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Abstract

The extent and timing of cost-reducing improvements in low-carbon energy systems are important
sources of uncertainty in the future levels of greenhouse-gas emissions. Models that assess the
costs of climate change mitigation policy rely heavily on learning curves to incorporate changes in
technology. Historically, no energy technology has changed more dramatically than photovoltaics
(PV), the cost of which has declined by a factor of nearly 100 since the 1950s. Which changes
were most important in accounting for the cost reductions that have occurred over the past three
decades? Are these results consistent with the widely held learning-by-doing theory of technolog-
ical change? We gather empirical data and populate a simple model to identify the most important
factors affecting the cost of PV. We find that the learning curve theory only weakly explains change
in the most important factors—plant size, module efficiency, and the cost of silicon.
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Technical Change in Photovoltaics and the Applicability
of the Learning Curve Model

Gregory F. Nemet

1 Introduction

Models of future greenhouse-gas (GHG) concentrations and surface temperatures are highly sen-
sitive to assumptions about the improvement and deployment of low-carbon energy technologies
(Nakicenovic et al. 2000). Prior to the 1990s, technological change was typically included either as
an exogenous increase in energy conversion efficiency or ignored (Azar and Dowlatabadi 1999).
Studies in the early 1990s began using the learning curve to endogenate changes in technology
based on a power function relationship between cumulative production and cost (Williams and
Tarzian 1993, Grübler, Nakicenovic and Victor 1999). In this paper we begin with a discussion
of the advantages and limitations of the learning curve theory of technical change. We then test
the applicability of the learning curve to photovoltaics (PV) by constructing an engineering-based
model and comparing that to the learning curve.

We use the case of PV to test the model for several reasons. The cost of PV has declined by a
factor of 100 since the 1950s, more than any other energy technology in the period. Markets for
PV are expanding rapidly, recently in excess of 30% per year. Also, long-term emissions scenarios
depend heavily on future cost reductions in PV. Nakicenovic and Riahi (2002) reviewed scenarios
of emissions levels, and found that the median amount of PV deployed by mid-century in the 34
studies they reviewed is 6 terawatts (TW)1. For those scenarios that include stabilization of GHG
concentrations, median deployment of PV is 22 TW by 2100. How the technology evolves over
the next few decades will determine whether PV reaches terawatt scale and makes a meaningful
contribution to reducing GHG emissions or whether it remains limited to niche applications.

Our analysis begins by identifying technical factors which have changed over time and which
are likely to have had some impact on PV costs. We then collect empirical data to create an annual
time series of each factor for the study period. We build a cost model that simulates the effect of
changes in each factor on the manufacturing cost of PV modules. We then discuss how well the
learning curve theory explains the most important factors identified in the model.

1.1 The learning curve model

Theories of technological change have identified patterns in the ways that technologies are in-
vented, improve, and diffuse into society (Schumpeter 1947). Studies have pointed out the com-
plex nature of the innovation process in which uncertainty is inherent (Freeman 1994), flows across
sectors are important (Mowery and Rosenberg 1998), and lags can be long (Rosenberg 1994).
Perhaps because of characteristics such as these, theoretical work on innovation provides only a
limited set of methods with which to predict changes in technology. The learning curve model
offers an exception.

1For comparison, world electricity capacity in 2004 for all types of generation was approximately 4 TWs.
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The learning curve model originates from observations that workers in manufacturing plants
become more efficient as they produce more units (Wright 1936, Alchian 1963, Rapping 1965).
Drawing on the concept of learning in psychological theory, Arrow (1962) formalized a model
explaining technical change as a function of learning derived from the accumulation of experi-
ences in production. In its original conception, the learning curve theory referred to the changes
in the productivity of labor as a function of cumulative production within a manufacturing plant.
Later, others developed the experience curve to provide a more general formulation of the theory,
including not just labor but all manufacturing costs (Conley 1970) and aggregating entire indus-
tries rather than single plants (Dutton and Thomas 1984) 2. Though different in scope, each of
these concepts is based on Arrow’s explanation of technical progress as the result of learning by
doing. As a result, they are often, and perhaps misleadingly, grouped under the general category of
learning curves. The most basic implication of the learning curve theory is that increasing cumu-
lative output is a dominant strategy for maximizing both the profitability of firms and the societal
benefits of technology-related public policy.

The model operationalizes the explanatory variable experience using a cumulative measure
of production or use. Change in cost typically provides a measure of learning and technological
improvement, and represents the dependent variable3. Learning curve studies have experimented
with a variety of functional forms to describe the relationship between cumulative capacity and
cost (Yelle 1979). The log-linear function is most common perhaps for its simplicity and generally
high goodness of fit to observed data. The central parameter in the learning curve model is the
exponent defining the slope of a power function, a linear function plotted on a log-log scale. This
parameter is known as the learning coefficient (b) and can be used to calculate the progress ratio
(PR) and learning ratio (LR) as shown below where Cost is unit cost and q represents cumulative
output.

Costt =Cost0

(
qt

q0

)−b

(1)

PR= 2−b (2)

LR= (1−PR) (3)

Subsequent studies have criticized the learning curve model. Dutton and Thomas (1984) sur-
veyed 108 learning curve studies and showed a wide variation in learning rates leading them
to question the explanatory power of experience. Argote and Epple (1990) explored this varia-
tion further and proposed four alternative hypothesis for the observed technical improvements:
economies of scale, knowledge spillovers and two opposing factors, organizational forgetting and
employee turnover. Despite these criticisms, the learning curve model has survived without any
major modifications as a basis for predicting technical change, informing public policy, and guid-
ing firm strategy. Below, we outline the advantages and limitations in using the model for such
applications4.

