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Abstract

An introduction of disease-resistant variety of a crop plant often leads to the development of

a virulent race in pathogen species that restores the pathogenicity to the resistant crop. This

often makes disease control of crop plants extremely difficult. In this paper, we theoretically

explore the optimal ’multiline’ control, which makes use of several different resistant varieties,

that minimizes the expected degree of crop damages caused by epidemic outbreaks of the

pathogen. We examine both single-locus and two-locus gene-for-gene (GFG) systems for

the compatibility relationship between host genotypes and pathogen genotypes, in which

host haplotype has either susceptible or resistant allele in each resistance locus, and the

pathogen haplotype has either avirulent or virulent allele in the corresponding virulence

locus. We then study the optimal planting strategy of host resistant genotypes based on

standard epidemiological dynamics with pathogen spore stages. The most striking result of

our single locus GFG model is that there exists an intermediate optimum mixing ratio for

the susceptible and resistant crops that maximizes the final yield, in spite of the fact that the

susceptible crop has no use to fight against either avirulent or virulent race of the pathogen.

The intermediate mixture is optimum except when the initial pathogen spore population

in the season consists exclusively of the virulent race. The optimal proportion of resistant

crops is approximately 1/R0, where R0 is the basic reproductive ratio of pathogen — the

rest (the vast majority if R0 is large) of crops should be the susceptible genotype. By mixing

susceptible and resistant crops, we can force the pathogen races to compete with each other

for their available hosts. This competition between avirulent and virulent races prevents the

fatal outbreak of the virulent race (the super-race) that can infect all the host genotypes.

In the two-locus GFG control, there again exists the optimal mixing ratio for the fraction of

universally susceptible genotype and the total fraction of various resistant genotypes, with

the ratio close to 1/R0.

Keywords : coevolution, gene-for-gene, resistance, virulence
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1 Introduction

Plants have physical and chemical defense mechanisms against their pathogens. In addi-

tion to general, nonspecific defense mechanisms called ’field resistances’, plant hosts have

race-specific defense system induced by the recognition of a certain strain of pathogen that

infected the plant cells. Viral, bacterial, and fungal infections of a plant induce hypersen-

sitive response (HR) by the infected and surrounding cells, thereby preventing the infected

pathogens from spreading in the tissue (Goodman & Novacky, 1994). The hypersensitive re-

sponse is triggered by the recognition of pathogen-derived elicitor molecules (avirulent gene

product). The plant resistance gene refers to the gene encoding an receptor or a signal trans-

duction enzyme responsible for the recognition of the elicitor molecule of a specific species

or race of pathogens. A plant that lacks such resistance genes is called susceptible. This

plant resistance is often defeated by the emergence of a pathogen race that lacks or mod-

ifies the elicitor molecule targeted by the resistance gene product. Such pathogens, called

the virulent race, can infect the resistant host plant, as well as the susceptible one. This

race-specific defense mechanism is called the gene-for-gene system (Flor, 1956; Thompson &

Burdon, 1992)

There is a great amount of literature on the disease management under gene-for-gene

interaction of plants and pathogens. As suggested by mathematical study on rust diseases

(Leonard, 1969), cultivar mixtures of crops has been recognized as one of the most promising

strategies to lessen the damage caused by the epidemics in crop plants (Browning & Frey,

1969; Wolfe, 1985; Mundt, 2002). Many experimental studies demonstrated the efficiency of

multiline (cultivar mixture) controls as well. For example, the severity of blast disease and

the percent diseased plants in the mixtures of rice cultivar were less than that observed in the

single line plantings (Nakajima et al., 1996). According to the experiments on the bacterial

infection of bell peppers, the yield in susceptible and resistant mixture tended to be higher

than that of pure stands of either susceptible or resistance genotype (Kousik et al., 1996).

The study on the fungal infections in experimental rice field (Zhu et al., 2000) revealed

that the mixture of different resistant genotypes contributed to reduce the total number of

infections. It is also postulated that an increased resistance diversity in host plant may slow

down the adaptation of the pathogen to resistance genes (Garrett & Mundt, 1999).

In spite of these potential benefits, the host diversification in resistance in the cultivar
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mixture often promotes the diversity of pathogen virulence genotypes (DiLeone & Mundt,

1994; Muller et al., 1996), offsetting the advantage of resistance diversity. The introductions

of multiple resistance in various crop plants did not improve the situation either, because

they usually ended up with the development of pathogen super-races that can infect all the

resistant varieties of crop plant (Burdon 1987, Thompson & Burdon 1992 for review; see

Sasaki 2000, 2002 for the theoretical aspects of coevolutionary dynamics with a multilocus

gene-for-gene system). Thus it is necessary to develop a model that can assess the effect of

mixing various resistance variety in the face of the risk of development of virulent races in

the pathogen, which is the primary objective of the present paper.

The gene-for-gene interaction between host and pathogen genotypes has attracted

great attentions in theoretical biology (e.g., in the subjects of the maintenance of polymor-

phism (Gillespie, 1975), the coevolutionary cycles (Hamilton, 1980; Frank, 1993; Sasaki,

2000), the evolution of sex (Hamilton, 1980; May & Anderson, 1983; Hamilton et al., 1990;

Parker, 1994), and the spatio-temporal pattern of polymorphism (Damgaard, 1999; Sasaki

et al., 2002)). However, quite little is understood theoretically on the optimal disease con-

trol in crop plants under the gene-for-gene interaction between host and pathogen genotypes.

The optimal drug control of human diseases has been studies intensively, which, for exam-

ple, focus on the time to the development of drug-resistant strain and multiple drug-resistant

strain of pathogen (Anderson & May, 1991; Nowak & May, 2000). However, this problem of

the optimal therapy after the infection of a patient is quite different from the optimal plant-

ing strategy of resistant crops (optimal prophylactic control) we examine here. The decision

for the proportion of resistant varieties to be planted must be made prior to the season for

the pathogen outbreaks. This is the reason why we obtain the results quite different from

the conventional wisdom of the drug therapy. For example, our model reveals that there

is an optimal mixture of susceptible and resistant crops that maximizes the final yields. In

drug control, by contrast, there is no such intermediate optimum for the intensity of drug,

and there is no optimal mixture for multiple drugs either (see Nowak and May (2000) for

review).

In this paper, we address the optimal planting strategy to maximize the final crop

yield under the threat of pathogen infection and the threat of the development of a virulent

race. Our analysis is based on the epidemiological dynamics with multiple host resistance

genotypes and pathogen virulence genotypes. We ask, for example, what is the optimal

mixing ratio of resistant genotypes to minimize the total damage by pathogen infection.
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2 Disease-control under gene-for-gene interaction

We first introduce the plant-pathogen epidemiological dynamics with the spore stage of

pathogen, and study the total final yield expected under a single crop variety and a single

compatible pathogen race. In section 2.2, the optimal disease control strategy (the optimal

mixing ratio of susceptible and resistant variety, and the optimal total crop density) is studied

under the single locus di-allelic gene-for-gene system (i.e. with two host genotypes and two

pathogen genotypes).

