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Abstract

We use game theory to construct a model of investment in gas pipeline projects competing
for a regional gas market. The model is designed as a multi-player game with integral
payoffs, in which times of entering the market act as players’ strategies. For each player,
we identify the location of player’s best responses to strategies chosen by other players.
On this basis, we reduce the original game to a game with a finite number of strategies
for each player. We introduce a regularity condition and for a regular game of timing
prove the existence of a Nash equilibrium. An application of this result to a symmetric
game of timing allows us to give the entire description of the set of all Nash equilibrium
points. Finally, we construct a finite algorithm for finding player’s best responses and the
Nash equilibrium points in the game. The presented approach can be used to analyze
competition of large-scale technological and energy transportation projects in situations
where the investment periods preceed the periods of sales and the appearence of every
new supplier on the market drastically effects the market price.
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Competition of Gas Pipeline Projects:

A Multi-Player Game of Timing

Sergey A. Brykalov (brykalov@imm.uran.ru)*

Olga N. Golovina (golovina olga@pisem.net)
Arkady V. Kryazhimskiy (kryazhim@iiasa.ac.at, kryazhim@aha.ru)**

1 Introduction

The present paper is motivated by recent IIASA studies on emerging energy infrastructures
in Europe and Asia, including model-based analyses of regional gas pipeline routes (see
Klaassen, et. al., 1999; 2002; 2003; 2004; Golovina, et. al., 2002). We consider a multi-
player game as a model of competition of several gas pipeline projects targeted to a regional
gas market. We base our study on Klaassen, et. al., 2004, where a game of timing for two
competing gas pipeline projects is analyzed in detail and subtle properties of the Nash
equilibrium points in this game are revealed. The considered game of timing is clearly
linked to the well-known problem of choosing a stopping rule for a stochastic process
(Chow, et. al., 1971), and also the problem of determining the termination time in a
differential game (see, e.g., Brykalov, 1997; and Brykalov, 1999). The proposed model
can be used to analyze competition of large-scale technological or energy transportation
projects in general situations where the investment periods preceed the periods of sales
and the appearence of every new supplier on market drastically effects the market price.
The paper is organized as follows. In Section 2 we give a mathematical formulation

of the underlying problem of competition of gas pipelines and describe the basic model,
the multi-player game of timing; also basic assumptions are introduced. In Section 3 we
formulate and prove our main results concerned with the characterization of all players’
best responses and Nash equilibrium points. In Section 4 we employ the results of Section
3 in order to reveal the ‘finite-strategy’ nature of the game; namely we show that in terms
of the Nash equilibrium points, the original game, in which every player has an infinite
number of strategies, is equivalent to a game with finite numbers of players’ strategies.
In Section 5 we introduce a regularity condition and for a regular game of timing prove
the existence of a Nash equilibrium. Applying this result to a symmetric game of timing,
we provide the entire description of the set of all Nash equilibrium points in this game.
In section 6, basing on the results of Section 3, we justify two algorithms for identifying
the players’ best responses and finding all Nash equilibrium points in the game. Section
7 provides conclusions.

*Partially supported by the RFBR, project # 03-01-00228.
**Partially supported by the RFBR, project # 03-01-00737.
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2 Multi-Player Game of Timing

In this section we define our basic object, the game of timing. The game involves n players;
n ≥ 2. We view the players as investors or managers of n competing gas pipeline projects,
which are expected to operate at a regional gas market. The investment process starts at
time t = 0. Player i chooses a duration ti of the investment period for project i, or the
commercialization time for this project. As soon as the commercialization time ti is chosen
and fixed, it is decided that at time ti the construction of pipeline i will be finished and
the period of transporting gas to market through this pipeline will start. In this situiation
gas transported through pipeline i is not available for sale before the comercialization time
ti and it is on sale at every time t ≥ ti (we assume that the period of sales is infinite).
Let Ci(ti) be the total investmet needed for finilizing the construction of pipeline i at

time ti. We will deal with the cost functions Ci(ti) (i = 1, . . . , n) defined on [0,∞) and
taking nonnegative values, and also with the cost reduction rates

ai(ti) = −C′i(ti). (1)

Remark 1 Usually, the prolongation of the construction period reduces the construction
cost; therefore, the cost functions Ci(ti) are usually decreasing (see Klaassen, et. al.,
2004). Here we consider a more general situation and do not assume the monotonicity of
Ci(ti).

We introduce the following assumption.

Assumption 1. Each cost function Ci : [0,∞) �→ (0,∞) (i = 1, . . . , n) satisfies the
following conditions:
(i) Ci is continuous;
(ii) Ci is continuously differentiable everywhere except of (possibly) a finite number of

points, at which both one-sided derivatives of Ci exist and are finite,
(iii) there exists a finite right derivative of Ci at ti = 0.

