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Abstract

This paper presents an analytical method to solving

a system of differential equations describing a substantial

time-varying feedback automatic control system. The method

provides good results for systems whose characteristic

equations have dominant complex conjugated roots. As an

example, a five-order system was investigated. The results

of the computer simulation proved the validity of applying

this method to the above mentioned class of systems.
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The Averaging Method Applied to the Investigation of

S~bstantial Tiree Varying Systems of a Higher Order

It is well known that the averaging method originated in

the area of planetary mechanics and that its development was

connected mainly with problems in this area. To solve these

problems different methods of averaging were applied (those of

Gauss, Delone, and others). The main idea of the averaging

method is that the right parts of complicated differential

equations which describe oscillation or rotation were substituted

by flattened averaged functions which dontain n~ither time in an

obvious form nor quickly changing parameters.

The resulting equations from averaging can be either exactly

integrated or simplified, and after that an important conclusion

concerning the movement investigated both of qualitative and

quantitative character may be drawn.

The well known works of the Dutch scientist Van-der-Pole

are considered as a basis for the systematical application of

the averaging method for investigating non-linear oscillatory

processes in the field of mechanics, radio- and electro- engineering.

He found a basic method for solving non-linear differential

equations describing oscillatory processes in a one-dimensional

system. Due to its simplicity and descriptive character one

then began to a~ply his metnod for investigating oscillatory processeE

Significant results were obtained in the development of

averaging by N.M. Krylov and N.N. Bogoliubov [1], who proved that

the method could be applied when the right parts of averaging
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differential equations are quazi periodical time functions.

They also found a general approach for investigating non-linear

equations. The main idea of this approach is to substitute

variables in such a way that allows for the separation of

"slow changeable" from "quick changeable" variables. Such a

substitution allows for the solution of these equations to be

represented as an asymptotical series, the first part of which

coincides with the solution of Van-der-Pole's method.

The Krylov-Bogoliubov method is worked out by applying those

systems which are described by non-linear equations:

2
X + £f(x,x) + waX = 0

here £ is a small parameter, and

Wo is some constant.

The first approximate solution to equation (1) is

(1 )

x(t) = a(t)Sin[Wot + <I>(t)] (2)

Here the amplitude a(t) and phase <I>(t) can be determined by

equations

where

~(t) =

.
<I> (t) = £

27Tawo

J
27T

f(aSin~,awcos~)cos~d~
o

J
27T

f(aSin~,aw cos~)Sin~d~

o

(3 )

(4 )
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The main advantage of equations (3) and (4) which result

from averaging is that they do not contain time in an obvious

form in their right parts.

The best results of this method used for solving equation

(1) were obtained when the small parameter £ is nearly or equal

to zero.

Apart from the equations of the (1) type there is a wide

class of linear second-order differential equations with time

varying parameters similar in form to equation (1) for which

solution the averaging method can also be applied [2, 3].

The second-order differential equation

2 2
X - 2ax + (a + w )x = a (5 )

which describes a linear time varying system similar to (1) can

be shown as

2 2 2) • 2
X + [a + w - Wo x - 2ax] + wox = a

where

, (6)

and

£f(x,x)

a = a(t)

:1 2 2 •= (a + w - wo)x - 2ax

, w = w(t)

(7)

are time functions.

In this case equations (3) and (4) may be written as follows:

• cos~d~ = aa

.
a = 1

27TWo c 2
[ (a

,

2
+ W

:1

- wo)aSin~ - 2aawocos~]

(8)
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. 1 J2 ~ 2 2 2
cI> = [ (0 + W - w )aSin'¥ - 20aw cos'll]

2naw o 0 00
(9 )

1 2 2 2. Sin'¥d'l' = 2w o
(0 + W W )

0

As a result of integrating the equations (8) and (9), the

approximate solution of equation (2) can be found:

here ao' 9 0 are constants of integration, and

(10)

After double differentiation of (10) we have

x = a o {exp(J
t

01dt)COS(J
t

w1dt + cI>o)w~ + 0 1
o 0

(11)