2.1 Crop plant and fungal infection: Final yields

We consider a crop plant and its fungal pathogen that can be transmitted by free-living spores

(Anderson & May, 1981). Let X, Y , and W be the numbers of uninfected plants, infected

plants, and the pathogen spores. We denote the transmission rate of fungal pathogen by

β, the mortality of infected plants by α, the number of pathogen spore production from an

infected plant in a unit time interval by λ, and the decay rate of spores by μ. To estimate the

impact of pathogen outbreak in crop plants, we examine the final yields X(T ), the number of

plants that have not experienced pathogen infection until the time T of harvesting. We obtain

the final yields as a function of the initial crop density X(0) = H, and the epidemiological

parameters. We assume that initially no plant is infected (Y (0) = 0), and the spore density

W (0) = δ in the beginning of breeding season is sufficiently small. The epidemiological

dynamics of the crop plant-pathogen system are then

dX

dt
= −βXW, (1a)

dY

dt
= βXW − αY, (1b)

dW

dt
= λY − μW, (1c)

Let φ = X(T )/H be the fraction of plants that have never experienced infection until the

harvesting time T . If the basic reproductive ratio of pathogen is not too small, the final

yield X(T ) is well approximated by that in the limit of T → ∞. In Appendix A, we derive

the implicit equation with which φ = X(∞)/H is determined:

φ = exp

[
−βλH

αμ
(1 − φ)

]
, (2)
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(Gillespie, 1975; May & Anderson, 1983). The pathogen outbreak occurs if the initial crop

density H exceeds the threshold Hc = αμ/βλ. If H exceeds Hc, a part of plants experience

infection during the breeding season. Because the efficiency of infection increases as the initial

crop density increases, the fraction of plants that remain uninfected during the breeding

season decreases as the initial crop density is increased past the threshold. Thus, the final

yields X(∞) = Hφ is a one-humped function of the initial crop density H, and is maximized

at an intermediate initial crop density H = Hc (Fig. 1).

2.2 Resistant plants and virulent pathogens:

Optimal multiline control under gene-for-gene interaction

Now we consider the introduction of the resistant crop variety to prevent the pathogen from

prevailing in the crop fields which the crops are planted over the epidemic threshold density.

It is clear that, if we ignore the development of virulent pathogen races, the maximum use of

resistant variety is the best strategy to increase the final yields. However, the development of

virulent pathogen races within (or shortly after) the year of the introduction of new resistant

crop variety is the rule rather than the exception. It will be shown below that if we take into

account the development of virulent races, the mixture of susceptible and resistant plants is

better than replacing all crops by resistant variety. We here examine the optimal fraction of

resistant variety in the total crop under the possibility of the development of virulent races

in pathogens.

We assume the gene-for-gene interaction (Flor, 1956) for the compatibility between

two host genotypes (susceptible and resistant) and two pathogen genotypes (avirulent and

virulent). Let X0 and X1 be the densities of uninfected susceptible and resistant hosts, Y0

and Y1 be the densities of hosts infected by avirulent and virulent pathogen races, and W0

and W1 be the densities of avirulent and virulent pathogen spores. The extended version of
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model (1) incorporating resistant host plant and virulent pathogen is then

dX0

dt
= −βX0(W0 + W1), (3a)

dX1

dt
= −βX1W1, (3b)

dY0

dt
= βX0W0 − αY0, (3c)

dY1

dt
= β(X0 + X1)W1 − αY1, (3d)

dW0

dt
= λY0 − μW0, (3e)

dW1

dt
= λY1 − μW1, (3f)

where we assume, for simplicity, that the transmission rate β, the mortality of infected host

α, the spore production rate λ, and the spore dilution rate μ are independent of the host or

the pathogen genotypes (Fig. 2).

Now we examine the total final yields X0(T )+X1(T ) as a function of the initial crop

densities of susceptible and resistant hosts (X0(0) = H0 and X1(0) = H1), and of the initial

densities of avirulent and virulent pathogen spores (W0(0) = δ0 and W1(0) = δ1). As before,

we assume that no host is infected in the beginning of the breeding season (t = 0), that

the initial densities of pathogens spores (δi’s) are sufficiently small, and that the pathogen

outbreak occurs before the harvesting time T so that we can approximate the final yields

X0(T ) + X1(T ) by X0(∞) + X1(∞). The initial frequency of pathogen spore genotypes

(δi/(δ0 + δ1), i = 0, 1) should mainly depend on the outbreak in the previous year. For

example, if the infection by the virulent race prevailed in the previous year, we expect that

δ1/δ0 � 1. The main purpose of the analysis of the model (3) is to find out the optimal

planting strategy of susceptible and resistant crop varieties as a function of δ0 and δ1.

2.2.1 Sequential outbreaks: Avirulent-race outbreak followed by virulent-race

outbreak

The analysis of the optimal planting strategy is greatly simplified if the initial frequency

of pathogen genotypes is strongly biased towards the excess of avirulent race (δ1/δ
σ
0 � 1),

where σ = ζ1/ζ0 > 1 is the ratio of initial rate of increase of virulent race to that of avirulent

race. It is interesting to note that the initial excess of avirulent frequency (δ1/δ0 � 1) is
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not sufficient for this order of outbreaks to occur. This is because the virulent race having

a larger rate of initial exponential growth than the avirulent race (due to its wider host

range) eventually catches up the forgoing avirulent race. More precise condition for that the

outbreaks occurs in the avirulent-virulent order is derived in Appendix B as

δ1 < δ0
σ, (4)

where σ = ζ1/ζ0 is the ratio of the initial rate of increase of virulent race to that of avirulent

race. See Appendix B for detail. Suppose for example that the resistant variety is newly

introduced in the year, and therefore the pathogen spores consist exclusively of avirulent

genotype in the beginning of the season. We then expect that the spread of the avirulent

race precedes that of the virulent race. By contrast, the outbreak of virulent pathogen may

come first if the virulent race prevailed in the previous year.