Note that Assumption 1 is satisfied if all cost functions Ci are continuously differen-
tiable.
Let for every i = 1, . . . , n, every set H ⊂ {1, . . . , i − 1, i + 1, . . .n} and every t > 0,

biH(t) denote the benefit rate player i receives due to sales of gas at time t on the condition
that at this time all pipelines j ∈ H and only those operate on the market together with
pipeline i. At the initial time when player i makes his/her decision on choosing his/her
commercialization time ti, he/she views the benefit rate biH(t) as ’virtual’, since he/she
does not know if t will actually follow ti, i.e., if pipeline i will actally operate on the market
at time t. The benefit rate biH(t) is determined by the cost of extraction of gas in the
gas field i at time t, the cost of transportation of gas from this gas field to the market at
time t, and also by the market price of gas at time t. The market price of gas at time t
depends on the total gas supply; the latter, in turn, depends on H , the set of pipelines
operating on the market at time t; the notation biH(t) reflects the resulting impact of H
on the benefit rate for player i.
Thus, we will deal with the benefit rate functions biH : [0,∞) �→ (−∞,∞) defined for

every i = 1, . . . , n and every set H ⊂ {1, . . . , i− 1, i+ 1, . . .n}.

Remark 2 Usually, the values biH(t) are positive. Here we do impose this constraint and
assume that the benefit rate functions biH can take both positive and negative values.

We assume the following.
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Assumption 2. For every i = 1, . . . , n and every set H ⊂ {1, . . . , i − 1, i+ 1, . . .n}
the benefit rate function biH satisfies the following conditions:
(i) biH is continuous everywhere except of (possibly) a finite number of points, at which

both one-sided limits of its values exist and are finite,
(ii) at t = 0, biH is continuous from the right.

Let us note that the more pipelines operate on the market, the larger is the total gas
supply and the smaller is the price of gas; this effects the benefit rates. We reflect this in
the following assumption.

Assumption 3. If G ⊂ H ⊂ {1, . . . , i − 1, i + 1, . . .n}, G �= H and i �∈ G, then
biG(t) > biH(t) for all t ≥ 0.
The set H determinig the benefit rate function biH can be empty: H = ∅. In this

situation no players, except of player i, operate on the market, and bi∅(t) represents the
‘monopoly’ benefit rate for this player. We assume that at the initial time for each player
the rate of cost reduction exceeds the player’s ‘monopoly’ benefit rate (in this context, see
Assumption 2.2 and Remark 2.1 in Klaassen, et. al., 2004):

Assumption 4. For every i = 1, . . . , n it holds that

ai(0) > bi∅(0). (2)

For every i = 1, . . . , n, let

Ai =
⋃

H⊂{1,...,i−1,i+1,...n}
{t ≥ 0 : ai(t) = biH(t)}. (3)

Geometrically, Ai represents the set of the t coordinates of all points, at which the
graph of the cost reduction rate ai intersects the graphs of the benefit rates biH for all
H ⊂ {1, . . . , i− 1, i+ 1, . . .n}.
Our next assumption is the following.

Assumption 5. For every i = 1, . . . , n the set Ai is finite.

Assumption 5 describes a generic situation: the cases where the graph of ai intersects
the graph of biH infiniely many times for a certain H are, clearly, exceptional.
We denote by Di the set of all points t of discontinuity of the functions ai and biH

for all H ⊂ {1, . . . , i− 1, i+ 1, . . .n}. As follows from Assumptions 1 and 2, the sets Di
(i = 1, . . . , n) are finite.
Given players’ commercialization times t1, . . . , tn, we denote by Gi(t), or, more accu-

rately, by Gi(t|t1, . . . , ti−1, ti+1, . . . , tn) the set of all opponents of player i that occupy the
market at time t:

Gi(t) = Gi(t|t1, . . . , ti−1, ti+1, . . . , tn) = {j �= i : tj ≤ t}. (4)

At every time t ≥ ti, the actual benefit rate bi(t) for player i is clearly determined by
Gi(t):

bi(t) = bi(t|t1, . . . , ti−1, ti+1, . . . , tn) = biGi(t)(t). (5)

The total benefit for player i is

Bi(t1, . . . , tn) =

∞∫
ti

bi(t|t1, . . . , ti−1, ti+1, . . . , tn)dt.
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It is natural to require that the integrals are finite. We formulate this condition in the
following equivalent way:

Assumption 6. For every i = 1, . . . , n∣∣∣∣∣∣
∞∫
0

bi(t|t1, . . . , ti−1, ti+1, . . . , tn)dt

∣∣∣∣∣∣ <∞.

