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The Adaptive Dynamics Network at IIASA fosters the develop-
ment of new mathematical and conceptual techniques for under-
standing the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Adaptive Dynamics Network
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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Sexual reproduction, typically conceived of as a puzzling feature of eukaryotes, has posed

an extraordinary evolutionary challenge in terms of the two-fold replicative advantage of

asexuals over sexuals [11]. Here we show mathematically that a greater than two fold cost

is paid by retroviruses such as HIV during reverse transcription. For a retrovirus replication

is achieved through RNA reverse transcription and the effectively linear growth processes

of DNA transcription during gene expression [2]. Retroviruses are unique among viruses

in that they show an alternation of generations between a diploid free living phase and a

haploid integrated phase [12]. Retroviruses engage in extensive recombination during the

synthesis of the haploid DNA provirus [8]. Whereas reverse transcription generates large

amounts of sequence variation, DNA transcription is a high fidelity process. Retroviruses

come under strong selection pressures from immune systems to generate escape mutants [9],

and reverse transciption into the haploid DNA phase serves to generate diversity followed

by a phase of transcriptional clonal expansion during the restoration of diploidy.

The Darwinian theory of evolution makes the average rate of replication of an organism a mea-

sure of competitive status. The greater the rate of replication, the greater the frequency of genes

placed back in the population gene pool. Endogenous mechanisms that increase this frequency are

typically deemed adaptive, whereas those that decrease this frequency are deemed maladaptive.

Sexual reproduction according to this simple definition, is maladaptive, as rather than allowing

each genome to place two copies back into the gene pool as it could if asexual, it only allows a

single copy to be placed back into the gene pool. This feature has been called, the two-fold cost

of sex, the cost of males and the cost of meiosis [11]. The fundamental feature of sexual repro-

duction in contrast to asexual replication, according to measurement by gene frequencies, is the

halving of the intrinsic growth rate. This preference for reduced rates of growth in a wide range of

eukaryotes, has been considered one of the more puzzling traits observed in nature.
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Here we show that this trait is not restricted to sexual reproduction or to eukaryotic organisms,

but is a prominent feature of the life cycles of the retroviruses, such as Human Immunodeficiency

Virus (HIV) and T-cell leukemia virus (HTLV) [2]. Retroviruses are RNA viruses which integrate a

copy of their genome into the DNA genome of their host. This is achieved through the action of an

RNA-dependent-DNA polymerase, called reverse transcriptase (RT) [14]. Reverse transcription

proceeds when a retrovirus specific tRNA binds to a complementary region of the virus RNA

called the primer binding site (PBS). A DNA segment is extended from the bound tRNA in the

3’ to 5’ direction through the action of the polymerase. The underlying replicated genome is then

removed by the RNase H activity of RT. The newly synthesized sequence, thus liberated, then

binds to the complementary 3’ sequence and extends in the 5’ direction to complete synthesis of

the proviral DNA genome with an accompanying break down of the remaining RNA genome. The

virus encoded protein integrase, then inserts the virus genome into the host DNA genome.

Most RNA viruses replicate their genomes using an RNA-dependent-RNA polymerase in the

cytoplasm. Each new genome synthesized in this way serves indirectly as a template for another

round of replication. With retroviruses replication disappears to be replaced by transcription. In

other words, for a retrovirus replication has become a modified form of host gene expression. We

model the intracellular dynamics of the virus life cycle as follows:

Let p(t) be the probability that a viral genome is integrated into the host genome by a timet

following infection:

ṗ = λ(1− p).

The parameterλ is the rate of integration in a unit time interval. From an integrated provirus, the

genomic RNA (G) and viral messenger RNAs are produced:

Ġ = mHfG p.

The parametermH is the rate of (host-transcriptase-dependent) transcription from the integrated

DNA andfG is the fraction of viral genomic RNA in the total transcripts (the remaining fraction

fP = 1 − fG are to be translated into viral proteins). The initial conditions arep(0) = 0 and

G(0) = 0 This givesp(t) = 1− e−λt and

G(t) = mHfG

∫ t

0

p(s)ds = mHfG

[
t− 1

λ

(
1− e−λt

)]
.

For t� 1/λ,

G(t) ≈ mHfG

(
t− 1

λ

)
. (1)
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(A)

(B)

FIG. 1: Logic of virus life cycles. (A) Positive strand RNA virus of strain type 1 infects cell. RNA is trans-

lated into polyprotein 1 and replicated with error into strain 2. Process repeats. Growth is explosive (greater

than exponential) as both new genomes and additional replicatory proteins are synthesized throughout the

life cycle (B) Diploid, heterozygous, retrovirus infects cells . Proviral genome of strain type 3 is synthesized

during reverse integration after a poissonian waiting time. Genomes of type 3 are transcribed at high fidelity

at a linear rate and translated into proteins producing an effectively clonal population of new retroviruses of

strain type 3. While we have not show it, coinfection with multiple virus strains can produce heterozygous

diploids at the final segregation stage of the life cycle.

