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Abstract

The uncertainty in the output of a deterministic model,
due to the uncertainty in the parameters of the model, is
analyzed and compared to current procedures of using average
values for the uncertain parameters. The present analysis
considers an analytical rainfall-runoff flood frequency
model where the infiltration parameter is considered as a
stochastic variable. The same conceptual procedure can be
used to analyze fixed but uncertain (unknown) parameters.

Introduction

The analysis of flood frequency using distribution theory
has the basic assumption that the probability of a flood of a
given magnitude is constant and does not change with time.
Thus, basins which change physically with time, due to changes
in the river itself, through channelization for example, or
due to urbanization of the watershed, can not be analyzed
effectively by the distribution theory procedures of flood
frequency analysis.

This problem has been recognized and some procedures have
been applied to estimate the frequency curves. The most

successful methods are those that analyze the rainfall as a
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stochastic process and then estimate the flood discharge by
modelling the physical process of overland flow of the excess
rainfall. This has been done analytically by Eagleson (1972),
and through simulation by Leclerc and Schaake (1973), Ott and
Linsley (1972), and others. Such frequency analyses have
often been criticized (Ibbitt, 1972) on the basis that the
deterministic catchment model has parameters which are
unknown with certainty and whose values seem to be determined
through "intuition" and best guesses. Wood and Rodriguez
(1974) analyzed the uncertainty in the parameters of the
probability distributions of floods by considering the
parameters as random variables and applying Bayesian
statistics. The resulting probability distributions of floods
reflected the uncertainty in their parameters. In an analogous
manner, the uncertainty in the flood frequency curve, due to
uncertainty in the rainfall-runoff simulation modelling, may
be analyzed. The uncertain parameters, whether they are in the
probability density functions of the rainfall model or in the
deterministic runoff model, may be regarded as random variables.
The procedures of Bayesian statistics can then be applied.
While this paper is aimed at simulation modelling, the
vehicle for the analysis will be Eagleson's (1972) analytical
derivation, Eagleson's derivation is used in the analysis,
and the extension to computer simulation modelling is

straightforward.



General Theory of Derived Flood Freguency Analysis

Flood frequency analysis aims at finding the probability
that a flood will have a discharge less than or equal to some
value qp - This probability is defined as the cumulative
density function (CDF) evaluated at 9 and written as F(qm).

Consider the case when all parameters are known with
certainty. The modelling procedure for F(qm) can be con-
sidered as a simple urn problem. A random sample is drawn
from an urn which yields the values of the elements of §, a
vector that describes the rainfall event. 1In this analysis,
the vector § will contain two elements, the average intensity,
i, and the storm duration, tr' With the values of rainfall
intensity and storm duration, the overland flow modelling
predicts (perfectly) the resulting peak discharge. This
sampling for the rainfall values is done for every storm;
thus, the stochastic process of the flood discharges is a
function of the stochastic process of the rainfall events and
the deterministic runoff modelling.

It has been shown by Eagleson (1972) that there exists in
the 1 - tr plane a line of constant peak discharges, qp, such
that all combinations of 1 and t. to the southwest of this
boundary produce discharges less than q,- This is shown in
Figure 1. The probability of observing particular values of
i, tr is given by their joint probability density function,
f({,tr). Finding the cumulative density function for the

peak discharge from a rainfall event is equivalent to finding
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the cumulative density function for the rainfall parameters,

i and tr' that produce the peak discharge qp,- This is the
problem of finding the volume under the joint density function
of 1, t_ for the region Rq . This region has boundaries
i=o, t. =0, and q = constant. The volume under f(i,tr),

for this region is found by solving the integration

Flq ) = [ f(i,tr) dai at_ . (1)
R .

I

The resulting volume is shown in Figure 2. The boundary
o= constant is located by the modelling of the runoff,
either by computer simulation or by analytical techniques.
The shape and location of the boundary depend upon:

1) the shape of the rainfall event,

2) the modelling of the catchment response (overland

flow) to the rainfall,

3) the values of the parameters in the catchment model.

Traditionally, the assessment of F(qm) has been to pick
a storm pattern, choose a runoff model and set the parameters
with the "best" available estimates. Such a procedure does
not account for the uncertainty in the region qu due to
parameter uncertainty.