The total profit Pi(t1, . . . , tn) of player i is defined as his/her total benefit minus the
total investment in the construction of pipeline i:

Pi(t1, . . . , tn) = −Ci(ti) +Bi(t1, . . . , tn)

= −Ci(ti) +
∞∫
ti

bi(t|t1, . . . , ti−1, ti+1, . . . , tn)dt. (6)

We consider the following n-person game of timing. The set of strategies of player
i in this game (i = 1, . . . , n) is the set of all positive reals ti representing admissible
commercialization times for project i. Any collection of players’ strategies, (t1, . . . , tn),
determines the payoff Pi(t1, . . . , tn) (6) to each player i; the payoff represents the total
profit of player i received during the entire life period of project i, which includes the
entire investment period and entire period of sailes for pipeline i.

3 Players’ Best Responses

Let us recall two definitions of game theory and apply them to the considered multi-person
game of timing. A strategy ti of player i is called a best response of this player to strategies
t1, . . . , ti−1, ti+1, . . . , tn of players 1, . . . , i− 1, i+ 1, . . . , n if

Pi(t1, . . . , ti−1, ti, ti+1, . . . , tn) = max
si>0
Pi(t1, . . . , ti−1, si, ti+1, . . . , tn). (7)

Note that a point ti at which the maximum is reached is generally not unique; therefore,
each player i can have several best responses to a given collection of strategies of other
players. A collection (t1, . . . , tn) of players’ strategies is called a Nash equilibrium if for
every i = 1, . . . , n, ti is a best response of player i to the strategies t1, . . . , ti−1, ti+1, . . . , tn
of players 1, . . . , i− 1, i+ 1, . . . , n (see, e.g., Owen, 1968). A Nash equilibrium illustrates
a situation, in which none of the players feels a need to change his/her strategy provided
all other players keep their choices.
Below we will use the formula

∂

∂ti
Pi(t1, . . . , tn) = ai(ti)− bi(ti|t1, . . . , ti−1, ti+1, . . . , tn), (8)

which follows from (6) and (1).
The next proposition specifying the location of the players’ best responses is key in

our analysis.

Proposition 1 Let ti be a best response of player i to strategies t1, . . . , ti−1, ti+1, . . . , tn
of players 1, . . . , i− 1, i+ 1, . . . , n. Then ti ∈ Ai ∪Di.
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Proof. For fixed t1, . . . , ti−1, ti+1, . . . , tn, the function

ϕ(t) = Pi(t1, . . . , ti−1, t, ti+1, . . . , tn)

where t ∈ [0,∞) is continuous and piecewise continuously differentiable due to Assump-
tions 1, 2, and formulas (6), (5) and (4). On every closed interval a continuously differen-
tiable function reaches its maximum value either at the end points of the interval, or at its
interior points, at which the derivative of the function is zero. Therefore, ϕ(t) reaches its
maximum value on [0,∞) at points, at which its derivative is either zero or discontinuous,
and also at t = 0. It follows from (8) that

ϕ′(t) = ai(t)− bi(t|t1, . . . , ti−1, ti+1, . . . , tn). (9)

Taking into account (5) and (4), we see that all maximim points of ϕ(t) lie in one of the
sets Ai, Di and E = {0, t1, . . . , ti−1, ti+1, . . . , tn}.
Let us show that the maximum points of ϕ(t) do not lie in E \ (Ai ∪Di). Indeed, it

follows from (2) that the derivative (9) is positive at t = 0, which implies that zero is not
a maximum point of ϕ(t). Let us fix some j �= i and show that ϕ(t). does not attain its
maximum at t = tj if tj �∈ Ai ∪ Di. Take a δ > 0 such that the interval (tj − δ, tj + δ)
does not intersect Ai and Di, and the intervals (tj − δ, tj), (tj, tj + δ) do not intersect the
set {t1, . . . , ti−1, ti+1, . . . , tn}. Let us use (5) and (4) and define the subsets G and H of
{1, . . . , i− 1, i+ 1, . . . , n} by

bi(t|t1, . . . , ti−1, ti+1, . . . , tn) =
{
biG(t) if t ∈ (tj − δ, tj),
biH(t) if t ∈ [tj , tj + δ).

Obviously, G ⊂ H , j �∈ G, j ∈ H , G �= H and i �∈ H . By Assumption 3

biG(t) > biH(t) (10)

for all t. As (tj−δ, tj) does not intersect Ai, ϕ′(t) (9) does not change its sign on (tj−δ, tj).
Similarly, we find that ϕ′(t) does not change its sign on (tj, tj + δ). If ϕ

′(t) (9) is negative
on (tj − δ, tj), then ϕ is decreasing on this interval, and obviously, tj is not a maximum
point of ϕ(t). Suppose ϕ′(t) (9) is positive on (tj − δ, tj). Then

ai(t)− biG(t) > 0 (11)

for t ∈ (tj − δ, tj). We know that (tj − δ, tj + δ) does not contain points from Ai. Con-
sequently, (11) holds for all t ∈ (tj − δ, tj + δ). For t ∈ [tj , tj + δ) we have ϕ′(t) =
ai(t)− biH(t) > ai(t)− biG(t) > 0; here we used (9) and (10). Therefore, ϕ(t) increases on
[tj , tj + δ). Again we see that tj is not a maximum point for ϕ(t). We conclude that all
maximum points of ϕ(t) lie in Ai ∪Di. The proposition is proved.

