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Abstract

We provide steps towards analysis of rational bahaviors of innovators acting on a market
of a technological product. The situation when a technological leader competes with
a large number of identical followers is in the focus. The process of development of
new generations of the product is treated as a Poisson-type cyclic stochastic process.
The technology spillovers effect acts as a driving force of the technological progress. We
obtain an analytic characterization of optimal leader’s R&D and manufacturing investment
policies. Numerical simulations and economic interpretations are presented as well.
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A Dynamic Model of Stochastic Innovation Race:

Leader-Followers Case

Sergei Aseev (aseev@iiasa.ac.at; aseev@mi.ras.ru)
Masakazu Katsumoto (katsu@iiasa.ac.at; katsumo@kit.ac.jp)

“Almost by definition, it is hopeless to develop a model which will genuinely predict innova-

tions: an innovation is something new, and if you know what it will be in the future, you

know it now. There are, it must be admitted, some loopholes in this argument. It can be

held that we have probabilistic beliefs about future innovations. Experts will frequently claim

that such-and-such lines of development are promising. I believe that analysis of technolog-

ical forecast are subject to a great deal of error. However, I do not conclude from this that

dynamic models which incorporate technical change are useless. What they give you is not

any prediction of specific innovations, but an idea of the statistical properties of technological

progress. We may have some useful idea of the average rate of technological change, of the

degree of fluctuations and the kinds of surprises that may find in the future. We cannot, of

cause, predict a surprise, that is a contradiction in terms. But we can predict the kinds of

surprises that might occur. From the point of view of public policy, this knowledge may be

very useful. It indicates the information we will need to react to, the range of possibilities

we may encounter. It gives an idea of the policies of protection and precaution that would be

useful to invest in.”

Arrow, K.J., 1991.

1 Introduction

It is beyond argument that R&D is one of the most important determinants of firms’
competitiveness especially in high-tech fields. However, there are different types of R&D
and their effects on firms’ performances are also different.
Innovations based on certain technological systems or dominant designs give clear

patterns of continuous or cumulative technological improvements. However, when tech-
nological development reaches a certain turning point, a discontinuous innovation often
occurs. Many authors define such type of technological development as the technological
trajectory: a technology is developing along a certain trajectory, and when it saturates
a new trajectory occurres together with a shift in the corresponding scientific paradigm
(see, for example, Kuhn, 1970; and Dosi, 1982).
Along with this argument, innovations can be classified into two types. Innovations

of the first type create new technological trajectories (radical or discontinuous innova-
tions); innovations of the second type develop a product improvements along a certain
technological trajectory (incremental or continuous innovations).
Invention of the transistor, which provided the basis of the semiconductor industry,

gives an example of a radical technological innovation which created a new technologi-
cal trajectory. It needs no argument that innovations of this type create the strongests
aftereffects on the markets.
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Figure 1: Global DRAM shipment by IC density. Data Source: Victor, 2002.

Nevertheless, it is important to recognize that outcomes of continuous innovations can
be not less than outcomes of discontinuous ones. Of course, each incremental innovation
can produce less outcome than a radical one, but often their cumulative outcome is bigger.
For example, the process of developing high density integrated circuites is a sequence of
typical continuous innovations which create a large market by interacting with computer
and other information technology products and services.
It is interesting from the point of view of industrial dynamics that firms succeeding

in the radical innovations often lose their leading positions during the following phase of
technological development at which incremental innovations are dominant.
Technological developments along certain technological trajectories are mainly per-

formed as innovation races among private companies. Regular emergences of new gen-
erations of products are observed in the industries where innovations along technological
trajectories dominate. For example, the transistors appeared on the market and started
a new technological trajectory in the middle of the 1950s. The transistors quickly swept
away vacuum tubes which had in 100 times larger market share at that time. However, the
transistors themselves were swept away by the integrated circuits (IC) in the 1960s. Dur-
ing this process, the firms severely fought with each other and this severe competition led
to the withdrawal of the top producers of vacuum tubes from the semiconductor market.
After the 1970s, Japanese firms appeared as leading producers of large scaled integrated
circuits (LSI). After the 1990s, the US firms revived, and Korean and Taiwanese firms
appeared as the major players on this market. This innovation race is now continuing.
Figure 1 demonstrates the technological dynamics in the semiconductor industry in the
period 1974 - 1998. In this process the autonomous evolutions of new generations of the
product are driven by innovation race among companies. Furthermore, one can observe a
regularity in this technological dynamics. In particular, Figure 1 demonstrates the famous
Moore’s law in the semiconductor industry. It asserts that the complexity for minimum
component costs increases at a rate of roughly a factor of two per year (Moore, 1965).
Similar industrial dynamics can be observed also in other areas. For example, the

leading producer of hard disk drives is changing with each major innovation (Christensen,
1997).
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But, however, there are many examples of different types of industrial dynamics. For
example, in the same semiconductor industry the market of microprocessors for personal
computers is dominated by Intel which innovated the microprocessor firstly in the world.
From the point of view of the innovation race, technology spillovers1 (including im-

itation) provide an important influence on the industrial dynamics through each firm’s
decision making. We should recognise that imitation is an important type of firms’ behav-
ior even in developed countries although usually it is related mainly to the North-South
problems (Mukoyama, 2003).
There are various opportunities and routes for technology spillovers (Porter, 1985):

i) Reverse-engineering of products and observation of operations;

ii) Spillovers from vendors of equipments or components;

iii) Spillovers from consultants or specialists;

iv) Spillovers from purchasers which desire varieties of suppliers;

v) Movement of engineers to rivalry firms or spin-out;

vi) Analysis of patents or presentations in academic societies.

Many authors assert that imitations have negative impacts on the innovation process.
Imitations erode profits of innovators, and this erosion causes shrinking the efforts of the
innovators. Usually, ”appropriability of innovations,” which means the possibility for an
innovator to ensure the profit from innovations, is determined by the extent of legal protec-
tion (intellectual property rights), imitation facilities, and accessability of complimentary
assets (see Levin, Klevorick, Nelson and Winter, 1988; and Teece, 1986). Goto and Na-
gata, 1997 assert that early introduction of new products on the market is effective for
appropriability of innovations in high-tech fields in Japan. However, Mansfield, Schwartz
and Wagner, 1981 found that 34 new products out of 48 samples had been imitated during
the sample periods. They report that the average time until the sample products were
imitated is about 70% of the time it took to bring the innovation to the market.
The problem of choosing the most rational type of the business strategy is an important

point for firms’ managers. From the point of view of the innovation race, business strategies
can be classified into two types. Strategies of the first type are the leader’s startegies, which
are to firstly develop new generations of the product. Strategies of the second type are
the follower’s strategies, which are to penetrate on the market exploited by the leader.
The earliest release of a new generation of the product on the market is directly

connected with the profitability of R&D. Particularly, in the fields where learning effects
are large, the first penetrator can get the largest share of the market. However, a larger
R&D investment may result in a shorter product’s lifecycle. It means that the return of
R&D might be smaller. A smaller R&D investment allows a follower exploiting technology
spillovers to get a larger share of the market. In this respect the problem how much of
resources should be allocated to R&D is also an important point for firms’ managers
because now the required R&D investments are increasing to the level which governs the
existence of firms in many fields especially in high-tech fields.
Of course, not only the effect of a certain targeted environment should be taken into

account in the decision making process but also the effect of other larger environments.
For example, the Japanese firms in the electric home appliances market reached highest
competitiveness in the world in the 1980s due to a strategy of introducing new generations