The final crop yields as a function of the planting strategy (H0, H1) of susceptible

and resistant varieties is then easily analyzed. Consider first the case where the initial spore

density of virulent race is sufficiently smaller than that of avirulent race (δ1/δ
σ
0 � 1). In

this case the outbreaks of avirulent pathogen precedes that of the virulent pathogen. After

the outbreak of avirulent pathogen race, the density H̃0 of susceptible hosts that remain

uninfected is given by H̃0 = H0φ0 where

φ0 = exp

[
−βλ

αμ
H0(1 − φ0)

]
. (5)

This is the same as (2) with H0 = H and φ0 = φ, and hence the density of susceptible hosts

that remain uninfected after the outbreak of avirulent pathogen race is a unimodal function

of the initial density H0 of susceptible plants, with the maximum attained near the threshold

Hc = αμ/βλ (Fig. 1). The next epidemic occurs by the spread of virulent pathogen race,

which can equally infect the susceptible and the resistant plants. As the ‘initial’ host density

for the virulent pathogen is H̃0 + H1, the fraction φ1 of hosts that remain uninfected after

the second outbreak by the virulent race satisfies

φ1 = exp

[
−βλ

αμ
(H̃0 + H1)(1 − φ1)

]
. (6)

The total yields of the season when the pathogen outbreak occurs in the order of avirulent

→ virulent is then

YAV = (H̃0 + H1)φ1 = (H0φ0 + H1)φ1. (7)

Now we examine how the total final yields changes by changing the total crop density,

H = H0 + H1, and the fraction of resistant crop in the beginning of the season, p = H1/H.
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Figure 3 shows the final total yields YAV as a function of p. The whole range of the fraction

of resistant crops p is divided by its two thresholds. The first threshold for p is derived in

Appendix C as

p∗1 =
1 − R0e

1−R0

R0 (1 − e1−R0)
∼

⎧⎨
⎩1/R0, (R0 → ∞),

(R0 − 1), (R0 → +1).
(8)

where R0 = βλH/αμ is the basic reproductive ratio of pathogen. If p is less than p∗1,

the second outbreak by the virulent race will not occur because the density of uninfected

hosts remained after the avirulent race outbreak becomes smaller than the epidemiological

threshold for the virulent race. The second threshold is defined as

p∗2 = 1 − 1

R0

, (9)

(see Appendix C). If p > p∗2, there will be no outbreak by avirulent race because the density of

susceptible hosts is below the epidemiological threshold. If the fraction of resistant crop is in

between the two thresholds, p∗1 < p < p∗2, there will be two outbreaks, first by avirulent race

and second by virulent race, in a season. The final yields as a function of p is demonstrated

in Fig. 3.

As is illustrated in Fig. 3, the final yield first increases by increasing the fraction of

resistant crop, attains the maximum at p = p∗1, and start decreasing when p is increased past

p∗1. When p exceeds the second threshold p2∗, the final yields becomes independent of the

fraction of resistant crops, because all infections are due to virulent race.

When we plot the final yields in the parameter space of H and p, there are two ridges

of high final yields — one is for the total crop density at H = Hc = αμ/βλ, and the another

for the optimal fraction

p = p∗1 =
1 − (H/Hc)e

1−H/Hc

(H/Hc)(1 − e1−H/Hc)
(10)

of resistant crop for a given total host density H (> Hc) (Fig. 4).

We next examine the case δ1/δ
σ
0 � 1 where the outbreak due to the virulent race

occurs earlier in the season than that due to avirulent race. Note that only difference

between virulent and avirulent races assumed in the present model is that virulent race has

a broader host range (the resistance makes no sense for the virulent race but is perfectly

effective against the avirulent race). Therefore, if virulent races can no longer spread after

the outbreak due to the shortage of uninfected hosts, there is no chance for avirulent race to
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spread in the host population. Hence there will be no outbreak by avirulent race if virulent

race epidemic comes first. The final yield YV A for this case is therefore independent of the

fraction of resistant crops, and is given by

YV A = Hφ, (11)

where φ is the root of (2). Thus, if the virulent pathogen race prevailed in the previous year,

and is its early appearance expected, planting the resistant crop has no effect. One should

just adjust the total crop density around Hc to maximize the final yields.

2.2.2 Simultaneous outbreaks of avirulent and virulent races

If the initial spore densities of avirulent and virulent pathogens are comparable, the above

analysis for the sequential outbreaks must fail. The final yields numerically obtained from

(3) are plotted against the fraction p of the resistant crops for various values of relative

frequencies of avirulent to virulent pathogens (Fig. 3b). Clearly from the figure, there exists

the optimum fraction of resistant crops that maximizes the final yields, as suggested from

the analysis of sequential outbreaks in the last two sections. The optimal fraction is close to

p∗1 for sufficiently small δ1/δ
σ
0 (and the final yield curve approaches to YAV as δ1/δ

σ
0 becomes

small). The final yield becomes less sensitive to p as δ1/δ
σ
0 increases, but still an intermediate

p is the optimum. The final yield curve approaches to YV A as δ1/δ
σ
0 is increased further.

The reason why the mixture of susceptible and resistant crops are better than the

exclusive use of resistant crops lies in the strong nonlinearity in the epidemiological culti-

vation curve (Fig. 1). The total impact by infectious disease is smaller if the host with a

given density is subdivided into varieties and exposed to different compatibility genotypes of

pathogen, than if a single host genotype of the same density is exposed to a single compatible

pathogen genotype.

One may think that, under the presence of a super-race of pathogen, the host resis-

tance diversity is of no use. This is correct in our model in the sense that, if the initial spore

population consists exclusively of the virulent race (which is the super-race in the single

locus gene-for-gene system), then the final yield is independent of the fraction of resistant

crops. This is, however, not generally correct, if the initial spore population consists of the

mixture of avirulent and virulent genotypes (and is the most notably incorrect if it consists
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exclusively of avirulent race). Using both susceptible and resistant crops can then greatly

improve the final yields from using resistant or susceptible crops only.

3 Disease control under multilocus GFG system

Here we extend the model to the haploid multilocus gene-for-gene system. We consider n

resistant loci of host, each having either resistant (1) or susceptible (0) allele. Hence the host

genotype is expressed as a binary number (i = i1i2 · · · in, with ik ∈ {0, 1}). We also consider

the corresponding n virulence loci of pathogen, each having either virulent (1) or avirulent

(0) allele. The pathogen genotype is also expressed as a binary number (j = j1j2 · · · jn, with

jk ∈ {0, 1}).

A pathogen genotype is called compatible with a host genotype if the infection occurs

normally between the pair of genotypes. Under the multilocus gene-for-gene relationship

assumed here, the pathogen is compatible if it has no avirulent allele that may invoke the

hypersensitive response in the infected host. This is equivalent to say that host i and

pathogen j are compatible if, for every avirulent allele jk = 0 the pathogen might have,

the host has susceptible allele ik = 0 in the corresponding locus. It is convenient to define

the compatibility index c(i, j) of multi-locus gene-for-gene system (c = 1 if compatible,

c = 0 if incompatible) between the host genotype i = i1i2 · · · in and the pathogen genotype

j = j1j2 · · · jn:

c(i, j) =
n∏

k=1

[1 − ik(1 − jk)] =
n∏

k=1

[(1 − ik) + ikjk]. (12)

The middle part of (12) can be read as “there is no such locus in which host has resistant

allele and pathogen has avirulent allele (there is no such k with which ik = 1 and jk = 0;

hence, 1 − ik(1 − jk) = 1 for all k)”. The right hand side gives an alternative expression,

which specifies the condition as “in every locus, either host has susceptible allele (ik = 0)

or host has resistant allele but pathogen has virulent allele (ik = 1 and jk = 1), for host i

and pathogen j to be compatible”. The compatibility relationship in two locus gene-for-gene

system is illustrated in Table 1.