Remark 3 In the proof of Proposition 1, we did not use the assumption that the sets Ai
and Di are finite (see Assumptions 1, 2 and 5); we only used the fact that all points of
these sets were isolated. The assumption that the sets Ai and Di are finite will be essential
for the algorithms described below.

Corollary 1 If (t1, . . . , tn) is a Nash equilibrium, then ti ∈ Ai ∪Di for all i = 1, . . . , n.

Proposition 2 Let i ∈ {1, . . . , n} and there exist a Ti > 0 such that

ai(t) < bi{1,...,i−1,i+1,...,n}(t) (12)

for all t > Ti. Then for any strategies t1, . . . , ti−1, ti+1, . . . , tn of players 1, . . . , i− 1, i+
1, . . . , n there exists a best response ti ∈ Ai ∪Di of player i to these strategies.
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Proof. Let us fix strategies t1, . . . , ti−1, ti+1, . . . , tn of players 1, . . . , i−1, i+1, . . . , n. We
see from (8),(5) and (4) that for all sufficiently large ti

∂

∂ti
Pi(t1, . . . , tn) = ai(ti)− bi{1,...,i−1,i+1,...,n}(ti).

Thus, (12) implies that
∂

∂ti
Pi(t1, . . . , tn) < 0

for all sufficiently large ti. This shows that the maximum value of

ϕ(ti) = Pi(t1, . . . , ti−1, ti, ti+1, . . . , tn)

on [0,∞) equals its maximum value on [0, T ] for some sufficiently large T . The continuous
function ϕ(ti) reaches its maximum value at some point ti ∈ [0, T ]. From (2) it follows
that ti > 0. By Proposition 1 ti ∈ Ai ∪Di. The proof is completed.

4 Reduced Game of Timing

In the game of timing, each player has an infinite set of strategies (see Section 2). In this
section we state that the game of timing is equivalent to an n-player game, in which each
player has a finite number of strategies; the equivalence is understood as the fact that the
sets of the Nash equilibria in both games coincide.
We assume that all conditions of Section 2, including Assumptions 1 - 6, are satisfied.

We define the reduced game of timing as the n-player game, in which Si = Ai ∪ Di is
the set of strategies of player i (i = 1, . . . , n), and the payoff to player i, corresponding
to an arbitrary collection (t1, . . . , tn) ∈ S1 × . . . × Sn of players’ strategies, is given by
Pi(t1, . . . , tn) (6). In the reduced game of timing, a strategy ti of player i is called a best
response of this player to strategies t1, . . . , ti−1, ti+1, . . . , tn of players 1, . . . , i−1, i+1, . . . , n
if

Pi(t1, . . . , ti−1, ti, ti+1, . . . , tn) = max
si∈Si

Pi(t1, . . . , ti−1, si, ti+1, . . . , tn). (13)

A collection (t1, . . . , tn) of players’ strategies is called a Nash equilibrium in the reduced
game of timing if for every i = 1, . . . , n, ti is a best response of player i to the strategies
(t1, . . . , ti−1, ti+1, . . . , tn) of players 1, . . . , i− 1, i+ 1, . . . , n in this game. In this section,
the game of timing defined in Section 2 will be referred to as the original game of timing.

Proposition 3 A collection (t1, . . . , tn) of positive values is a Nash equilibrium in the
original game of timing if and only if (t1, . . . , tn) is a Nash equilibrium in the reduced
game of timing.

Proof. Let N 1 be the set of all Nash equilibria in the original game of timing and N 2 be
the set of all Nash equilibria in the reduced game of timing. We must show that N 1 = N 2.
Denote by F 1i (t1, . . . , ti−1, ti+1, . . . , tn) the set of all best responses of player i to strate-

gies t1, . . . , ti−1, ti+1, . . . , tn of players 1, . . . , i−1, i+1, . . . , n in the original game of timing,
and by F 2i (t1, . . . , ti−1, ti+1, . . . , tn) the set of all best responses of player i to strategies
t1, . . . , ti−1, ti+1, . . . , tn of players 1, . . . , i− 1, i+ 1, . . . , n in the reduced game of timing.
By Proposition 1

F 1i (t1, . . . , ti−1, ti+1, . . . , tn) ⊂ Si. (14)

Let us prove that
N 1 ⊂ N 2. (15)
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By the definition of a Nash equilibrium in the original game of timing we have

N 1 = {(t1, . . . , tn) : ti ∈ F 1i (t1, . . . , ti−1, ti+1, . . . , tn) (i = 1, . . . , n)}. (16)

and by the definition of a Nash equilibrium in the reduced game of timing we have