1.1.1 Advantages

The experience curve provides an appealing model for several reasons. First, availability of the two
empirical time series required to build an experience curve—cost and production data—facilitates
testing of the model. As a result, a rather large body of empirical studies has emerged to support
the model. Compare the simplicity of obtaining cost and production data with the difficulty of

2The industry-level aggregation is sometimes also referred to as a “progress curve.”
3Cost is often normalized by an indicator of performance, e.g. $/watt. Alternative measures are also sometimes

used such as accident and defect rates.
4We focus our discussion on the more general application of the learning curve theory, the experience curve.
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quantifying related concepts such as knowledge flows and inventive output. Second, earlier stud-
ies of the origin of technical improvements, such as in the aircraft industry (Alchian 1963) and
shipbuilding (Rapping 1965), provide narratives consistent with the theory that firms learn from
past experience. Third, studies cite the generally high goodness-of-fit of power functions to em-
pirical data over several years, or even decades, as validation of the model. Fourth, the dynamic
aspect of the model—the rate of improvement adjusts to changes in the growth of production—
makes the model superior to forecasts which treat change purely as a function of time5. Finally,
the reduction of the complex process of innovation to a single parameter, the learning rate, pro-
vides a way to include technological change in models, such as energy supply and greenhouse-gas
emissions models.

1.1.2 Limitations

The combination of a rich body of empirical literature and the more recent applications of learning
curves in predictive models has revealed weaknesses that echo earlier critiques.

First, the timing of future cost reductions is highly sensitive to small changes in the learning
rate. For example, an experience curve R2 value of >0.95 is considered impressive and a strong
validation of the experience curve model. However, the variance in such a goodness of fit can
lead to uncertainty in the timing of cost reductions on the scale of decades. In Figure 1 we plot
experience curves based on the two most comprehensive world surveys of PV prices (Maycock
2002, Strategies-Unlimited 2003) 6. The Maycock survey produces a learning rate of 0.26 while
the Strategies Unlimited data gives 0.17. What may appear as a minor difference has a large
effect. Assuming a steady industry growth rate of 15% per year 7, we calculate how long it will
take for PV costs to reach a threshold of $0.30/W, a mid-range estimate for competitiveness with
conventional alternatives. We find that just the difference in the choice of data set used produces
a cross-over point of 2039 for the 0.26 learning rate and 2067 for the 0.17 rate, a difference of 28
years8.

Second, the experience curve model gives no way to predict discontinuities in the learning rate.
In the case of PV, the experience curve switched to a lower trajectory around 1980. As a result we
would expect that the experience curve-based forecasts of PV in the 1970s would have predicted
much faster technological progress than actually occurred—a retrospective analysis shows that
they did (Schaeffer 2004)9. Discontinuities present special difficulties at early stages in the life of
a technology. Early on, only a few data points define the experience curve, while at such times de-
cisions about public support may be most critical. Third, studies that address uncertainty typically
calculate uncertainties in the learning rate using the historical level of variance in the relation-
ship between cost and cumulative capacity. This approach ignores uncertainties and limitations in
the progress of the specific technical factors which are important in driving cost-reductions. For
example, constraints on individual factors, such as theoretical efficiency limits, might affect our
confidence in the likelihood of future cost reductions.

Fourth, due to their application in planning and forecasting, emphasis has shifted away from
learning curves based on employee productivity and plant-level analysis, toward experience curves
aggregating industries and including all components of operating cost. While the statistical rela-
tionships generally remain strong, the conceptual story begins to look stretched as one must make
assumptions about the extent to which experience is shared across firms. In the strictest interpre-

5An example of the opposite, a non-dynamic forecast, is autonomous energy efficiency improvement (AEEI) in
which technologies improve at rates exogenously specified by the modeler (Grubb, Kohler and Anderson 2002).

6In our model, we use an average of the two surveys
7The historical rates have generally been in the range of 10-30%.
8The biggest differences in the two datasets were in the 1970s.
9That study also showed significant variation in the learning rate for PV depending on the choice of time period.
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Figure 1: Sensitivity of learning rate to underlying data. Sources: Maycock 2002 and Strategies
Unlimited 2003.

tation of the learning-by-doing model applied to entire industries, one must assume that each firm
benefits from the collective experience of all. The model assumes perfect knowledge spillovers
among firms. Fifth, the assumption that experience, as represented by cumulative capacity, is the
only determinant of cost reductions ignores the effect of knowledge acquired from other sources,
such as from R&D or from other industries. Earlier, Sheshinski (1967) wrestled with the separation
of the impact of two competing factors, investment and output. Others have addressed this limita-
tion by incorporating additional factors such as workforce training (Adler and Clark 1991), R&D
(Miketa and Schrattenholzer 2004), and the interactions between R&D and diffusion (Watanabe,
Nagamatsu and Griffy-Brown 2003). Finally, experience curves ignore changes in quality beyond
the single dimension being analyzed10. The dependent variable is limited to cost normalized by
a single measure of performance—for example, hours of labor/aircraft, $/watt, or cent/megabyte.
Measures of performance like these ignore changes in quality such as aircraft speed, reliability of
power generation, and the compactness of computer memory.

1.2 Approach

This study uses an alternative approach to predicting technological change based on a traditional
engineering analysis. The mechanisms linking factors such as cumulative capacity and R&D to
technological outcomes, while certainly important, are at present not well understood. Many of the
problems mentioned above arise because the experience curve model relies on assumptions about
weakly understood phenomena. Rather than making assumptions about the roles that factors like
experience, learning, R&D, and spillovers play in reducing costs, we look at a set of more specific
technical factors whose impact on cost we can directly calculate.

To look at the impact of a more specific set of factors, we use a case study of a single tech-
nology, photovoltaics (PV). To isolate the effect of technological change, we look at PV modules
and do not include in our analysis balance-of-system components such as inverters, storage, and
supporting structures11. We also focus on PV modules manufactured from mono-crystalline and
poly-crystalline silicon wafers, the technology that has comprised over 90% of production over
this period and increasingly dominates the PV industry.

