
Analys i s  of Unce r t a in ty  i n  D e t e r m i n s t i c  

R a i n f a l l  Runoff Models 

E r i c  F .  Wood 

October 1974 

Research Repor t s  a r e  p u b l i c a t i o n s  r e p o r t i n g  on  
t h e  work of  t h e  a u t h o r .  Any views o r  conclu-  
s i o n s  a r e  t h o s e  of  t h e  a u t h o r ,  and do n o t  
n e c e s s a r i l y  r e f l e c t  t h o s e  of  IIASA. 





Analysis of Uncertainty in Deterministic Rainfall 
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Eric F. Wood** 

Abstract 

The uncertainty in the output of a deterministic model, 
due to the uncertainty in the parameters of the model, is 
analyzed and compared to current procedures of using average 
values for the uncertain parameters. The present analysis 
considers an analytical rainfall-runoff flood frequency 
model where the infiltration parameter is considered as a 
stochastic variable. The same conceptual procedure can be 
used to analyze fixed but uncertain (unknown) parameters. 

Introduction 

The analysis of flood frequency using distribution theory 

has the basic assumption tha.t the probability of a flood of a 

given magnitude is constant and does not change with time. 

Thus, basins which change physically with time, due to changes 

in the river itself, through channelization for example, or 

due to urbanization of the watershed, can not be analyzed 

effectively by the distribution theory procedures of flood 

frequency analysis. 

This problem has been recognized and some procedures have 

been applied to estimate the frequency curves. The most 

successful methods are those that analyze the rainfall as a 
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stochastic process and then estimate the flood discharge by 

modelling the physical process of overland flow of the excess 

rainfall. This has been done analytically by Eagleson (1972), 

and through simulation by Leclerc and Schaake (1973), Ott and 

Linsley (1972), and others. Such frequency analyses have 

often been criticized (Ibbitt, 1972) on the basis that the 

deterministic catchment model has parameters which are 

unknown with certainty and whose values seem to be determined 

through "intuition" and best guesses. Wood and Rodriguez 

(1974) analyzed the uncertainty in the parameters of the 

probability distributions of floods by considering the 

parameters as random variables and applying Bayesian 

statistics. The resulting probability distributions of floods 

reflected the uncertainty in their parameters. In an analogous 

manner, the uncertainty in the flood frequency curve, due to 

uncertainty in the rainfall-runoff simulation modelling, may 

be analyzed. The uncertain parameters, whether they are in the 

probability density functions of the rainfall model or in the 

deterministic runoff model, may be regarded as random variables. 

The procedures of Bayesian statistics canthen be applied. 

While this paper is aimed at simulation modelling, the 

vehicle for the analysis will be Eagleson's (1972) analytical 

derivation. Eagleson's derivation is used in the analysis, 

and the extension to computer simulation modelling is 

straightforward. 



General Theory of Derived Flood Frequency Analysis 

Flood frequency analysis aims at finding the probability 

that a flood will have a discharge less than or equal to some 

value qm. This probability is defined as the cumulative 

density function (CDF) evaluated at qm and written as F(qm). 

Consider the case when all parameters are known with 

certainty. The modelling procedure for F(qm) can be con- 

sidered as a simple urn problem. A random sample is drawn 

from an urn which yields the values of the elements of 2, a 

vector that describes the rainfall event. In this analysis, 

the vector 8 will contain two elements, the average intensity, 
- 
i, and the stom duration, tr. With the values of rainfall 

intensity and storm duration, the overland flow modelling 

predicts (perfectly) the resulting peak discharge. This 

sampling for the rainfall values is done for every storm; 

thus, the stochastic process of the flood discharges is a 

function of the stochastic process of the rainfall events and 

the deterministic runoff modelling. 

