s

d

T

T
D ⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
+
⋅+

+
⋅+

2
0

2
0

2
0

3 )()( ωξ
ξω

ωξ
ξ

                                      (20) 

By means of the nonlinear regression analysis (software SPSS 10.0J) the initial 

rate of the indigenous technology stock is identified as follows: 

14.00 =ξ ,          24.0=ω                     970.0. 2 =Radj ,          66.2=DW .       

          (14.71)                         (7.14)   

The regression model (19)-(20) demonstrates that the rate coefficient 0ξ  is 

statistically significant and proves that the linear approximation (13) fits well to the data 

time series and properly substitutes the nonlinear model (7) for the assimilation capacity 

z . 

2.2.4. Gross Technology Stock  

On the basis of prior econometric analysis one can identify trajectories of the 

indigenous technology stock and the technology spillover pool for Japan’s automotive 

industry over the last two decades. 
Basing on the econometric measurements of the domestic technology stock, dT  

(17), the spillover technology pool, sT  (18), the change rate of the indigenous 

technology stock, 0ξ  (19), one can identify the gross technology stock T  by the 

following equation 

)()()( 321 dddddd TTDTTDTTDT ∆⋅+⋅⋅+∆⋅+⋅⋅+∆⋅+⋅⋅= νµνµνµ              (21) 

with dummy variables iD , 3,2,1=i , as described in (19).  

Figure 2 demonstrates good coincidence of the linearized model (21) with the 

nonlinear model (8), (9) for the gross technology stock T . The trajectory nlT  of the 

nonlinear model (8), (9) is depicted by the solid line, and the trajectory lT  of the 

linearized model (21) is shown by the dashed line.     
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Figure 2. Trajectories of  the gross technology stock of Japan’s Automotive Industry (1982- 

2000) in the nonlinear and linearized models – trillion Yen in 1995  fixed  prices. 

 

This good coincidence of two trajectories can be demonstrated numerically if 

one construct a regression of the trajectory nlT  of the nonlinear model (8), (9) on the 

trajectory lT  of the linearized model (21). The numerical results of this regression can 

be presented by the following figures   

lnl TT ln05.182.0ln ⋅+−= ,     999.0. 2 =Radj ,     89.1=DW ,                (22) 

     (-6.09)   (126.19) 

which show good numerical fitness of trajectory lT  to trajectory nlT . 

Figure 3 depicts the growth trends in development trajectories of the gross 

technology stock, T , the indigenous technology stock, dT , and the assimilated spillover 

technology, sTz ⋅ , in Japan’s automotive industry over the period 1982-2000. The gross 

technology stock, T , is depicted by the solid line with dot markers, the domestic 

technology stock, dT , is presented by the solid line, and the assimilated spillover 

technology, sTz ⋅ , is shown in the dashed line.   
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Figure 3. Growth trends of technology trajectories in Japan automotive industry  

                       (1982-2000) – trillion Yen in 1995  fixed  prices. 

 

Figure 3 demonstrates significant growth of the gross technology stock in 

Japan’s automotive industry in the 1990s corresponding to the period after the bursting 

of the bubble economy in 1991.  

3. Dynamic Optimality of R&D Intensity  

3.1. Utility Function 

 According to Grossman and Helpman (1991 [8]) for determining the optimal 

trajectory of the gross technology stock one can use the utility function J  represented 

by an integral with a discount rate λ  

∫
+∞

−−=
0

0 )(log)(

t

tt dttDeJ λ .        (23) 

  Here )(tD  represents a consumption index at time t ; time t  varies on the 

infinite horizon, ),[ 0 +∞∈ tt ; 0t  is the initial time. 

  Let us assume for the consumption index D  a specification that imposes a 

constant and equal elasticity of substitution between any pair of products including the 

new invented products generated by R&D investments 

π
π

1

0

)( ⎥
⎦

⎤
⎢
⎣

⎡
⋅= ∫

n

djjxdD .                                          (24) 
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 Here d  is a scale factor; )(tnn =  is the amount of innovative goods; j  is the 

current index of innovative goods, nj ≤≤0 ; )( jxx =  is the quantity of production of 

the brand with index j ; π  is the parameter of elasticity for variety of products, 

10 << π ; ε  is the elasticity of substitution between two innovative goods, 

1
1

1 >
−

=
π

ε ,                                                            (25) 

or, equivalently,  

ε
π 1

1−= .      

 Introducing notation )(tyy =  for production of innovative goods and assuming 

that quantities )( jxx =  are equal for each index j , nj ≤≤0 , one can get the 

following relation  

)(

)(

tn

ty
x = .          

 Hence, the consumption index D  can be presented by the formula 

ππ

ππ
/)1(

1

))(()()(
)(

)(
)( −⋅⋅=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
⋅== tntydtn

tn

ty
dtDD .    (26) 

 Let us assume that the number of innovative products, n , depends on the gross 

technology stock, T , and on the change, dTu ∆= , in the indigenous technology stock, 

dT , according to the regression equation (see Watanabe, 2000 [31]) 

2121 )()( ββχββχ uTecTTectnn t
d

t ⋅⋅⋅=∆⋅⋅⋅== .                               (27) 

 Here c  is the scale factor; χ  is the coefficient of the time trend; iβ , 2,1=i , are 

the regression coefficients of explanatory variables.  

 Substituting formulas (26), (27) for the consumption index D  into the integral 

(23) one can obtain the following relation for the utility function 

+⋅+⋅+= ∫
+∞

−− dttuatTatyeJ
t

tt ))(ln)(ln)((ln 21
)(

0

0λ    

∫
+∞

−− ⋅+⋅++
0

0 ))(ln(ln)(

t

tt dttchde χλ .                                                                        (28)  

  Here  
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1

1
1

11

−
=−=−=

εππ
π

h ,    ii ha β⋅= ,    2,1=i .                                               (29) 

 The second term in the utility function (28) does not depend on the basic 

variables )(ty , )(tT , )(tu . Hence, it does not influence on optimization of R&D 

investment policy and can be omitted.  

 The structure of the utility function in equation (28) implies that investors 

(specifically for the Japan's automotive industry the notion of investors includes auto 

manufacturers, the government, special corporations, and other non-government 

institutions) are interested in growth of production, )(ty , the accumulative technology 

stock, )(tT , and R&D investment expressed by the technology change )(tu .  

 Inserting expression (16) for the accumulative technology stock, )(tT , into 

functional  (28) one can obtain the following relation for the utility function 

( )( )dttuatutTatyeJ d

t

tt )(ln)()(ln)(ln 21
)(

0

0 ⋅+⋅+⋅⋅+= ∫
+∞

−− νµλ .                         (30) 

 Due to the logarithmic terms in the utility function (30) production, )(ty , 

indigenous technology stock, )(tTd , and change in the indigenous technology stock, 

)(tu , satisfy the following restrictions 

0)( >= tyy ,    0)( >= tTT dd ,    0)( >= tuu .                                            

 Moreover, let us assume that these variables are strictly separated from zero 

)(0 tyy l ≤< ,    )(0 tTT d
l

d ≤< ,    )(0 tuu l ≤< .                                                 (31) 

 Linearizing in functional (31) the  

logarithmic term with respect to variable u   

( ) =⋅+⋅⋅=⋅ uTaTa d νµlnln 11  

≈⎟⎟⎠

⎞
⎜⎜⎝

⎛
⋅+⋅+⋅+⋅=⎟⎟⎠

⎞
⎜⎜⎝

⎛
⎟⎟⎠

⎞
⎜⎜⎝

⎛
⋅+⋅⋅=

d
d

d
d T

u
aTaa

T

u
Ta κµ

µ
νµ 1lnlnln1ln 1111  

d
d T

u
aTaa ⋅⋅+⋅+⋅≈ κµ 111 lnln ,     

µ
νκ = ,                                                      (32) 

one can get the following approximation of the utility function 
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dttua
T

u
aTatyeI

d
d

t

tt

⎟⎟⎠

⎞
⎜⎜⎝

⎛
⋅+⋅⋅+⋅+= ∫

+∞
−− )(lnln)(ln 211

)(

0

0 κλ ,                              (33) 

which is used for obtaining approximate analytical solutions. 

3.2. Identification of Parameters of Utility Function 

 The elasticity coefficients of equations (28) - (33) are calibrated on the empirical 

data of the automotive production and its input, and the number of registered patent in 

Japan’s automotive industry over the period 1982-2000 as described in Appendix A.2. 

and A.3. 

