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Abstract 
In this paper, we propose a downscaling procedure that provides a basis for recovery and estimation of incomplete, 
aggregate, unknown or indirectly measurable variables. It makes maximum use of information and dependencies on 
various levels relying on the cross-entropy maximization principle. We show that the maximum entropy principle can 
be viewed as the extension of the maximum likelihood principle. In this sense, the convergence of the proposed 
downscaling methods to solutions maximizing an entropy function can be considered as an analog of the asymptotic 
consistency analysis in traditional statistical estimation theory. 
The main motivation for the development of the procedure has been a practical example of spatial estimation of 
agricultural production values. We briefly discuss the main challenges related to the choice of priors (location specific 
information) and their inherent uncertainties that to large extent determine the success of the downscaled results. 
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1. Introduction 

The estimation of global processes consistent with 
local data and, conversely, local implications 
emerging from global tendencies challenge the 
traditional statistical estimation and data inference 
methods, which are based on the ability to obtain an 
infinite number of observations from an unknown 
true probability distribution. For the new estimation 
problems that can be termed “downscaling” problems 
(by generalizing the definitions in [2]), we often have 
only limited, partial, aggregate or incomplete 
statistics. For example, we can collect regional data 
on agricultural production while seeking to estimate 
the production on the level of fine spatial units (e.g., 
grid cells in a geographic information system). 
Alternatively, we may have aggregate income and 
consumption statistics, or occurrences of natural 
disasters on global and national levels. These 
aggregate statistics, however, do not provide any clue 
as to potential alarming diversity of conditions at 
specific locations, e.g., poverty, catastrophic losses, 
hazardous pollution, epidemics.  

In this article we propose a recursive sequential 
downscaling method that can be used in a variety of 

practical situations. The main idea is to rely on an 
appropriate optimization principle and use all 
possible constraints connecting observable and 
unobservable dependent variables. We prove the 
convergence of this method to the solution 
maximizing a cross entropy function. The method 
was used for spatially explicit estimation of 
agricultural production outlined in Section 2. The 
problem is to attribute known aggregate national or 
sub-national crop production and land use to 
particular locations (grid cell) in accordance with 
features derived from geographical datasets and 
consistent with agronomic knowledge. This section 
summarizes also the well-known maximum entropy 
principle [8]. Section 3 shows that the maximum 
entropy principle can be viewed as an extension of 
the maximum likelihood principle. Therefore, the 
convergence of downscaling methods to solutions 
maximizing an entropy function may be interpreted 
as an analog of the traditional statistical asymptotic 
consistency [11] analysis. Section 4 develops the 
sequential downscaling method. It is shown that the 
convergence of this method to the solution 
maximizing a cross-entropy function follows from 
the duality theory [6], which significantly simplifies 
proofs and clarifies the convergence properties 
especially in case of rather general constraints. This 
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opens up a way for various modifications and 
extensions, e.g., to situations with uncertainties when 
the available higher-level information is imprecise or 
involves stochastic elements. Section 5 describes the 
numerical calculations. Section 6 concludes. 

2. Downscaling Problems 

2.1. Spatial Estimation of Agricultural Production 

Agricultural production data [7] are available at 
national scale from FAO and other sources. These 
data give no clue as to the spatial heterogeneities of 
agricultural production within country boundaries. A 
downscaling method in this case has to achieve a 
plausible allocation of aggregate national production 
values to individual spatial units, say pixels, by using 
available evidences. Satellite-based land cover 
images can provide detailed current information (up 
to pixels) on crop land. Besides these there exists 
other important unobservable or only partially 
observable information significantly determining the 
patterns and intensities of crop production. For 
example, biological and soil conditions, variations in 
radiation, temperature, humidity and rainfall, the 
occurrences of frosts, floods, and droughts. FAO 
developed crop-specific suitability maps using spatial 
data of climate and soil/terrain conditions. Crop price 
is among the most important market signals to crop 
allocation. 