It has been shown by Eagleson (1972) that there exists in 

the - tr plane a line of constant peak discharges, qm, such 

that all combinations of 1 and tr to the southwest of this 

boundary produce discharges less than q . This is shown in 
m 

Figure 1. The probability of observing particular values of 

T 
1, t is given by their joint probability density function, r 

f(?,t,). Finding the cumulative density function for the 

peak discharge from a rainfall event is equivalent to finding 



- 
STORM D U R A T I O N  t r 

F IGURE 1. 7 ,  t, PLANE SHOWING PEAK DISCHARGE. 



the cumulative density function for the rainfall parameters, 

1 and tr, that produce the peak discharge qm. This is the 

problem of finding the volume under the joint density function 

of 7, t for the region Rqm. This region has boundaries r 

1 = 0, tr = 0, and qm = constant. The volume under f (7,tr), 

for this region is found by solving the integration 

The resulting voluae is shown in Figure 2. The boundary 

c = constmt iz lo-ated by the modelling of the runoff, 
111 

either by computer simulation or by analytical techniques. 

The shape and location of the boundary depend upon: 

1) the shape of the rainfall event, 

2 )  the modelling of the catchment response (overland 

flow) to the rainfall, 

3) the values of the parameters in the catchment model. 

Traditionally, the assessment of F(q ) has been to pick m 

a storm pattern, choose a runoff model and set the parameters 

with the "best" available estimates. Such a procedure does 

not account for the uncertainty in the region Rq due to m 

parameter uncertainty. 

Now consider the case where the parameters are unknown 

and can be treated as random variables. Such uncertain 

parameters can be divided into two categories. The first 

category consists of those parameters that are fixed but 

unknown. A "true" value is thought to exist and, through 



FIGURE 2. GRAPHICAL REPRESENTATION OF F ( q, ). 



more data, better information may be obtained. Such 

variables would be the parameters of the runoff modelling, 

such as stream length or slope. The second category of 

uncertain parameters are those parameters that vary from 

rainfall event to rainfall event. Such a parameter would be 

infiltration. Let infiltration be modelled as a constant 

water loss, @ ,  over the rainfall event. Then the value of 

@ can be viewed as a stochastic process along with the 

rainfall event, and these two processes join together to 

generate peak discharges. 

Again, handling these uncertain parameteres can be viewed 

as an urn sampling problem. The difference between the two 

types of uncertain parameters is important because it governs 

at what point "sampling" is done. Assume for the moment that 

the only uncertain parameters are those that vary from 

rainfall event to rainfall event and that the water loss I$ is 

the only uncertain parameter. Then the sampling would be to 

choose from one urn a value of the rainfall intensity and storm 

duration set. From a second urn, a value for the water loss 

is obtained, which, combined with the runoff model and the 

rainfall values, produces the flood peak. The cumulative for 

the flood peak that accounts for the uncertainty in @ can be 

calculated by 



where 

f ( $ )  i s  t h e  d e n s i t y  f u n c t i o n  f o r  t h e  wa te r  l o s s  and 

Rq I $  is  t h e  r e g i o n  i n  t h e  I - tr p l a n e  where t h e  m 

f l o o d  peak is l e s s  t h a n  o r  e q u a l  t o  qm. T h i s  

r e g i o n  is  c o n d i t i o n a l  upon $. 

The cumula t ive  P(qm)  w i l l  be  c a l l e d  t h e  Bayesian cumula t ive  

of  qmband i s  t h e  expec t ed  v a l u e  of  t h e  cumula t ive ,  t a k i n g  

pa rame te r  u n c e r t a i n t y  i n t o  accoun t .  

When t h e r e  e x i s t  pa rame te r s  t h a t  a r e  f i x e d  b u t  u n c e r t a i n ,  

Equat ion  ( 2 )  i s  fo l lowed ,  b u t  c o n d i t i o n a l  upon t h e  u n c e r t a i n  

pa rame te r s .  Then, a t  t h e  end ,  t h e  cumula t ive  is  weighed by 

t h e  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  f o r  t h e  f i x e d  b u t  u n c e r t a i n  

pa rame te r s .  For  example, assume t h a t  t h e  r a i n f a l l  pdf has  

two pa rame te r s ,  5 and A ,  which a r e  unknown. S i n c e  it i s  

assumed t h a t  t h e  pdf is f i x e d  b u t  u n c e r t a i n ,  t h e  parameter  

u n c e r t a i n t y  is  in t roduced  a t  t h e  end. I f  t h e  cumula t ive  of 

