

Tel: +43 2236 807 342 Fax: +43 2236 71313 E-mail: publications@iiasa.ac.at Web: www.iiasa.ac.at

Interim Report

IR-05-059

Conditions of Stability and Growth of Russian Companies

Sergey Mitsek (mitsek@mail.ur.ru)

Approved by

Arkady Kryazhimskiy (kryazhim@iiasa.ac.at & kryazhim@mi.ras.ru) Program Leader, Dynamic Systems

November 2005

Contents

Instability and Investments	1
Financial Markets and Investments	3
The Company-Level Analysis	7
The Data	8
The Research Results	11
Evaluation of Research Results	12
Conclusions: Policy Implications and Links with National Innovation System	13
References	27

Abstract

The author of this report tries to estimate the role of economic stability and financial markets in the growth process of Russian companies. The article contains econometric estimations of the influence of different factors on investments in property, plant and equipment in the Russian economy. Among the regressors there are such indicators as revenues, net income, net cash flow and net tax payments and their variance, and a set of financial indicators. The results show that the greatest influence on investments is caused by the net cash flow from operations. The impact of the net tax payments on the investment policy is insignificant. The econometric analysis demonstrates that the major financial indicators are statistically significant as factors of investments.

The paper continues the research on econometric identification and optimization of economic growth initialized in the book¹.

¹ See, for example, the monograph [4] among the most recent publications.

About the Author

Sergey Mitsek
Professor, and Dean, Economic Faculty,
Liberal Arts University,
Ekaterinburg, Russia

Conditions of Stability and Growth of Russian Companies

Sergey Mitsek (mitsek@mail.ur.ru)

Instability and Investments

The instability that touches business in post-communist Russia can be divided into two large groups: a) macroeconomic instability and b) legal, administrative and taxation rules instability. The dynamics of these factors can be divided into three periods: a) 1992-94; b) 1995-1999; and c) 2000 till nowadays.

Let us start our discussions on the macroeconomic level. In 1992-1994 the main specific feature of the Russian economy was hurricane-type inflation. The prices doubled each quarter. In such circumstances business transactions were very dangerous for both parties, seller and buyer, because nobody could anticipate the rates of inflation and the changes in monetary policy. Many of companies tried to make transactions in US dollars but it was also rather risky because nobody could forecast the rate of ruble to dollar even for the next month. The hyperinflation depressed the life of business dramatically, and the level of Russian GDP in 1994 was only about 50 % of the level in 1990.

In 1995 the Bank of Russia began to promote more strict and qualified monetary policy, and the inflation declined steadily. The most successful was 1997 when annual inflation was only 12 %. But the problem of this period was that the Bank of Russia suppressed the inflation by means of sharp decline of annual growth rates of money mass and by almost stop to credit commercial banks and companies². In that time the rate of money aggregate M2 to GDP in Russia was about 10 %, much less than in the developed countries (in Japan it is even about 200 %). The result was that companies

² The specifics of the policy of the Bank of Russia in the first half of 1990s was that it continued to credit not only banks like in the developed countries but also some companies. It was a consequence of the Soviet-type financial policy.

immediately began to suffer from the lack of liquidity. The non-payments and payment arrears in business transactions became the typical problems.

The reaction of the economy consisted in invasion of middlemen who organized the complex chains of payments between business parties and got very lucrative fees for such activities. The other consequence was an appearance of tremendous amount of "bad" money or "pseudo-money" by means of which companies tried to fulfill the transactions. The result was in increasing time to fulfill transactions and large losses of business that paid fees for middlemen.

The period that began in 2000 mostly solved the problem of non-payment because after ruble devaluation and tremendous increase in Russian export goods prices the Bank of Russia was able to increase the money mass rate to GDP³ without parallel increase in inflation. The scheme is very simple: the Bank of Russia buys the currency the exporters get from their sales abroad. These transactions increase the ruble mass in economy automatically.

Today in 2005 the macroeconomic situation in Russia is much more stable than 10 years ago. But there other bottlenecks that prevent Russia from the future stable economic growth. At first, there is a weak bank system, and the bank crisis in summer of 2004 justifies this view. There are following heavy problems connected with Russian banks: 1) it is hard to get large-volume loans; 2) it is hard to get loans for small business; 3) it is hard to get long-term credits. All these points prevent Russian banks to become a locomotive of economic growth and thanks to this a lot of Russian companies still suffer from the lack of liquidity and of investment resources.

The other serious "bundle" of problems is continuous changes in legal, administrative and tax rules. Before 2000 every week brought some disorganized news in legislation for business. The latter suffers tremendous losses from such situation, especially the small and medium ones who were not able to spend much money for high-qualified lawyers. After adoption of the Russian Civil Code and especially the Russian Tax Code the situation became better. But the problems were not removed totally. Still, in the polls among Russian and foreign businessmen who work in Russia in the answers about the bottlenecks to business the following complaints are at the first

place: bureaucratism, corruption, complex and hardly-to-be-understand rules of making business, too quick changes in tax laws, too often tax inquiries, weak protection of private property and unsatisfactory work of courts.

All these features of today's situation in Russia lead to <u>lack of trust</u> in the business life. And the trust was for centuries a critical feature of wealthy economy. The implementation of the shortcomings mentioned above was a large capital flow from the country that was estimated at the level of \$20 billion annually. In recent years, thanks to stabilization measures this level decreased to estimated \$4 billion in 2004. The problem is recognized by the Russian government and the President Message to the Russian Federal Congress on the 25th of April of 2005 indicates the existence of this problem. But it is still a lot of things that should be done to create an atmosphere of trust and wealthy economy in general.