 The discount factor λ  in the utility function (30) is identified at the level 105.0  

that similar to the obsolescence rate ρ  of technology )(tTd  (Watanabe, 2000 [31]). 

 Econometric simulations of equations (27), (28) provide the following elasticity 

coefficients: 

(i) elasticity for variety of innovative products, π , 

11.11

0

09.0 )(005.0)( ⎥
⎦

⎤
⎢
⎣

⎡
⋅= ∫

n

djjxtD  ,  651.02 =adjR ,     38.1=DW .                (34) 

                         (4.29)          (2.01)        (2.01) 

  Therefore, the coefficients h , π , ε  have the following values 

11.10
1 =−=

π
π

h ,     09.0
1

1 =
+

=
h

π ,    0989.1
1

1 =
−

=
π

ε .                     (35) 

 Elasticity 1β  of technology, T , and elasticity 2β  of change in the indigenous 

technology stock, dT , are identified on the basis of the regression equation with the 

dummy variable, nD ,  

)(ln599.0)(ln050.0003.0167.8)(ln tutTDtDtn nn ⋅+⋅+⋅+⋅−= ,   (36) 

                       (-3.31)                (4.66)            (4.66)                             (96.79) 

782.0. 2 =Radj ,    22.1=DW .   

 The dummy variable nD  indicates the period before the bubble economy in the 

Japanese manufacturing industry: 1=nD  in the period 1982-1986, 0=nD  in other 

years. 

 The statistical results in equation (34) - (36) demonstrate that all identified 

coefficients are statistically significant.  
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 Figure 4 illustrates the estimated trends (34), (35) in the consumption index D  

of Japan’s automotive industry over the period 1982-2000. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Trends in Consumption Index of Japan’s Automotive Industry (1982-2000). 

 

 Substituting the values of coefficients h , 1β , and 2β  to equation (29) one can 

obtain coefficients 51.01 =a  and 07.62 =a  of the utility function J (30). Figure 5 

depicts the values of the utility function for Japan’s automotive industry over the last 

two decades. 

 

 

 

 

 

 

 

 

 

Figure 5. Trends in Utility (1982-2000). 
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The utility increases significantly in the period of the 1990s after the bursting of 

the bubble economy. Figure 5 shows also an inflection point in 1991 and indicates the 

restructuring of the growth slope from the level of 42.14  trillion Yen per year to the 

level of 48.41  trillion Yen per year in the fixed prices of 1995. 

3.3. Model Dynamics 

 Let us define the dynamics of production by the following differential equation 

)(

)(

)(

)(

)(

)(
21 ty

tu
g

ty

tT
ff

ty

ty ⋅−⎟⎟⎠

⎞
⎜⎜⎝

⎛
⋅+=

γ

.       (37) 

 Here parameter 1f  represents the non-R&D contribution into the production 

growth, .01 ≥f  Parameter γ  is an elasticity of technology to production, 10 <≤ γ , and 

parameter 2f  is a scale coefficient, 02 ≥f . Parameter g  is the discounted marginal 

productivity of the domestic technology stock dT . It is assumed that the following 

inequality is valid  

0>−= qpg .        (38) 

 Here parameter p , 0>p , demonstrates the decrease in production due to the 

domestic R&D expenditures, and the marginal productivity of the domestic technology, 

q , 0>q , describes the growth trend. The negative sign in front of the net contribution 

of R&D investments, ))(/)(( tytug ⋅− , shows that, in the short run, spending into the 

domestic technology prevails on its rate of return.  

 Let us introduce the notation      

)(

)(

)(

)(
)(

ty

tT

ty

tu
tr d

d

∆
==         (39) 

for R&D intensity. Then dynamics of the domestic technology stock, dT , is described 

by the following differential equation  

)()()()( tutytrtT dd =⋅= .        (40) 

 Let us remind that the accumulative technology stock, T , in equation (37) can 

be expressed through the domestic technology stock, dT , and its rate, dTu ∆= , by 
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relation (16). So, the system of equations (37), (38) forms the closed-loop control 

system. Production )(ty  and the domestic technology stock dT  are the phase variables 

of this system. The rate dTu ∆=  of the domestic technology stock, or, equivalently, 

R&D indensity dr  is the control parameter. The technology spillover pool, sT , 

influences on dynamics (37), (38), and utility (30), exogenously through its rate ω  (8) 

presented in the model coefficients µ , ν  (15).      

 It is clear that R&D intensity dr  lies in the range between 0  and 100  percent 

1
)(

)(
)(0 ≤

∆
=≤

ty

tT
tr d

d .           

 Taking into account restrictions (31) it is necessary to separate R&D intensity dr  

strictly from zero. Let us assume that there exist lower, l
dr , and upper, u

dr , bounds such 

that the following relations take place 

1)(0 <≤≤< u
dd

l
d rtrr .        

 In order to provide the positive trend of the production growth let us assume that 

parameters in dynamics (37) satisfy the following restriction 

0)(1 >⋅− trgf d . 

 It means that R&D intensity dr  should satisfy the following inequality 

g

f
rd

1< , 

and, hence, the upper bound u
dr  should meet the following condition  

 
⎭
⎬
⎫

⎩
⎨
⎧

<
g

f
r u

d
1,1max .        

3.4. Optimal Control Problem 

 The optimal control problem of R&D investment is formulated as follows. It is 

necessary to find R&D intensity ( )dr t  such that maximizes the utility function 
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( )+⋅⋅+⋅⋅+⋅+= ∫
+∞

−− )()()(ln)(ln)1(( 12
)(

0

0 tytrtTatyaeJ dd

t

tt νµλ  

dttra d ))(ln2 ⋅+ ,         (41) 

provided the dynamics is described by differential equations 

)(
)(

)()()(

)(

)(
21 trg

ty

tytrtT
ff

ty

ty
d

dd ⋅−⎟⎟⎠

⎞
⎜⎜⎝

⎛ ⋅⋅+⋅
⋅+=

γνµ
,    (42) 

)()()( tytrtT dd ⋅= ,        (43) 

subject to constrains  

⎭
⎬
⎫

⎩
⎨
⎧

<≤≤<
g

f
rtrr u

dd
l

d
1,1max)(0 ,       (44) 

and initial conditions 

0
0 )( yty = ,    0

0 )( dd TtT = .        (45) 

3.5. Approximation of Utility Function  

 The main difference of the optimal control problem (41)-(45) from the classical 

problem (see Pontryagin et al., 1962 [19]) consists in the unboundedness of the time 

interval in the utility function (41). Let us consider an approximation of the utility 

function (41) restricting the time horizon to a large but a finite interval ],[ 0 ϑt , 

+∞<≤ ϑ0t . 

 The utility function (41) can be presented in the following form 

ϑ
ϑ JJJ t +=
0

.        (46) 

 Here the integral ϑ
0t

J is defined on the finite interval of time ],[ 0 ϑt  

( )+⋅⋅+⋅⋅+⋅+= ∫ −− )()()(ln)(ln)1(( 12
)(

0

0

0
tytrtTatyaeJ dd

t

tt
t νµ

ϑ
λϑ  

dttra d ))(ln2 ⋅+ ,        (47) 
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and the integral ϑJ  is the approximation error.  

 This error is esimated in the following statement. 

 Proposition 1. For any initial postion ),( 00
dTy  and for any realization of control 

)(trd  the value of the utility function J  is finite. For any initial postion ),( 00
dTy  and 

for any parameter 0>ε  there exists a moment of time, )(εϑϑ = , 0t≥ϑ , such that for 

any realization of control )(trd  the value J  can be approximated by the value ϑ
0t

J  with 

the given accuracy  

εϑϑ
ϑ <==− JJJJ t0

.        (48) 

 Proof of Proposition 1. Let us estimate the technology intensity 

)(/)()( tytTtww d== . To make this estimation let us prove the following statement. 