The epidemiological dynamics of the multilocus gene-for-gene system can be described

as the differential equations for Xi (the density of uninfected host genotype i), Yi (the density
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of hosts of any genotype infected by pathogen genotype i), and Wi (the spore density of

pathogen genotype i) for every n-locus resistance genotype of host and virulence genotype

of pathogen (i ∈ {0, 1}n):

dXi

dt
= −Xi

∑
j∈{0,1}n

βc(i, j)Wj, (13a)

dYi

dt
= Wi

∑
j∈{0,1}n

βc(j, i)Xj − αYi, (13b)

dWi

dt
= λYi − μWi, (13c)

where c(i, j) is the compatibility index defined above. β, α, λ, μ are the transmission rate,

the mortality of infected hosts, the spore production rate from an infected host, and the

decay rate of a spore, as defined in the single locus model. The objective function of the

model which is to be maximized is the final yield

Yf =
∑

i∈{0,1}n

Xi(T ). (14)

We seek the initial planting densities Xi(0) = Hi, for given initial densities of pathogen spores

Wi(0) = δi, that maximizes Yf . All hosts are assumed to be uninfected in the beginning of

the season: Yi(0) = 0. The harvesting time T is assumed to be sufficiently longer than the

growth period of any of the pathogen genotypes (though some would never actually increase

if the compatible host density is low).

In this paper we concentrate on the two locus case (n = 2). There are therefore

4 genotypes of host: universally susceptible (00), singly resistant (01 and 10), and doubly

resistant (11). There are correspondingly 4 genotypes of pathogen: universally avirulent

(00), singly virulent (01 and 10), and doubly virulent (11). The last pathogen genotype is

the super-race, which can infect all the host genotypes.

3.1 Optimal multiline control

3.1.1 sequential outbreak: universally avirulent → singly virulent → super-race

As in the single locus gene-for-gene model, we study the optimal fractions of host resistant

genotypes that maximizes the total final yield Yf . We here focus on the case where the

12



initial pathogen spore population primarily consist of the universally avirulent race (00),

which might be the most commonly faced situation in practice just after the introduction

of resistant variety. The expected order of outbreaks in the breeding season would be: first

outbreak of the universally avirulent race, followed by the second outbreak of the single step

mutants (or the singly virulent races 01 and 10), and then by the final outbreak of the two

step mutant (or the super-race 11). This is indeed the case if the initial spore densities of

singly virulent race is sufficiently smaller than that of the universally avirulent race, and

if the initial spore density of the super-race is further smaller. An analytical condition for

this order of emergence to occur is obtained in Appendix B, by assuming that the initial

densities of the singly virulent races are the same and that the initial planting densities of

singly resistant hosts are the same. The condition in terms of the initial spore densities δ00

of universally avirulent race 00, δ01 and δ10 of the singly virulent races 01 and 10 (δ01 = δ10

by assumption), and δ11 of the super-race 11 is

δ01 < δ00
ζ01/ζ00 , and (15a)

δ11 < δ00
(ζ11ζ′01−ζ′11ζ01)/ζ00ζ′01δ01

ζ′11/ζ′01 (15b)

where ζ00, ζ01, ζ11 are the initial growth rates of the universally avirulent race, the singly

virulent race, and the super-race, respectively, before the first outbreak, and ζ ′
00, ζ ′

01, and

ζ ′
11 are the corresponding quantities after the first epidemic by the universally avirulent race

but before the second epidemic by the singly virulent races (see Appendix B for detail).

Figure 5a-b shows how the final yield (14) depends on the total fraction of resistant

genotypes (p = (H01 + H10 + H11)/H, where H = H00 + H01 + H10 + H11 is the total initial

crop density) and the relative proportion of doubly resistant among all resistant genotypes

(q = H11/(H01+H10+H11)). Here we assume the same initial density for two singly resistant

genotypes: H01 = H10. Then, because of the symmetry of the model and initial conditions

(recall that we have assumed δ01 = δ10 as well), X01(t) = X10(t), Y01(t) = Y10(t), and

W01(t) = W10(t) follow for all t.

According to the analysis in Appendix D, we found that there are two ridges for the

maximum final yields in the parameter space of p (the fraction of resistant, either singly

or doubly resistant, crops) and the relative fraction q of doubly resistant crop among the

resistant crops (Fig. 5c). The first ridge for the final yields is defined as

p = p∗1 =
1 − R0e

1−R0

R0 (1 − e1−R0)
. (16)
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This optimal is independent of q, and is the same as the optimal fraction of resistant crops

in the single locus gene-for-gene system. Therefore, the optimal fraction of resistant crops

increases approximately as p∗1 ≈ R0 − 1 as the basic reproductive ratio R0 = βλH/αμ of the

pathogen increases past 1, attains its maximum (pmax = 0.23) around R0 = 2.8, and then

declines with R0 as p∗1 ∼ 1/R0 (R0 → ∞).

The second ridge for the maximum final yields is on Γ3 and Γ4 which are the epidemic

thresholds for the super-race after the second outbreak took place:

q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b(p), (p < 1 − 1/R0)

1/R0 − (1 − p)e1−R0 − pe(1−R0)/2

p(1 − e(1−R0)/2)
, (p > 1 − 1/R0)

(17)

where q = b(p) is the branch of the curve B(p, q) = 0 where B(p, q) is defined in (D14) of

Appendix D. This ridge corresponds to the strategy of using resistant crop rather extensively

(i.e., p is sufficiently large), but limit the use of doubly resistant crop at the fraction (17),

which is approximately 1/R0 for large R0. As shown in Fig. 5a-b, the maximum final

yields obtained from the direct numerical simulation of (13) with the initial spore densities

δ00 = 0.1, δ01 = δ10 = 10−4, δ11 = 10−12 agrees very well with the predicted results ((16) and

(17)) of the ordered outbreak approximation.

An important result of two-locus gene-for-gene system is that the maximum final

yields is obtained when p and q are adjusted on the epidemiological threshold for the super-

race of pathogen, and independent of the impact of preceding outbreaks by the other races.

In other words, preventing the last outbreak in the breeding season caused by the super-race

is primarily important in maximizing the final crop.

3.1.2 Other order of outbreak

So far, we have assumed that the initial spore densities of the singly virulent races is suffi-

ciently smaller than that of the universally avirulent race, and that of the super-race is even

smaller (exact condition is given by (15)), so that the outbreaks in the season occurs in the

order of avirulent → singly virulent → super-race. Here we briefly summarize the results

when this assumption on the order of outbreaks is violated. We focus on the cases where,

in the beginning of the season, only one of the races is abundant, and the frequencies of
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the other races decrease with their genetic distances from the abundant type (as expected if

they are derived by mutation from the abundant type). There are therefore two important

cases which haven’t yet been analyzed: (i) one of the singly virulent race is common in the

beginning of the season, and (ii) the super-race is common in the beginning.