Financial Markets and Investments

The main sources of companies' investments in property, plant and equipment (PP&E) are: a) net income of the company; b) bank loans; c) stocks and bonds emission⁴. Their relative role is different in different countries. The best market of stocks and bonds in the world are the United States though the main source of investments in non-financial sector is the net income there. In Japan and in Germany the role of bank loans is traditionally high, at least until the end of the 20th century.

For Russia as it has a very small period of the post-communist market economy its financial markets are weaker than in the developed countries (DC). But that does not mean that they do not develop. To estimate the structure of the sources of investments in PP&E in Russian economy we construct an artificial indicator that we name "the investment potential" or simply "potential".

As we have no regular data about stocks and bonds emission by all Russian companies this indicator is calculated according to the following formula:

³ To the end of 2004 it was equal to 41 %.

⁴ For the subsidiary there is another one important source: the investments of holding or other subsidiaries of the same holding.

POTENTIAL = GROSS INCOME⁵ + RUSSIAN BANKS CREDITS + FOREIGN BANK CREDITS + FOREIGN DIRECT INVESTMENTS⁶

"Potential" is exactly only *potential*. We can not be sure what part of it and what of its elements is invested in PP&E. But the latter can be well explained by the former by means of econometrics. The following equation is⁷:

$$I = 38.3 + 0.15 POTENTIAL$$
(17.232)

 $R^2 = 0.887$

F = 297.0

DW = 2.167

Here

I denotes investments in PP&E in Russian economy;

 \mathbb{R}^2 is the coefficient of determination;

F is Fisher statistics:

DW is Durbin-Watson statistics;

and *t*-statistics is indicated in the brackets.

As we see, "potential" indicator explains rather well the dynamics of investments in PP&E. That is why let us have a look on the development of the structure of the "Potential".

⁵ This indicator is taken from the GOSKOMSTAT of the Russian National Accounts statistics. It is published on the GOSKOMSTAT official site [7]. Gross income is companies' profit as a share of GDP before the corporate tax deduction.

⁶ The data about foreign bank loans include Russian companies' debt emission in foreign markets. These data and data about foreign direct investments (FDI) are published on the official site of the Bank of Russia [6] as a part of Russia's balance of payments. The statistics about credits given to companies by Russian banks is also published on the Bank of Russia site.

Table 1. Share of Different Elements of Investment Potential in Russia, 1995-2004, the Last Quarter of the Year, %⁸.

Year	GI^9	FDI ¹⁰	RCR ¹¹	FCR ¹²
1995	51,9%	1,3%	39,3%	7,6%
1996	47,8%	1,7%	48,4%	2,1%
1997	41,3%	1,8%	52,2%	4,8%
1998	53,6%	4,4%	49,9%	-7,9%
1999	58,5%	3,2%	42,0%	-3,6%
2000	51,3%	1,9%	47,9%	-1,1%
2001	45,0%	0,8%	58,5%	-4,3%
2002	40,2%	0,9%	55,3%	3,5%
2003	36,3%	-0,5%	58,2%	6,0%
2004	34,4%	3,3%	57,2%	5,0%
Average for the period	46,8%	1,5%	49,9%	1,8%

Table 1 shows that the basic elements of the investment potential are companies' profits and credits from Russian banks. The share of two other elements is low, though it is greater in 2004 in comparison with the period average. We see also that the share of companies' gross income declines steadily during the period. At first, it is a sign of strengthening the Russian banking system. The second, it reflects an instability of the share of the gross income in GDP (see Table 2).

⁷ Full estimation output, Breusch-Godfrey serial correlation LM test, and unit root tests on variables one can find in Supplement 1. Sources of data: [6], [7] and author's calculations.

⁸ Sources: [6], [7] and author's calculations.

⁹ GI – Gross income.

¹⁰ FDI – Foreign direct investments.

¹¹ RCR – Credits from Russian banks.

¹² FCR – Credits from foreign banks and other foreign borrowing.

Table 2. Dynamics of Gross Wages and Gross Corporate Income as Shares of GDP, 1995-2004, the Last Quarter of the Year¹³.

Year	Gross wages ¹⁴	Gross corporate income
1995	0,552	0,448
1996	0,643	0,357
1997	0,631	0,369
1998	0,520	0,480
1999	0,491	0,509
2000	0,515	0,485
2001	0,550	0,450
2002	0,549	0,451
2003	0,550	0,450
2004	0,525	0,475

Nevertheless, when the elements of "potential" are taken as separate regressors the gross income has the greatest influence on the investments. That proves that companies' profits are still very significant factor of the latter. It is supported lower by the analysis on the company level. Moreover, companies' earnings have a significant influence on the second largest element of the "potential", which are the credits from Russian banks. We can find this dependence when estimate the following regression equation¹⁵:

$$RCR = 1128.2 + 0.461 \text{ IN} + 0.748 \text{ GI} + 9.259 \text{ R} - 164.5 \text{ V} - 71.4 \text{ V}_{-1}$$

$$(3.706) \quad (4.255) \quad (3.806) \quad (-3.996) \quad (-2.482)$$

$$R^2 = 0.993$$

¹³ Sources: [7] and author's calculations.

To calculate these shares, the indirect taxes are deducted from the GDP. Gross wages include the joint social tax and personal income tax.

¹⁵ Full estimation output, Breusch-Godfrey serial correlation LM test, and unit root tests on variables see in Supplement 2. Sources of data: [6], [7] and author's calculations.

F = 742.7

DW = 1.226

t-statistics is given in the brackets.

Here

IN is the population incomes;

GI is the gross corporate income;

R is the interest rate:

V is the time velocity of money from the Fisher's formula.