1In this paper we identify technology spillovers mainly with imitation.
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of certain products on the market in short cycles in order to win the innovation race on
the domestic market (Hamel and Prahalad, 1992).
According to Lieberman and Montgomery, 1988 merits of leader’s and follower’s strate-

gies can be particularized as follows:
Merits of a leader’s strategy:

i) First-mover’s advantage. The innovator or first-mover can monopolize the market by
using a physical lead time. The first mover can improve the products by responding
to its customers and often make a dominant design of the products. It might lead
to establishing a superior brand image among the customers. The first mover can
occupy rare resources;

ii) Learning effect. The first mover can get cost competitiveness by using a learning
or experience effect. Experience of production of a certain product can increase
efficiency of workers and improve the manufacturing process. If the first mover
constructs such kind of cost competitiveness, a follower can not enter the market.
That is why the semiconductor makers challenged to be the first movers for new
DRAM generations;

iii) Legal protection. The first mover can get legal protection by intellectual property
rights such as patents and copyrights. Xerox for copy machines and GE for electric
bulbs dominated the market for a long time by exploiting their patents;

iv) Transfer cost of customers. In the case when customers should pay some cost to
change their suppliers, the first mover can take an advantage (the mileage system is
an example);

v) Network externality. If the new products or services have network externalities,
the fist mover can get an advantage to the followers. Network externality has been
defined as a change in the benefit, or surplus, that an agent derives from a good
when the number of other agents consuming the same kind of good changes. As fax
machines increase in popularity, for example, your fax machine becomes increasingly
valuable since you have greater use of it.

Merits of a follower’s strategy:

i) Free-ride of leader’s effort. The followers can freely use many things which the first-
mover built at its cost. It is difficult to exclude the use of knowledge, the outcomes
of innovations, by others. In many case, imitation is cheaper than the original
innovation although it costs larger than generally expected. For example, investment
in educating customers how to use certain innovative products, and infrastructure
development for new products (for example, repair services) can be freely used by
the followers;

ii) Low market risk for introducing products. The first mover should take risk of un-
certain innovative products and bear investments which can eventually be found
unnecessary as well as the cost of try and errors. Followers can avoid unnecessary
investments or failures by exploiting the experiences of the first mover. Actually,
Japanese car makers learn many lessons from the experience of the German car
maker Volks Wagen which precedently penetrated into the US market and failed
when Japanese car makers managed to produce their cars in the US;
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iii) Conservation of initial cost by the spillovers effect, etc.. In the case of environmen-
tal changes, the first mover often faces difficulties. There are some cases where the
environments on the market or technology change after the first mover commits to
certain assets or processes and embarks full-scale investments in them. In such cases,
the followers can get an advantage over the first mover. Because of the institutional
inertia it is difficult for the first mover to respond to environmental change, dimin-
ishing the merits of existing assets or processes and to sunk the cost of them. Ford
succeeded in the passenger car market by focusing on the production of the T-type
Ford. However, Ford could not respond to the preference of the customers in the
differentiation of products and gave up the top position to General Motors.

It is a difficult problem for the firms’ managers to choose the rational type of business
strategy (the leader’s strategy or the follower’s one). Usually the innovators’ decision mak-
ing processess are affected by properties they already occupied, institutional environments
and strategies of the competitors. For example, Nintendo had a dominant power on the
8-bit video game console’s market at the 1980s. For Nintendo, the change of the video
game market from 8-bit consoles to 16-bit ones meant the loss of its monopoly profit.
Sega had already introduced a 16-bit video game console on the market at that time but,
however, its diffusion was rather slow because Sega was satisfied with the high price and
monopoly profit from the 16-bit console’s market. In such situation, Nintendo delayed the
release of the new generation of the 16-bit video game console “Super Famicom” (Bran-
denburger and Nalebuff, 1997) earning a relatively large revenue from the 8-bit consoles.
On the contrary, Nintendo’s early introduction of the 16-bit console could lead to a price
competition between Sega and Nintendo, and, as a consequence, could induce an early
diffusion of 16-bit consoles and Nintendo’s loss of its monopoly profit from the 8-bit con-
soles. Nintendo faced this dilemma, and it took the strategy to delay the introduction of
“Super Famicom” on the market.
In the present paper we provide steps towards analysis of rational behaviors of inno-

vators acting on a market of a technological product. We develop a dynamic model of
optimal investment in R&D and manufacturing. The situation when a technological leader
competes with a large number of identical technological followers is in the focus.
The model is developed according to the templates of the economic growth theory (see

Arrow and Kurz, 1970; Grosmann and Helpman, 1991; Baro and Sala-i-Martin, 1995). The
essential feature of the model is that the innovation process performed by the innovators
(the technological leader and the followers) is treated as a Poisson-type cyclic stochastic
process on the infinite time interval. The main assumption is that the probability of the
development of a new generation of the product on a small time interval is proportional
to the length of this interval and to the innovator’s knowledge capital which is associated
with accumulated innovator’s investments of some resource in R&D.
In our model we consider the case of the development along a certain technological

tragectory with a vertical products differentiation (see Grossman and Helpman, 1991).
This means that every innovation gives a significant improvement in the product’s quality
and (or) in the level of services that the product provides.
Further, we assume that the innovators acting on the market have two sectors: an R&D

sector and a manufacturing one. All innovators make costly investments to both R&D
and manufacturing. Consequently the leader’s R&D sector developes new generations
of the product and the leader’s manufacturing sector performs their production. Selling
the products on the market, the technological leader gets a revenue for its R&D and
manufacturing efforts. The goal of the leader is to maximize the aggregated discounted
profit by optimizing both R&D and manufacturing investment policies. Concerning the
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technological followers we assume that they act as imitators. When the latest generation
of the product developed by the leader appears on the market the product’s attributes
become available for the followers. This provides the followers with the ability to improve
their economic performance by developing corresponding imitations (their own versions
of the newest product). In this way a technology spillovers effect is taken into account.
When the followers bring their versions of the latest generation of the product on the
market, the product’s offer increases. As a consequence the product’s price decreases
together with the leader’s profit. This stimulates the technological leader to develop the
next generation of the product. Thus, in our model, the technology spillovers effect plays
a role of a driving force in the technological progress. Choosing appropriate R&D and
manufacturing investment policies, the technological leader maximizes the expectation of
the value of its aggregated discounted profit.
The paper is organized as follows. In Section 2 we consider a process of new prod-

uct’s generations development performed by the technological leader and the followers.
In Section 3 we describe an accepted market price formation mechanism and design a
technological leader’s goal functional. In Section 4 the dynamic optimization problem the
technological leader is faced at is considered. We obtain an analytic expression for the
optimal value of the goal functional. For the case where the technological leader competes
with a large number of followers numerical simulations and economic interpretations are
presented in Section 5. Section 6 presents concluding remarks.