Now consider the case where the parameters are unknown
and can be treated as random variables. Such uncertain
parameters can be divided into two categories. The first

category consists of those parameters that are fixed but

unknown. A "true" value is thought to exist and, through



FIGURE 2. GRAPHICAL REPRESENTATION OF F(q,).



more data, better information may be obtained. Such
variables would be the parameters of the runoff modelling,
such as stream length or slope. The second category of
uncertain parameters are those parameters that vary from
rainfall event to rainfall event. Such a parameter would be
infiltration. Let infiltration be modelled as a constant
water loss, ¢, over the rainfall event. Then the value of

¢ can be viewed as a stochastic process along with the
rainfall event, and these two processes join together to
generate peak discharges.

Again, handling these uncertain parameteres can be viewed
as an urn sampling problem. The difference between the two
types of uncertain parameters is important because it governs
at what point "sampling" is done. Assume for the moment that
the only uncertain parameters are those that vary from
rainfall event to rainfall event and that the water loss ¢ is
the only uncertain parameter. Then the sampling would be to
choose from one urn a value of the rainfall intensity and storm
duration set. From a second urn, a value for the water loss
is obtained, which, combined with the runoff model and the
rainfall values, produces the flood peak. The cumulative for
the flood peak that accounts for the uncertainty in ¢ can be

calculated by

F(q ) = J f(d)) . J f(.'!_'.,tr) dJ_‘. dtr de¢, (2)
o Rag



where
£f(¢) is the density function for the water loss and
qu|¢ is the region in the i- tr plane where the
flood peak is less than or equal to dn- This

region is conditional upon ¢.

The cumulative F(qm) will be called the Bayesian cumulative
of qa, ‘and is the expected value of the cumulative, taking
parameter uncertainty into account,

When there exist parameters that are fixed but uncertain,
Equation (2) is followed, but conditional upon the uncertain
parameters. Then, at the end, the cumulative is weighed by
the probability density function for the fixed but uncertain
parameters. For example, assume that the rainfall pdf has
two parameters, £ and A, which are unknown. Since it is
assumed that the pdf is fixed but uncertain, the parameter
uncertainty is introduced at the end. If the cumulative of
Qmax is desired, where Qmax is the largest of n events and
where the events are independent random occurrences, then

FQ is found from

max

Q

F, = J Fo(q |€,0) + £(6,%) dg dax (3)
max £,

where

F‘T ’ = f i ’ i .
CHIRY J¢ @) |[rq s TEEIEN aT e | ag

£f(£,) is the probability density function for

the fixed but uncertain rainfall parameters.



The analysis of the rainfall distribution in a Bayesian
framework within the rainfall runoff analysis must be done at
the end. The effect of parameter uncertainty is to introduce
uncertainty as to the location of the boundary q, = constant.
The fixed but unknown parameters can be viewed as an
uncertainty in the boundary due to a lack of information.

The parameters that vary from event to event cause shifting

in the boundary due to the interaction of stochastic processes.

There are also two density functions of interest that
can be evaluated. The first is the marginal distribution of
the exceedance probability at qp,- The exceedance probability,
Glap),is the probability of observing a flood greater than q, -
The marginal distribution of the exceedance probability,
conditional upon the flood level qm, will be written as
f[G(qm)]. The second marginal distribution of interest is
the probability density function on the flood discharges,
conditional upon an exceedance probability level; it will be
written as f[qg|G(q)]. The two density functions are displayed
in Figure 3. These density functions are useful in performing
sensitivity analysis on G(qm) and q due to the uncertainty
in qu.

They may play a larger role if, in a decision problem,
the utility function for the decision set A depended upon the
exceedance probability of the design discharge q4- Under
these conditions, the expected utility of a decision act,

aj, from the set A, is given by
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E[u(ai)] = J u[ai,G(qd)] . f[G(qd)] dG(gqg) - (4)

The evaluation of (4) requires the density function f[G(qd)].

Derivation of the "Bayesian” Flood Frequency Curve

This section presents the analytical derivation of the
marginal probability density functions for the exceedance
probability, conditional upon a flood magnitude, f[G(qm)],
and the marginal probability density function of the flood
discharges, conditional upon the exceedance probability level,
flq|G(q)]. To fully focus upon the methodological aspects
of the analysis and to permit analytical derivation of the
required equations, the following assumptions will be
employed:

1. All parameters will be known with certainty, except

¢, the temporally and spatially averaged water loss
rate of the rainfall event.