The Company-Level Analysis

The purpose of the company-level analysis is the estimation of the influence of instability on the performance of Russian companies. Usually, in economic science the "risk", if we use it as a synonym to "instability", is measured by *volatility* of some indicators. Very often, the *variance* and even more, its square root – the *standard deviation*, are used to measure volatility¹⁶.

Another purpose of our work is to test the hypothesis: *do financial markets have an influence on the performance of Russian companies*.

Here we use the investments in PP&P as a dependent variable because we consider it as one of the best indicators of the company's intention and ability for the long-term growth. As independent variables we use, at first, revenues, net income, and net cash flow from operations¹⁷. Their levels indicate the "prosperity" of the company, and their variance, and also the level and variance of tax payments describe the "stability" of the company. Second, such indicators as net borrowing, share emission, average interest payments and dividends payments test the influence of financial markets on the companies' growth.

The "quality" set of variables is described in Table 3.

¹⁶ For example, in the Markovitz' theory of the portfolio risk the last is measured by the *variance* of its profitability.

The selection of regressors is based on the financial management theory described in classical handbooks (see, for example, [1], [5]).

Table 3. Variables of the Company-Level Model.

Dependent variable	Independent variables							
variable	Operational variables							
Investments in property,	Net 1	revenues	Net income Net cash flow from operations Net tax payr			x payments		
plant and equipment	Level	Variance	Level	Variance	Level Variance		Level	Variance
equipment	Financial variables							
	Net b	orrowing		Net share emission Net interest paid			Divid	ends paid

The Data

The data for estimation is taken from the 1999-2003 reports of those Russian companies that use International Accounting Standards (IAS) or US GAAP. All data is taken from their Internet sites ([8]-[39]) and recalculated in US dollars.

These companies represent the following sectors of the Russian economy (see Table 4^{18}).

Table 4. Sectors of Economy in the Sample.

Sector of economy	Number of companies represented
Telecommunications	10
Machinery	4
Food & beverages	5
Oil & gas	5
Electric energy & heating	3
Ferrous metallurgy	1
Nonferrous metallurgy	2
Transportation	1
Mineral fertilizers	1
Total	32

¹⁸ See also the total list of the companies in the sample in Supplement 4.

To eliminate the influence of scale, all the data (with the exception of interest and dividends payments) are divided by the total assets for each company. For the same purpose, the interest payments are divided by the obligations, and dividends payments are divided by the total equity capital of a company. Then, the averages for the time period for all variables, and the standard deviations, and coefficients of variance only for non-financial variables are calculated. To estimate the sector and company specifics, the dummy variables are used. Thanks to this, we have the purely cross-section sample prepared for the econometric estimation.

The generated variables are displayed in Table 5.

Table 5. Variables Generated for Econometric Estimation.

Variables	Generated indicator	Symbol				
Dependent variable						
Investments in PP&P divided by total assets	Time period mean	EIA				
Regressors						
Operation	Operational					
Revenues divided by total assets	Time period mean	EAU				
	Time period standard deviation	SFAU				
	Time period coefficient of variance ¹⁹	<u>CVAU</u>				
Net income divided by total assets	Time period mean	EROA				
	Time period standard deviation	SROA				
	Time period coefficient of variance	CVROA				
Net cash flow from operations divided by total assets	Time period mean	ECFOA				
	Time period standard deviation	SCFOA				
	Time period coefficient of variance	CVCFOA				
Net tax payments divided by total assets	Time period mean	ETA				
	Time period standard deviation	STA				
	Time period coefficient of variance	CVTA				
Financia	al					
Net borrowing from banks and bond emission divided by total assets	Time period mean	ECRA				
Net share emission divided by assets	Time period mean	ESIA				
Net interest payments divided by company's obligations	Time period mean	I				
Dividend payments divided by company's equity capital	Time period mean	DIV				
Dummy variables for sectors		Di				
Dummy variables for companies		Dj				

_

¹⁹ The standard deviation divided by the mean value.

The Research Results

The ordinary least squares method (OLS) is used for estimation, and the equation with the best characteristics is demonstrated in Table 6.

Table 6. Estimation Output by the Regression Equation.

Dependent Variable: EIA							
	Method: Least Squares						
Included observations: 32							
Variable	Variable Coefficient Std. Error t-statist					Prob.	
C	0.044899	0	.009454	4.74929	3	0.0001	
CVROA	0.002437	0	.000715	3.41121	4	0.0023	
DF	0.072811	0	.011755	6.19422	20	0.0000	
DIV	-0.369401	0	.152540	-2.42167	73	0.0234	
ECFOA	0.659031	0	.064719	10.18296		0.0000	
ECRA	0.476991	0.092716		5.144648		0.0000	
I	-0.355119	0.086633		-4.099140		0.0004	
SCFOA	-0.672545	0	.182774	-3.679651		0.0012	
	Equa	ation	characterist	ics			
R-squared	0.903127			ependent ance		0.084659	
Adjusted R- squared	0.874872			pendent ance		0.049072	
S.E. of regression	0.017358	Akaike info criterion			-5.057156		
Sum squared residuals	0.007232	Schwarz criterion			-4.690722		
Log likelihood	88.91449	F-statistics			31.96385		
Durbin-Watson statistics	2.128105		Prob. (F-	statistics)		0.000000	

The results can be summarized as follows.

1. The strongest influence on investments in PP&P is determined by *the net cash flow from operations* (ECFOA).

- 2. The instability in this flow (SCFOA) has a negative influence on investments in PP&P.
- 3. *Financial indicators* (net borrowing, interest and dividends payments) are also statistically significant.
 - 4. The net tax payments and its volatility are statistically insignificant.
- 5. Among the dummy variables only *the dummy for "Food & beverages"* (DF) is statistically significant.
- 6. The equation as a whole *explains about 90 % of variance* of dependent variable that is rather good result for the cross-section estimations.