N 2 = {(t1, . . . , tn) : ti ∈ F 2i (t1, . . . , ti−1, ti+1, . . . , tn) (i = 1, . . . , n)}. (17)

Let (t1, . . . , tn) ∈ N 1. By (16) ti ∈ F 1i (t1, . . . , ti−1, ti+1, . . . , tn) for every i = 1, . . . , n.
Hence by (14) ti ∈ Si for every i = 1, . . . , n. Therefore, ti ∈ F 2i (t1, . . . , ti−1, ti+1, . . . , tn)
for every i = 1, . . . , n. Consequently by (17) (t1, . . . , tn) ∈ N 2. Since (t1, . . . , tn) is an
arbitrary point in N 1, we conclude that the (15) holds.
Let us prove the opposite relation:

N 2 ⊂ N 1. (18)

Take an arbitrary (t1, . . . , tn) ∈ N 2. By (17) for every i = 1, . . . , n we have ti ∈
F 2i (t1, . . . , ti−1, ti+1, . . . , tn); equivalently, ti ∈ Si and (13) holds. By Proposition 1 the
right-hand sides in (13) and in (7) coincide. Hence, ti ∈ F 1i (t1, . . . , ti−1, ti+1, . . . , tn) for
every i = 1, . . . , n. By (16) (t1, . . . , tn) ∈ N 1. Thus, (18) is stated. Now (15) and (18)
yield N 1 = N 2. The proposition is proved.

5 Regular Game of Timing

As it is known in theory of games (see, e.g., Owen, 1968) a finite-strategy n-person game
may have no Nash equilibrium. The reduced finite-strategy n-person game of timing
having the same Nash equilibria as the original game of timing (see Proposition 3) has
a specific structure; the latter can be used to carry out a detalied analysis of the issue
of the existence of a Nash equilibrium in this game. Klaassen, et. al., 2004, established
the existence of a Nash equilibrium in a general 2-player game of timing and provided an
ultimate description of the set of the Nash equilibrium points in this game. In this section
we suggest the first step in the analysis of conditions sufficient for the existence of a Nash
equilibrium point in the n-person game of timing. Again, we suppose that Assumptions 1
– 6 introduced in Section 2 are fulfilled.
The game of timing will be said to be regular if for every i = 1, . . . , n the cost reduction

function ai is continuous and there is a permutation (i1, . . . , in) of the n-tuple (1, . . . , n)
such that
(i) for every k, j = 1, . . . , n such that j �= k the benefit rate function b

ikH
j
k
where

Hjk = {i1, . . . , ij} \ {ik} (19)

is continuous;
(ii) for every k = 1, . . . , n there is the unique s∗k > 0 such that aik(s

∗
k) = bikHkk

(s∗k);

(iii) s∗k ≤ s∗k+1 (k = 1, . . . , n− 1);
(iv) for every k, j = 1, . . . , n such that j < k one has aik(t) ≥ bikHjk (t) for all t ∈

[s∗j , s
∗
j+1] if k > 1 and for all t ∈ [0, s∗1] if k = 1;
(v) for every k, j = 1, . . . , n such that j > k one has aik(t) ≤ bikHjk(t); for all t ∈

[s∗j−1, s
∗
j ] if j < n and for all t ≥ s∗j if j = n.

The permutation (i1, . . . , in) will be called a regular permutation of players and the
n-tuple (s∗1, . . . , s

∗
n) will be called the strategy permutation associated with (i1, . . . , in).
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Proposition 4 Let the game of timing be regular, (i1, . . . , in) be a regular permutation
of players and (s∗1, . . . , s

∗
n) be the strategy permutation associated with (i1, . . . , in). Then

(t∗1, . . . , t
∗
n) where t

∗
ik
= s∗k (k = 1, . . . , n) is a Nash equilibrium.

Proof. Let k ∈ {1, . . . , n} and

ϕ(t) = Pik(t
∗
1, . . . , t

∗
ik−1, t, t

∗
ik+1
, . . . , t∗n).

It is sufficient to show that t∗ik = s
∗
k is a maximum point of ϕ(t) on [0,∞). By (8), (5) and

(4)
ϕ′(t) = aik(t)− bik(t) (20)

where
bik(t) = bikGik (t)

(t),

Gik(t) = {ij : t∗ij ≤ t, ij �= ik} = {ij : s
∗
j ≤ t, ij �= ik}

Let Hjk be defined by (19). Since s
∗
j ≤ s∗j+1 for all j = 1, . . . , n− 1, we have

Gik(t) =

⎧⎪⎨
⎪⎩
∅ if t ∈ [0, s∗1),
Hj−1k if t ∈ [s∗j−1, s∗j) (j = 2, . . . , n),
Hnk if t ≥ s∗n.