(i) Suppose that the race 01 is the most abundant in the beginning of the season, and

the abundance of the initial spores of the races satisfies 01 > 00, 11 > 10. The first

outbreak then occurs by the race 01. The next outbreak by the super-race may follow

later in the season. However no other races can spread in the host population. The

problem is therefore equivalent to the single locus gene-for-gene case obtained in the

previous section. The optimal planting strategy is therefore to use the host genotype

10 and 11 in the proportion of p∗1 defined in (8), and use the other genotypes, 00 and

01, in the proportion of 1 − p∗1. The relative proportion of 10 to 11, or 00 to 01 does

not affect the results, because either 10 or 11 is resistant to the pathogen race 01, and

the other host genotypes are susceptible to the race. Exactly the same result holds

when the race 10, rather than 01, is common.

(ii) If the super-race is common in the beginning of the season, there is no way to reduce

the impact of epidemic. The final yields is independent of the relative proportion of

host genotypes, and depends only on the total host density. Only possible strategy is

to adjust the total host density to the epidemiological threshold.

4 Discussion

We have analyzed in this paper the optimal disease control in crop plants under the threat of

pathogen infection and the development of virulent race that overrides the disease-resistance.

The most important and unexpected result of our model is that there exists an intermediate

optimum for the fraction of resistant crops that maximizes the final yields. This seems to

be counter-intuitive at first glance because there is no advantage of using susceptible crop

itself to fight against either avirulent or virulent race of pathogen. By mixing susceptible

and resistant crops, however, we can force the pathogen races to compete with each other

for their available hosts. Exclusive use of the resistant hosts would completely eliminate

the threat of the avirulent race epidemic, but it provides the virulent race a great chance of
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infecting densely planted hosts with full efficiency. The less we use the resistant hosts, the

more intense is the inter-race resource competition in the pathogen, thereby reducing the

transmission efficiency of either of races and hence reducing the total number of infections.

On the other hand, if we use susceptible crops exclusively, either of races can fully exploit

the host without any difficulty. Hence there is an optimum mixture.

The optimal fraction of resistant crops in single locus gene-for-gene system is deter-

mined by the basic reproductive ratio R0 of the pathogen. If R0 is only slightly larger than

1, its threshold for the epidemics, the optimal fraction of resistant crop is approximately

R0 − 1. The optimal fraction increases by increasing R0 past 1, and attains its maximum,

(p∗max = 23%) and then declines for large R0 as p∗ ∼ 1/R0. Therefore if there is a high risk

of the development of virulent pathogen that can infect the resistant host in the season, the

fraction of resistant crop should never exceed about 1/4 for any pathogen having a basic

reproductive ratio greater than 1.

As mentioned earlier, the reason why the mixture of susceptible and resistant crops

are better than the exclusive use of resistant crops can be explained by the strong nonlinearity

in the epidemiological cultivation curve (Fig. 1). The total impact by infectious disease is

smaller if the host with a given density is subdivided into varieties and exposed to different

compatibility genotypes of pathogen, than if a single host genotype of the same density is

exposed to a single compatible pathogen genotype.

As the optimal fraction of resistant crops, and its importance as well, depends on the

initial spore frequencies, the estimation of the initial abundances of the spore genotype is

primality important in making the optimal planting strategy.

The analysis of disease-control in two-locus gene-for-gene system reveals that the

pooled fraction of various resistant genotypes is the major determinant of the final crop

yield. As analogous to the single-locus gene-for-gene problem, the final yield is maximized

by setting this proportion near 1/R0. By setting so, the population can escape the outbreak

by doubly virulent race, though all susceptible and singly resistant crops are to be cultivated

before the outbreak of doubly virulent pathogen. We should note that, though this simple

guideline for two-locus problem remains true, there can be another optimal planting strategy

which make use of more resistant crops, but keeps the relative fraction of doubly resistant

crops sufficiently small (of the order of 1/R0).
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We ignored the cost of virulence in our analyses of the optimum planting strategy

under the gene-for-gene interaction. The cost of virulence is hard to detect in the field (see,

for example, Parlevliet 1981). The classical work by Leonard (Leonard, 1969), for example,

showed 10-50% fitness reduction of the virulent race of oat stem rust relative to its avirulent

counterpart on susceptible oat variety. Reports on the selection against unnecessary virulent

genes are ubiquitous (Alexander et al., 1985; Burdon, 1987). We therefore numerically

examined the optimal planting strategies by introducing the cost of virulence as a reduced

spore production rate λ′, but failed to show any significant difference – we again obtained the

optimum intermediate proportions of resistant cultivars though they are slightly changed by

the cost. This conclusion, however, depends on that we focus on the optimum disease control

in one year. As we discuss in the next paragraph, the cost of virulence would influence the

initial genotype frequencies in the next year after an outbreak, thereby affecting the optimal

planting strategy in the next year. We should also emphasize that the costs of pathogen

virulence and host resistance play critical role in the maintenance of genetic diversity in

host-pathogen gene-for-gene dynamics (Burdon, 1987; Mundt, 2002; Sasaki, 2000).

Our analysis is based on the single year optimization of the final yield, as mentioned

above. However, the strategy adopted in the previous year would strongly influence the

optimal strategy in the next year, because the planting in the previous year should affect

the initial composition of pathogen spore genotypes. The dynamical optimization approach

would be needed to take into account this between-year correlation. For example, in some

parameter region of our two-locus gene-for-gene control problem (Fig. 5), the use of doubly

resistant crops is equally effective as that of the singly resistant crops if the total fraction

of resistant crops is kept at the optimal level of the single year. However, doing so would

make the disease control in the next year extremely difficult, because the crop fields would

then face the outbreak of doubly virulent race (the super-race) at the very early stage of the

season.

In this paper, we defined the yields as the number of plants that have not experienced

pathogen infection until the time of harvesting. In other words, we assume that the infected

crops contribute nothing to the yields. We can however translate the variables from the

number of individuals to biomass. With this translation uninfected tissue of a plant suffering

from pathogens infection can also be includes in yields. We also assumed that the multiple

infections do not occur when more than two type of pathogen races coexist in a field. This

has negligible effect unless there is strong interaction between co-infected pathogens such as
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the cross protection.

We have ignored the spatial structure of epidemiological dynamics. When we use

different resistant crop varieties, the spatial scale of each monocultural stand would be quite

important in determining the effectiveness of multiline control (the control strategy that

makes use of the mixture of resistant crops), as is suggested by the field study of Puccinia

infection in the rice fields (Zhu et al., 2000) and of bean rust and maize rust epidemics (Mundt

& Leonard, 1986), and the simulation study (Van den Bosch et al., 1990). Zhu et al. (2000)

found that the multiline effect in protecting rice fields from the fungal infection was greater

if the different resistant varieties are planted in a larger scale, than when they are spatially

mixed together in a fine scale. It is challenging to extend our analysis developed in this

paper to the spatially structured model, where the spatial arrangement of resistant variety

in the fields is to be optimized to protect crops from the pathogen infection. The optimal

spatial distance between different resistant varieties would then be found as a function of

the pathogen spore dispersal range.
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Appendix A: The final yield