Evaluation of Research Results

- 1. Investments in PP&P in Russian companies are determined mostly by the *real flow of money from operations*²⁰. The variables calculated by the *accrual method* of accounting have small statistical significance²¹.
 - 2. The net tax payments have no separate influence on investments²².
- 3. *The "instability"* expressed by standard deviation of the net cash flow from operations *have significant and negative influence on investments*²³.
- 4. The cost of capital, the access to financial markets, and the dividend policy are significant for the companies in the sample.
- 5. The significant and positive dummy variable for "food & beverages" can be explained by the fact that this sector is represented by extremely dynamic companies in the sample²⁴.

²⁰ It explains about 74 % of the investment variation among companies.

The positive influence of *variation of the net income* can be expressed by the fact that 8 companies among 32 in the sample demonstrate a significant growth of the net income, 4 of them demonstrate a steady decline of the net income from 1999 to 2003 (38 % of all companies in the sample). But we should interpret this result cautiously because the level of the net income and its variation depends strongly on the accounting method used by the company.

²² They can play the role only as a part of the net cash flow from operations.

²³ To understand if the standard deviation really describes the *volatility* of CFOA we calculate how often the dynamics of this indicator changes its sign (from growth to decline and back, and vice versa). Such "movements" compose 36 % of all CFOA data for separate years. So, one can say that the standard deviation detects mostly the *volatility* of CFOA, not a steady growth.

²⁴ One can mention such companies as "Baltika", "Sun Interbrew" (breweries), "Kalina" (the producer of perfumery and washing powder, soap, etc.), and "Wimm-Bill-Dann" (juices and milk products) and "Parnas" (meat products). The sector "food and beverages" is on the first place in investments (13 % of the average ratio to assets) and in the asset utilization, though only on the third position in ROA and on the sixth position in CFOA.

Conclusions: Policy Implications and Links with National Innovation System

The investments in PP&P in the Russian industry can be adequately explained by the statistical data. The main factor of investments is the *real money* the companies get from their main activities. The *instability* in this flow has a negative influence. That means that economic, social and political measures to increase stability of society are of critical importance. The President Message to the Russian Federal Congress on the 25th of April 2005 contains the immediate steps in this field.

In spite of the general weakness of the Russian financial markets the successful companies can get money from internal and external markets. The cost of capital like the dividend policy is of critical importance for these companies. That is why the Bank of Russia's policy oriented on decreasing inflation and interest rates can bring fruitful results. The access of foreign financial institutions to the Russian market should be reevaluated seriously in the direction of further liberalization. The Russian Ministry of Finance should strengthen the policy that have a purpose to increase the transparency of companies and implement the International Accounting Standards.

The critical importance of such factor as the cash flow from operations in investments and weak influence of the net tax payments means that not only political and social factors but *economic factors* determine the Russian future development, and that the depressive role of tax payments is exaggerated in the Russian economic debates as well.

The sectors' and companies' differences are not very considerable when the factors of investments are considered. That means that the laws of the market economy become more and more common for Russia, and that the Russian innovation policy should support private innovational institutions. In the market conditions they can be more effective than traditional government-sponsored institutions.

Supplement 1. Full Estimation Output, Serial Correlation and Unit Root Tests for All-Russian Investment Econometric Equation²⁵.

1a) Estimation Output

Dependent Variable: I								
	Method: Least Squares							
	Sam	ple: 140						
	Included ol	oservations: 40						
Variable	Coefficient Std. Error t-statistics Prob.							
С	38.31210	19.20223	1.995190	0.0532				
POTENTIAL	0.150315	0.008723	17.23224	0.0000				
R-squared	0.886550	Mean depend	dent variance	286.9350				
Adjusted R-squared	0.883565	S.D. depend	ent variance	234.8622				
S.E. of regression	80.14112	Akaike inf	o criterion	11.65416				
Sum squared residuals	244058.8	Schwarz	criterion	11.73861				
Log likelihood	Log likelihood -231.0832 F-statistics 296.9501							
Durbin-Watson statistics	2.167745	Prob. (F-	statistics)	0.000000				

_

²⁵ The econometric procedures were taken from such classic handbooks as [2] and [3]. The equations were estimated by EViews4 econometric program package.

1b) Breusch-Godfrey Serial Correlation LM Test:

F-statistics	0.769430	Probability		0.470745			
Obs*R-squared	1.639751	Probability		0.440486			
	Test 1	Equation:					
	Dependent Variable: RESID						
	Method:	Least Squares					
Presam	ple missing value	e lagged residuals s	set to zero.				
Variable	Coefficient	Std. Error	t-statistics	Prob.			
С	3.188232	19.49184	0.163568	0.8710			
POT	-0.002350	0.008979	-0.261708	0.7950			
RESID(-1)	-0.130193	0.168668	-0.771888	0.4452			
RESID(-2)	-0.180422	0.170331	-1.059244	0.2965			
R-squared	0.040994	Mean depen	dent variance	4.09E-14			
Adjusted R-squared	-0.038923	S.D. depend	lent variance	79.10700			
S.E. of regression	80.63186	Akaike info criterion		11.71230			
Sum squared residuals	234053.9	Schwarz	11.88119				
Log likelihood	-230.2461	F-sta	0.512953				
Durbin-Watson statistics	2.062032	Prob(F-	statistics)	0.675939			

One can see that the Breusch-Godfrey test rejects the serial correlation existence.