 Lemma 1. There exists an interval ],[ 0
0 KK , 0

00 KK ≤< , such that it is 

stronly invariant with respect to the control system (42), (43). It means that if a 

trajectory ))(),(( tTty d  of the system (42), (43) starts its motion in the interval  

],[ 0
0 KK , ],[)( 0

00 KKtw ∈ ,         (49) 

then it stays in it forever,  

],[)( 0
0 KKtw ∈ .         (50) 

 Proof of Lemma 1. To prove this, let us estimate the derivative of )(tw  by 

virtue of the system (42), (43) 

=⋅−=
′

⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

)(

)(
)(

)(

)(

)(

)(
)(

ty

ty
tw

ty

tT

ty

tT
tw dd  

))())()((()()( 21 trgtrtwfftwtr ddd ⋅−⋅+⋅⋅+⋅−= γνµ .     (51) 

 From (51) one can get  

γνµ ))(()()())(1()( 21
u

d
l

d rtwtwftwftwgrtw ⋅+⋅⋅⋅−⋅−⋅+⋅≥ .    
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 To estimate the derivative )(tw  (51) from below let us choose a number
0K , 

00 >K , such that it satisfies the resolvable inequality 

l
d

u
d r

Kg

rKKfKf <
⋅+

⋅+⋅⋅⋅+⋅<
0

00201

1

)(
0

γνµ .      (52) 

 Then at the point 0Kw =  the derivative )(tw  (51) is strictly positive for any 

control dr  (44) 

0)()1()( 002010 >⋅+⋅⋅⋅−⋅−⋅+⋅≥ γνµ u
d

l
d rKKfKfKgrtw .    (53) 

 On the other hand, from (51) one can obtain 

γνµ ))(()()())(1()( 21
l

d
u

d rtwtwftwftwgrtw ⋅+⋅⋅⋅−⋅−⋅+⋅≤ . 

 To estimate the derivative )(tw  (51) from above let us choose a number 0K , 

00
0 >≥ KK , such that it satisfies the resolvable inequality  

u
d

l
d r

Kg

rKKfKf

g

f >
⋅+

⋅+⋅⋅⋅+⋅>
0

00
2

0
11

1

)( γνµ .     (54)

  

 Then at the point 0Kw =  the derivative )(tw  (51) is strictly negative for any 

control dr  (44) 

0)()1()( 00
2

0
1

0 <⋅+⋅⋅⋅−⋅−⋅+⋅≤ γνµ l
d

u
d rKKfKfKgrtw .   (55) 

 Inequalities (53), (55) mean that the interval ],[ 0
0 KK , 0

00 KK ≤< , is strongly 

invariant with respect to control system (42), (43).  

 The proof of Lemma 1 is complete. 

 Using relation (55) let us estimate the production rate (41) from above 

( ) MrgrKff
ty

ty l
d

u
d =⋅−⋅+⋅⋅+≤ γνµ 0

21)(

)(
.     (56) 

 Thus, 

)(0 0)( ttMeyty −⋅⋅≤ . 
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 Then the integrand in the utility function (47) can be estimated as follows  

( ) =⋅+⋅⋅+⋅⋅+⋅+ )(ln)()()(ln)(ln)1( 212 tratytrtTatya ddd νµ  

≤⋅+⎟⎟⎠

⎞
⎜⎜⎝

⎛
⋅+⋅⋅+⋅++= )(ln)(

)(

)(
ln)(ln)1( 2121 tratr

ty

tT
atyaa dd

d νµ  

( ) u
d

u
d rarKattMyaa lnln))((ln)1( 2

0
10

0
21 ⋅+⋅+⋅⋅+−⋅+⋅++≤ νµ .  (57) 

 Substituting this inequality to the integral J  one can obtain the following 

estimate 

2
0)( )(

)(
0

0

λλ
λ BtBA

dttBAeJ
t

tt +
⋅+

=⋅+≤ ∫
+∞

−− .     (58) 

  

 Here 

( ) u
d

u
d rarKatMyaaA lnln)(ln)1( 2

0
10

0
21 ⋅+⋅+⋅⋅+⋅−⋅++= νµ , 

MaaB ⋅++= )1( 21 . 

 The estimate (58) shows that for any initial position ),( 00
dTy  and for any 

realization of control )(trd  the value of the utility function J  is finite. 

 The analogous substitution of inequality (57) into the integral ϑJ  provides the 

following estimate 

=⋅+≤ ∫
+∞

−− dttBAeJ tt )()( 0

ϑ

λ
ϑ  

λϑ
λλλ

ϑ
λλλ

−⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
⋅⋅+⋅+⋅= e

BeBeAe ttt 000

2
.      (59) 

 Given a positive accuracy parameter 0>ε  one can choose a moment of time 

)(εϑϑ =  in equation (59) in a such way that  the necessary estimate (48) is valid.  

 The proof of Proposition 1 is complete. 
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 Proposition 2. For any initial position ),( 00
dTy  the upper bound of the utility 

function J  over control realizations )(trd  is finite. Hence, there exists the finite value 

of the optimal control problem (41)-(45) 

( )+⋅⋅+⋅⋅+⋅+= ∫
+∞

−− )()()(ln)(ln)1((sup),( 12
)(00

0

0 tytrtTatyaeTyV dd

t

tt

r
d

d

νµλ  

+∞<⋅+ dttra d ))(ln2 .        (60) 

 The value ),( 00
dTyV  can be approximated by the values ),( 00

0 dt TyV ϑ  of optimal 

control problems with finite horizon 

( )+⋅⋅+⋅⋅+⋅+= ∫ −− )()()(ln)(ln)1((max),( 12
)(00

0

0

0
tytrtTatyaeTyV dd

t

tt

r
dt

d

νµ
ϑ

λϑ  

dttra d ))(ln2 ⋅+ .        (61) 

 More precisely, for a given accuracy 0>ε  there exists a moment of time 

)(εϑϑ = , 0t≥ϑ , such that the following estimate takes place  

εϑϑ ≤−=− ),(),(),(),( 00000000
00 dtddtd TyVTyVTyVTyV .    (62) 

 Proof. The estimate (60) follows immediately from the inequality (58). To prove 

estimate (62) let us consider inequality  

εϑ +< ))(())((
0

trJtrJ dtd , 

which follows from relation (59) and is valid for any realization of control parameter 

)(trd . From this inequality and  definition of the value (61) it follows  

εϑ +<
0

))(( td VtrJ . 

 Passing to the upper bound in the last relation over control parameter )(trd  one 

can get the necessary estimate (62). 

 The proof of Proposition 2 is complete. 
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 Remark 1. One can prove the results analogous to the results of Proposition 1 

and Proposition 2 for the optimal control problem with dynamics (42)-(45) and utility 

function (33). 

3.6. Hamiltonian System 

 The Hamiltonian function for the optimal control problem (41)-(45) has the 

following form  

( ) +⋅+⋅⋅+⋅⋅+⋅+⋅= −− )lnlnln)1((),,,,,( 212
)(

21
0

ddd
tt

dd rayrTayaerTytH νµψψ λ  

( )( ) yryrgyyrTfyf dddd ⋅⋅+⋅⋅−⋅⋅⋅+⋅⋅+⋅⋅+ −
2

)1(
211 ψνµψ γγ

.    (63) 

 One can express the Hamiltonian through the control parameter of the 

technology change  

( ) +⋅+⋅+⋅⋅+⋅= −− )lnln(ln),,,,,( 21
)(

21
0 uauTayeuTytH d

tt
d νµψψ λ  

( )( ) uugyuTfyf d ⋅+⋅−⋅⋅+⋅⋅+⋅⋅+ −
2

)1(
211 ψνµψ γγ

.     (64) 

 Here )(11 tψψ = , )(22 tψψ =  are the adjoint variables which have the sense of 

"shadow prices"  of production )(tyy = , and indigenous technology stock )(tTT dd = , 

respectively.  