The available information can be summarized as 
the following. Total agricultural area ai in a pixel i, 

mi ,1= , is estimated from satellite-based land cover 
interpretation, the suitable area for crops in pixels 
comes from geographically detailed suitability 
surface studies. There may also be derived 
information on the yield uij of crop j, nj ,1=  in pixel 
i, the price πj of crop j, the production Vj of crop j in 
the country. Let xij be unknown estimates of area 
shares of crop j in pixel i. Assuming the total crop 
land area in pixel i is known, xij satisfy equations 

1
1

=∑
=

n

j
ijx , mi ,1=  (1)

xij ≥ 0, mi ,1= , nj ,1= . 

This leads to the following plausible estimate vij 
= aiuijxij of production crop j in pixel i. Since the 
production Vj of crop j in the country is known, 

j
m
i ij Vv =∑ =1 , we also have equation 

∑ =
=

m

i
jijij Vxa

1
, (2)

where ijiij uaa = , nj ,1= . 

2.2. The Maximum Entropy Formulation 

Problem in Section 2.1. belongs to the so-called 
ill-posed since there may be an infinite number of 
feasible solutions xij, mi ,1= , nj ,1=  satisfying 
equations (1), (2). A unique solution can be obtained 
relying on the cross entropy principle, which 
guarantees a “best” solution making maximum use of 
the data and dependencies at hand. 

The maximum entropy principle [8] has deep 
roots in the theory of information developed by 
Shannon [10] in 1948. It derives estimates of ijx  

from the minimization of function 

∑ ∑
= =

n

j
ij

m

i
ij xx

1 1
ln , (3)

since the entropy is defined as ∑ ∑− = =
n
j

m
i ijij xx1 1 ln . 

Usually, there exist some prior information on 
crop-specific area distributions, i.e., a prior 
distribution qij for crop j in pixel i, qij > 0, mi ,1= , 

nj ,1= . The prior can be based upon expert 
knowledge, available crop distribution maps, other 
relevant information, e.g., upon biophysical, soil, 
socio-economic characteristics. In this case, the 
cross-entropy maximization principle derives the 
estimates xij from minimization of the function 

∑ ∑
= =

n

j ij

ijm

i
ij q

x
x

1 1
ln , (4)

Minimization of practical global-wide problems 
at resolution of 5 min grid-cells utilizes a number of 
additional constraints which essentially increases 
computational time and makes the problem 
dependent on the choice of a “solver”. The alternative 
approach is to derive estimates xij from a certain 
“behavioral” principle. For example, it is reasonable 
to allocate crop j to pixels with maximum probable 
production values πjyij. But it may lead to an 
overestimation or an underestimation of total known 
production Vj, nj ,1= , i.e., situations when the left 
hand side of (2) is greater or less than its right hand 
side, which requires a rebalancing procedure. Let us 
consider an idea of the balancing proposed by G.V. 
Sheleikovskii [1] for estimating passenger flows. 
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2.3. Projection of Interzonal Flows 

The estimation may regard trade or migration flows 
between different regions, flows of passengers or 
transport in transportation systems, or flows of 
messages in communication systems. The 
downscaling methods estimate flows among given 
locations in a consistent way with statistics (or 
experts opinions) for expected total number of 
“departures” ai from i-th locations and “arrivals” bj in 
j-th locations. For unknown flows xij clearly 

i
n
j ij ax =∑ =1 , mi ,1= , j

m
i ij bx =∑ =1 , nj ,1= , i.e., 

we have a special case of constraints (1), (2) and aij = 
1. Assume also that there is a prior probability qij for a 
“passenger” from i to choose the destination j. If a 
passenger from location i chooses the destination j 
with a prior probability qij, then the expected initial 
flow from i to j is ijiij qax =0  with ij ij ax =∑ 0 , 