Here we derive the fraction, φ = X(∞)/H, of crop plants that have never experienced

infection during an epidemic outbreak. In obtaining φ, we assume that the initial densities

of the host crop, the infected crop and the pathogen spore are given by

X(0) = H, Y (0) = 0, W (0) = δ,

where δ is a small positive constant. Integrating both sides of (1a), (1b) and (1c) in the text,

we have

X(∞) − X(0) = H(φ − 1) = −β

∫ ∞

0

X(t)W (t) dt, (A1a)

Y (∞) − Y (0) = 0 = β

∫ ∞

0

X(t)W (t) dt − α

∫ ∞

0

Y (t) dt, (A1b)

W (∞) − W (0) = −δ = λ

∫ ∞

0

Y (t) dt − μ

∫ ∞

0

W (t) dt. (A1c)

Dividing both sides of (1a) by X(t), and integrating the resultants, we have∫ ∞

0

1

X

dX

dt
= log

X(∞)

X(0)
= log φ = −β

∫ ∞

0

W (t) dt. (A2)

Combining (A1c) and (A2),

φ = X(∞)/H = exp

[
−β

∫ ∞

0

W (t) dt

]

= exp

[
−βλ

μ

∫ ∞

0

Y (t) dt − βδ

μ

]

= exp

[
−βλ

μ

∫ ∞

0

Y (t) dt

]
(1 + O(δ)). (A3)

We also have from (A1a) and (A1b),

1 − φ = 1 − X(∞)

H
=

β

H

∫ ∞

0

X(t)W (t) dt =
α

H

∫ ∞

0

Y (t) dt (A4)

From (A3) and (A4), we thus obtain φ as

φ = (1 + O(δ)) exp

[
−βλ

μ

∫ ∞

0

Y (t) dt

]

= (1 + O(δ)) exp

[
−βλ

μ

H

α
(1 − φ)

]

→ exp

[
−βλH

μα
(1 − φ)

]
, (δ → 0) (A5)

(Gillespie, 1975; May & Anderson, 1983). This complete the derivation of (2) in the text.
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Appendix B: Condition for the order of outbreak

Here we define an approximate condition under which, with a given initial spore densities, δ0,

and δ1 of avirulent and virulent races, the epidemic occurs in the order of avirulnet-virulent

races. That the initial spore density of the avirulent race is greater than that of the virulent

race is not sufficient for this to occur, because the virulent race has a broader host range

and hence a greater growth rate in the field where both the susceptible and the resistant

hosts are planted. In the beginning of the season, the densities of hosts infected by either

of strains and the spore densities are small, and we obtain an asymptotic form for Wi from

the system with respect to Yi’s and Wi’s:

Wi ∼ δie
ζit, (i = 0, 1), (B1)

where ζ0 = Z(H0), ζ1 = Z(H0 + H1), with

Z(H) = [
√

(α + μ)2 + 4(βλH − αμ) − (α + μ)]/2, (B2)

are the dominant eigenvalues for the linearlized dynamics of (Y0, W0) and (Y1, W1). We

call that the ordered outbreak occurs if, at the time t0 the avirulent spore density reaches

the order of magnitude of 1, the virulent spore density is still sufficiently small. As t0 ∼
−(1/ζ0) log δ0, this condition becomes W1(t0) = δ1 exp(t0) � 1, or

δ
1/ζ1
1 � δ

1/ζ0
0 . (B3)

This complete the derivation of (4) in the text.

In the two locus gene-for-gene model, there are 4 pathogen genotypes: the universally

avirulent race 00, the singly virulent races 01 and 10, and the super-race 11, whose initial

spore densities are denoted by δ00, δ01, δ10, and δ11. We then ask what’s the condition for

that epidemic occurs in the order of the universally avirulent race → the singly virulent races

→ the super-race, for a given crop density H00 of the universally susceptible hosts 00, H01

and H10 of the singly resistant hosts 01 and 10, and H11 of the doubly resistant hosts 11. For

simplicity, we assume that the initial spore densities of singly virulent races, and the density

of the singly resistant hosts are the same: δ01 = δ10 and H01 = H10. A condition for that the

epidemic caused by 00 occurs earlier than that of 01 or 10 is, as in the single locus case,

W01(t0) = W10(t0) ∼ δ01 exp(ζ01t0) < 1, with t0 ∼ − 1

ζ00

log δ00 (B4)
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where ζ00 = Z(H00), ζ01 = Z(H00 + H01) are the initial asymptotic growth rate of the

pathogen races 00 and 01. This yields the condition

δ01 < δ00
ζ01/ζ00 (B5)

After a sufficient time is passed since the epidemic caused by the universally avirulent

pathogen (t > t0), the universally susceptible hosts that remain uninfected approaches

H00φ00. Then, the next epidemic caused by singly virulent races occurs around the time

t1 is obtained from

W01(t1) ∼ W01(t0) exp(ζ ′
01(t1 − t0)) = δ01 exp(ζ01t0 + ζ ′

01(t1 − t0)) = 1

or

t1 ∼ t0

(
1 − ζ01

ζ ′
01

)
− 1

ζ ′
01

log δ01 (B6)

where ζ ′
01 = Z(H00φ00 + H01) is the asymptotic growth rate of the singly virulent race 01

after the first epidemic. Here, φ00 is the fraction of universally susceptible hosts that remain

uninfected after the first outbreak and is the same as φ0 defined as (5) in the text. The

density of super-race spores in the phase between the first and the second epidemic is

W11(t) ∼ W11(t0)e
ζ′11(t−t0) ∼ δ11e

ζ11t0+ζ′11(t−t0) (B7)

where ζ11 = Z(H00 + H01 + H10 + H11) and ζ ′
11 = Z(H00φ00 + H01 + H10 + H11). Thus the

condition for that, at the time of the second outbreak caused by the singly virulent races,

the super-race density is still sufficiently small is

log δ11 <
ζ11ζ

′
01 − ζ ′

11ζ01

ζ00ζ ′
01

log δ00 +
ζ ′
11

ζ ′
01

log δ01. (B8)

This completes the derivation of (15) in the text.
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Appendix C: Threshold fractions of resistant crops in

one-locus GFG system

We here derive the threshold fractions p∗1 and p∗2 of the resistant crops (Equation (8) and

(9) in the text) in the case that the outbreak of avirulent pathogen occurs first, which is

followed by that of the virulent pathogen (i.e., δ1/δ
σ
0 � 1 in Appendix B). We substitute

H0 = H(1 − p), H1 = Hp and R0 = βλH/αμ into (5) and (6) in the text to have

F (φ0) ≡ φ0 − exp [−R0(1 − p)(1 − φ0)] = 0, (C1)

G(φ0, φ1) ≡ φ1 − exp [−R0{(1 − p)φ0 + p}(1 − φ1)] = 0. (C2)

If the fraction of resistant crop p is less than a threshold p∗1, there is an epidemic

by avirulent pathogen (i.e. 0 < ∃φ0 < 1; F (φ0) = 0), but there is no outbreak by virulent

pathogen (i.e. φ1 = 1 is the only root of G(φ0, φ1) = 0 , where φ0 is the root of F (φ0) = 0).