 According to the maximum principle of Pontryagin [19] one can introduce the 

Hamiltonian dynamics for the adjoint variables 

=
∂
∂−= ))(),(),(),(),(,()( 211 tttrtTtyt

y

H
t dd ψψψ  
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νµνγψ
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tytrtT
trfft dd

d  

)()()(
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)1( 22 trttrg

ty

tytrtT
f dd
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⎟
⎠

⎞
⋅−⎟⎟⎠

⎞
⎜⎜⎝
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⋅−⋅+ ψνµγ

γ

 ,  (65) 
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=
∂
∂−= ))(),(),(),(),(,()( 212 tttrtTtyt
T

H
t dd

d

ψψψ  

−
⋅⋅+⋅

⋅
⋅−= −−

))()()((
1)( 0

tytrtT

a
e

dd

tt

νµ
µλ  

)1(

21 )(

)()()(
)(

−

⎟⎟⎠

⎞
⎜⎜⎝

⎛ ⋅⋅+⋅
⋅⋅⋅⋅−

γνµµγψ
ty

tytrtT
ft dd .     (66) 

In the optimal control problem with finite time horizon ],[ 0 ϑt , +∞<≤ ϑ0t , the 

following transversality conditions take place 

0)( =ϑψ i ,  2,1=i .       (67) 

Lemma 2. The solutions )(1 tψ , )(2 tψ  of the system (65)-(66) with boundary 

conditions (67) and variables )(ty , )(tTd , )(trd  subject to dynamics (43)-(45) satisfy 

inequalities 

0)( >tiψ ,  ),[ 0 ϑtt ∈ ,  2,1=i .    (68) 

Proof. The boundary conditions (67) nullify adjoint variables )(ϑψ i , 2,1=i , at 

the right-hand side of the interval ],[ 0 ϑt . The right parts of differential equations 

indicate that velocities )(tiψ , 2,1=i ,  of adjoint variables in the forward time are 

negative, and, hence in the inverse time they are positive. It means that starting at sero 

at time ϑ  with positive velocities in the inverse time the adjoint variables )(tiψ , 

2,1=i , become posive and remain positive on the time interval ],[ 0 ϑt . 

The proof of Lemma 2 is complete. 

Remark 2. The positiveness (68) of the adjoint variables )(tiψ , 2,1=i , agree 

well with their economic sense of "shadow prices", which, of course, should be positive. 

3.7. Concavity Properties of the Hamiltonian 

In this section the concavity properties of the Hamiltonian H  (64) are analyzed. 
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Proposition 3. The Hamiltonian ),,,,,( 21 ψψuTytH d  (64) is strictly concave 

with respect to variables y , dT , u . 

Proof. To prove this result let us use the Sylvester's criterion. The first 

derivatives of the Hamiltonian ),,,,,( 21 ψψuTytH d  (64) can be calculated as follows 

 

( ) γγλ νµγψψ −−− ⋅⋅+⋅⋅−⋅⋅+⋅+⋅=
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e
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)( 0 ,   (69) 
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⋅+⋅
⋅

⋅=
∂
∂

yuTf
uT

a
e

T

H
d

d

tt

d

,  (70) 

+⎟⎟⎠

⎞
⎜⎜⎝

⎛
+

⋅+⋅
⋅

⋅=
∂
∂ −−

u

a

uT

a
e

u

H

d

tt 21)(

)(
0

νµ
νλ  

( ) 21
)1()1(

21 ψψνµνγψ γγ +⋅−⋅⋅+⋅⋅⋅⋅⋅+ −− gyuTf d .     (71) 

The second derivatives of the Hamiltonian ),,,,,( 21 ψψuTytH d  (64) are defined 

by relations 

( ) )1(
212

)(
2

2

)1(
1

0 +−−− ⋅⋅+⋅⋅⋅−⋅⋅−⋅−=
∂
∂ γγλ νµγγψ yuTf

y
e

y

H
d

tt ,   (72) 

( ) γγνµµγγψ −− ⋅⋅+⋅⋅⋅⋅−⋅⋅=
∂∂

∂=
∂∂

∂
yuTf

yT

H

Ty

H
d

dd

)1(
21

22

)1( ,   (73) 

( ) γγνµνγγψ −− ⋅⋅+⋅⋅⋅⋅−⋅⋅=
∂∂

∂=
∂∂

∂
yuTf

yu

H

uy

H
d

)1(
21
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)1( ,   (74) 
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⋅+⋅
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)(
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uT
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d
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d νµ
µλ  

( ) )1()2(2
21 )1( γγνµµγγψ −− ⋅⋅+⋅⋅⋅⋅−⋅⋅− yuTf d ,     (75) 

−
⋅+⋅

⋅⋅
⋅−=

∂∂
∂=

∂∂
∂ −−

2
1)(

22

)(
0

uT
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e
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H

uT

H

d

tt

dd νµ
νµλ  
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( ) )1()2(
21 )1( γγνµνµγγψ −− ⋅⋅+⋅⋅⋅⋅⋅−⋅⋅− yuTf d ,     (76)

  

−⎟⎟⎠

⎞
⎜⎜⎝

⎛
+

⋅+⋅
⋅

⋅−=
∂
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2
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)(
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uT
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( ) )1()2(2
21 )1( γγνµνγγψ −− ⋅⋅+⋅⋅⋅⋅−⋅⋅− yuTf d .     (77) 

Let us prove that the matrix of second derivatives (72)-(77) is negative definite. 

To this end according to the Sylvester's criterion it is necessary to check that the 

principal minors alternate signs starting from the sign minus  

( ) 0)1(
1 )1(

212
)(
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222
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0

uTuy
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yuT
faae dtt
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λ νµγγψµ . (80) 

Proposition 3 is proved. 

Let us consider the maximized Hamiltonian 

1 2 1 2
ˆ ( , , , , ) max ( , , , , )d d

u
H t y T H t y T uψ ψ ψ ψ= ,   ],[ yryru u

d
l

d ⋅⋅∈ .  (81) 

The maximized Hamiltonian Ĥ  (81) conserves the concavity properties of the 

Hamiltonian H (64). More precisely, the following proposition is valid. 
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Proposition 4. The Hamiltonian 1 2
ˆ ( , , , , )dH t y T ψ ψ  (81) is a continuously 

differentiable and strictly concave function with respect to variables y , dT . 

Proof of Proposition 4. Let us indicate the scheme of the proof. The maximum 

value in the Hamiltonian Ĥ  (81) in variable u , ],[ yryru u
d

l
d ⋅⋅∈ , can be realized either 

at boundary points yr l
d ⋅ , yr u

d ⋅  of the interval ],[ yryr u
d

l
d ⋅⋅ , or at an internal point 

),(),(00 yryrTyuu u
d

l
dd ⋅⋅∈= . One can prove that all three branches  

),,,,,(),,,,( 2121 ψψψψ yrTytHTytH ddr ⋅= , l
drr = ,  u

drr = ,  (82) 

and 

),),,(,,,(),,,,( 21
0

21 ψψψψ dddu TyuTytHTytH = ,     (83) 

are continously differentiable and strictly concave in variables y , dT . Moreover, these 

Hamiltonians rH , uH  are smoothly pasted together into the maximized Hamiltonian 

Ĥ  (81) which is, consequently, continuously differentiable and strictly concave in 

variables y , dT .. 

Lemma 3. The Hamiltonian ),,,,( 21 ψψdr TytH  (82) is a continuously 

differentiable and strictly concave function in variables y , dT . 

Proof of Lemma 3. Let us prove this result in the general form. Let us denote 

vector ),( dTy  by the symbol x  and emphasize that the Hamiltonian H  depends on this 

phase vector x  and control parameter u, ),( uxHH = . In the general case one can 

assume that vector x  is n -dimensional and control parameter is m -dimensional. 

According to Lemma 2 the Hamiltonian ),( uxHH =  is strictly concave. By definition 

it means that the following inequality takes place 

),(),(),( 22112211222111 uuxxHuxHuxH ⋅+⋅⋅+⋅<⋅+⋅ λλλλλλ ,   (84) 

for all  ),(),( 2211 uxux ≠ , 10 << iλ ,  2,1=i , 121 =+ λλ . 

Assume that control parameter u  is lineraly expressed through phase vector x  

bxAxuu +⋅== )( ,         (85) 
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and define the composition of the Hamiltonian ),( uxHH =  and linear function 

)(xuu =  (85) 

),())(,()( bxAxHxuxHxHH rr +⋅=== .      (86) 

It is necessary to prove that the Hamiltonian )(xHH rr =  is strictly concave in 

x . Really, using relations (84)-(86) one can get the following chain of inequalities 

<+⋅⋅++⋅⋅=⋅+⋅ ),(),()()( 2221112211 bxAxHbxAxHxHxH rr λλλλ  

=+⋅⋅++⋅⋅⋅+⋅< ))()(,( 22112211 bxAbxAxxH λλλλ  

)())(,( 221122112211 xxHbxxAxxH r ⋅+⋅=+⋅+⋅⋅⋅+⋅= λλλλλλ ,  (87) 

for all   21 xx ≠ , 10 << iλ ,  2,1=i , 121 =+ λλ . 

Relation (87) means by definition the property of  strict concavity of the 

Hamiltonian )(xHH rr =  (86) and proves Lemma 3. 