2 Innovation process

First, we consider the process of the development of new generations of the product,
performed by the technological leader.
At the initial instant of time T0 = 0 the leader makes a decision on the amount

u(t) ≡ u1 ≥ 0 of a resource which will be allocated to R&D. It can be leader’s labor,
capital, energy or another resource which is recognized as the determinant of the leader’s
R&D activity. We assume that this amount u(t) of the resource is fixed till the instant of
time T1 > T0 when the next generation of the product will be developed by the leader’s
R&D sector. Therefore, the leader’s R&D investment policy u(t) is assumed to be fixed
on the time interval [T0, T1]: u(t) ≡ u1 for all t ∈ [T0, T1].
Starting from the instant of time T1 the developed new technology is implemented in

manufacturing and the leader’s research sector starts development of the next generation
of the product. At the time T1 the technological leader makes a decision on the amount
u(t) ≡ u2 ≥ 0 of the resource which will be allocated to R&D. We assume that the leader’s
R&D investment policy u(t) is fixed till the next instant of time T2 > T1 when the next
generation of the product will be available, i.e., u(t) ≡ u2 for all t ∈ [T1, T2].
This process is repeated infinitely many times.
Thus, we have an infinite sequence of instants of time T0 = 0, Tn−1 < Tn, n = 1, 2, . . . ,

at which the technological leader starts development of the new generations of the product.
On each n-th time interval [Tn−1, Tn] the leader’s R&D investment policy (an instantaneous
amount u(t) of the resource allocated to R&D) is fixed: u(t) ≡ un ≥ 0 for all t ∈ [Tn−1, Tn],
n = 1, 2, . . . .
We consider the length ln = Tn − Tn−1 of each time interval [Tn−1, Tn], n = 1, 2, . . . ,

as a random variable of the Poisson type.
Let Kn(t) be the leader’s knowledge capital accumulated in R&D at the instant of

time t ∈ [Tn−1, Tn]. We assume that for any n = 1, 2, . . . we have Kn(Tn−1) = 0. In our
model the current leader’s knowledge capital Kn(t), t ∈ [Tn−1, Tn], is associated with the
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accumulated investment of the resource in R&D, i.e.,

K̇n(t) = u(t) ≡ un, t ∈ [Tn−1, Tn];

Kn(Tn−1) = 0.

Thus, we have

Kn(t) = un · (t− Tn−1) for all t ∈ [Tn−1, Tn], n = 1, 2, . . . . (2.1)

Further, Tn is the instant of time when the n-th generation of the product becomes
available. We assume that for any n = 1, 2, . . . the length ln = Tn − Tn−1 of the n-th
research interval is a random variable with a smooth distribution Pn(τ) = P (ln < τ),
τ > 0, satisfying the equality

P (ln < τ +∆τ |ln ≥ τ) = ρKn(Tn−1 + τ)∆τ + o(∆τ), ρ > 0.

Here lim∆τ→0
o(∆τ )
∆τ = 0, all lengths ln = Tn − Tn−1, n = 1, 2, . . . , are considered as inde-

pendent random variables and ρ > 0 is a constant parameter characterizing the efficiency
of the leader’s R&D sector.
These assumptions provide a complete characterization of the random variables ln =

Tn−1−Tn, n = 1, 2, . . . , as the Poisson-type random variables (see, for example, Gnedenko,
1962). Indeed:

P (ln < τ +∆τ) = P (ln < τ) + P (ln < τ +∆τ |ln ≥ τ)P (ln ≥ τ)

= P (ln < τ) + (ρKn(Tn−1 + τ)∆τ + o(∆τ))(1− P (ln < τ)).

Hence, we have

P (ln < τ +∆τ)− P (ln < τ)
∆τ

= (1− P (ln < τ))
(
ρKn(Tn−1 + τ) +

o(∆τ)

∆τ

)
.

The last equality implies that the smooth distribution Pn(τ) = P (ln < τ) is a solution to
the ordinary differential equation

d

dt
P (τ) = ρKn(Tn−1 + τ)(1− P (τ))

satisfying the initial condition P (0) = 0. Hence, the random variable ln = Tn−1 − Tn has
the following Poisson-type distribution and density:

Pn(τ) = 1− e−ρ
∫ τ
0 Kn(Tn−1+s)ds;

pn(τ) =
d

dt
Pn(τ) = ρKn(Tn−1 + τ)e

−ρ
∫ t
0 Kn(Tn−1+s)ds.

In particular due to (2.1) we have

Pn(τ) = 1− e−ρun
τ2

2 , pn(τ) = ρunτe
−ρun τ

2

2 . (2.2)

Thus, for any n = 1, 2, . . . , the density pn(τ) of the random variable ln is defined com-
pletely by the fixed leader’s R&D policy un accepted on the n-th time interval [Tn−1, Tn].
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Further, (2.2) implies that the mean value E(ln) of the random variable ln, n = 1, 2, . . . ,
is the following:

E(ln) =
√
2ρun

∫ ∞
0

√
se−ρunsds.

Consider now the process of the development of new generations of the product per-
formed by Nf identical technological followers. In this paper we assume that all followers
are independent and act as imitators. This means that when the latest generation of
the product developed by the leader appears on the market at the instant of time Tn−1,
n = 1, 2, . . . , the followers observe its attributes and start development of its imitations
(their own versions of the newest product).
We assume that all followers allocate equal (and fixed) amounts uf of the same re-

source as the technological leader to R&D on every time interval [Tn−1, Tn], n = 1, 2, . . . .
Then, analogously to the case of the technological leader (see (2.1)) the value of each i-th
follower’s knowledge capital Kif(t), i = 1, 2, . . .Nf , at the instant of time t ∈ [Tn−1, Tn]
can be represented by the following formula:

Kif(t) = uf · (t− Tn−1). (2.3)

Further, similarly to the case of the technological leader we assume that the length lin,
n = 1, 2, . . . , i = 1, 2, . . . , Nf , of the time interval needed for the i-th follower to develop
its own version of the newest product is the Poisson-type random variable characterized
by an efficiency parameter β > 0 (which assumed to be the same for all followers) and the
corresponding amount of the accumulated knowledge capital Kif(t) (see 2.3), i.e.,

P (lin < τ +∆τ |lin ≥ τ) = βKif (Tn−1 + τ)∆τ + o(∆τ).