• exP(Jt 01dt)Sin(Jt w dt + cI> )}
001 0

exp (J: 01dt)COs(J:
.

exp(J:w1dt + cI>0) + 0 1 0 1dt)

· Sin{ 2 Jt 01 dt )Sin(I:w1dt + cI>0) + 0 1 exp( w dt10

+ cI>0) + 0 1 eXP(Jt 01dt)COS(J
t

w1dt + cI>0)w 1} • (12)
o 0
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Equation (5) when taking into account (11) and (12) under

the conditions

i)

(13 )

ii) t = 0

provides the following system:

(14 )

2
Having solved this system of equations relative to a

1
and WI' and

neglecting the values of higher order we obtain

i) a
1 = a - WI

2w 1

2
cr

2
ii) WI = + W

(15)

The differentiating of (15, ii) gives

Finally, (15) can be-shown as

.
wwa 1 = a - .

w
2

)2(a +

2 . 2

WI = a + w

(16)

In the case where the functions a(t) and w(t) change ?lowly

a ~ w~ 0, and so according to (16) a
1

= a, WI = w.
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Thus, the approximate solution to equation (5) may be

written in the following form:

x (t ) = a 0 e xp (ft a (t) d t) Sin (ft w (t) d t + ¢ ) (1 7 )

o 0

where a(t) and w(t) are monotonous time functions.

In the work [3] it was shown that this method could be

applied to investigating time varying systems which are described

with high-order linear differential equations with time varying

coefficients.

where

(18)

d
S = dt (K=O,l. .. ,n)

From the solution of equation (18) in the form (17) one

may presume that the dominant roots in a characteristic

equation

n
F(S) = ~ ~ksk = 0

k=O

correspond to the second-order equation with monotonous

coefficients

2 2 2
S - 2aS + a + w = 0

(19)

(20)
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where

o = 0(t) , w w (t)

The main advantage of this method is the fact that

restrictions are only put on the speed of real and imaginary

changing parts of dominant complex conjugated roots, but not

on the speed of changing parameters in the system. This is

especially important for investigating systems which have a

rather high speed of changing their parameters.

Suppose that the differential equation of a considered

time varying system in reference to output x has the following

. form:

(21 )
+ao(t)x=O

And the system has such parameters that the trajectories of moving

roots of a proper characteristic equation for the whole

interval considered to' t(t o = 0, t = 4 sec) can be illustrated

as shown in Figure 1. (The curves are calculated by applying

the method of "fixed parameters".)

For the solution of a differential equation (21) in the

form of (17) we write the second-order equation (20) corresponding

to the dominant complex conjugated roots (Sl' 82 ),

Having determined the law of changing parameters 0(t) and

w(t), the equation (20) on the whole time interval considered

enables one to find the system's response relative to the output

x.
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The dependence of variables a(t) and wet) from time is

shown in Table 1.

In order to obtain a solution to equation (21) in a

closed analytical form we approximate the step functions

of Table 1 by polynomials of the third-order. So for this

variable one may write

a (t) (22)

The coefficients of the polynomial should be chosen so

that the expression (23) has the minimal value

m
o = L:

i=l
(23)

By putting the coordinates of points (a., t.) in the
1 1

equation (22) one gets m equations with four unknown variables.

3 Z
Cot

1 + C
1

t
1

+ C t + C
3

a
12 1

3 2
Cot 2 + CIt z + Czt z + C

3
= a

2 .........

3 z (24)
Cot i + C t. + C t. + C = a

1 1 2 1 3 3
. . . . . .. . .

3 2

cotm + CItm + C
2

t m + C = a
3 m

According to Legendr's principle the system of conditional

equations (24) in which the number of unknown variables is less

than the number of equations can be reduced to a system of

linear equations
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m m m m
2 3

C
3

+ C
2

l: t. + C l: t
1

+ Co l: t. = l: a.
1 1. 1 i=l 1 i=l 1

i=l 1=

m m m 3
m

~2

C
3

l: t. + C l: t. + C l: t. + C l: t.
1 2 i=l 1 1 i=l 1 0 i=l 1

i=l

m
= l: a.t.

i=l 1 1
(25)

m m m
~

m
2 3 5

C 3
l: t. + C

2
l: t. + C

1
l: t. + Co l: t.

i=l 1 i=l 1 i===l
1 i=l 1

m
2

=== l: a.t.
i=l

1 1

m
3

m .. m
5 m

6
C l: t. + C

2
Z t. + C

1
l: t. + Co l: t.