Remark 3. One can express first and second derivatives of the Hamiltonian 

)(xHH rr =  (86)  by formulas 
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H

1
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2

2

, (89) 

A
x

u =
∂
∂

, 0
2

2

=
∂
∂

x

ui , mi ,...,1= .      (90) 

In formula (89) the first four terms form a negative definite matrix and the fifth 

term equals to zero. Hence, the matrix of second derivatives 
2

2

x

H r

∂
∂

 is negative definite 

and this implies the property of strict concavity of the Hamiltonian )(xHH rr =  (86).   

In the general case, when function )(xuu =  is not linear, the fifth term  

∑
= ∂

∂
⋅

∂
∂m

i

i

i x

u

u

H

1
2

2
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may generate the matrix which is not negative definite. One can indicate a case when 

this matrix is negative definite: the Hamiltonian ),( uxHH =  is a monotonically  

increasing function in iu , and, hence, first derivative is positive, 0>
∂
∂

iu

H
; functions 

)(xuu ii =  are strictly concave, and, hence, matrix 
2

2

x

ui

∂
∂

 is negative definite, mi ,...,1= . 

Lemma 4. The Hamiltonian ),,,,( 21 ψψdu TytH  (83) is a continuously 

differentiable and strictly concave function in variables y , dT . 

Proof of Lemma 4. The maximum point ),()( 000
dTyuxuu ==  in definition of 

the Hamiltonian ),()( duuu TyHxHH ==  (83) should satisfy the necessary and 

sufficient conditions of maximum of the strictly concave Hamiltonian ),( uxHH =  

with respect to variable u  

0))(,( 0 =
∂
∂

xux
u

H
.         (91) 

Basing on relation (91) one can calculate first derivatives of the function 

)(00 xuu =   

T

xu

H

u

H

x

u
⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂∂

∂⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂
∂−=

∂
∂

− 21

2

20

.        (92) 

First and second derivatives of the Hamiltonian ),()( duuu TyHxHH ==  (83) 

are expressed by the following relations 

x

H

x

u
xux

u

H
xux

x

H

x

H u

∂
∂=

∂
∂⋅

∂
∂+

∂
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∂
∂ 0

00 ))(,())(,( ,     (93) 
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x

H

x
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ux
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x

H
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⎞
⎜⎜⎝

⎛
∂∂

∂⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂
∂⋅
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∂=
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∂
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2

2

2

2

.   (94) 

It is necessary to prove that the matrix of second derivatives 
2

2

x

H u

∂
∂

 (94) is 

negative definite, and, hence the Hamiltonian )(xHH uu =  is strictly concave in x . 

Really, this fact follows from the property of strict concavity of the Hamiltonian 
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),( uxHH = . The matrix of second derivatives of the Hamiltonian ),( uxHH =  is 

negative definite and can be presented in the block form 

⎟⎟⎠
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⎟
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2
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u
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xu

H
ux

H

x

H

ux

H
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The inverse matrix is also negative definite and can be presented in the block 

form 

⎟⎟⎠

⎞
⎜⎜⎝

⎛
⋅⋅−

⋅⋅−
=⎟⎟⎠

⎞
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⎛
−

−−

221
1121

22

22
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1
11

111

2221

1211

AAAA

AAAA
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AA
, 

1
21

1
221211

11 )( −− ⋅⋅−= AAAAA ,  1
12

1
112122

22 )( −− ⋅⋅−= AAAAA . 

It means in particular, that matrices 11A , 22A  are negative definite. Hence, 

matrix ( )
2

221

2

22

2

2
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x
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xu

H
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H

ux

H
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H
A u

T
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⎛
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∂
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−
−

  

is also negative definite and, consequently, the Hamiltonian )(xHH uu = . 

Lemma 4 is proved. 

Lemma 5. The Hamiltonians ),,,,( 21 ψψdr TytH  (82), and ),,,,( 21 ψψdu TytH  

(83) are smoothly pasted in generating the maximized Hamiltonian 1 2
ˆ ( , , , , )dH t y T ψ ψ  

(81). 

Proof of Lemma 5. To prove this result it is necessary to calculate partial 

derivatives of the Hamiltonians ),,,,( 21 ψψdr TytH , ),,,,( 21 ψψdu TytH  in variables 

),( dTy , and verify that these drivatives coincide with each other at points of sewing of 

these functions. Points of sewing ),( s
d

ss Tyx =  are defined by relations 

),),,(,,,()()(),,,,,( 21
0

21 ψψψψ s
d

ss
d

ss
u

s
r

ss
d

s TyuTytHxHxHyrTytH ===⋅ . (96) 

Due to strict concavity of the Hamiltomian ),,,,,( 21 ψψuTytH d  in variables 

),,( uTy d  and uniqueness of the maximum point ),(0 s
d

s Tyu  the last relation holds if 

and only if the following equality is valid 
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),(0 s
d

ss Tyuyr =⋅ .         (97) 

The last relation implies the following equation  

0),),,(,,,(),,,,,( 21
0

21 =
∂
∂=⋅

∂
∂ ψψψψ s

d
ss

d
sss

d
s TyuTyt

u

H
yrTyt

u

H
, 

which, in turn, provides equality of partial derivatives 

))(,()()( 0 sssusr xux
x

H
x

x

H
x

x

H

∂
∂=

∂
∂

=
∂

∂
.      (98) 

Lemma 5 is proved. 

Summarizing the results of Lemmas 3-5 one can get the statement of Proposition 

4 that the maximized Hamiltonian 1 2
ˆ ( , , , , )dH t y T ψ ψ  (81) is a continuously differentiable 

and strictly concave function with respect to variables y , dT . 

Proposition 4 is proved. 

 Remark 4. The results of Proposition 3 and Proposition 4 are valid for the 

optimal control problem with dynamics (42)-(45) and utility function (33) if parameter 

κ  is small enough. 

3.8. Necessary Conditions of Optimality 

One can formulate the Pontryagin maximum principle [19] which provide 

necessary conditions of optimality for trajectories of the optimal control problem with 

dynamics (42)-(45) and objective function (47). 

Theorem 1. Let ))(),(),(( *** trtTty dd  be an optimal control process in problem 

with dynamics (42)-(45) and objective function (47) or (33). Then there exists a pair 

))(),(()( 21 ttt ψψψ =  of adjoint variables such that )(tψ  is a solution of the adjont system 

(65)-(66), taken along the optimal control process ))(),(),(( *** trtTty dd ; 

the maximum conditions hold 

. .
* * * * *

1 2 1 2
ˆ( , ( ), ( ), ( ), ( ), ( )) ( , ( ), ( ), ( ), ( ))

a e

d d dH t y t T t r t t t H t y t T t t tψ ψ ψ ψ= ;   (99) 

the transversality condition (67) takes place; 
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and, moreover, both functions )(1 tψ , )(2 tψ  are strictly positive (68). 

3.9. Sufficient Conditions of Optimality 

 Let us prove the sufficient result for optimality conditions of the Pontryagin 

maximum principle in the considered optimal control problem. 

Theorem 2. Under the conditions of Proposition 4 providing the properties of 

strcict concavity of the maximized Hamiltonian 1 2
ˆ ( , , , , )dH t y T ψ ψ  (81) in variables y , 

dT ,   the Pontryagin maximum principle gives sufficient conditions to find the unique 

optimal solution in the optimal control problem with dynamics (42)-(45) and objective 

function (47) or (33). 

Proof. Let ))(),(),((),,( trtTtyrTy dddd =  be an arbitrary admissible control 

process. Denote by symbol x  the pair ),( dTy , and by symbol *x  the pair ),( **
dTy . Due 

to the strict concavity of the maximized Hamiltonian 1 2
ˆ ( , , , , )dH t y T ψ ψ  (81) in variables 

),( dTyx =  the following inequality holds  

* * *
ˆ

ˆ ˆ( , ( ), ( )), ( ) ( ) ( , ( ), ( )) ( , ( ), ( ))
H

t x t t x t x t H t x t t H t x t t
x

ψ ψ ψ∂ − < −
∂

,   (100) 

if )()( * txtx ≠ . 