If, however, p exceeds p∗1, there is also an epidemic by virulent pathogen (i.e. another root

φ1 of G(φ0, φ1) = 0 with 0 < φ1 < 1 bifurcates from φ1 = 1 at p = p∗1). Therefore, if p is

right on the threshold, we must have

∂G

∂φ1

(φ0, 1) = 0, and F (φ0) = 0. (C3)

Thus we have
∂G

∂φ1

(φ0, 1) = 1 − R0 {(1 − p)φ0 + p} = 0, (C4)

which yields

p =
1/R0 − φ0

1 − φ0

. (C5)

Substituting this into F (φ0) = 0, φ0 at the bifurcation point is explicitly obtained as

φ0 = exp [−R0(1 − p)(1 − φ0)]

= exp [−R0(1 − p) + (1 − pR0)] = e1−R0 . (C6)

Substituting (C6) into (C5) then yields

p = p∗1 =
1 − R0e

1−R0

R0(1 − e1−R0)
. (C7)

Thus Equation (8) in the text is derived.
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The second threshold p∗2 is obtained in the same vein. For p above p∗2, there is no

epidemic by avirulent pathogen because the density of susceptible host genotype is below

the threshold. At p = p∗2, therefore, we must have F ′(1) = 0, or

dF

dφ0

(1) = 1 − R0(1 − p) = 0, (C8)

and hence

p = p∗2 = 1 − 1

R0

, (C9)

which is Equation (9) in the text. This completes the derivation of the threshold fractions

p∗1 and p∗2 of resistant crops in the single locus gene-for-gene system.
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Appendix D: Sequential outbreak under multi-locus GFG

system

In this Appendix, we derive the final yields in two locus GFG system as a function of the total

fraction p of resistant crops and the relative fraction q of doubly resistant crops, assuming

sequential outbreaks of pathogen races. We here denote by H00, H01, H10 and H11 the names

and their initial crop densities of the host resistant genotype 00, 01, 10 and 11, respectively.

We also denote by P00, P01, P10 and P11 the pathogen virulence genotypes 00, 01, 10 and 11

(Table 2).

We analyze the model assuming that the outbreak of an avirulent pathogen (P00)

occurs first, which is then followed by the synchronized outbreaks of singly virulent pathogens

(P01 and P10) , and then by that of the doubly virulent pathogen (P11). We then obtain the

total final yield as a function of the fraction of susceptible and resistant crop varieties.

The final yield is obtained as functions of the total fraction of all resistant host p

and the relative proportion of doubly resistant among all resistant genotypes q. After the

outbreak by avirulent race P00, the density of susceptible hosts H̃00 that remain uninfected

is given by H̃00 = H00φ00 where

φ00 = exp

[
−βλ

αμ
H00(1 − φ00)

]
. (D1)

This and (D2)-(D5) below follows by integration of both sides of (13), as described in Ap-

pendix A. We denote φi as the fraction of hosts that remain uninfected after the outbreak of

pathogen race Pi (see Table 2). The next phase is the outbreak by singly virulent pathogen

P01 and P10, which can infect either susceptible or singly resistant crops (i.e. P01 can infect

susceptible (00) and a singly resistant genotype (01), and P10 can infect susceptible (00) and

another singly resistant genotype (10)). We assume for simplicity that the initial densities

of two singly resistant genotypes are the same, H01 = H10, and that two singly virulent

pathogen races have the same infection rate and the same initial spore densities. Then, the

densities of two singly resistant hosts that remain uninfected after the second outbreak are

the same ˜̃H01 = ˜̃H10, where ˜̃H01 = H01φ01,
˜̃H10 = H10φ10 with φ01 = φ10. The susceptible

host H̃00 which survived the avirulent pathogen infection can be infected either of two singly

virulent races. The density of susceptible hosts that remain uninfected again after the second

outbreak is then ˜̃H00 = H̃00φ01+10. These fractions φ01, φ10, and φ01+10 of survivors during
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the second outbreak are obtained from

φ01 = φ10 = exp

[
−βλ

αμ

{
H̃00(1 − φ01+10)

2
+ H01(1 − φ01)

}]
, (D2)

φ01+10 = exp

[
−βλ

αμ

{
H̃00(1 − φ01+10) + 2H01(1 − φ01)

}]
. (D3)

It follows from (D2) and (D3) that φ01+10 = φ01φ10 = φ01
2. The third and the last phase

is the outbreak by doubly virulent pathogen P3 which can infect all the crop varieties. The

density of uninfected susceptible host Ĥ00, singly resistant hosts Ĥ01 and Ĥ10, and doubly

resistant host Ĥ11 after the third outbreak are given by Ĥ00 = ˜̃H00φ11, Ĥ01 = ˜̃H01φ11,

Ĥ10 = ˜̃H10φ11 and Ĥ11 = H11φ11, where φ11 is obtained from

φ11 = exp

[
−βλ

αμ
( ˜̃H00 + ˜̃H01 + ˜̃H10 + H11)(1 − φ11)

]
. (D4)

The total yield of the season when the outbreak occurs on the order of avirulent, singly

virulent, doubly virulent is then

Yf = (Ĥ00 + Ĥ01 + Ĥ10 + H11)φ11

= {φ00φ01+10H00 + φ01(H01 + H10) + H11}φ11. (D5)

Figure 5a, b show the simulation result of the final total yield Yf and the analytically

obtained result of threshold for outbreaks of pathogens as a function of p = (H01 + H10 +

H11)/H and q = H11/(H01 + H10 + H11), in sequential outbreak case. The final yield

depends mostly on the total fraction p of the resistant crop genotypes and we found that

this maximum corresponds to the epidemiological thresholds for doubly virulent pathogen.

Below, we obtain epidemiological thresholds in the parameter space of p and q.

To obtain these thresholds, we here describe initial densities of crops as the functions

of p and q : H00 = H(1 − p), H01 = H10 = Hp(1 − q)/2, and H11 = Hpq where H is the

total initial density of crop. We define the functions F , G, and K from (D1)-(D4) :

F (φ00) = φ00 − exp [−R0(1 − p)(1 − φ00)] (D6)

G(φ01) = φ01 − exp

[
−R0

2
{(1 − p)φ00(1 − φ01

2) + p(1 − q)(1 − φ01)}
]

(D7)

K(φ11) = φ11 − exp
[−R0{(1 − p)φ00φ01

2 + p(1 − q)φ01 + pq}] (D8)

where R0 = βλH/αμ and we used φ01
2 = φ01+10. The solutions of F (φ00) = 0, G(φ01) = 0

and K(φ11) = 0 define φ00, φ01 ,φ01+10, and φ11, the fractions of crops that remain uninfected

after each phase of outbreak.
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The whole parameter region ((p, q) with 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1) is divided into 7

sectors by 6 epidemiological thresholds (for the outbreak of each pathogen strain) (Fig. 5c).