10Payson (1998) provides an alternative framework that incorporates both changes in quality and cost improvements.
11Inverters and other components have also exhibited cost decreases by factors of 5 and 10 respectively.
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Figure 2: World average prices for photovoltaic modules. Sources: Maycock 2002 and Strategies
Unlimited 2003

The cost of PV has declined by a factor of 100 from the 1950s until the present (Wolf 1974).
In our study we look at the period from early commercialization, 1975 to the year with the most
recently available data, 2001. During this 26-year period, there was a factor of 20 cost reduction
(see Figure 2). Practically, this reduction has meant that in the early-1970s nearly the only ap-
plications which could afford PV were in the U.S. space program. By 2000, PV was being used
as a roofing material in place of asphalt shingles. PV, however, remains a niche product and in
the overwhelming majority of situations cannot compete economically with traditional electricity
sources such as coal and gas, or even with other renewable energy sources, such as wind. How far
PV costs need to come down to be deployed on a large scale is a matter of debate. The range of
estimates include those such as the main PV industry trade group, which claims that $1.00/Wpeak

would be sufficient (SEIA 2004), to those who claim that the associated costs of transmission and
storage require PV modules that cost essentially nothing. In either case, widespread diffusion of
PV requires significant future cost declines.

We use empirical data to estimate the annual level of seven factors over the study period, 1975
to 2001. We then build a model to quantify the impact of the change in each factor on module
cost. Here we outline the steps involved in determining which technical and economic factors
were most important.

We begin by identifying candidate factors which have changed over time and which are likely
to have had some impact on PV costs. We identify specific factors by breaking the PV module
production process into five stages and using prior studies to identify the cost components in each
stage. We then collect empirical data to create an annual time series of each factor for the study
period. For years in which we do not have actual data for a factor, we use constant growth rates
to interpolate the years between data points. In the section below we describe the detail behind
our next step, which is to build a simple model that simulates the annual cost impact of changes
in each factor. Finally we perform a series of tests on the model. We compare model results for
different time periods. We estimate uncertainty in each factor and test the sensitivity of the model
to the range of possible values.

2 Cost Model Methodology

We build a cost model that simulates the effect of changes in each factor on manufacturing cost.
Below, we outline the methodology for estimating the impact of each factor.
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2.1 Cost

Average module cost (in units of 2002$s/Wattpeak) is the dependent variable in the model. We
build the time series for cost using an average of the two most comprehensive world surveys of
PV prices (Maycock 2002, Strategies-Unlimited 2003)12. Due to the proprietary nature of cost
data, we follow the widespread practice of using prices instead of costs under the assumption that
prices provide a reasonable proxy for costs. We discuss later some of the pitfalls of using prices to
represent costs. Variation in the price-cost margin and in the surveys themselves are two sources
of uncertainty in the model. The analysis focuses on module cost, rather than cost of energy, to
avoid the large uncertainties associated with making assumptions about capacity factors, lifetimes,
and financing mechanisms.

2.2 Module efficiency

Improvements in the energy efficiency (η=Wout/Win) of modules sold (Christensen 1985, Maycock
2002, Maycock 1994, Grubb and Vigotti 1997) have nearly doubled the rated power output of each
square meter (m2) of PV material produced. We simulate the impact of efficiency changes on mod-
ule cost using;

�Costt(η) =Costt−1

(
ηt−1

ηt
−1

)
(4)

This simple formulation applies the annual change in efficiency to the previous year’s cost,
Costt−1, to calculate the expected change in cost due to efficiency,�Costt . The relationship above
holds because in this study we are defining cost as $s/Wout. Wout is proportional to efficiency
because η =Wout/Win and incoming solar radiation is constant. As a result, change in cost is
inversely proportional to change in efficiency. For example, a doubling in efficiency would, ceteris
paribus, reduce $/Watt cost by 50%.

2.3 Plant size

Growth in the expected future demand for PV has led to an increase in the average annual out-
put of PV manufacturing plants of more than two orders of magnitude (Maycock and Stirewalt
1985, Maycock 2002, Mitchell, Witt, King and Ruby 2002, Ghannam, Sivoththaman, Poortmans,
Szlufcik, Nijs, Mertens and Van Overstraeten 1997, Maycock 1994). Growing demand has en-
abled manufacturers to build larger facilities and exploit economies of scale. We assume that half
of the costs in PV manufacturing are sensitive to scale [cite] and use a scaling factor (b=−0.35)
from the micro-processor industry[cite]. We estimate the effect of increasing scale using the equa-
tion below. We borrow a scaling factor for operating costs from the semi-conductor industry
(b = −0.18)(Gruber 1996), the industry whose production processes are most similar to that of
PV. This value is within the range (b=-0.07 to -0.20) of assumptions used in studies that calculate
future cost savings for large scale PV13. Other PV scaling factors include the following: b=-0.07
(Bruton and Woodock 1997), b=-0.09 (Rohatgi 2003), b=-0.12 (Frantzis, Jones, Lee, Wood and
Wormser 2000), b=-0.18 (Maycock 1997), b=-0.20 (Ghannam et al. 1997)14.

12Country and regional-level surveys also exist and may be accurate as well. However, we avoid using these surveys
because over this time period the market for PV became global. As a result some of the change in within-country
learning rates is due to the globalization of the industry, rather than learning.

13‘Large scale’ means>100 MW per plant per year.
14It is not surprising that our value lies at the upper end of this range because we are applying it historically, when

smaller plant sizes probably were yielding more economies of scale than at the levels of 100-500MW/year in these
studies.
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�Costt(size) =Costt−1

((
Sizet

Sizet−1

)b

−1

)
(5)

2.4 Yield

Improved cell and module processing techniques have increased post-wafer yield15 (Little and
Nowlan 1997, Sarti and Einhaus 2002, Rohatgi 2003). Because post-wafer yield measures the final
stages of the production production process, firms incur the entire cost of modules they discard for
mechanical or electrical reasons. The trend toward thinner wafers increased the brittleness of cells.
This more delicate material increased the possibility of breakage, offsetting some of the gains in
yield delivered by automation.