2. The rainfall event has a rectangular interior pattern.

3. Following Eagleson (1972), the joint probability

density function for the average rainfall intensity

i and storm duration t_ is of the form

A - 8
f(l,tr) = 1? exp [-A1 - ftr] ’ (5)

where
K is a factor to reduce point rainstorm depths to

areal averages for events of common probability.
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X and B are parameters of the point rainfall
density function.
All rainfall parameters are assumed known with
certainty.

4, The response of the catchment to a rainfall event
will follow Eagleson (1972). Eagleson analytically
derived the peak discharge from a catchment by
applying kinematic wave theory under the assumptions
that the catchment can be modelled by an idealized
flow plane and that the time of concentration of the
stream is larger than the time of concentration for
the catchment. Eagleson's catchment response will
be used to define the boundary q, = constant.

The extension to a simulation model is straightforward. The
model will define lines of constant peak discharges in the
- tr plane for given values of ¢. The volume under the
f(I,tr) surface, for the region Rq , can be found either by
analytical procedures or by numerical procedures, depending
upon the form f(I,tr) and the representation of the boundary
of constant peak discharge.

Eagleson approximates the boundary q, = constant by a

function of the form

g(i) = B/i™ (6)

taking m = 1/2 where
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Ar is area contributing to direct runoff

% and ag are parameters of the catchment.

Ls is the stream length

i=1 - qm/645 AL, i, being the average excess

rainfall intensity.

For storm durations greater than the sum of the times of

concentration for the catchment and the stream

q, = 645 A_ i, . (7)

The analysis here, considers all rainfall events whereas
Eagleson only considered events that produced direct runoff
(excess rainfall events).

To find the cumulative for the peak discharge, ﬁ(qm),
Equation (2) is applied. The inner integration is over the
rainfall probability density function. The limits of inte-
gration cover the region qu, which is a function of uncer-
tain water loss parameters, ¢. In fact, the region qu in
the 1 - tr plane now becomes a volume in the i- tr - ¢ space,
and the integration for E(qm) is done first for qu, condi-
tional upon-¢. The integration over ¢ is then performed.
Figure 4 shows the constant boundary in the i- tr - ¢ space

and the volume, Rq . where the discharge is less than or equal

to -
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The integration of Equation (2), over the rainfall pdf,

vields F(qm|¢), and is evaluated by

Flq,l¢) = £(T,e,) af at_ . (8)

Jqu|¢

The region qu|¢ can be broken into two areas. The first

has the boundaries

r I
tr = o ,
i=o0 ,
q
b m
1=g5a "9 -
r

The solution to Equation (8) for these limits of integration
will be represented by Il' The solution for the following
limits of integration will be represented by Iz. These limits

are

)
i

o]
n
8

’

tr = g(io)

where g(io) is a function of the form similar to Equation (6).
The two areas of integration are shown in Figure 5 and are

similar to the two regions Eagleson used to solve his function.
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@ q /645 A_ + ¢
{ dt_ [ m r

1 B—KA exp (=it = % 1)
(o} 8]
=1 - exp (—qu/645 KAr - Bo/K) ,
@ g (i)
- - BA _B =
I2 J di f ' ( Atr % i) dtr
qm/645 A+ ¢ 0
where t, =9y .
Letting
io =i - (qm/645 A+ ¢} ,
Equation (10), becomes
© g(i))
_ . o’ BA _ _ B8
12 = J dlo J X ©Xp [ tr %
(0] [0}
(i, + q, /645 A, + &)] at_
9y 8
I,=exp (- g g5 a5 ~ g ¥
=) Bi
. -8 - _©°._ - i
[l KJ exp [~ 5 - Ag(i,)] dlo:l .
(0]
When g(io) is of the form of (6) then (14) integrates to
Bg
= e __m _B . -
I, = exp (- ¢75 RE, ~ K $) -1,

,{10)

(12)

(13)

(14)

(15)
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where
I = e 9™ gy,
o
2 A Va |4
RA A GSSGS Ar
g = (2.21 Ko T (1 ~ ——:_,ﬁ-— ) .
c’s a L g /3
c’s*m
Thus
Ba, 8
F(qm) =1 - IO + exp (- W - % o) . (16)

When considering the cumulative density function for d
conditional upon an excess rainfall event occurring, then
(16) reduces to Eagleson's expression.