Combining this inequality with adjoint equations (65)-(66) and definition of the  

Hamiltonians H  (63), Ĥ  (81), one can obtain that for ],[ 0 ϑtt∈  the following chain of 

relations takes place 

* * * *
ˆ

ˆ ˆ( ), ( ) ( ) ( ( ), ( )), ( ) ( ) ( , ( ), ( )) ( , ( ), ( ))
H

t x t x t x t t x t x t H t x t t H t x t t
x

ψ ψ ψ ψ∂− = − < − ≤
∂

 

)))(),((ln))(),(((ln)()(),( **)(* 0 trtxDtrtxDetxtxt dd
tt −⋅+−≤ −−λψ .   (101) 

Here the symbol ))(),((ln trtxD d  denotes the integrand of the objective function 

(47) 

== ))(),(),((ln))(),((ln trtTtyDtrtxD ddd  
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( ) )(ln)()()(ln)(ln)1( 212 tratytrtTatya ddd ⋅+⋅⋅+⋅⋅+⋅+= νµ .   (102) 

Hence, 

))(),((ln))(),((ln)()(),( **)()(* 00 trtxDetrtxDetxtxt
dt

d
d

tt
d

tt ⋅<⋅+− −−−− λλψ .  (103) 

Integrating this inequality over ],[ 0 ϑtt∈ , one can get the following relation 

<⋅⋅+−+− ∫ −− dttrtxDetxtxtxx d

t

tt ))(),((ln)()(),()()(),(
0

0 )(
0

*
00

*
ϑ

λψϑϑϑψ  

dttrtxDe d

t

tt ⋅⋅< ∫ −− ))(),((ln **)(

0

0

ϑ
λ

.       (104) 

Taking into account the initial conditions (45) and the transversality conditions 

(67), one can obtain from relation (104) the necessary inequality 

dttrtxDedttrtxDe d

t

tt
d

t

tt ⋅⋅<⋅⋅ ∫∫ −−−− ))(),((ln))(),((ln **)()(

0

0

0

0

ϑ
λ

ϑ
λ

.    (105) 

Thus, the process ))(),(),(())(),(( ***** trtTtytrtx ddd =  is the unique optimal solution 

in the optimal control problem with dynamics (42)-(45) and objective function (47). 

Theorem 2 is proved. 

Remark 4. The sufficient result of optimality postulated in Theorem 2 can be 

extended from the optimal control problem with objective function (47) given on the 

finite interval ],[ 0 ϑt  to the optimal control problem with objective function (41) given 

on the infinite horizon ],[ 0 +∞t . The transversality conditions (67) due to relation (104) 

are transferred into the following transversality conditions 

0)(),(lim =
+∞→

ϑϑψ
ϑ

x .         (106) 
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4. Basic Solution of Optimal Control Problem  

4.1. Optimal R&D Investment Level 

 In this section we construct a basic analytic solution for the optimal control 

problem under some simplifications of dynamics (42)-(45) and objective function (33). 

 Assuming that elasticity γ  in dynamics equations (42)-(43) is equal to zero, 

0=γ , and introducing notation 21 fff += , dTT = , one can get the following dynamics 

for the system trajectories 

)(

)(

)(

)(

ty

tu
gf

ty

ty ⋅−= ,                                     (107) 

)()( tutT = ,                                          (108) 

)()()( tyrtutyr u
d

l
d ⋅≤≤⋅ ,        (109) 

0
0)( yty = , 0

0 )( TtT = .       (110) 

 

  Let us consider the problem of maximization of the approximate utility function  

(see (33))   

dttua
T

u
aTatyeI

t

tt ⎟
⎠
⎞⎜

⎝
⎛ ⋅+⋅⋅+⋅+= ∫

+∞
−− )(lnln)(ln 211

)(

0

0 κλ     (111) 

on trajectories of dynamical process (107)-(110). 

 The value function of the optimal control problem (107)-(109) is defined by the 

following relation 

dttua
tT

tu
atTatyeTyV

t

tt

tu
∫

+∞
−−

⎟⎟⎠

⎞
⎜⎜⎝

⎛
⋅+⋅⋅+⋅+⋅=

0

0 )(ln
)(

)(
)(ln)(lnsup),( 211

)(

)(

00 κλ , (112) 

where the process ( ))(),(),( tutTty  is subject to dynamics (107)-(109) with initial 

conditions (110). 

 The Hamiltonian of the optimal control problem (107)-(109) is presented by the 

following expression   
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+⎟
⎠
⎞⎜

⎝
⎛ ⋅+⋅⋅+⋅+⋅= −− ua

T

u
aTayeuTytH tt lnlnln),,,,,( 211

)(
21

0 κψψ λ
 

uugyf ⋅+⋅−⋅⋅+ 21 )( ψψ ,        (113) 

where )(tii ψψ = , 2,1=i , are adjoint variables. 

 Implementing the standard change of adjoint variables 

 )()( )( 0 tet i
tts

i ψψ λ ⋅= − , 2,1=i       (114) 

one can introduce the stationary Hamiltonian 

uugyfua
T

u
aTayuTyH sssss ⋅+⋅−⋅⋅+⋅+⋅⋅+⋅+= 2121121 )(lnlnln),,,,( ψψκψψ     (115) 

which is connected with the Hamiltonian ),,,,,( 21 ψψuTytH  by the following relation 

),,,,(),,,,,( 21
)(

21
0 ssstt uTyHeuTytH ψψψψ λ ⋅= −− .     (116) 

 In what follows let us assume that the optimal control )(00 tuu =  of the problem 

(107)-(111) is realized at internal points of  boundary condition (109)  

)()()( 0 tyrtutyr u
d

l
d ⋅<<⋅ .        (117)

  It means that the optimal control )(00 tuu =  should 

satisfy the following optimality condition 
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and, hence, the value of optimal control can be expressed by the following formula 
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 The maximized Hamiltonian 1 2
ˆ ˆ ( , , , )s s s sH H y T ψ ψ=  of the optimal control 

problem (107)-(111) is defined by the following relation 

1 2 1 2
ˆ ( , , , ) max ( , , , , )s s s s s

u
H y T H y T uψ ψ ψ ψ= = 
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 The adjoint variables )(ts
i

s
i ψψ = , 2,1=i ,  act in equations (115), (119)-(120) as 

“shadow” prices of production )(tyy = and technology )(tTT = , respectively. At 

points of differentiability of the value function ),( 00 TyVV =  (112) adjoint variables 

measure the marginal utility  
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y
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∂
∂=ψ ,                                                              (121) 
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∂
∂=ψ .                                                          (122) 

 The value function ),( 00 TyV  (112) of the optimal control problem (107)-(111) 

at points of differentiability should satisfy the Hamilton-Jacobi equation 
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 Taking into account relation (120) for the maximized Hamiltonian ˆ sH  one can 

obtain the following form of the Hamilton-Jacobi equation (123) 
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 Relations (114) imply the following dynamic for adjoint variables s
1ψ , s

2ψ  
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Introducing the "shadow" costs yZ s ⋅= 11 ψ ,  TZ s ⋅= 22 ψ  for production y and 

technology T , respectively, the following equations for their dynamics can be derived 
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Let us introduce the "shadow" total cost of the process (107)-(111) 

)()()()()()()( 2121 tTttyttZtZtZZ ss ⋅+⋅=+== ψψ .                                              (129)  

Summarizing equations (127) and (128)  one can obtain the equation for dynamics of the 

total "shadow" cost )(tZ  
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Substituting control )(tuu =  in dynamics (130) by the optimal control  

)(00 tuu =  and taking into account the maximum condition (118) one can get the 

optimal dynamics for the )(tZ  

)1()()( 21 aatZtZ ++−⋅= λ .        (131) 

All solutions of this differential equation are growing exponentially 

λ
λ )1(

)( 21 aa
eCtZZ t ++

+⋅== ,       (132) 

except the constant solution 



 40

021 )1(
)( Z

aa
tZ =

++
=

λ
,        (133) 

which meets the transversality condition (106) of the Pontryagin's maximum principle 
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 The last relation is equivalent to the transversality condition in the following 

form 

0)(lim =⋅−
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Hence, the "shadow" costs )(1 tZ , )(2 tZ  satisfy the following condition of the 

constant cost 
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Resolving the maximum condition (118) with respect to the R&D intensity 

)(/)()( 00 tytutr =  one can be obtain the following relation 
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where )(/)()( tTtytXX ==  is technology productivity. 