In this case for all i = 1, 2, . . . , Nf and all n = 1, 2, . . . the distribution P
f (τ) = P (lin < τ)

and the corresponding density pf(τ) = d
dtP

f (τ) of the random variable lin are independent
of i and n and can be represented by the following formulas (see (2.2)):

P f (τ) = 1− e−βuf τ
2

2 , pf(τ) = βuf τe
−βuf τ

2

2 . (2.4)

Let 0 ≤ N(t) ≤ Nf be the number of followers operating on the market at the instant
of time t ∈ [Tn−1, Tn], n = 1, 2, . . . , with their versions of the latest generation of the
product. As far as all followers are assumed to be independent, and the probability of
the event that the i-th follower has developed its version of the newest product before

time t ∈ [Tn−1, Tn] is equal to P f (t − Tn−1) = 1 − e−βuf
(t−Tn−1)2

2 (see (2.4)) for any
M = 0, 1, . . . , Nf , we have

P (N(t) =M) =
Nf !

M !(Nf −M)!

(
1− e−βuf

(t−Tn−1)2

2
)
)M
e−(Nf−M)βuf

(t−Tn−1)2

2

= CMNf

(
1− e−βuf

(t−Tn−1)
2

2

)M
e−(Nf−M)βuf

(t−Tn−1)
2

2 . (2.5)

Hence the mean value E(N(t)) of the random variable N(t) at the instant of time
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t ∈ [Tn−1, Tn], n = 1, 2, . . . , can be calculated as follows:

E(N(t)) =

Nf∑
M=0

M
Nf !

M !(Nf −M)!

(
1− e−βuf

(t−Tn−1)2

2

)M
e−(Nf−M)βuf

(t−Tn−1)2

2

= Nf

(
1− e−βuf

(t−Tn−1)
2

2

) Nf∑
M=1

(Nf − 1)!
(M − 1)!(Nf −M)!

(
1− e−βuf

(t−Tn−1)
2

2

)(M−1)

×e−(Nf−M)βuf
(t−Tn−1)

2 = Nf

(
1− e−βuf

(t−Tn−1)
2

2

)Nf−1∑
K=0

CKNf−1

(
1− e−βuf

(t−Tn−1)
2

2

)K

×e−(Nf−1−K)βuf
(t−Tn−1)

2

2 = Nf
(
1− e−βuf

(t−Tn−1)
2

2

)
. (2.6)

3 Manufacturing and profit maximization

In this section we describe the accepted market price formation mechanism and design the
technological leader’s goal functional.
Usually in economic literature, the firm’s instantaneous production (production rate)

Y (t) at the instant of time t ≥ 0 is viewed as a function of quantities of resources accu-
mulated in manufacturing such as labor, L(t), capital, C(t), materials, M(t), and energy,
E(t) (see, e.g., Arrow and Kurz, 1970; Intriligator, 1971):

Y (t) = F (L(t), C(t),M(t), E(t)).

In this paper we assume that the leader’s production rate at every instant of time t ≥ 0 is
determined by the corresponding instantaneous investment v(t) ≥ 0 of some resource. We
do not concretize the nature of this resource. It can be capital, labor, energy or any other
particular resource which is invested in manufacturing. This resource can be different from
the resource which the leader allocates to R&D. In particular, we represent the leader’s
production rate Yl(t) (a number of units of the product produced in the unit of time) as
a function of the current investment v(t) of the chosen resource as follows:

Yl(t) = σv
γ(t). (3.7)

Here σ > 0 and γ > 0 are the model parameters2: parameter σ characterizes the productiv-
ity level of the leader’s manufacturing sector; parameter γ represents the leader’s marginal
productivity. In that follows we assume that the leader’s instantaneous production rate is
strictly positive (i.e., v(t) > 0 for all t ≥ 0).
Such form of the production function can be interpreted by different ways.
In particular, if the current leader’s production rate Yl(t) can be represented by means

of the Cobb-Duglas formula

Yl(t) = σ0L
γ1(t)Cγ2(t)Mγ3(t)Eγ4(t) (3.8)

where σ0 > 0 and γi > 0, i = 1, 2, 3, 4,
∑4
i=1 γi = 1; and the instantaneous amounts of

the leader’s labor, capital, materials and energy can be represented as functions of this
resource:

L(t) = κ1v
α1(t), C(t) = κ2v

α2(t), M(t) = κ3v
α3(t), E(t) = κ4v

α4(t),

2In this formulation, we allow that the economics of scale exists (γ > 1).
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where κi > 0; αi > 0, i = 1, 2, 3, 4; then substituting in (3.8) we represent the leader’s
instantaneous production Yl(t) in the form (3.7).
In our model the technological leader’s manufacturing sector produces the latest version

of the product developed by its research lab. We have a sequence T0 = 0 < T1 < · · · <
Tn < . . . of random instants of time Tn, n = 1, 2, . . . , at which the leader’s R&D sector
develops new generations of the product. We assume that at each instant of time Tn−1,
n = 1, 2, . . . , the leader makes a decision about amount v(t) ≡ vn > 0 of the resource
which will be allocated to manufacturing on the current time interval [Tn−1, Tn]

3.
So, we assume that the leader’s manufacturing investment policy v(t) is fixed on each

time interval [Tn−1, Tn]: v(t) ≡ vn > 0 for all t ∈ [Tn−1, Tn], n = 1, 2, . . . . According
to (3.7) in this case on every time interval [Tn−1, Tn], n = 1, 2, . . . , the leader has fixed
manufacturing sector’s production rate

Yl(t) ≡ Yn = σvγn, t ∈ [Tn−1, Tn].

Now we describe the accepted market price formation mechanism.
At the instant of time t ∈ [Tn−1, Tn], n = 1, 2, . . . , a random number 0 ≤ N(t) ≤ Nf

of followers produce their versions of the newest generation of the product. As far as all
followers are supposed to be identical, each of them produces the same number

yf = σfv
γf
f

of units of the product in the unit of time. Here σf > 0 and γf > 0 are parameters
analogous to whose of the technological leader (followers’ level of productivity and marginal
productivity respectively), and vf is an amount of the resource allocated by each follower
to manufacturing. In this case the current aggregated rate of total followers’ production
at the instant of time t ∈ [Tn−1, Tn] is Yf (t) = N(t)yf . Thus, (see (3.7)) the total supply
rate of the product to the market at the instant of time t ∈ [Tn−1, Tn], n = 1, 2, . . . , is

Y (t) = Yl(t) + Yf (t) = σv
γ
n +N(t)yf . (3.9)

Let d(t) be the current market price of the unit of the product at the instant of time
t ∈ [Tn−1, Tn], n = 1, 2, . . . .
Assume that the market’s demand is equal to a constant d0 > 0 at any instant of time

t ≥ 0. Then taking into account the equilibrium condition d(t)Y (t) = d0, due to (3.9) we
get the following formula for the current price d(t) at the instant of time t ∈ [Tn−1, Tn]:

d(t) =
d0
Y (t)

=
d0

σvγn +N(t)yf
.

