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R e s e a r c h  R e p o r t s  are p u b l i c a t i o n s  repor t ing  
on t h e  w o r k  of t h e  au thor .  A n y  v i e w s  or 
conc lus ions  a re  those o f  t h e  au thor ,  and do 
n o t  n e c e s s a r i l y  ref lect  those of I I A S A .  





A B a y e s i a n  Approach t o  A n a l y z i n g  

U n c e r t a i n t y  among S t o c h a s t i c  Models  

E r i c  F .  Wood 

A b s t r a c t  

The  s t a t i s t i c a l  u n c e r t a i n t y ,  r e s u l t i n g  f rom t h e  l a c k  
o f  knowledge  o f  w h i c h m o d e l l i n g  r e p r e s e n t s  a  g i v e n  s t o c h a s t i c  
p r o c e s s ,  i s  a n a l y z e d .  T h i s  a n a l y s i s  of model  u n c e r t a i n t y  
l e a d s  t o  a  c o m p o s i t e  B a y e s j a n  d i s t r i b u t i o n .  The c o m p o s i t e  
B a y e s i a n  d i s t r i b u t i o n  i s  a  l i n e a r  model  o f  t h e  i n d i v i d u a l  
B a y e s i a n  p r o b a b i l i t y  d i s t r i b u t i o n s  o f  t h e  i n d i v i d u a l  m o d e l s ,  
w e i g h t e d  by t h e  p o s t e r i o r  p r o b a b i l i t y  t h a t  a  p a r t i c u l a r  
model  i s  t h e  t r u e  m o d e l .  The c o m p o s i t e  B a y e s i a n  p r o b a b i l i t y  
model a c c o u n t s  f o r  a l l  s o u r c e s  o f  s t a t i s t i c a l  u n c e r t a i n t y - -  
b o t h  p a r a m e t e r  u n c e r t a i n t y  a n d  model u n c e r t a i n t y .  T h i s  
model  i s  t h e  o n e  t h a t  s h o u l d  b e  u s e d  i n  a p p l i e d  p r o b l e m s  
o f  d e c i s i o n  a n a l y s i s ,  f o r  i t  b e s t  r e p r e s e n t s  t h e  knowledge-- 
o r  l a c k  o f  i t - - t o  t h e  d e c i s i o n  maker a b o u t  f u t u r e  e v e n t s  
o f  t h e  p r o c e s s .  

I n t r o d u c t i o n  

A p p l i e d  s c i e n t i s t s  a r e  o f t e n  c o n f r o n t e d  w i t h  t h e  p r o -  

b lem o f  c h o o s i n g  o n e  s t a t i s t i c a l  model f rom many c o n t e n d i n g  

m o d e l s .  An example  o f  t h i s  s e l e c t i o n  p r o b l e m  i s  f r e q u e n t l y  

e n c o u n t e r e d  by h y d r o l o g i s t s  i n  f l o o d  f r e q u e n c y  a n a l y s i s .  

The e x a m p l e s  a n d  a p p l i c a t i o n s  i n  t h i s  p a p e r  w i l l  b e  a d d r e s s e d  

t o  t h a t  p r o b l e m .  

C o n s i d e r  t h e  p r o b l e m  o f  t h e  h y d r o l o g i s t  who must  make 

a  d e c i s i o n  b e t w e e n  a number o f  a l t e r n a t e  d e s i g n s  t h a t  p r o -  

p o s e  t o  p r e v e n t  o r  d e c r e a s e  t h e  o c c u r r e n c e  o f  f u t u r e  f l o o d s .  

H i s  f i r s t  t a s k  i s  t o  make i n f e r e n c e s  a b o u t  t h e  u n d e r l y i n g  



process that generates these events but, in addressing this 

problem, he is faced with a number of sources of uncertainty. 

These sources of uncertainty have often been summarized into 

three categories [l] : 

1. Natural uncertainty. This is the uncertainty in 

the stochastic process --the occurrence of extreme 

streamf lows, q. 

2. Statistical uncertainty. This is associated with 

the estimation of the parameters of the model of 

the stochastic process due to limited data. 