The technology productivity )(tXX =  is subject to the following differential 

equation  
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 Substituting optimal level of R&D intensity )(0 tr  (137) into dynamics of costs 

)(tZZ ii =  (127)-(128), 2,1=i , and into dynamics of technology productivity )(tXX =   

(138), one can get the Hamiltonian system of differential equations 
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Let us denote by symbols 0
1Z , 0

2Z , 0X  the equilibrium point of the Hamiltonian 

system (139)-(141) 
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After simplification of  these equations the following relations can be derived 
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Introducing notations  

gXs += 0 ,  
f

a
a 2= ,  κ⋅+= 1

0 aZb ,    (148) 

and excluding 0
1Z  one can obtained the following relation 
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Resolving this relation with respect to s  one can get the quadratic equation  
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The unique positive root of this equation is presented by formula 
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and, hence, parameter 0X  is defined by relation 
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Parameter 0
1Z  is expressed through s  and is determined by formula 
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The Jacobi matrix of the Hamiltonian system (139)-(140) at the equilibrium 

point ),( 00
1 XZ  is calculated as follows 
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The trace of the Jacobi matrix is defined by the following relation 
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The determinant of the Jacobi matrix is determined by formula 
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Since the following equations take place 
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then, the determinant  DE  can be presented by formula 
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and is obviously negative. 

Let us introduce notations 
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0|| >⋅= QPDE .         (163) 

The characteristic equation for the Jacobian matrix is presented by formula 
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or, equivalently, 
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02 =−⋅− DEYY λ .                                                      (165) 

The roots of this equation (the eigenvalues of the Jacobi matrix) have different 

signs. One of them 
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is negative. And another one 
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is positive. 

Hence, the equilibrium point ),( 00
1 XZ  is the saddle point. 

The eigenvector ),( 21 VVV =  corresponding to the negative eigenvalue 1Y  of the 

Jacobi matrix is determined by relation 
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which can be rewritten as follows 
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Let us note that the following inequality takes place 
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and, hence,  
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The tangent slope 0Φ  of the optimal trajectory ))(),(( 1 tXtZ  at the equilibrium 

point ),( 00
1 XZ  coincides with the slope of the eigenvector V  
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W
=Φ .                     (174) 

 The optimal dynamics of the "shadow" costs  1Z , 2Z  can be approximated by 

the following linear relations  

)()( 000
111 XXZXZZ −⋅Φ+== ,       (175) 
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The optimal R&D intensity can be approximated by the following relation 

constructed on the feedback principle as a function of technology productivity X  
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Linearization of this formula in X  at the equilibrium point 0X  leads to the 

following relation for a suboptimal feedback of R&D intensity 
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Let us take into account the obsolescence effect for the indigenous technology 

dT . This effect is described by the following relation  (see Watanabe, 1992 [30]) 
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or, equivalently,  
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Here )( mtuu ii −=  is the actual level of R&D investment at the initial stage in 

the investment process with the time lag m ; *σ  is the obsolescence coefficient, 

10 * <≤ σ . 
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The actual level of R&D intensity Yur ii /=  is expressed through intensity 

Yur /=  by the following relation 
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 Linearization of this formula provides a linear approximation for the actual level 

of R&D intensity 
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At the equilibrium point 0XX =  the level of R&D intensity r  is equal to  
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and the actual level of R&D intensity ir  is altered to   
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In the transition period, when technology productivity )(tX  converges to 

equilibrium 0X  while time t  tends to infinity, intensity r  and intensity ir  optimally 

evolve from the current level (177), and (181), to the equilibrium level (183), and (184), 

respectively. 

Let us analyze the obtained optimal feedbacks for small values of parameter 1a . 

When values of parameter 1a  are close to zero then the "shadow" costs )(1 tZ , )(2 tZ  can 

be approximately given by formulas  

0
1 ZZ = ,   02 =Z ,                                                   (185) 

which correspond to the case  

00
1 ZZ = ,  00 =Φ .                                                  (186) 

In this case the optimal R&D intensity r  is given by the following relation  
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and the actual level of R&D intensity ir  is determined according to the formula    
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 Let us examine trends of R&D intensity r  and ir  depending on macroeconomic 

parameters λ , 1a , 2a , g , *σ , κ , and the feedback variable - technology productivity 

X . 

1. From dependence (133) of the cost 0Z  on the discount rate λ  and relations  (187)-

(188) one can easily see that the larger is the discount rate λ  the higher should be 

R&D intensity r  and ir  . 

2. Analysis of derivatives of optimal feedbacks (187)-(188) and cost 0Z  (133) shows 

that higher levels of elasticity parameter 2a  for evaluation of technology stock )(tT  

and R&D investments )(tTd∆  stimulate higher levels of  R&D intensity r  and ir . 

3. The higher level of the discounted marginal productivity g  of the domestic 

technology stock dT  leads to the lesser figures of R&D intensity r  and ir . 

4. It is obvious also that the higher level of the obsolescence coefficient *σ  implies the 

higher values for R&D intensity r  and ir .   

5. The higher is the coefficient κ  (32) characterizing the absorption capacity z  (7), the 

higher are level of R&D intensity r  and ir . Let us remind that the coefficient κ  is 

determined by the formula 
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 Here 0ξ  is the mean value of the rate ξ  of the domestic technology dT , and ω  

is the current rate of the technology spillover pool sT .    

The derivative of the absorption capacity coefficient κ  with respect to the 

rate ω  of the technology spillover pool is estimated as follows 
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  It is clear that 0<′ωκ  if the rate 0ξ  of the domestic technology stock dT  is not 

very high in comparison with the rate ω  the rate of the technology spillover pool 

sT , 2/0 ωξ < . In this case the growing trend for the rate ω  provides the declining 

trend for the absorption capacity coefficient κ , and, consequently, implies the 

declining trend for R&D intensity r  and ir . In the opposite case when the rate 0ξ  of 

the domestic technology stock dT  is rather high 2/0 ωξ > , one can observe the 

inverse relation: the growth of the rate ω  leads to the growth of the coefficient κ , 

and, hence, stimulates the growth of R&D intensity r  and ir .  

6. Analysis of feedbacks for R&D intensities r  and ir  with respect to the technology 

productivity  X  demonstrates that R&D intensity r  (187)  grows with the growth of 

the technology productivity X . As to behavior of R&D intensity ir  (188), it 

depends on trends of both terms in the right hand side of formula (188): the first 

term has the growth trend, while the second term has the decline trend. Depending 

on ratios of the model macroeconomic parameters the aggregate growth trend of 

R&D intensity ir  (188) with respect to the technology productivity X  can be either 

positive or negative. 

4.2. Econometric Identification of Optimal R&D Investment Level 

 In this section two scenarios of techno-economic growth are compared within 

the proposed model based on dynamics (42)-(45) and objective function (47).  

 In the first scenario it is assumed that the effect of technology assimilation from 

the technology spillover pool sT  is missing, and the growth of the technology stock T  

is governed only by the domestic R&D investments dT∆ . In this scenario the 

coefficients of absorption capacity are equal to zero, 0=z , 0=κ , and the technology 

stock T  coincides with the domestic technology stock dT .  Macroeconomic parameters 

1a , 2a  for this scenario are identified on the basis of relations (29) and the regression 

model (27) in which dTT =  (see Table 1, row 1). 

 In the second scenario it is supposed that the spillover technology sT  is 

assimilated and the assimilation process is modeled by relation (32) for the assimilation 

coefficient κ  and is calculated on the level 46.1=κ  applying the identified parameters 
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24.0=ω  and 14.00 =ξ  by means of the regression results for equation (20).     

 In this scenario macroeconomic parameters 1a , 2a  are defined by relations (29) 

and the regression model (27) in which dd TTT ∆⋅+⋅= νµ  (16) (see Table 1, row 2). 

  

Table 1.  Parameters of Utility Function in Japan’s Automotive Industry (1982-2000). 

 π  
1β  2β  1a  2a  0r  

dT  0.09 0.05 0.60 0.51 6.07 7.42 

T  0.09 0.04 0.60 0.40 6.07 7.92 

 

 In both scenarios the discounted marginal productivity g  is identified according 

to relation (38) on the level 13.1=g  with the following test statistics 68.9=− valuet , 

999.0. 2 =Radj , 87.1=DW .  

 Let us remind that the discount factor λ  is identified at the level 105.0=λ  for 

both scenarios. This level is used for calculation of the cost 0Z  according to formula 

(133).  

