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Mats Gyllenberg
Rolf Nevanlinna Institute, Department of Mathematics and Statistics, FIN-00014 University of Helsinki, Finland†

Frans J. Jacobs1‡ and Johan A. J. Metz1,2§

1Institute of Biology, Leiden University, P.O. Box 9516, NL-2300 RA Leiden, the Netherlands
2Adaptive Dynamics Network, IIASA, A-2361 Laxenburg, Austria

(Dated: April 10, 2005)

We provide the link between population dynamics and the dynamics of Darwinian evolution via
studying the joint population dynamics of similar populations. Similarity implies that the relative

dynamics of the populations is slow compared to, and decoupled from, their aggregated dynamics.
The relative dynamics is simple, and captured by a Taylor expansion in the difference between
the populations. The emerging evolution is directional, except at the ”singular” points of the
evolutionary state space, where ”evolutionary branching” may happen.
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Modeling evolution while assuming a predefined and
fixed fitness function essentially precludes understand-
ing biological diversity: The fittest wins and excludes
all other contestants. While the traditional “allopatric”
theory of speciation [1, 2] circumvents the problem by
assuming strict spatial segregation between the old and
the new species, understanding coexistence of species re-
quires unrealistic parameter fine-tuning.

The mechanism-based concept of fitness [3] allows a
more consistent and more natural picture. Interactions
between the contestants lead to a fitness function that
depends on their relative abundances, a phenomenon re-
ferred to as “frequency dependence” [4]. The evolution-
ary process itself modifies the adaptive landscape. As
evolution is not a pure gradient dynamics, its path may
converge to a point where it is overtaken by a fitness
minimum [5] which it leaves by branching [6–8]. This
“evolutionary branching” was suggested to be the basis
for “adaptive speciation” [9, 10].

We restrict our analysis to evolution of asexual organ-
isms via small steps in a continuous evolutionary state
space. In this context, the fixed point analysis of the
”adaptive dynamics” driven by frequency-dependent fit-
ness landscapes was developed [6–8]. The theory was
based on the concept of ”invasion fitness” sx1,x2,...,xL

(y)
representing the growth rate of an exceedingly rare y-
invader in a background of co-established populations of
x1, . . . , xL. To ensure that evolution is fully constrained
by invasion fitness, it was assumed that (A) mutations are
sufficiently rare that a new mutant arrive only after equi-
libration of the already existing populations, i.e., at most
one mutant substituting at a time; (B) a mutant’s fate
is determined by its and its progenitor’s mutual invasion

fitnesses. Here, our goal is to remove these unrealistic
conditions by carrying out the original Darwinian pro-
gram [11] of stepping from population dynamics to evo-
lutionary dynamics using only first principles and mild
assumptions.

To build a rigorous underlying theory of evolution, we
consider the joint population dynamics of similar pop-
ulations. The mutation process is not explicitly repre-
sented in our treatment: We discuss the joint popula-
tion dynamics of the mutants and their ancestors once
the mutants have been generated. Moreover, we consider
population abundance (number of individuals) as a com-
plete description of the population state, using a time
scale separation argument to get rid of age or spatial
structure.

We collect the inherited properties of the individuals
into a continuous ”strategy” variable y (or x), which is an
element of the ”strategy space” X ⊂ R

k. Let ν denote the
(Schwartz) distribution of the populations in the strategy
space X . Population dynamics is defined by the non-
linear equation

dν(y)

dt
= r(y, ν)ν(y) y ∈ X . (1)

Here, r(y, ν) denotes the growth rate (difference between
the birth and death rates) of strategy y ∈ X , condi-
tional on the background distribution ν. r plays the role
of mechanism-based fitness. Its argument ν represents
frequency-dependence.

The ”generalized competition function”

aν(y, x) = −δr(y, ν)

δν(x)
(CF)



2

measures the (often detrimental) effect of strategy x on
strategy y. (See Appendix for the proper definition of
the functional derivative with respect to a distribution.
The ν dependence of a will be suppressed.)