�Costt(yield) =Costt−1

(
Yieldt−1

Yieldt
−1

)
(6)

2.5 Poly-crystalline share

Throughout the study period, wafers cut from silicon ingots comprised of multiple crystals (poly-
crystalline) rather than individual crystals (mono-crystalline) have accounted for an increasing
share of world production (Maycock 2002, Maycock 1994, Costello and Rappaport 1980, Maycock
2003, Goetzberger, Hebling and Schock 2003, Menanteau 2000, JPEA 2002) 16. Based on com-
parisons of mono- and poly-crystalline prices for four years (Maycock 1994, Bruton and Woodock
1997, Maycock 1997, Sarti and Einhaus 2002), we assume that poly-crystalline modules cost 90%
that of single crystal modules. The formula below simulates the effect of the growing market share
for poly-crystalline designs on average module cost. market share reduces average cost by 0.5%.

�Costt(poly) = (Polysharet −Polysharet−1)(Polycostt−1−Costt−1) (7)

Polycostt−1 = 0.9 · Costt−1

1− (1−0.9)Polysharet−1
(8)

2.6 Silicon cost

Solar-grade silicon feedstock is the basic material input for producing PV wafers. Silicon prices
($/kgSi) have fallen by nearly a factor of 12 over the study period (Costello and Rappaport 1980,
Ghosh 1979, Bruton 2002, Swanson 2004). In Figure 3 we show the change in the cost of silicon
and other materials used to manufacture modules. In this study, we ignore changes in the other ma-
jor materials—glass, ethyl-vinyl acetate (EVA), aluminum and framing materials—because they
are orders of magnitude less costly than silicon17. We estimate the annual effect of this change by
calculating the cost of the silicon necessary to produce a watt of PV module, while holding silicon
consumption per watt constant.

�Costt(sicost) = (SiCosttSiConsumt−1)− (SiCostt−1SiConsumt−1) (9)

15We capture the yield improvements in the manufacturing of wafers in the section on silicon consumption below.
16We are excluding from our analysis thin-film silicon designs. Thin-film peaked at about 20% of world production

in the early 1990s but have since declined to below 10% of world production.
17Note that in Figure 3 a log scale is necessary to show the changes in the other materials.
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Figure 3: Materials costs for PV Modules. Sources: Christensen 1985 and Maycock 2002

2.7 Silicon consumption

The amount of silicon used per watt (gSi/W) of PV module has fallen by a factor of 1.5 over the
period (Maycock 2002, Woditsch and Koch 2002, Swanson 2004). Manufacturers have accom-
plished this change by reducing the thickness of silicon wafers from 500µm to 250µm and by
reducing kerf losses, from the sawing of each wafer, from 250µm to 190µm. We calculate the
amount of silicon saved each year and use silicon prices to estimate the effect on module cost.

�Costt(siconsum) = (SiCostt−1SiConsumt)− (SiCostt−1SiConsumt−1) (10)

2.8 Wafer size

Improved crystal growing methods have increased the area of each wafer by a factor of four
(Christensen 1985, Symko-Davies, Mitchell, Witt, Thomas, King and Ruby 2000, Rohatgi 2003,
Swanson 2004). Larger wafers facilitate savings in the cell and module assembly processes where
there are costs that are fixed per wafer, e.g. forming electrical junctions and testing. Using studies
that disaggregate costs, we assume that post-wafer processing accounts for 40% of the cost of
producing a module in all periods (Moore 1982, Maycock 2002, Bruton and Woodock 1997) and
that fixed per wafer costs are 10% of cell and module assembly.

�Costt(wafer) =Costt−1

(
wafert−1

wafert
−1

)
·0.4 ·0.1 (11)

2.9 Full model

We define the total change in module cost each year as the sum of the changes in each of the seven
components18.

�Costt =�Costt(η+size+yield+poly+sicost+siconsum+wafer) (12)

18We considered other factors such as labor, automation, and other material inputs. However, we exclude them
because these changes are either very small or are captured as changes in other factors which we did include in the
model.
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Table 1: Model Summary 1975-2001

Effect on
Factor Change Module Cost ($)

Module Efficiency 6.3%→ 13.5% −17.97
Plant size 76 kW/yr→ 14 MW/yr −13.54
Si cost 300 $/kg→ 25 $/kg −7.72
Si Consumption 30 g/W→ 18 g/W −0.98
Yield 80%→ 92% −0.87
Wafer Size 45 cm2 → 180 cm2 −0.67
Poly-crystal 0%→ 50% −0.38

Sum of Factors −42.15
Actual Change −70.36

Residual −28.22

3 Model Results

Three factors stand out as particularly important in explaining cost declines from 1975 to 2001:
plant size, cell efficiency, and to a lesser extent, the cost of silicon (see Table 1). The other four
factors each account for less than 2% of the cost decline.

However, these seven factors together explain less than 60% of the change in cost over the
period. Such a large residual requires that we understand the reasons for this residual before
drawing conclusions about the model results. One way to investigate the residual is to analyze
how well the model predicts the actual data over time. We observe that the model predicts the
actual change in prices much better after 1980 than it does before 1980.

In the following sections, we present results obtained by dividing the model into two time
periods; Period 1: 1975-79 and Period 2: 1980-2001. We choose these periods for three reasons.
First, by 1980 terrestrial applications had become dominant over space-based applications, signal-
ing the emergence of a commercial market. Second, global public R&D spending on PV reached
its peak, $370m, in 1980 (IEA 2004). The subsequent decline in R&D reflected a less active gov-
ernment role as the experiences of the 1970s oil crises faded. Third, in 1980, governments such
as Japan began subsidizing commercial applications, indicative of the shift from research-oriented
to diffusion-oriented policies. In the following sections we look at differences in the factors and
residual in these two periods and offer hypotheses about explanations.