Then due to (2.5) the mean value E(d(t)) of the price d(t) at the instant of time t ∈
[Tn−1, Tn], n = 1, 2, . . . , is the following:

E(d(t)) =

Nf∑
M=0

d0
σvγn +Myf

CMNf

(
1− e−βuf

(t−Tn−1)
2

2

)M
e−βuf (Nf−M)

(t−Tn−1)
2

2 . (3.10)

Now, suppose that the leader should pay prices p1 > 0 and p2 > 0 for units of resources
u(t) and v(t) allocated to R&D and manufacturing respectively at any instant of time t ≥ 0.

3The technological leader terminates the production of the old product as soon as the new one is
developed. We don’t consider the market of the old products after their withdrawal explicitly. In this
model, the new entrants to the market of current leading-edge products are not limited by old products
which were on the market of the previous product’s generations (see paper by Winter et al., 2000 focused
on the modelling of new entrants).
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As far as the leader’s instantaneous revenue at the instant of time t ∈ [Tn−1, Tn] is equal
to d(t)Yn, the instantaneous leader’s profit D(t) is represented by the formula

D(t) = d(t)Yn − (p1un + p2vn).

Let α > 0 be a subjective discount parameter. Then the discounted aggregated leaders
profit Jn on the n-th random time interval [Tn−1, Tn], n = 1, 2, . . . , can be defined as
follows:

Jn =

∫ Tn
Tn−1

D(t)e−αtdt =

∫ Tn
Tn−1

[d(t)Yn − (p1un + p2vn)]e−αtdt.

Introducing the new integration variable τ = t− Tn−1 we get

Jn =
n−1∏
i=1

e−α(Ti−Ti−1) ·
∫ Tn−Tn−1
0

[d(τ)Yn − (p1un + p2vn)]e−ατdτ

=
n−1∏
i=1

e−αli ·
∫ ln
0
[d(τ)Yn − (p1un + p2vn)]e−ατdτ.

As far as all random variables l1, l2, . . . , ln are independent we have

E(Jn) =
n−1∏
i=1

E(e−αli) · E
(∫ ln
0
[d(τ)Yn− (p1un + p2vn)]e−ατdτ

)
. (3.11)

Due to the equality pi(τ) = ρuiτe
−ρui τ

2

2 , i = 1, 2, . . . , (see (2.4)) the following equality
takes place

E(e−αli) =

∫ ∞
0
e−ατ−ρui

τ2

2 ρuiτdτ, i = 1, 2, . . . .

Integrating the last equality by parts we get

E(e−αli) = 1− α
∫ ∞
0
e−ατ−ρui

τ2

2 dτ, i = 1, 2, . . . . (3.12)

Our next result gives a tool for calculation of the mean value E(Jn), n = 1, 2, . . . (see
(3.11)):
Proposition 1. For any n = 1, 2, . . . , the following equality takes place:

E
(∫ ln
0
d(τ)e−ατdτ

)
=

∫ ∞
0
E(d(τ))e−ατ−ρun

τ2

2 dτ. (3.13)

Proof. For arbitrary T > 0 and any N = 1, 2, . . . , put ∆TN =
T
N , tj = j∆

T
N , j =

1, . . . , N , and consider the random process

ξln(τ) = 1 if ln ≥ τ, ξln(τ) = 0 if ln < τ

and the random variable

JTN =
N∑
j=1

d(tj)e
−αtjξln(tj)∆

T
N .
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The random variable JTN and the random process d(t) are completely characterized on
the time interval [Tn−1, Tn] by a finite number of random parameters τ1 ≥ 0 . . . , τNf ≥ 0
which are the instances of time when the corresponding followers appear on the market.
Further, for any realization of τ1, . . . , τNf the corresponding realization of

d(t) = dτ1,...,τNf (t) =
d0

σvγn +N(t)yf
.

is a piece-wise constant function having not more than Nf points of discontinuity. Hence,

due to the presence of the discounting factor e−αt in the integral
∫ ln
0 d(τ)e

−ατdτ for arbi-
trary ε > 0 there is a Tε > 0 such that for any realization of random variables τ1, . . . , τNf ,
any T > Tε and any realization of the random variable ln we have∣∣∣ ∫ ln

0
d(τ)e−ατdτ − JTN

∣∣∣ ≤ ε. (3.14)

Consider the random variable JTN (depending on the random variables τ1, . . . , τNf and
ln). We have

E(JTN) = E
( N∑
j=1

d(tj)e
−αtj∆TNξ(ln)

)
=
N∑
j=1

E(d(tj))e
−αtjE(ξln(tj))∆

T
N .

As far as

E(ξln(tj)) = P (ln ≥ tj) = 1− Pn(tj) = e−ρun
t2j
2

(see (2.2)) we get

E(JTN) =
N∑
j=1

E(d(tj))e
−αtj−ρun

t2j
2 ∆TN .

Due to (3.10) the mean value E(d(t)) is a continuous bounded function. Hence, due to
(3.14) for arbitrary ε > 0 there is Tε > 0 such that for any T > Tε passing to a limit in
the above equality as N →∞ we get

∣∣∣E(∫ ln
0
d(τ)e−ατdτ

)
−
∫ T
0
E(d(τ))e−ατ−ρun

τ2

2 dt
∣∣∣ ≤ ε.

Passing to a limit as T →∞ in the last inequality we get (3.13). Proposition 1 is proved.
Due to Proposition 1 for arbitrary n = 1, 2, . . . , we get the following formula for the

mean value E(Jn) (see (3.11) and (3.12)):

E(Jn) =
n−1∏
i=1

(
1− α

∫ ∞
0

e−ατ−ρui
τ2

2 dτ
)
·
∫ ∞
0

[E(d(t))Yn− (p1un + p2vn)]e−ατ−ρun
τ2

2 dτ.

(3.15)

Further, on each time interval [Tn−1, Tn], n = 1, 2, . . . , we posit the following constraint
on the leader’s investments policies4 un ≥ 0 and vn > 0

E(Jn) ≥ 0. (3.16)

4Conditions (3.16) implicitly assumes that the financial source exists outside the firm; E(Jn) ≥ 0 means
that the leader should not run faster its cash flow.
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Here E(Jn) is the mean value (expectation) of the aggregated discounted random leader’s
profit Jn on the n-th time interval [Tn−1, Tn], n = 1, 2, . . . . Note that (3.16) and obvious
inequality E(d(t)) ≤ d0 imply inequalities un ≤ d0p1 and vn ≤

d0
p2
, n = 1, 2, . . . .

Summarizing (3.15) we get the following total expectation of the aggregated discounted
leader’s profit on the infinite time interval [0,∞):

J =
∞∑
n=1

E(Jn) =
∞∑
n=1

∫ Tn
Tn−1

[E(d(t))Yn− (p1un + p2vn)]e−αtdt

=
n−1∏
i=1

(
1−α

∫ ∞
0
e−ατ−ρui

τ2

2 dτ
)
·
∫ ∞
0

[
E
( d0σv

γ
n

σvγn +N(t)yf

)
− (p1un+p2vn)

]
e−ατ−ρun

τ2

2 dτ.