We restrict our attention to the discrete strategy dis-
tribution

ν =

L
∑

i=1

niδxi
(2)

for L populations present with strategies xi and abun-
dances ni (i = 1, 2, . . . , L). Then the following two dif-
ferentiation rules apply:

∂r (y, ν)

∂ni

=

∫

∂r(y, ν)

∂ν(x)
· ∂ν(x)

∂ni

dx = (R1)

= −
∫

a(y, x)δxi
(x)dx = −a(y, xi),

and

∂r (y, ν)

∂xi

=

∫

∂r(y, ν)

∂ν(x)
· ∂ν(x)

∂xi

dx = (R2)

= −
∫

a(y, x)
(

−niδ
′
xi

(x)
)

dx = −ni∂2a(y, xi).

Note the multiplier ni in (R2): the effect of changing the
strategy of one of the populations is proportional to the
number of individuals following this strategy.

For the discrete distribution the population dynamics
can be written as

d

dt
(lnni) = r(xi, ν). (3)

We rewrite this dynamics using the aggregated abun-
dance N =

∑

i ni and the relative frequencies pi = ni/N
as new dynamical variables:

d

dt
(ln N) = r̄ (4)

with r̄ =
∑

i pir(xi, ν) the averaged growth rate and

d

dt

(

ln
pi

pj

)

= r(xi, ν) − r(xj , ν). (5)

(As
∑

i pi = 1, it is enough to specify the dynamics of
the ratios of the pi.)

We suppose that the strategies x1, . . . , xL are similar,
i.e., let

xi = x0 + εξi, (6)

where ε → 0. Without loss of generality we set x0 = 0.
As the difference on the r.h.s. of (5) is proportional to
ε, the (relative) dynamics of the pi’s is slow compared to
the (aggregated) dynamics of N . That is, on the slow
time scale, (5) can be approximated as

d

dt

(

ln
pi

pj

)

= 〈r(xi, ν) − r(xj , ν)〉 , (7)

where 〈. . . 〉 denotes the ergodic average over the fast time
scale.

After writing the distribution ν as a function of the
aggregated and the relative abundances

ν(N,p, ε) = N

L
∑

i=1

piδεξi
, (8)

we Taylor-expand the fitness function in the small para-
meter ε:

r (y, ν(N,p, ε)) = r (y,Nδ0) − εN

L
∑

i=1

pi∂2a(y, 0) [ξi]

+
ε2

2
(quadratic in pi) + . . . (9)

(Expressions like ∂2a(y, 0) [ξi] mean that the derivative
∂2a(y, 0), as a linear operator, is applied to the vector
ξi.) The non-trivial feature of this expansion is that in
each term the order of ε equals the order of p. This is a
consequence of the differentiation rule (R2).

The linear term of expansion (9) can be rearranged as

r (y, ν(N,p, ε)) = r (y,Nδ0) − εN∂2a(y, 0)
[

ξ̄
]

+ h.o.t.
(10)

where ξ̄ =
∑L

i=1
piξi is the “average” of the ξi’s.

Consequently,

r (y, ν(N,p, ε)) = r
(

y,Nδεξ̄

)

+ o(ε), (11)

where εξ̄ is the average of the L strategies, weighted by
the abundances. That is, up to order ε the L-morphic

strategy distribution ν(ε) is equivalent to the monomor-

pic population with the same aggregated abundance and
averaged strategy.

At a fixed value of the slow variable p, the fast aggre-
gated dynamics (4) can be written as

d

dt
(lnN) =

L
∑

j=1

pjr (εξj , ν(N,p, ε)) = r
(

εξ̄,Nδεξ̄

)

+o(ε).

(12)
Here we used (11) and applied a similar trick in the first
variable.