3. Model uncertainty. This is associated with the 

uncertainty that a particular probabilistic model 

of the stochastic process may not be the true model. 

Most hydrologic processes are so complex that no 

model yet devised may be the true model, or maybe 

hydrologic events follow no particular model. 

Many models seem to fit the available data very well, but 

often the models lead to different inferences and decisions. 

In recent years, considerable progress has been made on the 

development of statistical procedures for comparing alter- 

native models; examples of this are Gaver and Geisel [3], 

Smallwood [8] and Leamer [4], who all used Bayesian 

statistical procedures, and Dumonceaux et al. and 

Pesaran [5] who applied llclassicallt statistical procedures 

of hypothesis testing. 



Composite Bayesian Distribution 

For a particular model of flood events, parameter un- 

certainty can be accounted for by considering the Bayesian 

pdf of flood events, which is 

- 
f(q) = I f(ql~) ' f"(A) - dA - 

A 

where 
- 
f(q) is the Bayesian pdf for q ,  

f(ql~) is the lfmodelled" pdf of q, conditional 

upon the uncertain parameter set - A, and 

f" (A) is the posterior pdf for the parameter set 

A. - 

Model uncertainty can be considered by defining a com- 

posite model of the form 

where 

A 

The composite model, f(ql&,~), is conditioned upon a set 

of unknown model parameters - A and an unknown composite 

model parameter set - 8. 

fl(q[A1),.. . Y and fn(qlAn) is the set of probabilistic 

models that make up the composite model. These models are 

conditioned upon a general unknown parameter set A. 
81,..., and en are parameters that take on a value of 

either 0 or 1; their value is uncertain. If el = 1, 

then model fi(qlAi) is the true model. The constraint 



is imposed, which implies that one and only one model is 

the true model. 

For notational simplicity, consider the case where 

n = 2. The likelihood function for a set of observations 

Q is just: 

There are no cross products of the models, due to the li- 

mitation imposed on the values that Oi can take on; and 

the constraint on - 0 Li(Ai(&) is just the likelihood 

function of model i, conditional upon the observations, 

Q. - 

Define now a composite prior distribution on the pa- 

rameters A and - 0. The prior will be of the form 

fti(~ilOi = 1) is the prior distribution on the parameter 

set A, conditional upon Oi = 1. pt(Oi = 1) is the prior 

probability that model i is the "true" model. 



Bayes' rule can be written as 

1 
f"(b1data) = - L (bldata) . fl(b) . ( 6 )  

K 

f" (bldata) is the posterior distribution of the by 

conditional upon the data; ~(bldata) is the likelihood 

function for b; f'(b) is the prior distribution of b; 

and K is a normalizing constant. 

The normalizing constant K is often called, in the 

econometrics literature, the marginal density of the ob- 

servations or the marginal likelihood [12] and can be 

found by 

~ ( b  / data, model) . f ' (b (model) db . ( 7 )  

Ki, the marginal likelihood function for model i, can be 

thought of as the probability of observing the data, given 

model i. 

The posterior density function for A,g is calculated 

from Bayes' rule; it is 



where K- i s  a  n o r m a l i z i n g  c o n s t a n t  e q u a l  t o  

The p o s t e r i o r  model p r o b a b i l i t i e s ,  p l ' (Oi)  a r e  

These  p o s t e r i o r  p r o b a b i l i t i e s  f o r  Oi  a r e  t h e  same 

a s  t h o s e  found  by Leamer [4], Gaver and G e i s e l  [3], and 

Smallwood [8], e v e n  though  t h e i r  a p p r o a c h e s  t o  t h e  p rob lem 

w e r e  d i f f e r e n t .  

The c o m p o s i t e  B a y e s i a n  d i s t r i b u t i o n  o f  e x t r e m e  f l o o d  

e v e n t s ,  q ,  c a n  a l s o  b e  found by a p p l y i n g  f i r s t  p r i n c i p l e s :  

The c o m p o s i t e  B a y e s i a n  d i s t r i b u t i o n  i s  s i m p l y  t h e  

B a y e s i a n  d i s t r i b u t i o n s  o f  t h e  mode l s  w e i g h t e d  by t h e  p o s t e -  

r i o r  p r o b a b i l i t y  t h a t  a  p a r t i c u l a r  model i s  t h e  t r u e  model .  