3. 1 1 i=l 1 i=l 1 i=l 1
1=

m 3
=== l: .t.

i=l a1 1

where the number of unknown variables is equal to the number of

equations. At the same time the minimum of 8 is guaranteed.

The system of equations (25) can be solved by one of the known

methods. In the same way one can approximate the function w{t) .

As a result we find

a(t)

w{t)

3 2
= 0,1455t - 0,7306t + 1,0919t - 3,8284

3 2= -0,0042t + 0,0792t - 0,0493 + 3,0116

The curves a(t) and w{t) are represented in Figure 2.

The approximate solution to equation (21) in the form

(17) was found for the following initial conditions:

X(a) = °
x (O) = 0,105-1­

sec
a{O) = -3,8284

w{O) = 3,0116

(26)
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Here a o and ¢o can be found as a result of differentiating

(17) and substituting the initial conditions (26) both in the

expression received after the differentiation and the equation

(17) .

Finally, the approximate expression for the response

function related to the output in the five-order system can be

written:

x(t)
lJ 3 2

= 0,1701 exp(0,0364t 0,2435t + 0,5459t

- 3,82845t)Sin(- O,OOllt
lJ

+ 0,0264t
3

2
- 0,0246t + 3,9116t + 0,6661)

(27)

The estimated accuracy of solving equation (21) is done by

comparing the results (21) with the results of the computer

simulation.

To solve the equacion (21) by a numerical method on a

digital computer one should bring this equation to a normal

linear form [4]. In order to do this we shall introduce new

unknown functions

ZlJ = x

IV
Zs = x

These unknown functions ZI' Z2' Z3' zlJ' Zs suit the linear

system

·ZI = Z2

·Z2 = Z3 (28)

· cont'd.
Z3 = zlJ
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cont'd (28)

- a (t) z - a (t) z - a (t) z - a (t) z ]
.. 2 3 3 2 .. 1 5

a a (t)

This system can be written in a matrix form:

z = B(t)z

Here the matrix is

(29)

o

o

B(t) = 0

o

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

-a .. (t) -a 3 (t) -a 2 (t) -a 1 (t)

a a (t) a a (t) a a (t) a a (t)

The structural scheme of the received normal linear system

can be shown in Figure 3.

We integrate the system of linear differential equations

with time varying coefficients (29) under the following initial

conditions:

= 0,105-1­
sec

Z2 (0) = 0

z (0) = 0.. z (0) = 0
5

In Figure 4 the curves are drawn showing the response

functions of the system. (1 was obtained by applying the

averaging method, and 2 as a result of digital simulation).

It is obvious that the error which is introduced by

averaging method takes place in the first stage of the system's

response. Later on both curves will practically coincide.
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Table 1. Dependence of Variables o(t) and w(t) from Time.

t(sec) a (t) w (t) t(sec) a (t) w (t)

0 -3,5836 2,9768 2.2 -3,2827 3,2290

0.2 -3,5674 2,9909 2.4 -3,2304 3,2685

0.4 -3,5502 3,0070 2.6 -3,1697 3,3119

0.6 -3,5311 3,0241 2.8 -3,0979 3,3604

0.8 -3,5104 3,0428 3.0 -3,0117 3,4173

1.0 -3,4878 3,0631 3.2 -2,9064 3,4820

1.2 -3,4624 3,0849 3.4 -2,7753 3,5570

1.4 -3,4345 3,1073 3.6 -2,6074 3,6439

1.6 -3,4031 3,1332 3.8 -2,3860 3,7426

1.8 -3,3681 3,1621 3.9 -2,2454 3,7979

2.0 -3,3284 3,1940 4.0 -2,0772 3,8560
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