Qmax i s  d e s i r e d ,  where Qmax is t h e  l a r g e s t  of n  e v e n t s  and 

where t h e  e v e n t s  a r e  independent  random o c c u r r e n c e s ,  t h e n  

F  is  found from 
Qmax 

- 
F 

Qmax 
h n ( q m l ~ , l )  f ( < , h )  d <  dh , ( 3 )  

where 

f  (5 , A )  is t h e  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  f o r  

t h e  f i x e d  b u t  u n c e r t a i n  r a i n f a l l  pa rame te r s .  



The analysis of the rainfall distribution in a Bayesian 

framework within the rainfall runoff analysis must be done at 

the end. The effect of parameter uncertainty is to introduce 

uncertainty as to the location of the boundary q = constant. m 

The fixed but unknown parameters can be viewed as an 

uncertainty in the boundary due to a lack of information. 

The parameters that vary from event to event cause shifting 

in the boundary due to the interaction of stochastic processes. 

There are also two eensity functions of interest that 

can be evaluated. The first is the marginal distribution of 

the exceedance probability at qm. The exceedance probability, 

G(q,),is the probability of observing a flood greater than qm. 

The marginal distribution of the exceedance probability, 

conditional upon the flood level q will be written as 
m r  

f [G (qm)] . The second marginal distribution of interest is 

the probability density function on the flood discharges, 

conditional upon an exceedance probability level; it will be 

written as f [q(~(q)] . The two density functions are displayed 

in Figure 3. These density functions are useful in performing 

sensitivity analysis on G(qm) and qm due to the uncertainty 

in Rq m' 

They may play a larger role if, in a decision problem, 

the utility function for the decision set A - depended upon the 

exceedance'probability of the design discharge qd. Under 

these conditions, the expected utility of a decision act, 

a from the set 5 ,  is given by i ' 





The evaluation of (4) requires the density function f [G(~~)] . 

Derivation of the "~a~esian" Flood Frequency Curve 

This section presents the analytical derivation of the 

marginal probability density functions for the exceedance 

probability, conditional upon a flood magnitude, f [G (qm)] , 

and the marginal probability density function of the flood 

discharges, conditional upon the exceedance probability level, 

f [q 1 G (q)] . To fully focus upon the methodological aspects 

of the analysis and to permit analytical derivation of the 

required equations, the following assumptions will be 

employed: 

1. All parameters will be known with certainty, except 

c$, the temporally and spatially averaged water loss 

rate of the rainfall event. 

2. The rainfall event has a rectangular interior pattern. 

3. Following Eagleson (1972), the joint probability 

density function for the average rainfall intensity 

7 and storm duration tr is of the form 

0 - 0 
f (I, tr) = exp [-Xi - 

where 

K is a factor to reduce point rainstorm depths to 

areal averages for events of common probability. 



X and f3 are parameters of the point rainfall 

density function. 

All rainfall parameters are assumed known with 

certainty. 

4. The response of the catchment to a rainfall event 

will follow Eagleson (1972). Eagleson analytically 

derived the peak discharge from a catchment by 

applying kinematic wave theory under the assumptions 

that the catchment can be modelled by an idealized 

flow plane and that the time of concentration of the 

stream is larger than the time of concentration for 

the catchment. Eagleson's catchment response will 

be used to define the boundary qm = constant. 

The extension to a simulation model is straightforward. The 

model will define lines of constant peak discharges in the 
- 
i - tr plane for given values of $. The volume under the 

f (I, tr) surf ace, for the region Rqm, can be found either by 

analytical procedures or by numerical procedures, depending 

upon the form f(i,tr) and the representation of the boundary 

of constant peak discharge. 