T h i s  r e s u l t  i s  e x t r e m e l y  c o n v e n i e n t .  



Analytical Derivation of the Marginal Density Function 

The marginal density function of a set of observations 

is calculated from Equation ( 7 ) ,  and represents the proba- 

bility of observing that set of data. The marginal density 

function depends upon the probability model for the sto- 

chastic process, the prior probability density function 

over the parameters of the model and the set of observed 

data. Consider the marginal likelihood function for the 

following cases: 

1. Normal Process 

Let the random variable q be distributed with Normal 

mean and precision h. The probability density for 

q is 

1 2 f(qlp,h) = ,- h5 exp I - !  (q-P) 3 . 
- 2  II (13 

2 

Then, given n independent observations of q, 9, the like- 

lihood function for P and h is 

Define the following 



then 

Assume the prior on (p,h) is a natural conjugate prior 1 

of the form 

r(112 v f )  

Then, the marginal likelihood function for the Normal model, 

KN = /I L(LI,~~Q) f d m  
UYh 

is from Equation (14) and (18) 

where 

'For the Normal process, the natural conjugate over the 
mean and precision is Normal-Gamma (Raiffa and Schlaifer, [6]). 



The integral is equa; to 

r(1/2 v " )  

Thus 
- n t  1/2 . 

(2.n 
-v/2 . r(1/2 v") 

KN - (- ) 
n I' r(1/2 v t )  

2. Log-Normal Troces s 

Let xi = In qi be distributed Normal with mean 

and precision h. Then qi is distributed Log-Normal by de- 

finition. The probability density function f0r.q is 

The likelihood function for p and h, given n independent 

observations of q is 



Assume a Normal-Gamma prior for LI and h of the same form 

as Equation (18). The marginal likelihood, KLN, is just 

the integration of p and h over the product of the likeli- 

hood and the prior probability density function. 

The integral is of the same form as the marginal likelihood 

for the Normal model. Then, from Equation (211, KLN is: 

1 . n' 112 (2T)-v/2 (112 v") 
K~~ = n (,,, (1/2 v') 

n qi 
i=l 

3. Exceedance Model 

Another model of common use in water resources, espe- 

cially in the analysis of extreme events, is the Exceedance 

model. (~hane and Lynn, [7] ; Wood, [lo] ; Todorovic and 

Zelenhasic , [g] . ) The Exceedance model considers only 

those extreme events, let's say flood discharges, greater 

than a specified base level. Such discharges are called 

exceedance discharges and the probability dznsity function 

of exceedance discharges is assumed to be of an Exponential 

type. Furthermore, the arrival of exceedance events is 

assumed to be a Poisson process. Such a model is of a 

general form since the upper tails of many distributions 



can be approxi~~~ated by an exponential form. 

The second part of this model concerns flood discharges 

less than the base level. Usually such discharges are of 

little interest in analyzing extreme events, and the distri- 

bution of such events may be quite complex. Here, it will 

be assumed that the events will follow a uniform distribu- 

tion. The use of the uniform b density function implies 

that the posterior probability for the Exceedance model will 

be underestimated or conservative. 

The probability density function for the Exceedance 

model is 

f(qlv,a) = vatexp I-a(q - qb)} for q 2 qb 

where v is the arrival rate of floods, a is the event 

magnitude parameter and qb is the base level. 

Given a sample of n independent discharges, &, of which m 

are discharges less than qb and n-m are discharges greater 

than or equal to qb, then the likelihood function for v 

and a can be shown to be, 

(1 - v ) ~  n-m n-m n -m ~ ( v , a J g )  = . v a e:rp I-a 1 (qi -qb)j 

q: 
i= 1 



The marginal likelihood function, KE, is defined as 

The conjugate prior density function for v and a 

are of the form 

Therefore, from Equation (28) applying Equations (27) and 

(29) KE is simply 

The integral over v equals 

where . 
u " = u l + n - m  

S" = S' + T (or st' = s '  + Iti) 



and the integral over a equals 

where 
v " = v l + n - m  

Thus, KE equals 

(34) 

Some computer experiments were carried out with samples 

generated from known distributions. As an example, a 

sample growing from 10 to 200 was generated from a Log- 

Normal distribution with pQn = 7.85 and a = 0.95 
Y llny 

an$ the marginal likelihoods where numerically evaluated 

for the Log-Normal and the Exceedancemodels assuming diffuse 

prior distributions on the probability model parameters. 