Hence,

bik(t) =

⎧⎪⎨
⎪⎩
bik∅(t) if t ∈ [0, s∗1),
b
ikH

j−1
k
(t) if t ∈ [s∗j−1, s∗j) (j = 2, . . . , n),

bikHnk (t) if t ≥ s∗n.

First let consider j = k. It follows from the definition of Hjk that bikHkk
(t) = bikHk−1k

(t) for

all t ∈ [0,∞). Hence,
aik(s

∗
k) = bikHkk

(s∗k) = bikHk−1k
(s∗k). (21)

The fact that s∗k is uniquely defined by (21) and Assumptions 3 and 4 yield that aik(t) >
b
ikH

k−1
k
(t) for all t ∈ [0, s∗k) and every k = 1, . . . , n.

If k > 1, then by the definition of a regular game of timing (see (iv)) for every j =
1, . . . , n such that j < k we have aik(t) ≥ bikHj−1k

(t) for all t ∈ [s∗j−1, s∗j ] if j > 1 and for
all t ∈ [0, s∗j] if j = 1. Therefore, aik(t) ≥ bik(t) for all t ∈ [0, s∗k]. Now (20) shows that
ϕ(t) is increasing on [0, s∗k]. Using a similar argument, we state that ϕ(t) is decreasing on
[s∗k,∞). Hence, s∗k is a maximum point of ϕ(t) on [0,∞). The proposition is proved.
Now we will show that the symmetric game of timing, in which all players are identical,

is regular; on this basis we will describe the set of all Nash equilibrium points in this game.
A formal definition is the following. The game of timing will be said to be symmetric if
there are real-valued continuous functions a, b1, . . . , bn on [0,∞) such that
(i) ai = a for every i = 1, . . . , n;
(ii) bj(t) > bj+1(t) (t ≥ 0) for every j = 1, . . . , n− 1;
(iii) for every i, j = 1, . . . , n, and every (j−1)-element set H ⊂ {1, . . . , i−1, i+1, . . . , n}

it holds that biH = b
j;

(iv) for every j = 1, . . . , n there is the unique τj > 0 such that a(τj) = b
j(τj); moreover,

a(t) > bj(t) for all t ∈ [0, τj) and a(t) < bj(t) for all t > τj.

Remark 4 Assumptions (ii) and (iv) imply that τj < τj+1 (j = 1, . . . , n− 1).
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Proposition 5 Let the game of timing be symmetric. Then
1) the game of timing is regular;
2) for every permutation (i1, . . . , in) of the n-tuple {1, . . . , n} the collection (t1, . . . , tn)

of players’ strategies where tk = τik (k = 1, . . . , n) is a Nash equilibrium;
3) every Nash equilibrium (t1, . . . , tn) has the structure described in statement 2, i.e.,

tk = τik (k = 1, . . . , n) where (i1, . . . , in) is a permutation of the n-tuple {1, . . . , n}.

Proof. 1. Let a and b1, . . . , bn be the functions introduced in the definition of the
symmetric game of timing. Now we refer to the definition of the regular game of timing.
Clearly, for every i = 1, . . . , n the cost reduction function ai = a is continuous. Let us
show that (1, . . . , n) is a regular permutation of players and

(s∗1, . . . , s
∗
n) = (τ1, . . . , τn) (22)

is the regular strategy permutation associated with (1, . . . , n). The continuity of the
functions b1, . . . , bn and assumption (iii) in the definition of the symmetric game of timing
implies that assumption (i) in the definition of the regular game of timing is satisfied. From
assumptions (iii), (iv) in the definition of the symmetric game of timing and Remark 4
obviously follows the validiy of assumptions (ii) and (iii) in the definition of the regular
game of timing. Let us prove the validity of assumption (iv) in the definition of the regular
game of timing. Take arbitrary k, j = 1, . . . , n such that j < k. Consider an arbitrary
t ∈ [s∗j , s∗j+1] = [τj, τj+1] if k > 1 or an arbitrary t ∈ [0, s∗1] = [0, τ1] if k = 1. We must
state that

ak(t) ≥ bkHj
k
(t) (23)

where (see (19))
Hjk = {1, . . . , j} \ {k} = {1, . . . , j}.