We conclude that, up to order ε, the aggregated dy-
namics of the L populations is equivalent to the dynamics
of a single population with the strategy εξ̄. We assume

that the ergodic averages inherit this equivalence, i.e., the
averages over attractors are the same for the two kinds
of fast dynamics up to ε order. This assumption cer-
tainly holds for simple attractors, [like point attractors,
(quasi-)cyclic attractors] away from bifurcation points.

In our context the invasion fitness function is defined
as

sx1,x2,...,xL
(y) =

〈

r

(

y,

L
∑

i=1

niδxi

)〉

. (13)
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This is the long-term growth rate of a rare newcomer
y in the ergodic environment created by the long-term
coexistence of the ”resident” strategies x1, . . . , xL.

The approximation of L similar strategies with a sin-
gle population with an averaged strategy immediately
extends to the s-functions. For small ε, the L-resident
invasion fitness can be approximated by the s function
corresponding to a single resident:

sx1,...,xL
(y) = 〈r (y, ν(N,p, ε))〉 =

=
〈

r
(

y,Nδεξ̄

)〉

+ o(ε) = sεξ̄(y) + o(ε). (14)

Then the slow dynamics (7) can be expanded as

d

dt

(

ln
pi

pj

)

= ε
∂sx(y)

∂y
[ξi − ξj ] +

+
ε2

2

{

∂2sx(y)

∂y2
[ξi] [ξi] −

∂2sx(y)

∂y2
[ξj ] [ξj ]

+ 2
∂2sx(y)

∂y∂x
[ξi − ξj ]

[

ξ̄
]

}

+ h.o.t. (15)

(All partials are evaluated at x = y = 0.) The linear and
the first two quadratic terms come from Taylor expand-
ing (14) in the y variable. The last quadratic term is a
consequence of displacing the averaged strategy from 0
to εξ̄. Note that this term depends on p linearly through
ξ̄.

Observe the simplicity of this expression: The relative
dynamics is decoupled from the possible complicatedness
of the fast dynamics and fully constrained by the deriv-
atives of the single-resident invasion fitness.

As only the second order terms depends on the pi, fre-
quency dependence becomes relevant only when the fit-
ness gradient ∂sx(y)/∂y vanishes in all (ξi−ξ̄)-directions.
Generically, this happens at the “singular” points char-
acterized by ∂sx(y)/∂y = 0. As under the dominance of
the linear term the fittest wins, generic coexistence (i.e.,
a stable internal fixed point of the relative dynamics) is
possible only in the vicinity of the singular points.

Frequency-dependence is linear even at the singular
points. As the non-boundary (pi 6= 0) fixed point of the
relative dynamics is determined by a linear set of equa-
tions [the bracketed terms of (15) equated to zero], it
generically exists and is unique. This fixed point repre-
sents a biologically realistic coexistence state if it is stable
and corresponds to all positive pis.

As frequency dependence is restricted to the neigh-
borhood of the singular points, so does the possibility
of evolutionary branching. With mutation generation,
away from the singular points lack of frequency depen-
dence would lead to Eigen’s quasispecies picture [12]: a
cloud of mutants evolves into the direction jointly deter-
mined by the fitness gradient and the mutation distribu-
tion. (See [13] for the dynamical equation in the case of
rare mutations.) At a singular point, the possibly coex-
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FIG. 1: Course of evolution in the Lotka-Volterra model (16).
Horizontal axes represent the strategy interval [−1, 1]. Left
pane: time dependence. Small panes: Instantaneous fitness
function (curve, horizontal line represents zero) superimposed
on the population distribution (gray). Each small pane cor-
responds to an instant of time represented by a horizontal
line on the left pane. Observe that uphill evolution ends up
in arriving at the minimum of the fitness function, where
evolutionary branching occurs. After the branching, the two
subpopulations evolve away. K = 10000, σ = 0.5, mutation
rate: 0.002.

isting subpopulations evolve either towards or away from
each other, depending on the second order terms.