1c) Unit Root Tests

Augmented Dickey-Fuller Unit Root Test on I:

	Null Hypothes	is: I has a unit roo	t		
	Exogenous: Con	nstant, Linear Trei	nd		
Lag Len	gth: 0 (Automatic	c based on SIC, M	AXLAG=2)		
			t-statistics	Prob.*	
Augmented Dick	⊥ ey-Fuller test stat	istics	-3.599433	0.0429	
Test critical values:	1% level		-4.211868		
	5% level		-3.529758		
	10% level		-3.196411		
	 *MacKinnon (199	 06) one-sided p-val	ues.		
A	Augmented Dickey	y-Fuller Test Equa	ntion		
	Dependent	Variable: D(I)			
	Method:	Least Squares			
	Sample(adjus	ted): 2 40 IF I>21			
Includ	ed observations:	39 after adjusting	endpoints		
Variable	Coefficient	Std. Error	t-statistics	Prob.	
I(-1)	-0.655024	0.181980	-3.599433	0.0010	
C	-51.60846	36.94451	-1.396918	0.1710	
@TREND(1)	12.56316	3.345838	3.754862	0.0006	
R-squared	0.286262	Mean depen	dent variance	23.21154	
Adjusted R-squared	0.246610	S.D. depend	lent variance	125.1591	
S.E. of regression 108.6357 Akaike info criterion 12.287					
Sum squared residuals	424861.6	Schwarz criterion 12.4156			
Log likelihood	-236.6098	F-statistics 7.21933			
Durbin-Watson statistics	1.802553	Prob. (F	-statistics)	0.002310	

Augmented Dickey-Fuller Unit Root Test on POTENTIAL:

	Null Hypothesis:	POT has a unit ro	oot		
	Exogenous: Cor	stant, Linear Trei	nd		
Lag Lei	ngth: 7 (Automatic	c based on SIC, M.	AXLAG=9)		
			t-statistics	Prob.*	
Augmented Dick	Augmented Dickey-Fuller test statistics				
Test critical values:	1% level		-4.273277		
	5% level		-3.557759		
	10% level		-3.212361		
	*MacKinnon (199	06) one-sided p-val	ues.	1	
1	Augmented Dicke	y-Fuller Test Equa	tion		
	Dependent V	variable: D(POT)			
	Method:	Least Squares			
	Sample(adjus	sted): 9 40 IF I>21			
Includ	led observations:	32 after adjusting	endpoints		
Variable	Coefficient	Std. Error	t-statistics	Prob.	
POT(-1)	0.294563	0.082082	3.588652	0.0016	
D(POT(-1))	-1.133547	0.280142	-4.046335	0.0005	
D(POT(-2))	-0.508793	0.285873	-1.779790	0.0889	
D(POT(-3))	-0.849038	0.280539	-3.026448	0.0062	
D(POT(-4))	-0.301627	0.331406	-0.910144	0.3726	
D(POT(-5))	-0.160665	0.298670	-0.537935	0.5960	
D(POT(-6))	-0.963227	0.291648	-3.302702	0.0032	
D (POT (-7))	-0.639517	0.295828	-2.161790	0.0418	
C	-74.79338	87.90530	-0.850840	0.4040	
@TREND(1)	9.345629	7.595004	1.230497	0.2315	
R-squared	0.856608	Mean depen	dent variance	163.3665	
Adjusted R-squared	0.797948	S.D. depend	ent variance	219.5606	
S.E. of regression	98.69301	Akaike inf	fo criterion	12.27221	
Sum squared residuals	214286.8	Schwarz	criterion	12.73025	
Log likelihood	-186.3554	F-sta	tistics	14.60284	
Durbin-Watson statistics	1.702866	Prob. (F-statistics) 0.000000			

ADF-tests allow to reject the unit root hypothesis on I and POTENTIAL.

Supplement 2. Full Estimation Output, Serial Correlation and Unit Root Tests for Credits from Russian Banks Econometric Equation.

2a) Estimation Output

Dependent Variable: RCR	Method: Least Squares	Sample(adjusted): 2 33	Included observations: 31	Excluded observations: 1 after adjusting endpoints
Variable	Coefficient	Std. Error	t-statistics	Prob.
С	1128.245	206.8752	5.453747	0.0000
IN	0.461077	0.124399	3.706433	0.0010
GI	0.748273	0.175828	4.255718	0.0003
R	9.259400	2.432505	3.806530	0.0008
V	-164.5323	41.17356	-3.996066	0.0005
V1	-71.38708	28.75167	-2.482884	0.0201
R-squared	0.993313	Mean depende	ent variation	1078.032
Adjusted R- squared	0.991976	S.D. depender	nt variation	906.4724
S.E. of regression	81.20084	Akaike info	Akaike info criterion	
Sum squared residuals	164839.4	Schwarz criterion		12.08126
Log likelihood	-176.9576	F-stati	742.7207	
Durbin-Watson statistics	1.226062	Prob. (F-statistics)		0.000000

2b) Breusch-Godfrey Serial Correlation LM Test:

Breusch-Godfrey Serial Correlation LM Test:					
F-statistics	1.722802	Proba	0.200819		
Obs*R-squared	4.038997	Proba	Probability		
	Test F	Equation:			
	Dependent V	ariable: RESII)		
	Method: I	Least Squares			
Presample and in	nterior missing	y value lagged r	esiduals set to z	ero.	
Variable	Coefficient	Std. Error	t-statistics	Prob.	
С	-68.75925	204.0558	-0.336963	0.7392	
IN	0.075054	0.128707	0.583140	0.5655	
PK	-0.104422	0.184074	-0.567282	0.5760	
R	-0.431104	2.453155	-0.175735	0.8620	
V	21.37793	41.57940	0.514147	0.6121	
V1	-10.18330	28.55432	-0.356629	0.7246	
RESID(-1)	0.480730	0.229176	2.097649	0.0471	
RESID(-2)	-0.192881	0.227863	-0.846481	0.4060	
R-squared	0.130290	Mean dependent variance -3.86		-3.86E-13	
Adjusted R-squared	-0.134404	S.D. dependent variance 74.125		74.12588	
S.E. of regression	78.95030	Akaike info criterion 11.793		11.79315	
Sum squared residuals	143362.4	Schwarz criterion 12.1632			
Log likelihood	-174.7938	F-statistics 0.4922			
Durbin-Watson statistics	1.930165	Prob. (F-statistics) 0.8304			

The Breusch-Godfrey test rejects the serial correlation existence.

2c) Unit Root Tests

Augmented Dickey-Fuller Unit Root Test on RCR:

Null Hypothesis: RCR has a unit root				
Exogenous: Constant				
Lag Length: 0 (Automat	ic based on SI	C, MAXLAG=	9)	
			t-statistics	Prob.*
Augmented Dickey-Fulle	er test statistic	s	9.065481	1.0000
Test critical values:	1% level		-3.653730	
	5% level		-2.957110	
	10% level		-2.617434	
*MacKinnon (1996) one	-sided p-values	S.		
Augmented Dickey-Fulle	er Test Equati	on		
Dependent Variable: D(RCR)			
Method: Least Squares				
Sample(adjusted): 2 33				
Included observations: 3	2 after adjusti	ing endpoints		
Variable	Coefficient	Std. Error	t-statistics	Prob.
RCR(-1)	0.087293	0.009629	009629 9.065481 0.	
С	7.826211	12.31802	0.635347	0.5300
R-squared	0.732580	Mean dependent variance 94.43		94.43750
Adjusted R-squared	0.723666	S.D. dependent variance 83.67		83.67099
S.E. of regression	43.98376	Akaike info criterion 10.4		10.46598
Sum squared residuals	58037.13	3 Schwarz criterion 10.5		10.55759
Log likelihood	-165.4557	7 F-statistics 82.1		82.18295
Durbin-Watson statistics	2.286883	Prob. (F-statistics) 0.00		0.000000

Augmented Dickey-Fuller Unit Root Test on IN:

Null Hypothesis: IN has a unit root					
Exogenous: Constant	as a uiiit roo	<u> </u>			
		CIC NAVI			
Lag Length: 3 (Autom	atic based of	n SIC, MAXI			
			t-statistics		Prob.*
Augmented Dickey-Fu	ıller test stat	istics	5.734239		1.0000
Test critical values:	1% level		-3.679322		
	5% level		-2.967767		
	10% level		-2.622989		
*MacKinnon (1996) or	ne-sided p-va	alues.			
Augmented Dickey-Fu	ıller Test Eq	uation			
Dependent Variable: l	D(IN)				
Method: Least Square	es				
Date: 06/07/05 Time:	15:25				
Sample(adjusted): 5 3	3				
Included observations: 29 after adjusting endpoints					
Variable	Coefficient	Std. Error	t-statis	stics	Prob
IN(-1)	0.171000	0.029821	5.734	1239	0.0000
D(IN(-1))	-0.831301	0.142734	-5.824	142	0.0000
D(IN(-2))	-0.745963	0.164000	-4.548	3552	0.0001
D(IN(-3))	-0.950339	0.136880	-6.942	2841	0.0000
C	54.11870	37.27052	1.452	2051	0.1594
R-squared	0.763721	Mean dependent variance 94.848		94.84828	
Adjusted R-squared	0.724341	S.D. dependent variance 184.50		184.5630	
S.E. of regression	96.90157	Akaike info criterion 12.14		12.14085	
Sum squared residuals	225358.0	Schwarz criterion 12.37		12.37659	
Log likelihood	-171.0424	F-statistics 19.3		19.39368	
Durbin-Watson statistics	1.149259	Prob. (F-statistics) 0.0000			0.000000

Augmented Dickey-Fuller Unit Root Test on GI:

1	Null Hypothesis: GI has a unit root				
E	Exogenous: Constant, Linear Trend				
Lag Lengt	h: 0 (Automat	tic based on SI	C, MAXLAG=2	2)	
			t-statistics	Prob.*	
Augmented Dicke	y-Fuller test s	tatistics	-3.682509	0.0383	
Test critical values:	1% level		-4.273277		
	5% level		-3.557759		
	10% level		-3.212361		
*M	lacKinnon (19	996) one-sided j	p-values.		
Auş	gmented Dick	ey-Fuller Test	Equation		
	Dependent	Variable: D (I	PK)		
	Method: Least Squares				
Sample(adjusted): 233					
Included	observations	: 32 after adjus	sting endpoints		
Variable	Coefficient	t Std. Error t-statistics Prob.			
PK(-1)	-0.682610	0.185365	-3.682509	0.0009	
C	-17.09641	48.65280	-0.351396	0.7278	
@TREND(1)	36.87810	9.626899	3.830735	0.0006	
R-squared	0.336030	Mean dependent variance 54.83750		54.83750	
Adjusted R-squared	0.290239	S.D. dependent variance 157.6204		157.6204	
S.E. of regression	132.7909	Akaike info criterion 12.70449		12.70449	
Sum squared residuals	511369.6	Schwarz criterion 12.8419		12.84190	
Log likelihood	-200.2718	F-sta	tistics	7.338338	
Durbin-Watson statistics	1.982180	Prob. (F-statistics) 0.002637		0.002637	