By assumptions (i) and (iii) in the definition of the symmetric game of timing

ak(t) = a(t), bkHjk
(t) = bj+1(t); (24)

since t ≤ τj+1, assumption (iv) in the definition of the symmetric game of timing yields
a(t) ≥ bj+1(t). Combining with (24), we arrive at (23). Thus, assumption (iv) in the
definition of the regular game of timing is fulfilled. Similarly, we state the validity of
assumption (v) in the definition of the regular game of timing. Thus, (1, . . . , n) is a
regular permutation of players and (22) is the regular strategy permutation associated
with (1, . . . , n). Statement 1 is proved.
2. Reordering the players and using statement 1, we find that an arbitrary permutation

(i1, . . . , in) of the n-tuple {1, . . . , n} is a regular permutation of players and the collection
(t1, . . . , tn) of players’ strategies where tk = τik (k = 1, . . . , n) the regular strategy permu-
tation associated with (i1, . . . , in). By Proposition 4 (t1, . . . , tn) is a Nash equilibrium.
3. Let (t1, . . . , tn) be an arbitrary Nash equilibrium. By Corollary 1

ti ∈ Ai ∪Di (i = 1, . . . , n); (25)

here Di the set of all points of discontinuity of ai and biH withH ⊂ {1, . . . , i−1, i+1, . . .n},
and Ai is given by (3). Since ai = a is continuous and biH coincides with one of the
continuous functions b1, . . . , bn, the set Di is empty and Ai = {τ1, . . . , τn}. Thus, (25) is
specified as

{t1, . . . , tn} ⊂ {τ1, . . . , τn}. (26)
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Suppose {t1, . . . , tn} = {τ1, . . . , τn}. Then tk = τik (k = 1, . . . , n) where (i1, . . . , in) is a
permutation of the n-tuple {1, . . . , n}, and statement 3 is proved.
Now suppose {t1, . . . , tn} is a struct subset of {τ1, . . . , τn}. We exclude this situation

by contradiction and thus finalize the proof. Obviously, we have ti = tk = τm for some
i, k,m ∈ {1, . . . , n}, i �= k. Let

ϕ(t) = Pi(t1, . . . , ti−1, t, ti+1, . . . , tn). (27)

Since ti = τm maximizes ϕ(t) over (0,∞), we have

ϕ′(τm) = 0. (28)

By (8), (5) and (4)
ϕ′(t) = ai(t)− bi(t) = a(t)− bi(t) (29)

where
bi(t) = biGi(t)(t),

Gi(t) = {j �= i : tj ≤ t}. (30)

By assumption (iii) in the definition of the symmetric game of timing we have

biGi(t)(t) = b
p(t)+1(t)

where p(t) is the number of elements in Gi(t). Now (29) is specified as

ϕ′(t) = a(t)− bp(t)+1(t). (31)

Suppose m = 1. Since k ∈ Gi(τm), it holds that p(τm) ≥ 1. Then by assumptions (iii)
and (ii) in the definition of the symmetric game of timing

bp(τm)+1(τ1) < b
1(τ1)

and (31)
ϕ′(τ1) = a(τ1)− bp(τm)+1(τ1) > a(τ1)− b1(τ1) = 0;

the latter equality follows from assumption (iv) in the definition of the symmetric game
of timing. The obtained inequality ϕ′(τ1) > 0 contradicts (28).
Now suppose m > 1. If p(τm) ≥ m, we arrive at a contradiction using the same

argument as in the case of m = 1 (in which we simply replace 1 by m). Consider the case
where p(τm) ≤ m− 1. Let p(τm) < m− 1. By assumptions (iii) and (ii) in the definition
of the symmetric game of timing

bi(τm) = biGi(τm)(τm) = b
p(τm)+1(τm) > b

m(τm).

By (31)
ϕ′(τm) = a(τm)− bp(τm)+1(τm) < a(τm)− bm(τm) = 0

(see assumption (iv) in the definition of the symmetric game of timing). The obtained
inequality ϕ′(τm) < 0 contradicts (28).
Finally, let p(τm) = m− 1. Referring to the definition of Gi(t) (see (30)), we find that

Gi(t) = Gi(τm−1) ⊂ Gi(τm) \ {k} for all t ∈ (τm−1, τm). Hence,

p(t) = p(τm−1) ≤ p(τm)− 1 = m− 2 (t ∈ (τm−1, τm)).
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Then by assumption (ii) in the definition of the symmetric game of timing

bp(t)+1(t) ≥ bm−1(t) (t ∈ (τm−1, τm)). (32)

By assumption (iv) in this definition for all t ∈ (τm−1, τm] we have a(t) < bm−1(t), which
in view of (32) implies

a(t) < bp(t)+1(t) (t ∈ (τm−1, τm)).

Now (31) yields that ϕ′(t) < 0 for all t ∈ (τm−1, τm). Therefore,

ϕ(τm−1) = ϕ(τm)−
∫ τm
τm−1

ϕ′(t)dt > ϕ(τm).

Coming back to the definition of ϕ(t) (see (27)), we conclude that ti = τm is not a
best response of player i to the strategies t1, . . . , ti−1, ti+1, . . . , tn of players 1, . . . , i −
1, i + 1, . . . , n. Therefore, (t1, . . . , tn) is not a Nash equilibrium, which contradicts the
assumption. Statement 3 is proved.