We assume that the technological leader’s goal is to maximize the value of this func-
tional J.

4 Dynamic optimization problem

The technological leader faced the following dynamic optimization problem:
Problem (P ):

J =
∞∑
n=1

E(Jn) =
n−1∏
i=1

(
1− α

∫ ∞
0
e−ατ−ρui

τ2

2 dτ
)

×
∫ ∞
0

[
E
( d0σv

γ
n

σvγn +N(t)yf

)
− (p1un + p2vn)

]
e−ατ−ρun

τ2

2 dτ → max . (4.17)

Here quantities un ≥ 0, vn > 0, n = 1, 2, . . . , are control parameters satisfying the
constraint

E(Jn) ≥ 0 n = 1, 2, . . . (4.18)

(see (3.16)); d0 > 0, α > 0, β > 0, σ > 0, γ > 0, uf ≥ 0, yf = σfvγf > 0; quantities T0 = 0,
Tn−1 ≤ Tn, n = 1, 2, . . . , are random instants of time when technological leader develops
n-th generations of the product; random variables ln = Tn − Tn−1 > 0, n = 1, 2, . . . , are
independent and their distributions are given by the formula (see (2.2))

pn(τ) = ρunτe
−ρun τ

2

2 .

Further, 0 ≤ N(t) ≤ Nf is a random number of identical followers operating on the market
at the instant of time t ≥ 0; Nf is a total number of followers and the distribution of N(t)
is given by the formula (see (2.5))

P (N(t) =M) = CMNf

(
1− e−βuf

(t−Tn−1)
2

2

)M
e−(Nf−M)βuf

(t−Tn−1)
2

2 .

Let us introduce auxiliary functions µ(u) on [0,∞) and η(u, v) on [0,∞) × [0,∞) as
follows:

µ(u) = 1− α
∫ ∞
0
e−ατ−ρu

τ2

2 dτ for all u ≥ 0;

η(u, v) =

∫ ∞
0

[
E
( d0σv

γ

σvγ +N(t)yf

)
− (p1u+ p2v)

]
e−ατ−ρu

τ2

2 dτ for all v > 0, u ≥ 0;

η(u, 0) = −p1u
∫ ∞
0
e−ατ−ρu

τ2

2 dτ for all u ≥ 0.
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Obviously the function η(u, v) is bounded on [0,∞) × [0,∞) and for all u ≥ 0 the
function µ(u) satisfies the inequality

0 ≤ µ(u) < 1.

Further, due to the constraint E(Jn) ≥ 0, n = 1, 2, . . . , (see (4.18)) all quantities un
and vn satisfy the inequalities un ≤ d0p1 and vn ≤

d0
p2
respectively. Hence, as far as

dµ(u)

du
=
αρ

2

∫ ∞
0
e−ατ−ρu

τ2

2 τ2dτ > 0 for all u ≥ 0

we have

max
u∈[0, d0

p1
]

µ(u) = µ
(d0
p1

)
= 1− α

∫ ∞
0
e
−ατ−ρd0

p1

τ2

2 dτ < 1.

Thus, the row representing functional J see (4.17) converges absolutely and we can
group its summands by an arbitrary way:

J =
∞∑
n=1

E(Jn) =
∞∑
n=1

(
η(un, vn)

n−1∏
i=1

µ(ui)
)

= η(u1, v1) + η(u2, v2)µ(u1) + η(u3, v3)µ(u1)µ(u2) + · · ·+ η(un, vn)µ(u1) · · · · · µ(un−1) + . . .

= η(u1, v1) + µ(u1)
(
η(u2, v2) + µ(u2)

(
η(u3, v3) + µ(u3)

(
. . .
)))
.

The last equality implies the following representation for the maximal value J∗ of the
functional J:

J∗ = sup
ui≥0,vi≥0;i=1,2,...

(
η(u1, v1) + µ(u1)

(
η(u2, v2) + µ(u2)

(
η(u3, v3) + µ(u3)

(
. . .
))))

= sup
u1≥0,v1≥0

(
η(u1, v1) + µ(u1) sup

ui≥0,vi≥0;i=2,3,...

(
η(u2, v2) + µ(u2)

(
. . .
)))

= sup
u≥0,v≥0

(η(u, v)+ µ(u)J∗) = inf{r : r ≥ η(u, v) + µ(u)r, for all u ≥ 0, v ≥ 0}

= sup{r : r ≥ η(u, v)

1− µ(u) , for all u ≥ 0, v ≥ 0} = sup
u≥0,v≥0

η(u, v)

1− µ(u) .

As far as functions η(u, v) and µ(u) are continuous, quantities u and v are bounded

(0 ≤ u ≤ d0
p1
, 0 ≤ v ≤ d0

p2
) and µ(u) < 1 for all u ∈

[
0, d0p2

]
, the ratio η(u,v)

1−µ(u) reaches its

maximal value. Hence

J∗ = max
u≥0,v≥0

η(u, v)

1− µ(u) .

It is easy to see that any pair (u∗, v∗) which provides the maximum in the above equality
is an optimal time-invariant leaders strategy, i.e. the strategies un = u∗ and vn = v∗,
n = 1, 2, . . . , give the maximum to the functional J.
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Summarizing we get the following result concerning the optimal value J∗ of the goal
functional J in the dynamic optimization problem (P):
Proposition 2. An optimal R&D and manufacturing leaders strategy exists. The

optimal value J∗ of the functional J in problem (P ) is represented by the formula

J∗ = max
u≥0,v>0

∫∞
0

[
E
(

d0σv
γ

σvγ+N(τ )yf

)
− (p1u+ p2v)

]
e−ατ−ρu

τ2

2 dτ

α
∫∞
0 e

−ατ−ρu τ2
2 dτ

.

Any pair (u∗, v∗) which provides the maximum in the above equality is an optimal time-
invariant leaders strategy.
Consider now the situation when the number Nf of identical followers is large (i.e.

Nf →∞). Passing Nf to infinity we assume that the maximal total followers’ production
rate Yf = Nfyf = Nfσfv

γf
f is a constant.