Eagleson approximates the boundary q = constant by a m 

function of the form 

taking m = 1/2 where 



Ar i s  a r e a  c o n t r i b u t i n g  t o  d i r e c t  runoff  

a and a s  a r e  parameters  of t h e  catchment.  
C 

L i s  t h e  s t r e a m  l e n g t h  s 

i = i - qm/645 A ~ ,  ie be ing  t h e  ave rage  e x c e s s  
e  

r a i n f a l l  i n t e n s i t y .  

For s torm d u r a t i o n s  g r e a t e r  t h a n  t h e  sum of t h e  t i m e s  of 

c o n c e n t r a t i o n  f o r  t h e  catchment and t h e  s t ream 

The a n a l y s i s  h e r e ,  c o n s i d e r s  a l l  r a i n f a l l  e v e n t s  whereas 

Eagleson on ly  cons ide red  e v e n t s  t h a t  produced d i r e c t  runoff  

( e x c e s s  r a i n f a l l  e v e n t s ) .  

TO f i n d  t h e  cumula t ive  f o r  t h e  peak d i s c h a r g e ,  6 (q,) , 
 quat ti on (2 )  i s  a p p l i e d .  The i n n e r  i n t e g r a t i o n  is  ove r  t h e  

r a i n f a l l  p r o b a b i l i t y  d e n s i t y  f u n c t i o n .  The l i m i t s  of i n t e -  

g r a t i o n  cove r  t h e  r eg ion  R q , ,  which i s  a  f u n c t i o n  of uncer-  

t a i n  w a t e r  l o s s  pa rame te r s ,  6. I n  f a c t ,  t h e  r e g i o n  kqm i n  

t h e  ? - tr p l a n e  now becomes a  volume i n  t h e  - tr - 4 space ,  

and t h e  i n t e g r a t i o n  f o r  F(qm)  is  done f i r s t  f o r  Rqm, condi -  

t i o n a l  u p o n . @ .  The i n t e g r a t i o n  over  4 is  t h e n  performed.  

F i g u r e  4 shows t h e  c o n s t a n t  boundary i n  t h e  - t r  - 4 space  

and t h e  volume, Rq,, where t h e  d i s c h a r g e  i s  l e s s  t h a n  o r  equa l  

t o  9,. 



FIGURE 4 ,  i , tr , 9 SPACE SHOWING PEAK DISCHARGE. 



The i n t e g r a t i o n  of Equation ( 2 1 ,  over  t h e  r a i n f a l l  p d f ,  - 
y i e l d s  F (q , I@) ,  and i s  e v a l u a t e d  by 

The r eg ion  Rq ) $  can be  broken i n t o  two a r e a s .  The f i r s t  m 

has  t h e  boundar ies  

The s o l u t i o n  t o  Equation ( 8 )  f o r  t h e s e  l i m i t s  of i n t e g r a t i o n  

w i l l  be r e p r e s e n t e d  by I1. The s o l u t i o n  f o r  t h e  fo l lowing  

l i m i t s  of i n t e g r a t i o n  w i l l  be r ep resen ted  by 12. These l i m i t s  

a r e  

where g ( i  ) i s  a f u n c t i o n  of t h e  form s i m i l a r  t o  Equation ( 6 ) .  
0 

The two a r e a s  of i n t e g r a t i o n  a r e  shown i n  F igure  5 and a r e  

s i m i l a r  t o  t h e  two r e g i o n s  Eagleson used t o  s o l v e  h i s  f u n c t i o n .  



REGION I ,  

h 

STORM DURATION ( hrs ) t r  



qm/645 Ar + $ B A  
1, = j dtr 1 - exp (-Atr - - 

K i) di K 
0 0 

(9) 
= 1 - exp (-Bqm/645 KAr - B$/K) , 

where - tr - g(io) . (11) 

Letting 

Equation (10) , becomes 

B qm I2 = exp ( -  - ------ - - @ $ 1  K 645 Ar K 

When g (i ) is of the form of (6) then (14) integrates to 
0 

"m B I2 = exp ( -  645 Klir - i( 4 )  (1 - I,) , (15) 



where 

Thus 

When considering the cumulative density function for q m 

conditional upon an excess rainfall event occurring, then 

(16) reduces to Eagleson's expression. 