That is the viral genomic RNAs accumulate linearly with time after a grace period1/λ = 8 ∼ 12 h

for integration.

Now we compare this with the corresponding rate of genomic RNA accumulation in a model

describing a positive strand RNA virus [7] (e.g. Flavi- and picornaviruses). We focus on the rate

of genomic RNA accumulation in an infected cell. Because genomic RNAG+ of positive strand

RNA virus and negative strand RNAG− is templated fromG− andG+ respectively assisted by



4

viral RNA replicaseP ,

Ġ+ = mV G−P, (2)

Ġ− = mV G+P. (3)

HeremV is the rate of viral RNA-dependent transcription. As genomic RNAs (G+) also act as

messenger RNAs for viral proteins, RNA polymerases (P ) are translated with the rate

Ṗ = kG+ − µP,

wherek is the rate of translation andµ is the degradation rate of replicase. The initial conditions are

G(0) = G0 andP (0) = 0, whereG0 corresponds to the concentration of a viral genome packaged

inside the infected virion. Assuming quasi-equilibrium for the production and degradation ofP ’s

(i.e. Ṗ = 0), we find after some algebra that

G(t) = G0

√
1 + tan2(aG0t), (4)

which diverges to infinity at

tc =
π

2aG0

,

wherea = mV k/µ. Thus the numberG(t) of genomic RNA explodes in a finite timet = tc. The

rate of growth of genome copy numbers will eventually approach zero, as a result of depletion of

nucleotides, and energy and space limitations. This threshold implies that a very large number of

genomes accumulate around the critical timetc. Moreoever this rate of growth neartc produces a

greater than two-fold advantage over the retrovirus life cycle. In classical evolutionary models of

sex, the rate of replication of an asexual is held constant; hence its population growth rate iskx

wherek is a rate constant andx population density. With a positive strand RNA virus, the rate is

accelerating since the replication rate is proportional to the productGP . This can be thought of as

a simple form of niche construction, whereby the virus synthesizes components of its environment

(in this caseP ) which feedback positively to increase its net rate of replication. With coinfection,

each virus strain benefits from the polymerase synthesized by homologous strains.

In summary, for a retrovirus the number of genomic RNAs accumulates only linearly with

time after a long grace period following integration (see (1)), whereas copy numbers explodes in

a finite timetc (as in (4)) for a positive strand RNA virus. Though the initial production rate of

virus genomes is small for an RNA virus as a result of a dependency on low copy numbers of
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viral RNA transcriptases, the integration of the retroviral genome depends in a similar way on

the reverse transcriptases packaged inside the infected virion. Overall, retroviruses are expected

to suffer significant opportunity costs of replication by virtue of interposing a DNA phase in the

positive-strand RNA life cycle.

A retrovirus genome is a diploid genome comprising two positive sense, single stranded RNAs.

During reverse transcription of the virus genome, the DNA polymerase switches back and forth

between the two RNA templates, in a process of homologous recombination, producing a recom-

binant provirus with sequence information derived from both parental RNAs [5]. Furthermore

reverse transriptase has a high error rate, with approximately 1 in every 2000 bases being a misin-

corporation [10]. Thus retroviruses, just like sexual eukaryotes, exploit diploidy and recombina-

tion as a means of generating genomic variation [4]. As the fidelity of reverse transcriptase is low,

there is a comcomitant increase in the rate of mutation during the recombination process.

The questions therefore arises, why not have evolved recombination with a diploid RNA

genome and forgo the DNA phase in the life cycle? This strategy would serve to circumvent

the greater than two-fold cost and render a significant growth rate advantage? There are two pos-

sible sets of answers to this question. The first is mechanistic and relates to recombination in

RNA viruses, and the second is functional and relates to the fidelity of replication through DNA

transcription.

Consider the first reason. The retroviruses are the only diploid positive strand RNA viruses.

As a result, homologous genomes are always in close proximity and potentially physically linked.

Whereas a number of RNA viruses have been observed to engage in recombination through copy

choice mechanisms – including coronaviruses and picornaviruses – recombination involves col-

lisions between free viral RNAs concentrated at membranes [8]. For a retrovirus recombination

rates are limited by mechanisms of template switching, for a positive strand RNA virus, recombi-

nation rates are limited by the multiplicity of coinfection and template switching. Furthermore, it

seems that RNA-dependent DNA polymerase is more efficient at template switching than RNA-

dependent RNA polymerase based on rates of recombination in in-vitro experiments. Why this

should be the case remains unknown. One possibility is that the protracted selection pressure on

RNA-dependent DNA polymerase by virtue of the persistently diploid state of retroviruses, has

lead to more effective mechanisms of homologous recombination.