Proposition 3. Assume that there is a constant Yf > 0 such that for all sufficiently
large numbers Nf we have Nfyf = Yf . Then for all τ > 0 the following equality takes
place:

lim
Nf→∞

E
( d0σv

γ

σvγ +N(τ)yf

)
=

d0σv
γ

σvγ +
(
1− e−βuf τ

2

2

)
Yf

. (4.19)

Proof. Due to the definition of the mean value of the random variable N(τ) at the
instant of time τ > 0 we have

E
( d0σv

γ

σvγ +N(τ)yf

)
=

Nf∑
M=0

d0σv
γ

σvγ +Myf
P (N(τ) =M)

=

Nf∑
M=0

d0σv
γ

σvγ + M
Nf
Yf
P
(N(τ)
Nf

=
M

Nf

)
. (4.20)

Further, due to the Bernoulli theorem (see Gnedenko, 1962) for arbitrary ε > 0 and δ > 0
there is an integer N̄ such that for all Nf ≥ N̄ the following inequality takes place:

P

(∣∣∣N(τ)
Nf

− P f (τ)
∣∣∣ ≤ ε

)
≥ 1− δ. (4.21)

Here P f (τ) = 1 − e−βuf τ
2

2 > 0 (see (2.4)) is the probability of the development of the
newest product by a single follower before the time τ ≥ 0.
Due to (4.20) we have

E
( d0σv

γ

σvγ +N(τ)yf

)
=

∑
M :

∣∣∣ MNf −P f (τ )
∣∣∣≤ε

d0σv
γ

σvγ + M
Nf
Yf
P
(N(τ)
Nf

=
M

Nf

)

+
∑

M :

∣∣∣ MNf −P f (τ )
∣∣∣>ε

d0σv
γ

σvγ + M
Nf
Yf
P
(N(τ)
Nf

=
M

Nf

)
.
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As far as ∣∣∣∣∣
∑

M :

∣∣∣ MNf −P f (τ )
∣∣∣≤ε

d0σv
γ

σvγ + M
Nf
Yf
P
(N(τ)
Nf

=
M

Nf

)

−
∑

M :

∣∣∣ MNf −P f (τ )
∣∣∣≤ε

d0σv
γ

σvγ + P f (τ)Yf
P
(N(τ)
Nf

=
M

Nf

)∣∣∣∣∣ ≤ ε d0P f (τ)
and

∑
M :

∣∣∣ MNf −P f (τ )
∣∣∣>ε

d0σv
γ

σvγ + M
Nf
Yf
P
(N(τ)
Nf

=
M

Nf

)
≤ δd0

for all sufficiently large Nf ≥ N̄ we get∣∣∣∣∣E
( d0σv

γ

σvγ +N(τ)Yf

)
− d0σv

γ

σvγ + P f (τ)Yf

∣∣∣∣∣ ≤ ε d0P f (τ) + δd0.
Hence, (4.19) holds true. Proposition 3 is proved.
Combing Propositions 2 and 3 we arrive to the following concluding result:
Proposition 4. An optimal R&D and manufacturing leader’s policy in problem (P )

exists. If there is a constant Yf such that for all sufficiently large Nf the equality Nfyf =
Yf takes place then the following asymptotical formula for the maximal value J∗ of the
functional J holds true:

lim
Nf→∞

J∗ = max
u≥0,v>0

∫∞
0

[
d0σv

γ

σvγ+

(
1−e−βuf

τ2
2

)
Yf

− (p1u+ p2v)
]
e−ατ−ρu

τ2

2 dτ

α
∫∞
0 e

−ατ−ρu τ2
2 dτ

. (4.22)

Formula (4.22) gives a tool for analytical and numerical analysis of optimal leader’s
strategies in the case of large number of identical followers.

5 Numerical simulations and discussion

In this section, using numerical simulations, we analyze some features of the developed
model in the case when the technological leader competes with a large number of identical
followers. In this situation the asymptotics for the optimal value J∗ of the leader’s goal
functional is given by formula (4.22).
In the reference case (see the table below), the leader invests 10 units of corresponding

resources in both R&D and manufacturing. Further, the leader’s production rate is equal
to 50. Hence, at the initial time T0 = 0, when there are no followers operating on the
market yet, the price of the unit of the product is 20 because the market size is assumed
to be 1,000. Thus, the leader’s profit is 800 at the starting instant of time T0 = 0. This
profit is very high in respect to the level of total investment (200). However, at some
instant of time t∗ > 0 (E(t∗) � 1.542) the total followers’ instantaneous production level
will be 300. It is in 6 times larger than the instantaneous leader’s production. From the
dynamic point of view, these competition conditions are rather severe.
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u Input volume of the leader’s investment in R&D 10
v Input volume of the leader’s investment in manufacturing 10
p1 Price of the unit of the resource invested in R&D 10
p2 Price of the unit of the resource invested in manufacturing 10
α Discount rate 0.1
ρ Leader’s efficiency of R&D 0.1
σ Leader’s level of productivity 5
γ Leader’s marginal productivity 1
d0 Market size 1000
β Followers’ efficiency of R&D 0.1
uf Input volume of a typical follower’s investment in R&D 3
Yf Potential followers’ penetration size 1000

Table: Model Parameters in Reference Case.

Figure 2 demonstrates simulation results in the reference case. The vertical axis indi-
cates the mean value of accumulated discounted leader’s profit, and two horizontal axes
indicate the leader’s instantaneous R&D and manufacturing investment levels respectively.
The surface represents the shape of the function

χ(u, v) =

∫∞
0

[
d0σvγ

σvγ+

(
1−e−βuf

τ2
2

)
Yf

− (p1u+ p2v)
]
e−ατ−ρu

τ2

2 dτ

α
∫∞
0 e

−ατ−ρu τ2
2 dτ

.

Due to Proposition 4 the maximal value of accumulated discounted leader’s profit corre-
sponds to the maximum value of function χ(u, v); and values u∗ ≥ 0 and v∗ > 0, which
maximize χ(u, v), are the leader’s optimal time-invariant R&D and manufacturing invest-
ment strategies respectively.
We perform sensitivity analysis of the model in respect to the following parameters:

i) Market size (demand) d0;

ii) R&D price p1;

iii) Discount rate α;

iv) Productivity of the leader γ;

v) R&D efficiency of the leader ρ;

vi) Level of a typical follower’s investment in R&D uf (level of competition).

The effects of parameters are easily predictable in some areas and vague in the others.
One can expect that higher demand will cause higher levels of the leader’s both optimal
R&D and manufacturing investment levels, and also a higher value of the accumulated
discounted profit. Also, one can expect that higher R&D price will cause lower level of
the leader’s optimal R&D investments and lower accumulated profit. Higher discount rate
means lower present value of future profit. So, it will cause lower optimal R&D investment
and lower accumulated profit. It is obvious that higher productivity of the leader yields
higher accumulated profit. However, it is vague whether higher productivity causes higher
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Figure 2: Shape of Function χ(u, v) in Reference Case. Maple Simulation.

Figure 3: Sensitivity Analysis in Market Size.

optimal R&D and manufacturing investments. The expectation for the effect of the leaders
productivity is similar to the expectations for the effects of the leader’s R&D efficiency
and the level of competition. Higher R&D leader’s efficiency yields higher accumulated
profit and higher level of competition yields lower accumulated profit. However, effects
of both the leader’s R&D efficiency and the level of competition to the leader’s optimal
R&D and manufacturing investments are vague.
1) Sensitivity in the market size.
Figure 3 demonstrates the results of sensitivity analysis in the value of market size.