Often, decision makers are interested in the flood 

exceedance probability, G (qm) = 1 - F (qm) . Then, from (16) 

G(q,) is 

Equation (12) provides a relationship between the exceedance 

probability for a given flood peak, qm, and the water loss 

parameter, $. If two random variables are functionally 

related, fcr example y = g(x),and if the function is monotonic 

and continuous, then the following relationships hold 



These relationships provide a procedure to obtain the 

marginal probability density function as well as the moments 

for the exceedance probability G(qm), given the peak discharge, 

and for the peak discharge, q, conditional upon the exceedance 

probability. These marginal density functions reflect the 

uncertainty in $. 

The form of these distributions depends upon the 

probability density function for 4, £($I. Three forms will 

be examined. These are: £(I$) as a uniform pdf, a gamma-1 

pdf, and an exponential. The latter is really a special 

case of the gamma-1. 

Water Loss $, uniformly distributed 

Let £(I$) be represented by a uniform probability density 

0 function between I$ and I$ , 
0 

= 0 ,  otherwise , 

and let y = .G(qm). Then the ~acobian from (16) is 



where 

for 

= 0, otherwise. 

The first two moments are 

The decision maker is not only interested in the 

distribution of the exceedance probability at a particular 

flood discharge level, but, given an exceedance probability, 

he is also interested in the distribution of the flood 

discharges. This marginal probability density function can 

be found from Equations (16) and (18). Due to the complex 

nature of the discharge in (16), analytical derivation is 

only possible if the following assumption is valid: for a 

particular basin, I. is constant over the range of flood 

discharges that are of interest. Table 1 shows that this 

assumption is a reasonable one; then the Jacobian, (dq/d$(, 



Table 1. Values of I. f o r  Various Peak Discharges. 

Discharge ( c f  s)  u 
I0 

(For catchment and r a i n f a l l  parameters a s  g iven i n  Table 2 . )  

i s  from Equation ( 1 6 1 ,  

The l i m i t s  on q ,  f o r  t h e  de r ived  d i s t r i b u t i o n ,  may be 

ob ta ined  by r e w r i t i n g  Equation (16) a s  

For y ,  [= G ( q m ) ] ,  a  cons tan t  and f o r  no water  l o s s  (QI = 0 )  

qm i s  a  maximum and equal  t o  

A s  t h e  water  l o s s  i n c r e a s e s ,  t h e  d i scharge  from t h e  r a i n f a l l  

event  must dec rease  u n t i l ,  a t  some value  of 0 ,  $m, t h e r e  i s  

no excess  r a i n f a l l  and no runof f .  This  va lue  i s :  



The probability that qm = 0 is the probability that 4 

is greater than or equal to I $ I ~ .  The spike for f Q (q = 0) can 

be calculated by 

and the density function for q, q > 0, will be the derived 

density function from Equation (18) with limits 

With Equations (18), (19), and (24) the distribution 

f (q) is 

and has limits 



and $o < - Rn It] - t h e n  t h e  l i m i t s  a r e  
B 

f o r  f ( q l q  > 0 ) .  The s p i k e  a t  q  = 0  may b e  found from  quat ti on 

( 2 8 )  o r  from i n t e g r a t i n g  Equat ion  ( 30 )  between t h e  l i m i t s  

The f i r s t  two moments of  f  ( q )  a r e  

w i t h  t h e  c o n s t r a i n t  of ~ [ q ]  2 0  and where 

Water Loss Q ,  Gamma-1 D i s t r i b u t e d  

L e t  $ be d i s t r i b u t e d  w i t h  a  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  

of t h e  form gamma-1, t h a t  i s  



Using t h e  same d e f i n i t i o n s  f o r  y and C a s  i n  t h e  uniform 

pdf a n a l y s i s  and us ing  t h e  Jacob ian  a s  g i v e n  i n  ( 2 0 ) ,  t h e n  

(18) g i v e s  

where 

The f i r s t  two moments of y  a r e  

For t h e  d i s t r i b u t i o n  of q  f o r  a  g i v e n  exceedance l e v e l  

~ ( q , ) ,  a g a i n  t h e  approximation t h a t  I, S c o n s t a n t  must be made. 