If the dynamics of a single population has multiple
attractors, this analysis is valid for each attractor sepa-
rately. That is, coexistence of L similar populations, if
possible, is unique for each monomorphic attractor. Evo-
lutionary replacements, which are matters of the relative
dynamics, do not lead to a switch between the population
dynamical attractors. (Cf. [14]. Care should be taken at
the bifurcation points of the dynamics though.)

The evolutionary implications of our results are
demonstrated for a 1D strategy space in Figure 1 with
the simple ”Lotka-Volterra” choice

r(y, ν) = K(1 − y2) −
∫

exp

[

− (y − x)2

2σ2

]

ν(x)dx. (16)

(See [15] for the details of the stochastic modeling of
the mutations, which are not rare, and for the multi-
dimensional results.) The first term is the frequency-
independent part of the fitness. An easy analysis shows
that its maximum at y = 0 is the only singular strategy of
the model. The second term represents a simple kind of
frequency dependence: it is advantageous to be different
from the other individuals. Note that the exponential ex-
pression corresponds to the competition function a(y, x).

Away from the singular point, the essentially
frequency-independent selection promotes directional
evolution towards y = 0. There, frequency dependence
expresses itself in the counter-intuitive phenomenon that
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uphill evolution ends up in a minimum of the fitness func-
tion. [The second term of (16) makes the singular strat-
egy y = 0 pessimal when all individuals have a strategy
around 0.] As a consequence, evolutionary branching oc-
curs: two sub-populations evolve away following their
respective fitness gradient.

Note that the advantage of being different from the rest
of the population diminishes with increasing σ. When
σ > 1/

√
2, y = 0 remains a fitness maximum when the

population converges there. No branching occurs in this
case.

The complete classification of the possible local config-
urations of the sx(y) function was provided earlier for a
1D strategy space [7, 8]. With the assumptions (A) and
(B) this analysis showed that the directional evolution
and the possible branching at the singularities exhaust
the possibilities. Our results establishes the same picture
without these restrictions. Assumption (A) is superfluous
because the evolution of an arbitrary cloud of mutants is
controlled by the one-resident invasion fitness sy(x). As-
sumption (B) becomes a consequence of the small fitness
difference between the strategies, a conclusion reached
also in [14].

We conclude that the only important assumption, lead-
ing to the adaptive dynamics picture, is that evolution
proceeds in small steps (cf. [16, 17]).

The entertaining aspect of this study is the deep con-
nection between essential biological and mathematical is-
sues. The simple evolutionary picture emerges from an
arbitrarily complicated population dynamics because of
the coupling between the order of ε and the order of p in
the ε expansion. In turn, this coupling is a consequence
of the differentiation rule (R2), which was derived from
a functional analytic underpinning. To unify the popula-
tion dynamical and the evolutionary state spaces, we had
to work in the space of distributions and invent a chain-
rule-preserving definition of the functional derivative in
this space (Appendix).

We thank Odo Diekmann, Michel Durinx and Ste-
fan Geritz for discussions and Éva Kisdi for commenting
on the first version of the ms. This work was financed
from OTKA Grants No. T049689, TS049885 and NWO-
OTKA Grant No. 048.011.039.

APPENDIX

As the space of distributions is not normable, the func-
tional derivative (CF) cannot be defined in the Banach-
space manner. Instead, the derivative of the map f :
E 7→ F (where E and F are topological vector spaces)
is defined as a linear operator L : E 7→ F such that, for
any curve c : R 7→ E , the derivative of f ◦ c is L ◦ c′.
This definition ensures validity of the chain rule, which
was used in deriving the rules (R1) and (R2). In our

case, E is the space of distributions, so the derivative L
is an element of the dual of this space, i.e., of the ”test
function” space D of infinitely many times differentiable
functions with compact support [18]. Consequently, for
any y, a(y, .) ∈ D. So, the differentiability of the gen-
eralized competition function in its second argument is
guarantied by the here-defined differentiability of r(y, ν)
with respect to ν.
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