3.1 Period 1: 1975-1979

In the first four years of this study, costs declined by a factor of three. Of the factors we identify,
efficiency, cost of silicon, and plant size accounted for the most change in cost (see Table 2). Three
other factors, yield and silicon consumption, were of less importance but played a role. Module
size and poly-crystalline share did not change and thus had no effect. These seven factors however
fail to explain most of the change over this period, as 59% of the change is unexplained. In
the rest of this section, we identify other factors that may help explain some of this large residual.
Understanding the early period of commercialization is important because many technologies tend
to attract widespread interest as they emerge from the laboratory and find their first commercial
applications. As a result, policy and investment decisions must be made at this early stage when
the factors discussed below may be at work.

As a starting point for identifying alternative explanations in this period, it is important to note
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Table 2: Model Results for Time Period 1: 1975-1979
Effect on

Factor Change Module Cost ($)

Module Efficiency 6.3%→ 8.0% −11.48
Si cost 300 $/kg→ 131 $/kg −5.03
Plant size 76 kW/yr→ 125 kW/yr −4.33
Yield 80%→ 82% −0.44
Si Consumption 30 g/W→ 28 g/W −0.39
Wafer Size 45 cm2 → 45 cm2 0.00
Poly-crystal 0%→ 0% 0.00

Sum of Factors −21.67
Actual Change −48.74

Residual −27.07

that there was a dramatic change in the market for PV over these four years. During this period,
terrestrial applications overtook space-based satellite applications as the dominant end-use. In
1974, the market share of terrestrial applications was 4%—satellites accounted for the remaining
96% (Moore 1982). By 1979, the terrestrial market share had grown to 64%. The following
sections address the large residual with four possible explanations, each of which is associated
with this shift in application.

3.1.1 Shift to lower quality reduces cost

One reason for the unexplained change in costs is that the shift from space to terrestrial appli-
cations led to a reduction in the quality of modules. As noted above, the focus in this project
on cost/wattpeak as the measure of technical change ignores changes in PV modules that are not
captured in electrical output, such as reliability and durability. In this case, the shift away from
space applications rendered certain characteristics non-essential, allowing manufacturers to switch
to less costly processes19.

The limited size of the payload bays on the rockets that transport satellites to orbit require min-
imization of the area that a satellite PV panel occupies. Meeting this spatial constraint necessitates
high efficiency panels to maximize watts delivered per m2. The relaxation of this requirement
for terrestrial applications enabled manufacturers to employ two important cost-saving processes
(Moore 1982). Modules could use the entire area of the silicon wafer—even the portions near the
edges which tend to suffer from defects and high electrical resistivity. Also, the final assembly
process could use a chemical polish to enhance light transmission through the glass cover, rather
than the more expensive ground optical finish which was required to for satellites.

Second, reliability targets fell. The Vanguard satellite program mandated that satellite PV
modules operate reliably for 20 years without maintenance. Terrestrial applications, on the other
hand, can be still be useful with much shorter lifetimes. A major Jet Propulsion Labs study of
PV technology in the 1970s found that the average lifetime for terrestrial PV in the mid-1970’s
was between 6 months and 2 years (Christensen 1985). They found it rose to 10 years in 1985.
Similarly, data from a leading manufacturer show that the warranty period for terrestrial PV prior
to the mid-1980s was for 5 years (Wohlgemuth 2003). Subsequently, warranties increased to 10
years in 1987, to 20 years in 1993, and to 25 years in 1999. Combining this reliability data with

19For example, the earliest terrestrial modules in the early-1970s were built from reject space cells (Christensen
1985).
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Figure 4: Module Lifetime. Sources: Christensen 1985 and Wohlgemuth 2003

the share of satellite vs. terrestrial applications yields a curve for average industry lifetime that
indicates a decline in the 1970s (see Figure 4). The transition from 20 year reliability targets in
the early and mid-1970s to 5 years in 1980s, allowed the use of cheaper materials and less robust
assembly processes that would have led to less costly manufacturing20.

3.1.2 Change in demand elasticity decreases margins

Another, and possibly complementary, explanation is that the shift from satellites to terrestrial
applications affected costs because of a difference in the demand elasticity of the two types of
customers. Price data from the period provide some supporting evidence. In 1974, the price per
watt of PV modules for satellite use was 2.5 times higher than the price for terrestrial modules
(Moore 1982). In 1979, the next year for which price data is available, the satellite price remained
higher (by a factor of 2.2) than terrestrial. We calculate the impact of this shift on average PV cost
by taking into account the change in market share mentioned above. The combination of these
price and market shifts accounts for $22 of the $28 not explained by the model in this period.

The shift from satellites to terrestrial applications had a large impact on average cost. However,
it is less clear how much of the price difference was due to the changes in quality mentioned above,
and how much is due to price discrimination. Satellite customers, with their billions of dollars of
related investments, almost certainly had a higher willingness to pay for PV panels, than early
terrestrial applications such as telecom power at remote sites or buoys for marine navigation.
The difference in quality must account for some of the price difference. But the difference in
willingness to pay may also have led to higher differences between cost and price for satellite than
for terrestrial applications.

3.1.3 Increasing competition

Market share data suggest that there was an increase in competition during this period. A decline
in industry concentration typically produces an increase in competitiveness, a decline in market
power, and lower profit margins. There were only two U.S. firms shipping terrestrial PV in 1975
(Maycock and Stirewalt 1985). In 1983, there were dozens of firms in the industry with 3 firms
accounting for 50% of the megawatts sold. By the late 1990s, 5 firms accounted for half of the
MWs sold (Maycock 2002).