Often, decision makers are interested in the flood

exceedance probability, G(qm) =1 - F(qm). Then, from (16)
G(qm) is
8q
- . - m __ _ B
G(qm) = I0 exp ( X645 A K¢) . (17)

Equation (12) provides a relationship between the exceedance
probability for a given flood peak, 9’ and the water loss
parameter, ¢. If two random variables are functionally
related, feor example y = g(x), and if the function is monotonic

and continuous, then the following relationships hold
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E{yn] = J g"(x) + £(x) dx
X
(18)

£(y) = £(x) - }%

These relationships provide a procedure to obtain the
marginal probability density function as well as the moments
for the exceedance probability G(qm), given the peak discharge,
and for the peak discharge, g, conditional upon the exceedance
probability. These marginal density functions reflect the
uncertainty in ¢.

The form of these distributions depends upon the
probability density function for ¢, £(¢). Three forms will
be examined. These are: f(¢) as a uniform pdf, a gamma-1
pdf, and an exponential. The latter is really a special

case of the gamma-1l.

Water Loss ¢, uniformly distributed

Let f(¢) be represented by a uniform probability density

function between ¢o and ¢o,

£() = — L < ¢ < o°

o 0 ’
(67 = o,)

t
©

(19)

0, otherwise ,

and let y =,G(qm). Then the Jacobian from (16) is

dy| _ C8 _-¢8/K ,
E (20



where
_Bq
= . __m
¢=1," exp |x335 Al 7
1 K
f(y)=—o———8—y ’
(07 = 6,
for (21)
-° -¢ B/K
C,ed)B/Kiin.eo/

= 0, otherwise,

The first two moments are

-9 _B/K
Bly] = 5 [ ° J : (22)
B¢~ - ¢o)

- e (23)

2
Ey’] = —5—"—

[ -2¢ _B/K
o) e
2B(¢° =~ ¢ )

—2¢°e/x}

The decision maker is not only interested in the
distribution of the exceedance probability at a particular
flood discharge level, but, given an exceedance probability,
he is also interested in the distribution of the flood
discharges. This marginal probability density function can
be found from Equations (16) and (18). Due to the complex
nature of the discharge in (16), analytical derivation is
only possible if the following assumption is valid: for a
particular basin, Io is constant over the range of flood
discharges that are of interest. Table 1 shows that this

assumption is a reasonable one; then the Jacobian, |dg/d¢l,
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Table 1. Values of I_ for Various Peak Discharges,

Discharge (cfs) o Io
100 .60199 .36384

1,000 .6190 .3496
5,000 .6249 .34465

10,000 .62661 .3432

(For catchment and rainfall parameters as given in Table 2.)

is from Equation (16),
dq| _
39] = a5 a, . (24)

The limits on g, for the derived distribution, may be

obtained by rewriting Equation (16) as

T ¥s A (23)
r

For vy, [= G(qm)], a constant and for no water loss (¢ = O)

9y is a maximum and equal to

f1
9dn = 645 A 2n [—9 . (26)
r %

et

As the water loss increases, the discharge from the rainfall
event must decrease until, at some value of ¢, ¢m, there is

no excess rainfall and no runoff. This value is:
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= K 2 EQ (27)
¢m 8 n v .

The probability that dy = 0 is the probability that ¢
is greater than or equal to ¢m. The spike for fQ(q = 0) can

be calculated by

fQ(q =0) =P($ > ¢m) = J £(¢) d¢ (28)

?

and the density function for q, g > O, will be the derived

density function from Equation (18) with limits

I
0 <q < 645A_ 2 2n[7°1 . (29)

With Equations (18), (19), and (24) the distribution

f(q) is

£la) = — L , (30)
(@7 - ¢) =+ 645 A,

and has limits

, I
if 6% < % szn{_‘?-]
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o K I X I
If ¢ > E—Qn v and ¢, < B n 3? then the limits are
K Io
0 < g < 645 AL z in v - ¢q ‘ (32)

for flq|g > 0). The spike at g = O may be found from Equation

(28) or from integrating Equation (30) between the limits

I
[e] K ¢}
< g < 645 A - R _° )
0 < q < 645 rl¢ z &n v J (33)
The first two moments of f£(gq) are
(6° + 6,)
E[q] = 645 A|lA - ————| (34)
with the constraint of E[q] > O and where
I
= K o
A = 8 Qn{y]
E[q®] = (645 A )% - [A? - A° + o)
(35)
1 o l o
+3 60+ 0 ) -3 0]
K I0
again with A = g n v .