The Jacobian  from (16)  i s  a s  g i v e n  i n  Equation (24)  and 

w i t h  Equat ions  (18)  and (36) 



where 

f (q) has moments 

E[~] = 645 Ar(A - r/a) , and 

E [ ~ ~ ]  = (645 Ar) [ A ~  - 2Ar/a + r(r + 1)/a2] , (41) 

where 

Water Loss, @,  Exponentially Distributed 

Let @ be distributed exponentially. Then f($) is of the 

form, 

which is a special case of the gamma-1 distribution when r = 1. 

The marginal density function for the exceedance 

probability, with a peak discharge qm and marginal density 

function for the discharge q at an exceedance level G(q), 

may be found by the application of Equations (16), (18) and 

( 4 2 ) .  The marginals may also be found by taking the results 

from the gamma-1 analysis. 

The results for the exceedance probability, y = G (q,) , 

are 



where 

And for the discharge q, conditional upon q being greater 

than or equal to 0, the results are 

for 

where 



Recurrence I n t e r v a l  

The exceedance p r o b a b i l i t y  f o r  t h e  occurrence of f lood  

e v e n t s ,  G(qm) ,  has been eva lua ted  wi th  t h e  t o t a l  s e r i e s  of 

independent r a i n f a l l  even t s .  Often hydro log i s t s  a r e  

i n t e r e s t e d  i n  t h e  exceedance p r o b a b i l i t y  of a  f lood peak a s  

t h a t  peak r e l a t e s  t o  a  p a r t i a l  dura t ion  s e r i e s .  When t h e  

number of f lood even t s  i n  t h i s  p a r t i a l  d u r a t i o n  s e r i e s  equa l s  

N ,  t h e  number of yea r s  of r ecord ,  then  t h e  exceedance 

p r o b a b i l i t y ,  f o r  t h i s  p a r t i c u l a r  p a r t i a l  dura t ion  s e r i e s ,  

can be found i n  t h e  fo l lowing manner (Eagleson,  1 9 7 2 ) .  

Consider a record of N y e a r s  which c o n t a i n s ,  on t h e  

average,  0 r a i n f a l l  even t s  pe r  yea r .  There w i l l  be BN f lood 

even t s ,  some of which w i l l  have a  maximum d i scharge  equa l  t o  

0  due t o  no excess  r a i n f a l l .  The rth most severe  event  of 

t h e  complete s e r i e s  w i l l  have an exceedance p r o b a b i l i t y  of 

Now cons ide r  t h e  annual exceedance s e r i e s  which i s  composed 

of t h e  N l a r g e s t  f lood even t s  from t h e  s e t  of ON. The 

exceedance p r o b a b i l i t y  of q  from t h e  annual exceedance m r  ' 
s e r i e s ,  i s  

where T i s  t h e  recur rence  i n t e r v a l  measured i n  yea r s .  For e  

r 2 N, ( 4 9 )  and (50)  can be combined t o  g ive  



assuming N >> 1. 

Equation (51) is  used i n  t h e  n e x t  s e c t i o n  t o  compare 

t h e  f l o o d  r e t u r n  p e r i o d s  o b t a i n e d  by t h e  d i f f e r e n t  modell ing 

assumpt ions  of  t h e  wa te r  l o s s  parameter  @. 