20By 2000, reliability in terrestrial systems reached 25 years, exceeding that of early satellite systems.
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Figure 5: Industry Concentration (Herfindahl-Hirschman Index). Sources: Maycock 1984, 1994,
2002

The Herfindahl-Hirschman Index (HHI) provides a way of measuring industry concentration.
The HHI is calculated by summing the squares of the market shares of all firms in an industry. The
maximum possible HHI is 10,00021. The data show a trend to a less concentrated U.S. market (see
Figure 5). Concentration in the global market remained stable in the 1990’s, the period for which
we have comprehensive data. The increase in international trade in PV over the last three decades
indicates that the relevant scale of analysis shifted from a national market in the earlier years to
an international market today. Thus the most relevant measure of concentration would involve not
only the trends in the curves themselves but a shift from the upper domestic curve to the lower
global curve.

3.1.4 Standardization

A final explanation for the change in cost is that changes in production methods occurred due to an
increase in the number of customers and the types of products they demanded. There was a shift
away from a near-monopsony market in the early-1970s when a single customer, the U.S. space
program, accounted for almost all sales. In the terrestrial market, in contrast, the U.S. government
accounted for only one third of terrestrial PV purchases in 1976 (Costello and Rappaport 1980).
With the rise of the terrestrial industry, a larger set of customers emerged over the course of the
decade. One result from this change in the structure of demand was the shift away from producing
customized modules, such as the 20kW panels on Skylab, to producing increasingly standard
products at much higher volumes.

3.2 Period 2: 1980-2001

In the second period, from 1980 to 2001, PV cost declined by a factor of 7. In contrast to Period
1, the model explains the change in the second period quite well—just over 5% of the change
is unexplained by the model (see Table 3). The high explanatory power of the model indicates
that the factors mentioned above to explain the residual in Period 1—quality, demand elasticity,
competition, standardization— were either stable or dynamic but offsetting in Period 2. Two

21The U.S. Department of Justice uses HHI to assess competitiveness in anti-trust decisions and considers industries
with values below 1000 “unconcentrated”, 1000 to 1800 “moderately concentrated”, and values above 1,800 “highly
concentrated.” (DOJ 1997)
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Table 3: Model Results for Time Period 2: 1980-2001
Effect on

Factor Change Module Cost ($)

Plant size 125 kW/yr→ 14 MW/yr −9.22
Module Efficiency 8.0%→ 13.5% −6.50
Si cost 131 $/kg→ 25 $/kg −2.69
Wafer Size 45 cm2 → 180 cm2 −0.67
Si Consumption 28 g/W→ 18 g/W −0.59
Yield 82%→ 92% −0.43
Poly-crystal 0%→ 50% −0.38

Sum of Factors −20.48
Actual Change −21.62

Residual −1.14

factors stand out as important in this period. Plant size accounts for 43% of the change in PV cost
and efficiency accounts for 30% of the change. The declining cost of silicon accounts for 12% of
the change. Yield, silicon consumption, wafer size, and poly-crystalline share each have impacts
of 3% or less.

3.3 Sensitivity analysis

Sensitivity analysis points to three important sources of uncertainty in the parameters. However,
these results do not change the ranking of each factor if we assign them to three bins based on
importance. We assess uncertainty in the seven factors, the dependent variable, and the underly-
ing assumptions. We estimate uncertainty based on ranges of estimates obtained from multiple
sources. We then test the sensitivity of the model by using opposite ends of ranges to simulate the
extremes of large changes and small changes in each factor from 1975-200122.

The model is most sensitive to uncertainty in three parameters: the change in efficiency, the
scaling factor, and the change in plant size. Figure 6 indicates that despite the model’s sensitivity
to uncertainty in these three factors, the relative importance of the factors does not change if
grouped in three bins based on contribution to module cost. So taking into account the full range
of uncertainty in each parameter, we can still conclude that: (a) Module efficiency and plant size
were important contributors to cost reduction, (b) cost of silicon was of moderately important, and
(c) the other factors were of minor importance.

4 Roles of Experience and Learning

In this section we discuss whether the results of our model are consistent with the experience curve
model. Experience curves are based on the theory that costs decline in logarithmic proportion to
increases in cumulative capacity. Indeed, in the case of PV, we find that cumulative capacity is a
strong predictor of cost; log(CumCapacity) as a predictor of log(Cost) has an R2 value of 0.985.
However, we explain below the ways in which the mechanistic basis for this strong statistical
relationship is rather weak.

22For example, in the case of efficiency, we calculate a small change by the upper bound in 1975 and the lower bound
in 2001. Similarly, a large change consists of the time series using the lower bound in 1975 and the upper bound in
2001.
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Figure 6: Sensitivity of Model to Uncertainty in Factors

Table 4: Role of learning-by-doing (lbd) in each factor

Factor Cost impact Drivers of change in each factor

Plant size 43% Demand-led, rapid expansion w. no experience
Efficiency 30% R&D, but lbd for lab→market
Silicon cost 12% Spillover benefit from IT industry
Wafer size 3% Strong lbd
Si use 3% Lbd, spillover for wire-saws
Yield 2% Strong lbd
Poly share 2% New process, lbd possible
Other factors 5% Unknown

Here we assess which factors are most important and how changes in cumulative capacity
influence these factors. The most important factors are, at best, weakly explained by cumulative
capacity. The learning and experience aspects of cumulative production do not appear to have
been major factors in reducing the cost of PV. Future research at the firm and plant level would
likely provide more conclusive evidence of this weakness. Still, at the industry level, the role
of experience appears far from the dominant driver of technical change, which is the assumption
underlying the experience curve model.

Table 4 summarizes the role of cumulative capacity in determining the level of each factor.
As the table indicates, three factors—yield, wafer size, and silicon consumption—are strongly
influenced by experience and learning in the production of modules. Conversely, changes in poly-
crystalline share and the cost of silicon are only distantly related to learning gained from experi-
ence. This leaves the two remaining factors, plant size and module efficiency. Both factors appear
to be influenced by a combination of experience and knowledge acquired from other sources, such
as research and knowledge spillovers.