Water Loss ¢, Gamma-1 Distributed

Let ¢ be distributed with a probability density function

of the form gamma-~l, that is
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£(9) = e ™ 471 oF r(r) . (36)

Using the same definitions for y and C as in the uniform

pdf analysis and using the Jacobian as given in (20), then

(18) gives
£(y) = a¥ ¢ C-A[zn(g)}r_l/r(r) , (37)
where
A = Ka/B 0<yc<1
The first two moments of y are
o r
E(y] = ¢ % , {38)
o+ =
B
2 2 a r
Ely’] = ¢« |——| - (39)
u+—B~

For the distribution of g for a given exceedance level
G(qm), again the approximation that I0 = constant must be made.
The Jacobian from (16) is as given in Equation (24) and

with Equations (18) and (36)

f(alq > 0) = EZ%_X— - exp [-a(A-q/645 Ar)]
r

. (A-q/645 Ar)r" - ot/

K Io
O < g < 645 Al T Ln v ) (40)
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where

f(g) has moments

E[q] = 645 A (A - x/a) ,and
E[a’] = (645 A )% « [A® - 2Ar/a + r(r + 1)/a®]  (41)

where

Water Loss, ¢, Exponentially Distributed

Let ¢ be distributed exponentially. Then f(¢) is of the

form,
£(4) = ae 2 (42)

which is a special case of the gamma-1 distribution when r = 1.
The marginal density function for the exceedance
probability, with a peak discharge qp, and marginal density
function for the discharge g at an exceedance level G(q),
may be found by the application of Equations (16), (18) and
(42). The marginals may also be found by taking the results
from the gamma-1 analysis.
The results for the exceedance probability, y = G(qm),

are
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f(y) = Ay C , O<y <1l , (43)

where

A = Koa/B

Ely] = C[ﬁg} : (44)

E[y?] = c a_f_zeﬁ] . (45)
And for the discharge g, conditional upon q being greater
than or equal to 0, the results are

I
f£lalg > 0) = g5 eXP |ggop [70 , (46)
r r

for

oiq_<s45Ar%1n17°} ,

Elq] = 645 A_[A - 1/a] , (47)

E(g®’] = (645 B )*[A* - 2a/a + 2/0%] (48)
where
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Recurrence Interval

The exceedance probability for the occurrence of flood
events, G(qm), has been evaluated with the total series of
independent rainfall events. Often hydrologists are
interested in the exceedance probability of a flood peak as
that peak relates to a partial duration series. When the
number of flood events in this partial duration series equals
N, the number of years of record, then the exceedance
probability, for this particular partial duration series,
can be found in the following manner (Eagleson, 1972).

Consider a record of N years which contains, on the
average, 6 rainfall events per year. There will be 8N flood
events, some of which will have a maximum discharge equal to
O due to no excess rainfall. The rth most severe event of
the complete series will have an exceedance probability of

r

G(qmr) = W F 1 (49)

Now consider the annual exceedance series which is composed
of the N largest flood events from the set of 6N. The
exceedance probability of Qr’ from the annual exceedance

series, 1is

= =1
P[qm g qmr:l TN+ 1 T, (50)

where Te is the recurrence interval measured in years. For

r <N, (49) and (50) can be combined to give
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1
T = 6 G(qm) ’ (51)
e
assuming N >1,.
Equation (51) is used in the next section to compare
the flood return periods obtained by the different modelling

assumptions of the water loss parameter ¢.

Example Application

The analytical results in this paper can be used to
determine the effect of uncertainty in the water loss parameter,
¢, upon the flood frequency curve. The expected frequency
curve for a hypothetical catchment, with parameters as given
in Table 2, will be determined for the three different
probability modelling assumptions of ¢. An indication of
the variance in the process will be obtained by plotting
the expected exceedance probability curve, E[G(qm)], with
the expected exceedance probability curve plus and minus
one standard deviation. These curves will be from the
annual exceedance series, that is, a partial duration
series of a length equal to the number of years of record.
It should be visualized that there exists a surface in the
G(qm) - 4, plane. This surface represents the joint
probability density function. The three curves, E[G(qm)],
E[G(qm)] + a, E[G(qm)] - 0 represent three contours. For
comparison, the frequency curve from the analysis which
assumes ¢ is deterministic is also presented. In this

analysis, the value of ¢ chosen is the mean value of f(¢).
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Table 2. Catchment and Rainfall Parameters,

A = 100 sg. mi.