 Table 1 compares the level of the optimal R&D intensity r  in two scenarios. For 

calculating the level of the optimal R&D intensity r  formula (187) is used. The optimal 

level for the first scenario is identified on the level %42.7=r , while the optimal level 

for the second scenario is calculated on the level %92.7=r  (see Table 1). This result 

demonstrates that the optimal R&D intensity r  based on the gross technology stock T  

in the second scenario is higher a little bit than the optimal R&D intensity r  based on 

the domestic technology stock dT  in the first scenario. Let us note that all other 

economic parameters: production )(ty , gross technology stock )(tT , and consumption 

index )(tD , are much higher in the second scenario than in the first scenario. One can 

conclude that comparatively small additional spending 

%7.642.7/)42.792.7(/ =−=∆ rr  of R&D investment and restructuring of these 

sources for knowledge absorption could provide a strong leverage for reaching 

qualitatively higher level of performance of the basic economic parameters, and, 

consequently, higher levels of the consumption index. In order to reach such high 

performance of the main economic parameters of the second scenario it is necessary to 

increase significantly the level of R&D intensity in the first scenario and this increase is 
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quite far from the oprtimal R&D investment policy.  

 These arguments are justified by Figure 6 which displays dynamics of 

technology stock dT  in Scenario 1 by the dotted line, and dynamics of  technology stock 

T  in Scenario 2 - by the solid line. One can see that in the year 2000 technology stock 

T  is larger than technology stock dT  by %4025/)2535(/ =−=∆ TT . Calculating the 

corresponding elasticity 197.5
7.6

40

/

/
, >==

∆
∆=

rr

TT
rTε  of technology stock T  to R&D 

intensity r  one can conclude that the model demonstrates the effect of increasing 

returns for the gross technology stock T  of the process of R&D investment with 

restructuring invested sources and directing a part of them to knowledge absorption.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 6.  Trends in Technology Stock of Japan’s Automotive Industry (1982-2000) 

                              in Scenarios 1 and 2 –  million Yen in 1995  fixed  prices. 

  

 The analogous trend is demonstrated by Figure 7 which shows dynamics of 

production y  in Scenario 1 by the dotted line, and in Scenario 2 – by the solid line. The 

difference between two scenarios in the year 2000 constitutes the value 

/ (35 34) / 34 2.9%y y∆ = − = . The corresponding elasticity ,

/ 2.9
0.43

/ 6.7y r

y y

r r
ε ∆= = =

∆
 

demonstartes the positive impact of R&D intensity r  on production y . 
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Figure 7.  Trends in Production of Japan’s Automotive Industry (1982-2000) in  

Scenarios 1 and 2 –  million Yen in 1995  fixed  prices. 
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5. Conclusion  
In the paper a dynamic model of optimization of R&D intensity is adjusted to 

the aggregate data in Japan’s automotive industry over the period 1982-2000. The 

model takes into account that the R&D investment to commercialization leads to 

redistribution of resources between the technology stock and production factors and 

provides a risky factor of invention and innovation activity. The model describes 

dynamic behavior of the technology stock and production factors as a response to the  

optimal R&D investment policy. The model includes the discounted utility function 

which correlates the R&D investment and production diversity and reflects 

simultaneous growth of production, technology stock and rate of technology 

productivity. The research focuses on the issue of a reasonable balance between the 

indigenous  technology stock and assimilated technology flow. 

  The Pontryagin’s maximum principle is applied to the optimal control design of 

R&D intensity. The optimality principles are expressed in the nonlinear system of 

Hamiltonian differential equations. The eigenvalues and eigenvectors of the Jacobi 

matrix are estimated and on the basis of this analysis the existence and uniqueness 

result of a saddle-type equilibrium for the Hamiltonian system is proved. It is shown 

that the optimal solution can be generated  from this equilibrium in the direction of the 

eigenvector corresponding to the negative eigenvalue. For a simplified version of the 

model the optimal feedback for R&D intensity is constructed analytically and its 

growth trends are studied. The macroeconomic parameters of the model are calibrated  

on the  aggregate data of Japan’s automotive industry over the period 1982-2000. It is 

shown hat comparatively small additional investments and restructuring of these 

sources for knowledge absorption could have the effect of increasing returns and 

provide a strong leverage for reaching qualitatively higher levels of sales, technology 

development, and consumption index.     

 The future work will be focused on identification of the optimal trajectory of R&D 

intensity for auto manufacturers under megacompetition conditions. 
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Appendix : Data Construction and Sources 
Table A.1. Trends in R&D Expenditure and Technology Import in the Japan’s Automotive Industry (1982-

2000): million Yen at current prices 

Intramural expenditure       
on R&D (disbursement) 

R&D funds    received R&D funds 
paid outside 

Technology 
import 

 

Year 
(r) (Rr) (Rp) (Im) 

1982   529,876 11,865 105,415 16,094 

1983   561,024 12,434 127,059 10,644 

1984   641,419 12,423 140,275 10,290 

1985   727,640 14,625 161,641 11,391 

1986   776,815 17,228 180,447 11,289 

1987   767,932 20,997 214,798  8,402 

1988   885,285 19,057 227,660  6,560 

1989 1,028,079 22,548 239,871  7,248 

1990 1,223,775 28,564 261,536  7,560 

1991 1,231,116 28,825 278,416  8,029 

1992 1,218,819 30,209 275,970 17,194 

1993 1,040,474 24,467 264,983  8,748 

1994   965,095 21,936 276,481  8,700 

1995 1,093,416 26,470 300,893  7,511 

1996 1,250,391 32,799 341,229  8,556 

1997 1,372,413 29,385 392,017  7,536 

1998   355,945 24,995 409,159  6,164 

1999 1,261,930 19,946 416,376  5,630 

2000 1,309,492 21,326 457,771  5,630 

Source: Japan Statistics Bureau, Report on the Survey of R&D (annual issues). 

Table A.2. Trends in Automotive Production and Its Input (1982-2000): a 

Production Labor Capital Material Energy Year 
(Y) a (L: man hours) (K) a (M) a (E: cal.) 

1982 52,754,838   81,119,165 1,291,304 18,120 1,585 

1983 54,622,160   84,740,160 1,382,163 18,607 1,691 

1984 56,358,704   89,783,680 1,660,788 20,195 1,793 

1985 60,321,660  106,407,536 1,778,290 22,136 1,817 

1986 60,266,220   91,900,707 1,585,240 22,691 1,789 

1987 60,213,902   86,397,445 1,625,810 22,870 1,792 

1988 62,429,102   96,854,957 1,944,562 24,343 1,988 

1989 64,031,283  101,140,697 2,164,834 27,646 2,094 

1990 66,297,745  106,739,067 2,396,476 31,654 2,340 

1991 65,111,259  110,395,696 2,439,122 32,658 2,292 

1992 61,443,391  100,623,687 2,129,847 32,940 2,264 

1993 55,191,827   93,521,159 2,031,401 31,460 2,195 

1994 51,881,432   91,892,163 2,137,216 30,773 2,254 
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1995 50,118,727   95,976,831 2,325,300 30,034 2,260 

1996 50,857,319   90,960,162 2,455,269 30,316 2,527 

1997 53,950,806   92,163,409 2,608,546 32,626 2,655 

1998 49,402,286   88,947,390 2,469,602 28,938 2,462 

1999 48,463,706   87,268,391 1,216,382 29,264 2,503 

2000 49,869,552   88,274,205 2,655,882 30,402 2,505 

a  million Yen at 1995 fixed price 

Sources: 

Y: Japan Automobile Manufacturers Association, Inc., Total Production by Year (2003); Japan Statistics Bureau, Report on the 
Survey of R&D (annual issues). 

 L, C, M and E: Economic and Social Research Institute of Japan, Business and Investment of Incorporated Enterprises (annual 
issues). 

 

 

 

Table A.3. Trends in Number of Registered Patent in Japan’s Automotive Industry (1982-2000) 

 

No. of Registered Patent  No. of Registered Patent Year 
(P)  

Year 
(P) 

1981 -  1991 661 

1982  81  1992 716 

1983 154  1993 496 

1984 201  1994 450 

1985 300  1995 605 

1986 292  1996 482 

1987 338  1997 358 

1988 358  1998 371 

1989 345  1999 322 

1990 691  2000 304 

b
  B60B - B60V International Patent Classification, WIPO (1999). 

Source: Japan Patent Office, Industrial Property Digital Library (2003). 
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