4.1 Module efficiency

Learning-by-doing is only one of several reasons behind the doubling in commercial module ef-
ficiency. Using data on the highest laboratory cell efficiencies over time, we find that of the 16
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Figure 7: Crystalline PV Efficiency: Highest laboratory Cells vs. Average Commercial Modules.
Sources: Christensen 1985; Maycock 1994, 2002; Grubb and Vigotti 1997; Menanteau 2000;
Green et al. 2001.

advances in efficiency since 198023, only 6 were accomplished by firms that manufacture com-
mercial cells (Surek 2003). Most of the improvements were accomplished by universities, none
of which would have learned from experience with large scale production. That government and
university R&D programs produced 10 of the 16 breakthroughs in cell efficiency while producing
a trivial amount of the industry’s cumulative capacity suggests that the effect of learning-by-doing
on improving module efficiency is weak. Further, the rapid rise in laboratory cell efficiency from
1983-1990 (see Figure 7) immediately followed the unprecedented $1.5b investment in world-
wide PV R&D in the previous 5 years (IEA 2004). Experience may help firms generate ideas for
incremental efficiency improvements. It may also play a role in facilitating the transition from
producing efficienct cells of a few watts in a laboratory to producing large modules that can op-
erate reliably under ambient conditions. Still, if the underlying driver of commercial efficiency is
improvements in the laboratory, then competing hypotheses such as R&D offer more compelling
explanations of efficiency improvements than learning-by-doing.

4.2 Scale

Growth in demand and use of knowledge spillovers from other industries were the main drivers
of the change in plant size over the period. Whether experience plays a role in enabling the shift
to large facilities depends on whether new manufacturing problems emerge at larger scales and
whether experience helps deal with these problems. Did experience gained through production
enable the expansion of plants to the multi-MW scale? A firm level investigation would enlighten
this question. However, examples from two firms suggest that the role of experience in enabling
plant expansion is at best an incomplete explanation. First, Mitsubishi expanded from zero pro-
duction in 1997 to 12 MWs in 2000. They had essentially no experience in the PV industry and
became a major producer in less than three years. Second, Sharp plans to open a 500 MW/year
plant in 2006, a ten-fold expansion in the firm’s capacity in only 5 years. That the firm is lo-
cating this new plant adjacent to its micro-processor manufacturing facility suggests that Sharp’s
experience in this other manufacturing activity is playing a role in their ability to expand their PV
plant.

23We count as ‘advances’, production of cells that resulted in a cell efficiency higher than any previous laboratory
result.
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4.3 Silicon cost

Reductions in the cost of solar-grade silicon were a spillover benefit from manufacturing improve-
ments in the micro-processor industry. Until recently, the PV industry accounted for less than 15%
of the market (Menanteau 2000) for purified silicon. Since the PV industry has never purified its
own silicon, but has instead purchased silicon from producers whose main customers are in the
micro-processor industry, experience in the PV industry was irrelevant to silicon cost reductions.

4.4 Other factors

Learning by doing and experience do appear to have played a role in some of the following factors.
However, these factors together only account for 10% of the overall change in cost.

Yield: It is plausible that experience led to lower defect rates and the utilization of the entire
wafer area.

Wafer size: Experience was probably important in growing larger crystals and forming longer
conductors from cell edges to electrical junctions.

Silicon consumption: Experience helped improve sawing techniques so that less crystal was
lost as saw dust and thinner cells could be produced. The development of wire saws, a spillover
technology from the radial tire industry, is less clearly related to experience.

Poly-crystalline share: Casting of rectangular multi-crystalline ingots was a new technology.
Whether this method derives from experience with Czochralski process for growing individual
crystals is unclear.

5 Conclusions

Learning derived from experience is only one of several explanations of the change in the two
most important factors identified in this study—plant size and module efficiency. Its role in caus-
ing these two changes appears minor compared to that of R&D and knowledge spillovers. This
weak relationship suggests cautious consideration of the conditions under which we can rely on
experience curves to predict technical change. Below we point to the importance of firms’ profit
margins as an additional area to consider. We suggest ways in which an engineering-based model
such as this one might be used to enhance our understanding of future technical improvements. As
an example we apply our model in a simple scenario exercise to gauge the plausibility of future
cost targets.

5.1 Addressing market dynamics

Our results indicate that, prices are not a reliable proxy for costs. Sensitivity analysis confirms
that our price-based experience curve is sensitive to changes in margin. For example, a reasonable
scenario based on historical data is that margins fell from 30 to 50% in the early years to near-zero
at the end of the study period. We estimate that such a shift would reduce the learning ratio by
0.03 to 0.05 and extend the cross-over year by 8 to 15 years24.

Empirical data in this case study do not support three assumptions that are commonly made
when applying the experience curve model using prices rather than costs: that margins are constant
over time, that margins are close to zero with only minor perturbations, and that margins are often
negative due to forward pricing. An implication of the variation in the price cost margin and the use
of price data as a proxy for cost is that the industry structure affects the learning rate. In the case
of an industry which becomes more competitive, a price-based experience curve over-estimates
the rate of technical progress.

24Using assumptions of 15% annual new capacity growth and a target module price of $0.30/Watt.
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One solution would be for future work to obtain real cost or margin data where possible. A
disadvantage of using cost data, which is typically difficult to acquire, is that it may shorten the
historical time series or require making assumptions to fill in missing years. A second disad-
vantage is that it may be difficult to obtain a true industry average for cost—cost figures may be
disproportionately weighted by firms which are most willing to provide data. Perhaps most impor-
tant however, is that comparisons of competing technologies are best made on the basis of prices,
not costs, since prices reflect what a consumer faces in deciding whether and which technology to
adopt.