A_ = Ac/3 = 33.333 sg. mi.

r
L_ = (3. A )% = 17.32 mi

s - A . .
., = 10 sec_1

_ 1 =1

Ol.S = . sec

g = 30 hr/in.
A = .13 hr |

-5 %

K = .95 (K= 1-exp [-1.1x °] + exp [-1.13" % - .01 Ar]

(Eagleson, 1972)

8 = 109. events per year.

Figure 6 is for the case where the water loss is
uniformly distributed with means § equal to .05 in/hr.
Figures 7 and 8 are for the case where f(¢) is exponential
with means of .03 in/hr and .05 in/hr respectively.

Figures 9, 10, 11, and 12 are for f(¢) gamma-1 distributed
with mean, ¢, equal to .05 in/hr and coefficient of variation
equal to .577, .477, .316, and .10 respectively.

The implications of the uncertainty in the frequency
curve is evident from the curves. 1In decision problems, the
expected exceedance probability, E[G(qg )] would be used.
Take the case where f(¢) is exponential with a mean ¢ = .O5.
The error introduced by specifying that a peak discharge

of 4500 c¢fs has a return period of 100 years, as predicted
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FIGURE 10. FREQUENCY CURVES FOR f ($), GAMMA-1 WITH
¢ =005 AND C, = 0.477
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FIGURE 11. FREQUENCY CURVES FOR f(¢), GAMMA-1 WITH
¢ =0.05 AND C, = 0.316.
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FIGURE 12. FREQUENCY CURVES FOR f(¢), GAMMA-1 WITH
¢ =0.05 AND Cy =0.10.
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by the deterministic analysis, is substantial, since the
stochastic analysis predicts that that peak discharge has a
return period of 50 years. This error in accounting for
parameter uncertainty may lead to serious design problems.
When the information about ¢ is very good, which is
represented by a tight distribution on ¢ (and shown in
Figure 12), the difference between the two analyses is very
small. Of course, this 1is expected.

This analysis only considered one uncertain parameter
in the rainfall runoff modelling. The implications of

considering many uncertain parameters are evident,

Conclusion

This paper analyzes the uncertainty in the output of a
deterministic rainfall-runoff model due to the uncertainty
in the models' parameters. Eagleson's derived flood
frequency analysis is used to find the constant peak
discharge boundary in the 1 - tr plane, which in turn is
used to define qu, the region in which combinations of
i and tr yield discharges less than or equal to Qe This
boundary permitted the evaluation of the flood exceedance
probability, G(qm) which is the probability that gq > S
The uncertainty in the runoff model is represented by the
water loss coefficient, ¢, which results in uncertainty in
the position of the constant peak discharge boundary for
a, and in the size and location of the region qu. The

expected flood exceedance probability, E[G(qm)], is found by
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G(g,) = E[G(g)] =1 - [cb £(¢) do

(52)

[ f(i,tr) ai at ,
Rq [¢

which considers the uncertainty in ¢,

Two probability density functions are obtained
analytically. One is the peak discharge, conditional upon
an exceedance probability level, and the other is the
exceedance probability at a peak discharge level. This
leads to the result that the use of a point estimate for
the water loss ¢ underestimates the peak discharge for a
given exceedance level, G(qm). Similarly, such a procedure
underestimates the exceedance probability for a given peak
discharge,

Continued research remains to be done on parameter
uncertainty in rainfall runoff modelling. There are those
parameters which vary from storm to storm--for example, the
rainfall interior pattern--which are really stochastic
processes and should be analyzed in such a framework. There
are those parameters which are uncertain, due to statistical
uncertainty. Their effect upon the region qu has not been
fully researched either. The area of parameter uncertainty
in modelling the rainfall runoff process will provide many
years of inﬁeresting work.

The extension of the theory presented here to other

simulation models outside of hydrology--for example, water
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guality models--is straightforward. If simulation models

are going to be applied for prediction, where the concern

is an unknown future state of nature (an urbanized watershed,
for example), then the probability distribution on the models'
outputs should be estimated if the outputs are used to make
meaningful decisions.

Furthermore, the analytical procedures presented here
should be applied to the next step-~the evaluation of the
worth of data and their economic affects upon project designs.
Uncertainty in various parameters {or types of parameters)
have different affects upon the uncertainty of the model

outputs which are used in decision making.
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