Augmented Dickey-Fuller Unit Root Test on R:

Null Hypothesis: R has a unit root					
Exogenous: Constant	**				
Lag Length: 9 (Automat	ic based on S	IC, MAXLAG	=9)		
			t-statistics	Prob.*	
Augmented Dickey-Fulle	er test statistic	es	-3.735631	0.0189	
Test critical values:	1% level		-4.121990		
	5% level		-3.144920		
	10% level		-2.713751		
*MacKinnon (1996) one	-sided p-value	es.	,		
Warning: Probabilities a	and critical va	lues calculated	l for 20 observati	ons	
and may not b	e accurate for	a sample size	of 12		
Augmented Dickey-Fulle	er Test Equat	ion			
Dependent Variable: D(R)				
Method: Least Squares					
Sample(adjusted): 11 22					
Included observations: 1	2 after adjust	ing endpoints			
Variable	Coefficient	Std. Error	t-statistics	Prob.	
R(-1)	-0.417463	0.111752	-3.735631	0.1665	
D(R(-1))	-0.203218	0.290647	-0.699192	0.6115	
D(R(-2))	0.094523	0.145528	0.649521	0.6333	
D(R(-3))	-0.007521	0.170013	-0.044235	0.9719	
D(R(-4))	-0.077373	0.153554	-0.503881	0.7029	
D(R(-5))	0.158565	0.126751	1.250994	0.4293	
D(R(-6))	0.291926	0.080853	3.610563	0.1720	
D(R(-7))	0.076793	0.117013	0.656277	0.6303	
D(R(-8))	-0.005329	0.106778	-0.049911	0.9683	
D(R(-9))	-0.197510	0.096991	-2.036374	0.2906	
C	8.312997	3.006043	2.765429	0.2209	
R-squared	0.990512	Mean dependent variance -2.3833		-2.383333	
Adjusted R-squared	0.895635	S.D. dependent variance 2.0770		2.077075	
S.E. of regression	0.671011			1.388363	
Sum squared residuals	0.450255	Schwarz criterion 1.832		1.832861	
Log likelihood	2.669823			10.43995	
Durbin-Watson statistics	2.804992	Prob. (F-statistics) 0.23670			

Augmented Dickey-Fuller Unit Root Test on V:

Null Hypothesis: V has a unit root					
Exogenous: Constant, Linear Trend					
Lag Lengt	h: 8 (Automatic	based on SIC, M	IAXLAG=9)		
	t-statistics	Prob.*			
Augmented Dicke	y-Fuller test sta	tistics	-6.781097	0.0001	
Test critical values:	1% level		-4.394309		
	5% level		-3.612199		
	10% level		-3.243079		
*N	IacKinnon (199	6) one-sided p-va	lues.		
Au	gmented Dickey	-Fuller Test Equ	ation		
	Dependent	Variable: D(V)			
	Method: I	Least Squares			
	Sample(ad	justed): 10 33			
Included	observations: 2	24 after adjusting	endpoints		
Variable	Coefficient	Std. Error	t-statistics	Prob.	
V(-1)	-0.724950	0.106907	-6.781097	0.0000	
D(V(-1))	0.019092	0.124582	0.153246	0.8806	
D(V(-2))	0.435479	0.123627	3.522528	0.0037	
D(V(-3))	-0.095415	0.105617	-0.903402	0.3827	
D(V(-4))	0.340840	0.101026	3.373772	0.0050	
D(V(-5))	0.239010	0.113813	2.100023	0.0558	
D(V(-6))	-0.379002	0.109916	-3.448095	0.0043	
D(V(-7))	-0.018519	0.117355	-0.157799	0.8770	
D (V(-8))	0.322506	0.114459	2.817648	0.0145	
С	7.255367	1.007226	7.203312	0.0000	
@TREND(1)	-0.130763	0.016731	-7.815637	0.0000	
R-squared	0.952227	Mean dependent variance -0.1137			
Adjusted R-squared	0.915478	S.D. dependent variance 0.6230		0.623016	
S.E. of regression	0.181127	Akaike info criterion -0.275		-0.275677	
Sum squared residuals	0.426490	Schwarz criterion 0.2642		0.264265	
Log likelihood	14.30812	F-statistics 25.911			
Durbin-Watson statistics	1.420864	Prob(F-statistics) 0.000001			

Unit root tests allow rejecting the unit root hypothesis for all the variables of the equation on RCR.

Supplement 3. The Heteroscedasticity Test for Company-Level Model.

The White's test on heteroscedasticity allows rejecting the presence of it (to accept the null hypothesis). The results of the test are demonstrated below.

White's Heteroscedasticity Test

F-statistics	1.357581	Probability		0.268977		
Obs*R-squared	15.84226	Probability		0.257753		
	Test Equation:					
	Depend	ent Variable: l	RESID^2			
	Met	hod: Least Sq	uares			
		Sample: 132				
	Inclu	ded observatio	ons: 32			
Variable	Coefficient	Std. Error	t-statistics	Prob.		
C	-5.05E-05	0.000300	-0.168478	0.8681		
CVROA	3.13E-06	1.50E-05	0.209137	0.8367		
CVROA^2	-1.42E-06	8.52E-07	-1.665284	0.1132		
DF	-3.97E-05	0.000194	-0.204820	0.8400		
DIV	-0.012650	0.007129	-1.774381	0.0929		
DIV^2	0.057907	0.047924	1.208301	0.2426		
ECFOA	0.000265	0.004152	0.063931	0.9497		
ECFOA^2	-0.001483	0.018442	-0.080408	0.9368		
ECRA	0.006662	0.003101	2.148197	0.0456		
ECRA^2	-0.029664	0.024699	-1.201057	0.2453		
I	0.003000	0.003796	0.790393	0.4396		
I^2	-0.010130	0.020845	-0.485980	0.6328		
SCFOA	0.007555	0.012400	0.609307	0.5499		
SCFOA^2	-0.044366	0.137132	-0.323527	0.7500		
R-squared	0.495071	Mean dependent variance		0.000226		
Adjusted R-squared	0.130399	S.D. dependent variance		0.000257		
S.E. of regression	0.000240	Akaike info criterion		-13.53400		
Sum squared residuals	1.03E-06	Schwarz criterion		-12.89275		
Log likelihood	230.5441	F-statistics		1.357581		
Durbin-Watson statistics	2.154341	Prob. (F-statistics) 0.268977		0.268977		