mi ,1= , but there may be over (under) estimation of 

the statistics bj on total inflows in j, nj ,1=  (i.e., 

ji ij bx >∑ 0  or ji ij bx <∑ 0 ). Calculate relative 

imbalances ∑= i ijjj xb 00 /β  and update 000
jijij xy β= , 

mi ,1= , nj ,1= . Now, ∑ =
i

jij by0 , nj ,1= , but the 

estimate 0
ijy  may cause imbalance for departures ia  

from i . Calculate ∑= j ijii ya 00 /α  and 001
iijij yx α= , 

and so on. In summary, we can represent k
ijx  as 

k
iji

k
ij qax = , ( ) ( )∑= −−

j
k
jij

k
jij

k
ij qqq 11 / ββ , mi ,1= , 

nj ,1= . Assume { }k
ij

k xx =  has been calculated. Find 

∑= i
k
ijj

k
j xb /β and ( )∑=+

i
k
jij

k
jiji

k
ij qqax ββ /1 , 

mi ,1= , nj ,1= , and so on. In this form the 
procedure can be viewed as a sequential 
redistribution of demands ai from locations mi ,1=  

among locations nj ,1=  by using a Bayesian type of 
rule for updating the prior distribution: 

∑=+
i

k
jij

k
jij

k
ij qqq ββ /1 , ijij qq =0 . The update is 

done on an observation of imbalances of basic 
constraints rather than observations of random 
variables. 

Proof of the convergence of the method to the 
solution maximizing the cross-entropy function 

( )∑− ij ijijij qxx /ln  was established in [1] by using 

lengthy arguments essentially relying on specific 

properties of the transportation constraints. In [6] we 
prove the convergence using duality theory, which 
allowed us to take into account general constraints (2) 
and to significantly simplify and clarify the analysis 
of the convergence to cross-entropy maximization 
solution. This opens up an opportunity for various 
modifications, in particular, to situations with 
uncertain parameters ai, bj, aij. Its general scheme will 
be briefly outlined in Section 4. 

3. Minimax Likelihood and Maximum Entropy 

In many applications inherent uncertainty can be 
characterized or interpreted in probabilistic terms, 
either as frequencies of underlying random variables 
or (subjectively) by degree of our believe. For 
example, in the estimation of crop production defined 
by equations (1) and (2), we can think of values xij > 0, 

11 =∑ =
n
j ijx , as the probability (the degree of our 

belief) that a unit area of pixel i is allocated to crop j. 
This interpretation forms the basis of the 
cross-entropy principle. It is also used in the 
sequential downscaling methods. 

A key problem in the probabilistic models of 
uncertainty is the estimation of the true probability 
distribution. The standard statistical estimation 
theory derives information on this distribution from 
observations of underlying random variables. Most 
naturally, the estimate has to maximize the 
probability that a given sample is observed, the 
maximum likelihood principle [5]. In downscaling, 
the random variables are practically unobserved or 
not accessible to direct measurements. Let us show 
that the maximum entropy principle can be viewed as 
an extension of the maximum likelihood principle. 

Consider a similar to Section 2 situation with 
available aggregate data and some unknown 
probability distribution p = (p1, …, pr). In other words, 
there is an underlying random variable ξ 
with [ ] jj pob == ξξPr . The available information 

on a is given by a random sample )1(ξ ,…, )(Nξ  of 
N independent observations of ξ. A maximum 
likelihood estimate of the unknown probabilities 
(p1, …, pr) is obtained by maximizing the probability 
(likelihood) of observing the sample )1(ξ ,…, )(Nξ , 

[ ] ∏=∏ = ==
r
j j

N
k

jpkob 11 )(Pr
ν

ξξ , subject to 

constraints 
11 =∑ =

r
j jp  , 0>jp , rj ,1= , (5)



Fischer et al / International Journal of Knowledge and Systems Sciences, 3(1): 1-6, 2006 
 
4

where vj is the number of times the value xj has been 
observed, Nr

j j =∑ =1ν . Or, as logarithm is a 

monotonically increasing function, by the 
maximization of the log likelihood function  

∑=∏
==

r

j
jj

r

j
i pp i

11
lnln νν . (6)

Normalized by the number of observations N, 
the sample mean function is ∑ =

r
i ii pN 1 ln/1 ν . 