Higher market size, it means relatively strong demand, yields higher leader’s accumulated
profit, and higher optimal R&D and manufacturing investments. It is basically consistent
with the expectations. This analysis shows that higher market size stimulates rapid new
products development through the higher R&D investments. It suggests that the product
life cycle would become shorter and shorter in the industry where the demand rapidly
increases. However, despite that, the demand growth is very fast in the semiconductor
industry but the product’s life cycle is relatively stable. This difference is due to the fact
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Figure 4: Sensitivity Analysis in R&D Price.

that the leader’s decision makings are different in the case of the increasing market and
in the case of the stable one. It means that the model should be extended to the case of
increasing markets.
2) Sensitivity in R&D price.
Figure 4 demonstrates the result of sensitivity analysis in R&D price. Higher R&D

price yields lower accumulated profit of the leader and causes lower optimal R&D in-
vestments. It is basically consistent with the expectations. Optimal manufacturing in-
vestments become larger as optimal R&D investments become smaller. However, from
the quantitative point of view, the increase of optimal manufacturing investments is not
equivalent to the decrease of optimal R&D investments. Optimal level of manufacturing
investments is not so sensitive to the change of R&D price. This is because the market size
and productivity of the leader are fixed in the model. The relatively large sensitivity of the
level of optimal R&D investments in R&D price suggests that the decreasing of R&D cost
would be very effective political instrument for the fostering new products development.
3) Sensitivity in discount rate.
Figure 5 demonstrates the result of sensitivity analysis in discount rate. Higher dis-

count rate yields lower accumulated profit, and also causes lower optimal R&D investment.
It is basically consistent with the expectations. The effect of discount rate to the optimal
manufacturing investment level is very small. If the financial market is perfect competi-
tive, then discount rate is equal to the interest rate. In this case, the rise of the interest
rate decelerates the product development through the decreasing of the level of R&D
investment.
4) Sensitivity in the leader’s productivity.
Figure 6 demonstrates the result of sensitivity analysis in the leader’s productivity. The

result is basically consistent with the expectations. Higher productivity yields higher ac-
cumulated profit. Below a certain productivity level (in this case, 0.9 for R&D investments
and 1.3 for manufacturing investments), higher productivity causes higher optimal R&D
and manufacturing investments. While, above the threshold, higher productivity causes
lower optimal R&D and production investments. High productivity brings the strong dom-
inant power to the leader. In such situation, the leader can earn sufficient profit even in
the case of relatively low R&D and manufacturing investments. Thus, higher productivity
of the leader provides a negative impact on the new products development through the
leaders dominant power. It is interesting that this relatively simple model can handle the
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Figure 5: Sensitivity Analysis in Discount Rate.

Figure 6: Sensitivity Analysis in Productivity of Leader.

monopolistic situation. Note, that the leader’s productivity is assumed to be fixed in this
model. The result of this simulations suggests that it should be interesting to analyse how
the productivity affects industrial dynamics by learning effects or R&D investments. It
produces a new dilemma which the leader should consider: what is the an optimal balance
between R&D and manufacturing investment levels?
5) Sensitivity in the leader’s R&D efficiency.
Figure 7 demonstrates the result of sensitivity analysis in the leader’s R&D efficiency.

It is basically consistent with the expectations. Higher leader’s R&D efficiency yields
higher accumulated profit. Above a certain R&D efficiency level, higher R&D efficiency
causes lower optimal R&D and manufacturing investments. While, below the threshold,
higher R&D efficiency causes higher optimal R&D and manufacturing investments. It
is the similar result to the one of sensitivity analysis in the productivity of the leader.
However, the effect of the leaders’s productivity to the accumulated profit is larger than
the effect of the leader’s R&D efficiency. This is because the leader’s productivity increases
its accumulated profit directly through the decreasing of the production cost, while the
R&D efficiency defends only from the penetration of the followers.
6) Sensitivity in the level of competition .
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Figure 7: Sensitivity Analysis in R&D Efficiency of Leader.

Figure 8: Sensitivity Analysis in Competition Level.

Figure 8 demonstrates the result of sensitivity analysis in the level of competition.
It is consistent with the expectation that the harder competition conditions yield less
leaders accumulated profit. For optimal R&D and manufacturing investment policies, we
see the concave curves for both optimal levels of R&D and manufacturing investments
respectively. Below a certain level of competition (in this case, 4.1), higher competition,
which means higher penetration rate of the followers, causes higher optimal R&D and
manufacturing investments. While, above the threshold, higher competition causes lower
levels of both optimal R&D and manufacturing investments. This result means that it
is very important for the leader to know what kind of investment strategies the followers
take. And of course, it is also very important for the followers to know what kind of
investment strategy the leader takes when they decide their strategies. At this moment,
the model does not take not into account the followers decision-making process. So, it
should be exptended in this direction.
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6 Concluding remarks

Innovation race is one of the most important forms of the technological dynamics. However,
due to its complicated nature, this process is not still deeply understood.
In present paper we consider the innovation race from the point of view of a technologi-

cal leader. We develop a dynamic model of optimal investment in R&D and manufacturing.
The developed model is based on natural assumptions concerning probabilistic features of
innovation processes. Nevertheless, our main result (Proposition 4) is completely deter-
ministic. It provides a useful tool for analytic analysis and numerical simulations.
In the case when the technological leader competes with a large number of identical

followers, the following effects of the model parameters are obtained due to the numerical
simulations:

i) Higher demand yields higher accumulated profit of the leader and higher optimal
R&D and manufacturing investments;

ii) Higher R&D price yields lower accumulated profit of the leader and lower optimal
R&D investments. It causes relatively stable optimal manufacturing investments;

iii) Higher discount rate yields lower accumulated profit and causes lower optimal R&D
investments level. It has a little effect to the manufacturing investments level;

iv) Higher productivity of the leader yields higher accumulated profit. Below a certain
productivity level, higher productivity causes higher optimal R&D and manufac-
turing investments. While, above the threshold, higher productivity causes lower
optimal R&D and manufacturing investments;

v) Higher R&D efficiency of the leader yields higher accumulated profit. Above a certain
R&D efficiency level, higher R&D efficiency causes lower optimal R&D and man-
ufacturing investments. While, below the threshold, higher R&D efficiency causes
higher optimal R&D and manufacturing investments;

vi) Higher level of competition yields smaller leader’s accumulated profit. Below a cer-
tain competition level, higher competition, which means higher penetration rate of
the followers, causes higher optimal R&D and manufacturing investments. While,
above the threshold, higher competition causes lower optimal R&D and manufac-
turing investments.

For decision making analysis, the concave character of dependances of the optimal
levels of both leader’s R&D and manufacturing investments from the competition level is
especially interesting. If the same character of dependance of optimal follower’s R&D and
manufacturing investment startegies from the leader’s R&D investment policy will appear
also in a complementing model, treating the innovation race from the follower’s point of
view, then multiple equilibria can happen. If so, we can expect an explanation of the
difference of average firms’ investment levels between countries in the same industry along
with the comparative institutional analysis.
We believe that the developed approach could be extended to the following situations:

i) Increasing demand size;

ii) Innovation processes with learning effects;

iii) Follower’s decision making case;

iv) Leader-leader and leader-challenger cases.
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