A more general approach would be to incorporate market dynamics into predictions of techno-
logical change. Industry concentration, market power, and changes in elasticity of demand affect
prices. The HHI analysis above shows that concentration is not stable over time, especially if inter-
national trade is taken into account. The assumption of perfect competition and that prices equal
marginal cost seems least valid in a dynamic situation, such as in this case, in which technology
is improving rapidly, industry structure is unstable, and new types of customers are entering the
market. A potential disadvantage is that predicting these types of parameters would introduce fur-
ther uncertainty into predictive models and would require more assumptions. On the other hand,
models of change in the diffusion literature might enable us to combine market dynamics with
analysis of technical factors, such as those that we assess in this project.

5.2 Incorporating technical factor analysis

Our results indicate that the confidence with which we use experience curves to predict technolog-
ical change might be enhanced with analysis of the underlying technical dynamics. This approach
could improve experience curves in three ways.

The explicit analysis of technical factors helps identify future barriers that could lead to discon-
tinuities in the slope of the experience curve. For example, the theoretical limit on the efficiency
of single-junction silicon-based PV modules of approximately η= 0.29 limits the cost reductions
we can expect in the future. This limit is especially relevant to PV because efficiency accounts
for around a quarter of historical cost reductions. Identifying such barriers can help us better
predict the practical extent of future cost declines. Assuming that some of these barriers may be
surmountable, it may also help identify critical R&D areas. Identifying barriers might also allow
us to predict, or at least gauge the probability of, discontinuities in the experience curve.

Additionally, the unravelling of technical factors provides an avenue for the investigation of
how influences other than cumulative capacity, such as R&D and knowledge spillovers, contribute
to technological change. For example, firm-level analysis of the drivers behind the doubling in
efficiency over the period may enhance our understanding of the roles of R&D, cumulative capac-
ity, and the interaction of the two. This approach would complement econometric investigations
of the roles of these factors, studies which are often limited by data availability and low degrees
of freedom.

Finally, an understanding of the underlying factors can help us measure uncertainty in the
future rate of technological improvement. A model such as this one allows us to work backwards
so that we can identify the level of technical improvement in each factor required for a given cost
improvement. For example, if reducing the cost of PV by an additional factor of 10 became a goal,
we could ask how large manufacturing plants would need to be to provide adequate economies of
scale. With the resulting estimate for plant size, we could then assess whether individual plants
are likely to ever reach that scale and the extent to which economies of scale would still exist for
facilities that large. This type of analysis provides a basis for estimating how likely it is that such
an improvement might occur. We could then propagate that uncertainty through the model to put
bounds on our uncertainties in the learning rate. Given the sensitivity of energy supply models to
small changes in the learning rate, improving estimates of uncertainty in the learning rate would
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be an important contribution.

5.3 Scenarios of target costs

We might also use such a model to test the plausibility of long-term targets for PV cost reduction.
Here we test two cost targets using the following assumptions;

• Efficiency improves from 13.5% in 2001 to 25% in 2030. We borrow this assumption from
the Solar Energy Industry Association’s ‘roadmap’ (SEIA 2004).

• Wafer thickness declines by 25% per decade, its historical rate.

• Scaling factor is -0.13, the mid-range of studies of large scale PV.

• A net increase of one additional manufacturing plant per year.

• We assume no changes to the price of silicon or yield.

We first test SEIA’s roadmap goal of $1.00/W modules in 2050. Using the assumptions above,
the model indicates that meeting such a goal would imply an industry growth rate of 11% for the
next 45 years. At that point, 1.3 TWs of PV would have been installed at a cost of $1.5 trillion. In
2050, each of 71 PV plants would be manufacturing 1.9 GW of modules annually. Such a scale
is described as feasible in a recent National Renewable Energy Laboratory study that provides a
detailed analysis of a 2.1 to 3.6 GW plant (Keshner and Arya 2004). The model shows that in this
scenario, 48% of the cost reduction comes from efficiency improvements and 51% comes from
scale.

Others claim that $1.00/W modules would be prohibitively expensive once PV accounts for
more than 5 to 10% of electricity generation25. At such scale, the costs of electricity transmission
and storage required to provide reliable service to an increasingly urbanizing world population
would be so large that the cost of PV modules will have to be a minor part of the cost of PV-
intensive energy systems. Under this line of reasoning, modules that cost $0.10/W in 2050 might
be a goal. The model suggests that this goal is not possible given the assumptions above and an
additional constraint that installed PV cannot exceed 30 TW in 205026. In an extremely high-
growth scenario in which PV does grow to 30 TW in 2050, this model predicts that costs would
only fall to $0.63/Watt. Projected efficiency improvements, thinner wafers, and economies of
scale are insufficient to bring the cost of crystalline PV to $0.10/W. If such a cost target is indeed
required then other types of cost reductions, such as using new materials like dyes and organics,
will be necessary.

In contrast, a similar scenario based on an experience curve provides a much different out-
come. A simple extension of the historical (1975-2001) learning rate, 0.23, using an assumption
of 11% growth, would deliver $1.00/W modules in 2027 and $0.10/W in 2086 (see Figure 8).
Choosing which time period to use for calculating the expected future learning rate substantially
affects the outcome. For example a more conservative learning rate, 0.10, that might be projected
using more recent trends, would delay $1.00/W modules from 2027 until 2076. The experience
curve does not necessarily produce a faster or slower result than the technical factors model. It does
however produce radically different outcomes as a result of apparently inconsequential choices,
such as the period over which the learning rate is calculated.

25This level loosely corresponds to TW-scale PV electricity production.
2630 TW is a high end estimate for total world energy demand in 2050.
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Figure 8: Scenarios using cost model, experience curves, and $1.00/W target price.

5.4 Summary

On the order of a trillion dollars will have to be invested over the coming decades if PV is to
contribute to energy supply at terawatt scale. The magnitude of such a project demands more
sophisticated models for estimating the pace and likelihood of future improvements. The evidence
suggests that a much broader set of influences than experience alone contributed to the rapid cost
reductions in the past. Future models will need to take into account other factors such as R&D,
knowledge spillovers, and market dynamics to more realistically inform decisions about large
investments in future technologies.
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