Example App l i ca t ion  

The a n a l y t i c a l  r e s u l t s  i n  t h i s  pape r  can  be  used t o  

de termine  t h e  e f f e c t  of u n c e r t a i n t y  i n  t h e  wa te r  l o s s  pa rame te r ,  

@ ,  upon t h e  f l o o d  f requency cu rve .  The expected  f requency 

cu rve  f o r  a  h y p o t h e t i c a l  catchment,  w i th  parameters  a s  g iven  

i n  Table  2 ,  w i l l  be determined f o r  t h e  t h r e e  d i f f e r e n t  

p r o b a b i l i t y  modell ing assumptions o f  $. An i n d i c a t i o n  of 

t h e  v a r i a n c e  i n  t h e  p r o c e s s  w i l l  be  o b t a i n e d  by p l o t t i n g  

t h e  expected  exceedance p r o b a b i l i t y  cu rve ,  E [ G ( ~ , ) ] ,  w i t h  

t h e  expected  exceedance p r o b a b i l i t y  cu rve  p l u s  and minus 

one s t a n d a r d  d e v i a t i o n .  These c u r v e s  w i l l  be  from t h e  

annual  exceedance s e r i e s ,  t h a t  i s ,  a  p a r t i a l  d u r a t i o n  

s e r i e s  o f  a  l e n g t h  equa l  t o  t h e  number of  y e a r s  of r eco rd .  

I t  should  be v i s u a l i z e d  t h a t  t h e r e  e x i s t s  a  s u r f a c e  i n  t h e  

G(qm) - qm p lane .  Th i s  s u r f a c e  r e p r e s e n t s  t h e  j o i n t  

p r o b a b i l i t y  d e n s i t y  f u n c t i o n .  The t h r e e  c u r v e s ,  E [G (qm) , 

E [ G ( ~ , ) ]  + q ,  E [ G ( ~ , ) ]  - a r e p r e s e n t  t h r e e  con tou r s .  For 

comparison,  t h e  f requency cu rve  from t h e  a n a l y s i s  which 

assumes $ is  d e t e r m i n i s t i c  i s  a l s o  p r e s e n t e d .  I n  t h i s  

a n a l y s i s ,  t h e  v a l u e  of  $ chosen i s  t h e  mean v a l u e  of f ( $ ) .  



T a b l e  2. Catchment and R a i n f a l l  P a r a m e t e r s .  

Ac = 100 s q .  m i .  

= Ac/3 = 33.333 sq .  m i .  

s = ( 3 .  Ac)' = 17.32 m i .  

a _  = 10 sec-' 

- 1 
cu = .1 sec 
S 

6 = 30 h r / i n .  

X = .13  h r - '  

K = - 9 5  ( K  = 1 - e x p  [-1.1~-'1 + e x p  [-1.1~" - . O 1  A ~ ]  

(Eag l e son ,  1972)  

0 = 109. e v e n t s  p e r  y e a r .  

F i g u r e  6 i s  f o r  t h e  c a s e  where t h e  w a t e r  l o s s  i s  

u n i f o r m l y  d i s t r i b u t e d  w i t h  means 5 e q u a l  t o  .05  i n / h r .  

F i g u r e s  7  and 8 a r e  f o r  t h e  c a s e  where f ( @ )  is  e x p o n e n t i a l  

w i t h  means o f  .03  i n / h r  and .05  i n / h r  r e s p e c t i v e l y .  

F i g u r e s  9 ,  10, 11, and 12  a r e  f o r  £ ( @ I  gamma-1 d i s t r i b u t e d  

w i t h  mean, 5 ,  e q u a l  t o  .05 i n / h r  and c o e f f i c i e n t  o f  v a r i a t i o n  

e q u a l  t o  .577 ,  .477,  .316,  and .10 r e s p e c t i v e l y .  

The i m p l i c a t i o n s  o f  t h e  u n c e r t a i n t y  i n  t h e  f r e q u e n c y  

c u r v e  i s  e v i d e n t  from t h e  c u r v e s .  I n  d e c i s i o n  prob lems ,  t h e  

e x p e c t e d  exceedance  p r o b a b i l i t y ,  E [ G ( ~ , ) ]  would be u sed .  

Take t h e  c a s e  where f ( @ )  i s  e x p o n e n t i a l  w i t h  a  mean 5 = .05. 