This is a continuous, strictly concave function 
on the set of Rn determined by linear constraints (5). 
By using the Lagrangian function (or the more 
general fact of Proposition 1 below) we can derive 
that the unique solution maximizing (6) subject to 
constraints (5) is the empirical probability function 

Np j
N
j /ν= , rj ,1= . 

The log likelihood function (6) is the sample 
mean approximation of the expectation 

∑=
=

r

j
jj pppE

1

* lnln ξ  (7)

where the unknown probability distribution *
jp  is 

approximated by the frequencies Nj /ν  derived 

from an available sample of observations x1, …, xN. 
In downscaling problems the available 

information about the unknown probability 
distribution *

jp , rj ,1=  is given not by a sample of 

observations, but by a number of constraints of type 
(1) and (2) connecting this distribution with 
characteristics of observable variables. Let us denote 
by Ρ   the set of all distributions satisfying these 
constraints. If Ρ∈= ),...,( 1 rxxx , then we can 
consider 

∑
=

r

j
jj px

1
ln  (8)

as an approximation of the expectation function (7) 
similar to the log likelihood function (6). We can now 
derive a conclusion analogous to maximization of the 
sample mean approximation ( )∑ =

r
j jj pN 1 ln/1 ν . 

Proposition 1. 
If x is an approximate probability 

distribution Pxxx r ∈= ),...,( 1 , then 

∑=∑
==∈

r

j
jj

r

j
jj

p
xxpx

11
lnlnmax

Ρ
 (9)

The log likelihood function (8) is defined for 
any feasible probability distribution x ∈ P. The 

worst-case principle leads to minimization of the 
maximum log likelihood function defined by (9): 

∑=∑
=∈=∈∈

r

j
jj

x

r

j
jj

px
xxpx

11
lnminlnmaxmin

ΡΡΡ
,  

i.e., to the principle of maximizing entropy 
∑− =

r
j jj xx1 ln . In the case of a given prior 

distribution qij, we may require the minimization of 
the difference between the log likelihood function (8) 
for p∈P and the log likelihood function 
∑ =

r
j jj pq1 ln  for the given prior qj, rj ,1=  from P: 

.lnmin

lnlnmaxmin
11

∑=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∑−∑

∈

==∈∈

j

j
j

x

r

j
jj

r

j
jj

px

q
x

x

qxpx

Ρ

ΡΡ
  

In [6] we prove the assertion for distributions 
that belong to a certain parametric class, i.e., a 
parametric maximum entropy principle, which is 
important for situations when the balance equations 
of type (1) and (2) are given in some probabilistic 
sense. This is a key issue in dealing with uncertain 
parameters. 

4. Sequential Downscaling 

Consider the cross entropy maximization problem for 
spatial allocation of agricultural production: 

∑ ∑
= =

n

j

m

i
ijijij qxx

1 1
)/ln( . (10)

subject to constraints (1)-(2), where qij > 0, aij > 0 are 
given, ai > 0, bj > 0, mi ,1= , nj ,1= . For simplicity 
(and without loss of generality) we assume 0>ijx . 

The prior distribution qij is normalized, i.e., 
11 =∑ =

n
j ijq , mi ,1= .  

For a continuous, strictly convex function on a 
non-empty compact set of an Euclidian space there is 
a unique optimal solution to the minimization 
problem. Consider the Lagrangian function: 

).()(

)/ln(),,(

1 11

,

ij
n

j

m

i
ijjj

n

j
ijii

ji
ijijij

xabxa

qxxxL

∑ ∑−+∑ ∑−+

∑=

= ==
µλ

µλ

 

Since the optimal solution is positive, the 
optimality conditions lead to  
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01ln =−−+=
∂
∂

jiji
ij

ij

ij
a

q
x

x
L µλ , mi ,1= , 

nj ,1= , 

i.e., the optimal solution can be represented 

analytically as jiji a
ijij eeqx µλµλ 1),( −= , mi ,1= , 

nj ,1=  for some λi, µj.  