6 Solution Algorithms

Here we describe an algorithm that allows a player to find all his/her best responses to
a given collection of strategies of other players, and an algoritm for verifying if a given
collection of strategies forms a Nash equilibrium. With the help of these algorithms, one
can find the set of all Nash equilibria in the game of timing. The algorithms are based
on Proposition 1, Proposition 2 and Corollary 1. We suppose that all conditions given in
Section 2, including Assumptions 1 - 6, are valid. Recalling Proposition 2, we also assume
the following.

Assumption 7. For every i = 1, . . . , n there exists a Ti > 0 such that for all t > Ti
the inequality (12) holds.

Consider the following

Best Response Algorithm.
The input data of the algorithm include:
(i) an integer i located between 1 and n;
(ii) the cost function Ci of player i;
(iii) the benefit rate functions biH of player i for all H ⊂ {1, . . . , i− 1, i+ 1, . . . , n};
(iv) strategies t1, . . . , ti−1, ti+1, . . . , tn of players 1, . . . , i− 1, i+ 1, . . . , n.
The output of the algorithm is a finite set S of all best responses of player i to strategies

t1, . . . , ti−1, ti+1, . . . , tn of players 1, . . . , i− 1, i+ 1, . . . , n.
The algorithm is organized as follows.
Step 1. Use definition (1) to find the cost reduction function ai.
Step 2. Use definition (3) to find the finite set Ai.
Step 3. Find the finite set Di of all points of discontinuity of ai and biH for all

H ⊂ {1, . . . , i− 1, i+ 1, . . . , n}.
Step 4. Compose the union Ai ∪Di.
Step 5. With the help of (6), (5) and (4) compute the values v(s) = Pi(t1, . . . , ti−1, s, ti+1, . . . , tn)

for all s ∈ Ai ∪Di.
Step 6. Form the output set S as the collection of all maximizers of v(s) as s runs

through the set Ai ∪Di.
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Propositions 1, and 2 prove that the output S of the Best Response Algorithm is
indeed the set of all best responses of player i to strategies t1, . . . , ti−1, ti+1, . . . , tn of
players 1, . . . , i− 1, i+ 1, . . . , n.
Recalling the definition of a Nash equilibrium, we easily find that the next algorithm

verifies if a given collection of players’s strategies is a Nash equilibrium.

Nash Equilibrium Verification Algorithm.
The input data of the algorithm include:
(i) the cost functions Ci and benefit rate functions biH for all i = 1, . . . , n and all

H ⊂ {1, . . . , i− 1, i+ 1, . . . , n};
(ii) a collection (t1, . . . , tn) of players’s strategies.
The output of the algorithm is YES if (t1, . . . , tn) is a Nash equilibrium, and NO

otherwise.
The algorithm is organized as follows.
Step 1. Put i := 1.
Step 2. For player i and the strategies t1, . . . , ti−1, ti+1, . . . , tn of players 1, . . . , i−1, i+

1, . . . , n apply the Best Response Algorithm and find the set S of all best responses of
player i to these strategies.
Step 3. If ti �∈ S, finish the work of the algorithm with the output NO.
Step 4. If ti ∈ S and i < n, set i := i+ 1 and return to Step 2.
Step 5. If ti ∈ S and i = n, finish the work of algorithm with the output YES.

Remark 5 By Corollary 1 the set of all Nash equilibria (t1, . . . , tn) is finite; more ac-
curately, it lies in the finite set N = (A1 ∪ D1) × . . .× (An ∪ Dn). Applying the Nash
Equilibrium Verification Algorithm to all (t1, . . . , tn) ∈ N , we find all Nash equilibria in
the game of timing.

7 Conclusion

The paper develops a game-theoretical approach to planning investments within a group
of competing large-scale projects. To be particular, we focus on gas pipeline projects
competing for a regional gas market. Our approach assumes that investment policies are
determined by projects’ commercialization times, at which the construction periods are
terminated and periods of sales start. The assumption is motivated by the observation that
for each project the choice of its commercialization time determines the entire construction
plan, including the optimal regime of the allocation of resources. We define a multi-player
game of timing as a model of the investment process. In this game player’s strategies
are commercialization times and player’s payoffs are the entire profits gained during the
entire life periods of the corresponding gas pipeline projects. Our key result specifies
the location of the player’s best responses to any choice of the opponents. Namely, we
show that generically the player’s best responses are concentrated in a finite number of
pre-determined points in time. This finding reveals a ‘finite-strategy’ nature of the game
of timing and implies that the number of Nash equilibrium points in this game is finite.
For a regular game of timing we prove the existence of a Nash equilibrium and for a
symmetric game of timing provide the entire description of the set of all Nash equilibrium
points. Finally, we construct a finite algorithm for finding player’s best responses, and
another finite algorithm that verifies if a given collection of players’ strategies forms a
Nash equilibrium. Using the latter algorithm one can find all Nash equilibria through the
direct examination of a finite number of options.
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