The e r r o r  i n t r o d u c e d  by s p e c i f y i n g  t h a t  a  peak  d i s c h a r g e  

of  4500 c f s  h a s  a  r e t u r n  p e r i o d  o f  100 y e a r s ,  a s  p r e d i c t e d  
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FIGURE 6. FREQUENCY CURVES FOR f ( $  ), UNIFORM WITH 
6 =0.05 in /h r .  



1 
30 00 4000 5000 6000 

DISCHARGE q 

F I O R E  7 FREQUENCY CURVES FOR f ($11, EXPONENTIAL 
WITH 6 = 0.03. 
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FIGURE 8. FREQUENCY CURVES FOR f ( $ 1 ,  EXPONENTIAL 
WITH = 0.05. 
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FIGURE 9. FREQUENCY CURVES FOR f ( 9  1, GAMMA-1 WITH - 
$ = 0 .05  AND Cv = 0.577. 
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FIGURE 10. FREQUENCY CURVES FOR f (9 1, GAMMA-1 WITH - 
t j  = 0.05 AND C, =0.477. 



f ($)  - GAMMA 

r = 10 

oc = 200 

6 = 0.05 

C,= 0.316 

FIGURE 11. FREQUENCY CURVES FOR f ( #  1, GAMMA-1 WITH 
- 
# = 0 .05  AND Cv = 0.316. 
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by the deterministic analysis, is substantial, since the 

stochastic analysis predicts that that peak discharge has a 

return period of 50 years. This error in accounting for 

parameter uncertainty may lead to serious design problems. 

When the information about $I is very good, which is 

represented by a tight distribution on $I (and shown in 

Figure 121, the difference between the two analyses is very 

small. Of course, this is expected. 

This analysis only considered one uncertain parameter 

in the rainfall runoff modelling. The implications of 

considering many uncertain parameters are evident. 

Conclusion 

This paper analyzes the uncertainty in the output of a 

deterministic rainfall-runoff model due to the uncertainty 

in the models' parameters. Eagleson's derived flood 

frequency analysis is used to find the constant peak 

discharge boundary in the i - tr plane, which in turn is 

used to define Rq the region in which combinations of m ' - 
i and tr yield discharges less than or equal to qm. This 

boundary permitted the evaluation of the flood exceedance 

probability, G(q,) which is the probability that q > qm. 

The uncertainty in the runoff model is represented by the 

water loss ,coefficient, $I, which results in uncertainty in 

the position of the constant peak discharge boundary for 

9, and in the size and location of the reqion Rq The m ' 

expected flood exceedance probability, E [G (qm)] , is found by 



which considers the uncertainty in 4 .  

Two probability density functions are obtained 

analytically. One is the ~ e a k  discharge, conditional upon 

an exceedance probability level, and the other is the 

exceedance probability at a peak discharge level. This 

leads to the result that the use of a point estimate for 

the water loss 4 underestimates the peak discharge for a 

given exceedance level, G(qm). Similarly, such a procedure 

underestimates the exceedance probability for a given peak 

discharge. 

Continued research remains to be done on parameter 

uncertainty in rainfall runoff modelling. There are those 

parameters which vary from storm to storm--for example, the 

rainfall interior pattern--which are really stochastic 

processes and should be analyzed in such a framework. There 

are those parameters which are uncertain, due to statistical 

uncertainty. Their effect upon the region Rqm has not been 

fully researched either. The area of parameter uncertainty 

in modelling the rainfall runoff process will provide many 

years of interesting work. 

The extension of the theory presented here to other 

simulation models outside of hydrology--for example, water 



quality models--1s straightforward. If simulation models 

are going to be applied for prediction, where the concern 

is an unknown future state of nature (an urbanized watershed, 

for example), then the probability distribution on the models' 

outputs should be estimated if the outputs are used to make 

meaningful decisions. 

Furthermore, the analytical procedures presented here 

should be applied to the next step--the evaluation of the 

worth of data and their economic affects upon project designs. 

Uncertainty in various parameters (or types of parameters) 

have different affects upon the uncertainty of the model 

outputs which are used in decision making. 
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