Supplement 4. The List of the Companies in the Sample.

Company	Industry	
Dalsvyaz	Telecommunications	
MGTS	Telecommunications	
North-Western Telecom	Telecommunications	
Rostelecom	Telecommunications	
Vimpelcom	Telecommunications	
Southern Telecommunications company	Telecommunications	
Uralsvyazinform	Telecommunications	
MTS	Telecommunications	
Volgatelecom	Telecommunications	
Golden Telecom	Telecommunications	
Zavolzhskii Motornii zavod (ZMZ)	Machinery	
Silovie machiny	Machinery	
OMZ	Machinery	
VAZ	Machinery	
Wimm-Bill-Dann	Food & beverages	
Kalina	Food & beverages	
Sun Interbrew	Food & beverages	
Parnas-M	Food & beverages	
Baltika	Food & beverages	
TNK	Oil & gas	
Sibneft	Oil & gas	
LUKOIL	Oil & gas	
Surgutneftegas	Oil & gas	
Tatneft	Oil & gas	
Mosenergo	Electric energy & heating	
Lenenergo	Electric energy & heating	
Irkutskenergo	Electric energy & heating	
MMC	Ferrous metallurgy	
ALROSA	Nonferrous metallurgy	
Norilskii Nickel	Nonferrous metallurgy	
Transnefteproduct	Transportation	
Ackron	Mineral fertilizer	

References

- 1. Gallinger G. W., Healy P. B. Liquidity analysis and management. -2^{nd} ed., Addison-Wesley, NY, 1991.
- 2. Green W. H. Econometric analysis. 3d ed. Prentice Hall, Upper Saddle River, NJ, 1997.
- 3. Jonston J., DiNardoJ. Econometric methods. 4th ed. McGraw Hill International editions, NY, 1997.
- 4. Kryazhimskiy, A., Watanabe, C., Optimization of Technological Growth, GENDAITOSHO, Kanagawa, 2004.
- 5. Shim J.K., Siegel J. G. Financial Managemenet. 2nd ed. Barron's business library, NY, 2000.
- 6. Official internet site of the Bank of Russia. http://www.cbr.ru
- 7. Official internet site of the GOSKOMSTAT of Russia. http://www.gks.ru
- 8. Official internet site of the "Dalsvyaz". http://www.dsv.ru
- 9. Official internet site of the "MGTS". http://www.mgts.ru
- 10. Official internet site of the "North-Western Telecom". http://www.nwtelecom.ru
- 11. Official internet site of the "Rostelecom". http://www.rt.ru
- 12. Official internet site of the "Vimpelcom". http://www.vimpelcom.com
- 13. Official internet site of the "Southern Telecommunications Company". http://www.stcompany.ru
- 14. Official internet site of the "Uralsvyazinform". http://www.uralsvyazinform.ru
- 15. Official internet site of the "MTS". http://www.mts.ru
- 16. Official internet site of the "Volgatelecom". http://www.vt.ru
- 17. Official internet site of the "Golden Telecom". http://www.goldentelecom.ru
- 18. Official internet site of the "ZMZ". http://www.zmz.ru
- 19. Official internet site of the "Silovie machiny". http://www.power-m.ru
- 20. Official internet site of the "OMZ". http://www.omz.ru
- 21. Official internet site of the "VAZ". http://www.vaz.ru
- 22. Official internet site of the "Wimm-Bill-Dann". http://www.wbd.ru
- 23. Official internet site of the "Kalina". http://www.kalina.org
- 24. Official internet site of the "Sun Interbrew". http://www.suninterbrew.ru
- 25. Official internet site of the "Parnas-M". http://www.parnas.spb.ru

- 26. Official internet site of the "Baltika". http://www.baltika.ru
- 27. Official internet site of the "TNK". http://www.tnk-bp.ru
- 28. Official internet site of the "Sibneft". http://www.sibneft.ru
- 29. Official internet site of the "LUKOIL". http://www.lukoil.ru
- 30. Official internet site of the "Surgutneftegas". http://www.surgutneftegas.ru
- 31. Official internet site of the "Tatneft". http://www.tatneft.ru
- 32. Official internet site of the "Mosenergo". http://www.mosenergo.ru
- 33. Official internet site of the "Lenenergo. http://www.lenenergo.ru
- 34. Official internet site of the "Irkutskenergo. http://www.irkutskenergo.ru
- 35. Official internet site of the "MMC". http://www.mmk.ru
- 36. Official internet site of the "ALROSA". http://www.alrosa.ru
- 37. Official internet site of the "Norilskii Nickel". http://www.nornik.ru
- 38. Official internet site of the "Transnefteproduct". http://www.transnefteproduct.ru
- 39. Official internet site of the "Ackron". http://www.acron.ru