Consider the second reason. Retroviruses are able to simultaneously exploit reverse integration

to generate high levels of diversity, and as a mechanism for generating a DNA genome from which
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genomic transcripts are generated with very high fidelity during transcription. Thus after a phase

of recombination and hypermutation during the synthesis of the provirus, the virus mutation rate

drops effectively to zero, and new genomes are produced through transcriptional clonal expansion

(see Figure 1b). This is not true for ordinary RNA viruses, which experience a very high rate of

diversification during every round of replication (see Figure 1a). Hence retroviruses have discov-

ered a unique means of mitigating mutational-error accumulation while simultaneously producing

very variable genomes. A cell infected by retroviruses presents a very diverse ensemble of clonal

populations of virus, where each population in the ensemble is the transcriptional progeny of a

single integration event.

Traditionally, three forms of explanation have been provided to account for the evolutionary

persistence of sex in eukaryotes: (1) sexual recombination generates diverse progeny to occupy

diverse environments (tangled bank hypothesis - TB [1]), (2) sex allows hosts to generate suffi-

cient antigenic diversity to evade parasites (parasite-host coevolution hypothesis - CE [3]), and

(3) recombination promotes efficient purging of deleterious mutations from the population (Syn-

ergistic mutation hypothesis - MH [6]). Empirical evidence has been used in support of each of

these hypotheses [13]. Somewhat surprisingly, similar if not identical arguments can be applied to

reverse integration by retroviruses. We examine the explanatory power of each of these theories.

Under the TB retroviral diversification becomes a function of the diversity of host niches which

the virus population finds itself in. Immune memory establishes a diversity of niches negatively

by excluding virus epitopes for which their exists complementary T cell receptors. Furthermore,

during the course of a single HIV infection following inoculation with a single train, variants

emerge that are specialists for different tissue types. The pattern of virus evolution in different

tissues can proceed at very different rates, and can favor different amino acid subsitutions. Since

the infection bottleneck for a retrovirus can be very small, it might be important that sufficient

diversity can be generated over the course of a single infection to allow for maximum population

growth. However, it is unclear whether such high rates of virus mutation are necessary given that

host genomes associated with tissues are highly conserved. Furthermore, many positive strand

RNA viruses are able to exploit a diversity of host niches over the course of infection, without

recourse to recombination and hypermutation during reverse integration. For these comparative

reasons, the TB hypothesis is somewhat weakened.

Under the CE, pressure from the host adaptive immune system favors mechanisms by which

the virus can quickly generate variable epitopes promoting immune evasion. It is well known that
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viruses such as HIV are under very strong selection pressures for diversification, and that reduc-

ing virus mutation rates promotes more effective clearance. Circumstantial evidence also comes

from escape variants that mutate away from drug target sequences thereby restoring high rates of

replication. The adaptive immune system is the only antagonistic host response to a virus that can

evolve on a comparable time scale to the virus and therefore imposes strong and variable selection

pressures on mechanisms of diversification. Excessive mutation can lead to loss of heredity. The

DNA phase serves to damp down mutation and promotes a phase of transcriptional clonal expan-

sion analogous to the clonal expansion of immune effector cells of the adaptive immune system.

In this way the retrovirus can enjoy the benefits of recombination and hypermutation, with the pos-

sibility of exploiting strong genotypes repeatedly by creating clonal pools through transcription of

DNA.

Under the MH recombination becomes a means of parcelling groups of mutations among the

members of a virus population. Recombination allows that some genomes will harbor large num-

bers of deleterious mutations, whereas others will have very few to none. Assuming that selection

works more efficiently in genomes with larger numbers of mutations, then recombination can be

favored. Unlike the TH and CE hypotheses, the MH hypotheses for reverse transcription does not

favor a DNA phase, as it could work just as well for a non-integrating diploid RNA virus that is

capable of recombination. Indeed it would be preferable, as the additional hypermutation associ-

ated with generating the provirus could be avoided. It seems therefore that we can rule out the MH

hypothesis as an explanation for the greater than two-fold disadvantage of reverse integration.

The two-fold cost is not restricted to sexual reproduction as much of the evolutionary liter-

ature would seem to imply. The two-fold or greater than two-fold cost, is a more fundamental

property related to the tradeoff between diversity-promoting mechanisms, and those mechanisms

promoting replication. Retroviruses are an ancient evolutionary lineage that have elected to solve

their replication-diversity problem, in much the same way as complex, multicellular eukaryotic

lineages. Interestingly, the most plausible explanation for why retroviruses reverse transcribe, is a

mirror image of one of the dominant theories for why sexual eukaryotes produce males. For the

retrovirus, the greater than two-fold cost pays for diversity capable of escaping immune detection,
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whereas for the eukaryotes, the two-fold cost pays for diversity required to clear virus infection.
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