For example, the sector denoted by oxo indicates that there are the outbreaks in the 1st

phase (by avirulent) and the 3rd phase (by the super-race), but is not in the 2nd phase (by

the singly virulent races). In the following, we obtain the 6 thresholds that separates each

pair of neighboring sectors in Fig 5c.

The first threshold, o--/x--, corresponds to the boundary of the sectors x-- and

o--, where - denotes either o or x:

x--/o-- This is the threshold for the outbreak of avirulent race P00 in the first phase. At

this threshold, a new root satisfying 0 < φ00 < 1 of F (φ00) = 0 bifurcates from

φ00 = 1. Thus the threshold is obtained from F ′(1) = 0, namely,

p = p∗0 = 1 − 1/R0. (D9)

This is the same as the threshold p∗2 for avirulent race outbreak in single locus

system (C9).

xx-/xo- The epidemiological threshold for the singly virulent races, given that no out-

break occurred in the 1st phase (φ00 = 1). The threshold, Γ1, is obtained from

G′(1)|φ00=1 = 0, as

Γ1 : q = 2(1 − 1/R0)(1/p) − 1. (D10)

ox-/oo- The same epidemiological threshold as above, but now the assumption is that the

1st outbreak took place. This threshold, Γ2, is obtained from F (φ00) = 0 and

G′(1) = 0, as

Γ2 :
2R0 + p(1 − q)

2(p − 1)
= exp

[
2R0

{
(p − 1) − R0 − p(1 − q)

2

}]
. (D11)

xxx/xxo The epidemiological threshold for the super-race, given that there was no preced-

ing outbreaks before the 3rd phase. This threshold is obtained from K ′(1)|φ00,φ01=1 =

0, and is equivalent to R0 = 1. (This threshold doesn’t appear in the Fig. 5)

xox/xoo The same epidemiological threshold as above, but now the assumption is that the

2nd outbreak took place. This threshold is obtained from φ00 = 1, G(φ01) = 0

and K ′(1) = 0, or

Γ3 : q =
(1 − p)e1−R0 + p e(1−R0)/2 − 1/R0

p(e(1−R0)/2 − 1)
. (D12)
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oxx/oxo The epidemiological threshold for the super-race, as above two, but now the as-

sumption is that the 1st outbreak occurred (but the 2nd does not). The threshold

is given by F (φ00) = 0, φ01 = 1 and K ′(1) = 0, or

p = p∗1 =
1 − R0e

1−R0

R0 (1 − e1−R0)
. (D13)

This is the same as the optimal fraction of resistant crops in the single locus

gene-for-gene system (C7).

oox/ooo The epidemilogical threshold for the super-race, once again, but now the outbreaks

occurred in either of preceding phases. The threshold is then obtained from

F (φ00) = 0, G(φ01) = 0, and K ′(1) = 0. This yields

B(p, q) = φ̂01(p, q) − exp

[
1

2

(
1 − pR0 +

R0e
1−R0(1 − p)

φ̂01(p, q)2

)]
, (D14)

with φ̂01(p, q) =
1/R0 − pq − (1 − p)e1−R0

p(1 − q)
,

The implicitly defined curve B(p, q) = 0 gives the threshold Γ4.

This completes the derivation of 6 thresholds in Fig. 5c. It is then easy to see that the

final yields Yf is maximized when (p, q) are on the thresholds Γ3, p = p∗1, or Γ4 (with the

maximum value H/R0.
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Caption of Table

Table 1. Compatibility table for two-locus gene-for-gene system. + indicates that infection

occurs.

Table 2. The fraction of each host genotypes (from H00 to H11) that remain uninfected after the

outbreak by pathogen races (from P00 to P01).
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Figure Legends

Figure 1. Final yields after pathogen outbreak. The density of plants remain uninfected at T → ∞
(X(∞) = Hφ where φ is defined by (2)) is plotted against the initial crop density H. The threshold

crop density for the spread of pathogen is Hc = αμ/βλ = 5.

Figure 2. Single locus gene-for-gene dynamics with spore stage of pathogen. See text for detail.

Figure 3. The final total yield as a function of the fraction p of resistant crops. a) shows the

final yield YAV when the outbreak of avirulent pathogen race well precedes the outbreak of virulent

pathogen race (corresponding to δ1/δσ
0 � 1). The final yield is maximized at p = p∗1 ≈ Hc/H,

and is constant for p > p∗2 = 1 − Hc/H, where H is the total crop density and Hc = αμ/βλ.

The maximum yield approximately equals to Hc. In figure b), the total crop density is fixed at

H = 4. The red and blue curves correspond to the final yields for the sequential outbreaks. The

red curve: YAV for the avirulent-first case (δ1/δσ
0 � 1); the blue broken curve: YV A for the virulent-

first case (δ1/δσ
0 � 1). The black curves are the final yields obtained numerically from (3) with

different values of δ1/δσ
0 (δ1/δσ

0 = 0.002, 0.01, 0.076, 0.791 at the optimal fraction p = p∗1, from top

to bottom). The threshold crop density: Hc = αμ/βλ = 1.

Figure 4. The contours for the total final yield YAV for the sequential outbreaks (avirulent followed

by virulent race). There are two ridges of high final yield (red region) — one for the total crop

density at H = Hc = 1, and the other for the optimal fraction p = p∗1 ≈ Hc/H (the broken curve)

of resistant crop in the region H > Hc. The hatched curve represents the second threshold fraction

p∗2.

Figure 5. The contours for the total final yield under two locus gene-for-gene system. The

total yield is plotted as a function of the total fraction of resistant crops p = (H01 + H10 +

H11)/H (horizontal axis) and the relative fraction of doubly resitant among all resistant crops

q = H11/(H01 + H10 + H11) (vertical axis). a)-b) show the result of numerical simulations with

analytically obtained dashed lines which show the threshold for outbreaks of pathogens. a) The

threshold density: Hc = βλ/αμ = 1, the total density: H = 5. b) The threshold density:

Hc = βλ/αμ = 1, the total density: H = 10. The yiled is maximized when p is adjusted to

Hc/H = 1/R0, i.e., for p = 0.2 in a) and p = 0.1 in b) and on the thresholds Γ3, Γ4. The panels c)

show the regions of outbreaks of pathogens as a function of p and q, analytically obtained from the

sequential outbreak approximation when H = 5. The whole p-q parameter space is divided into 7

sectors according to whether or not the outbreak at each of 3 stages takes place and their borders

define the thresholds (p = p∗0, p = p∗1, Γ1, Γ2, Γ3 and Γ4). The left, center, and right symbol in each
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region respectively indicates whether or not the first (by avirulent), the second (by singly virulent)

and the third (by doubly virulent) outbreak occurs (o for having outbreak and x for not).
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Table 1:

Pathogen
genotype

00 01 10 11

00 + + + +

Host 01 − + − +
genotype 10 − − + +

11 − − − +
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Table 2:

H00 H01 H10 H11

P00 φ00 − − −
P01, P10 φ01+10 φ01 φ10 −

P11 φ11 φ11 φ11 φ11
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Figure 3:
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Figure 4:
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Figure 5:
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