Table 1 shows the values of the marginal likelihoods jointly 

with the posterior model probabilities estimated according 

to Equations (10) and (11) on the assumption of diffuse 

prior model probabilities (pl(B1 = 1) = p1(02 = 1) = 0.5). 

Extensive experiments are presently being performed to 

evaluate the worth of data on the problem of model selection 

as well as the influence of prior assessments, and the 

results will be forthcoming. 



An Application to the Blackstone River, U .S .A. 

The Blackstone River, at Woonsocket, Rhode Island, 

has been analyzed by Wood and Rodriguez [ll.] for prior 

information for the Bayesian probability density function 

of its flood discharges (for four different probability 

models), and for a decision problem concerning local flood 

protection. Model uncertainty was not considered in the 

previous paper even though competing models were considered. 

This section calculates the posterior model probabilities. 

The parameters for the marginal likelihood functions are 

summarized in Table 2. The values of the marginal likeli- 

hoods are 

for the Normal, Log-Normal, and Exceedance models, respectively. 

Assuming uniform prior probabilities on the three 

models, the posterior probabilities for the models are 



The composite Bayesian distribution of flood discharees is, 

from Equation (12) 

- 
where fE(q) is the Bayesian density function for the Exceed- 

- 
ante model, and fLN(q) is the Bayesian density function for 

the Log-Normal model. 

The composite Bayesian distribution of Equation (36) is the 

probability model which should be used in making inferences 

about future flood discharges. The composite Bayesian model 

rationally accounts for both parameter and model uncertainty. 

It is interesting to note that the form of composite Bayesian 

model is not fixed, but is dynamic and changes as more data 

becomes available. 

Conclusions 

This paper considers the problem of model uncertainty 

within a Bayesian analysis. When there is a set of competing 

probability models for flood discharges, Bayesian analysis 

leads to a composite Bayesian model. The composite Bayesian 

model is a linear model consisting of the Bayesian distribu- 

tion of the individual models, weighted by the posterior 

model probability that the individual model is the true model 

The posterior model probabilities are calculated from the 

marginal likelihood function of the observed data and the 



prior model probability. 

The posterior model probabilities are found by calcula- 

ting the marginal likelihood function for each competing 

model. The marginal likelihood function was derived analy- 

tically for three commonly used models --a Normal process, 

a Log-Normal process,and an Exceedance model. The results 

have been applied to "real-world" data and favourable 

results obtained. 



Table 1: Marginal Likelihoods and Posterior Model Probabilities 

for Samples Generated from Log-Normal Process with 

'En y = 7.8 and o 
En Y 

= 0 . 9 5  

Log-Normal Model Sample Size Exceedance Model 

Marginal Posterior Model Marginal Posterior Model 

Likelihood Probability Likelihood Probability 



Table 2: Marginal Likelihood Parameters for Normal, 

Log-Normal, and Exceedance Models for the 

Blackstone River, U.S.A. 

Normal Model 

n' = 7 years 

v = 36 years 

v' = 9.22 x lo6 cfs2 

n" = 44 years 

vl' = 43 years. 

vw = 24.7 x lo6 cfs 2 

Log-Normal Model 

n' = 4 years 

V' = 36 years 
2 v' = .22 log cfs 

U' = 6 events 

V' = 3 events 

S' = 50 years 

! Z '  = 10850 cfs 

m. = 32 events 

qb = 8500 cfs 

n" = 41 years 

V" = 40 years 

V" = .689 log cfsC 

Exceedance Model 

U" = 11 events 

V" = 8 events 

S" = 87 (S"+m=119) years 

ail = 49468 cfs 

n = 5 events 
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