The dual problem reads: find Lagrange 
multipliers (λi, µj), mi ,1= , nj ,1= , maximizing 
function  

),),,((),,(min),( µλµλµλµλϕ xLxL
x

== (11)

From general results of convex analysis (see, for 
example, [9]) it follows that ϕ(λ, µ) is a strictly 
concave continuously differentiable function and the 
optimality condition can be written as 

0),(
1

=∑−=
∂
∂

=
µλ

λ
ϕ n

j
iji

i
xa , mi ,1= , (12)

0),(
1

=∑−=
∂
∂

=
µλ

µ
ϕ m

i
ijijj

j
xab , 

nj ,1= . 

(13)

To solve the dual problem (11) let 1−= iei
λα , 

and the optimal solution jija
iijij eqx µαβα =),( , ai > 

0, mi ,1= . If aij = 1, mi ,1= , nj ,1= , i.e., for the 
transportation constraints, and using notation 

jej
µβ = , the optimal solution can be represented as 

jiijij qx βαβα =),( , mi ,1= , nj ,1= . This 

formulation is typical for the so-called gravity models 
[2]. Consider the following sequential method for 
updating variables ),...,( 1 mααα = , ),...,( 1 nµµµ =  
and ),...,( 1 mxxx = to satisfy the optimality 
conditions (12) and (13). From aggregate data and 
prior distribution, compute ijiij qax =0 . Clearly, 0

ijx  

satisfies (1), but constraints (2) may be violated. At 
step k , for given }{ k

ij
k xx = , find k

jµ  satisfying 

equations j
am

i
k
ijij bexa

k
jij =∑
−

=

1

1
µ , nj ,1= . The left 

hand side of this equality is a monotonic function and 
the scalar value k

jµ  can be easily calculated. 

Calculate 
k
jijak

ij
k
ij exy µ
= , and derive 

∑=+
j

k
iji

k
i ya /1α , mi ,1= , nj ,1= . Update k

ijx  to 

11 ++ = k
i

k
ij

k
ij yx α , or 

k
jijak

i
k
ij

k
ij exx µα 11 ++ = , mi ,1= , 

nj ,1= , repeat until convergence is reached. In 
summary, the procedure involves a sequential 
updating of an a priori probability distribution ijq by 

using a Bayesian type of rule ∑=
j

k
jij

k
jij

k
ij qqq γγ / , 

k
jijak

j e µγ = , where k
jγ  is calculated using 

“observations” of imbalances instead of using 
observations of real random variables from unknown 
true probability distributions. The sequence 

{ }njmixx k
ij

k ,1,,1, === , ,...1,0=k , converges to 

the solution *x , kxx lim* = , ∞→k , of the 

cross-entropy problem (10) under constraints (1) and 
(2). For the transportation constraints aij = 1, mi ,1= , 

nj ,1= , the proposed method is reduced to 
Sheleikovskii’s method, Section 2. 

5. Practical Applications 

The proposed method can easily be modified to 
reflect problem-specific peculiarities of constraints (1) 
and (2). A simplifying situation occurs when function 

jijae µ  is approximated by a function j
jij fA µ , 

mi ,1= , nj ,1= , for some parameters Aij > 0, fi > 0, 

mi ,1= , nj ,1= , and µj varying in accordance with 
the range of plausible imbalances in (22). The 
solution of (22) in this case amounts to computing 

∑=+
i

k
ijijijj

k
j xAab /1β , where βj is defined as 

j
jj f µβ = . This proposed method has been applied 

globally for downscaling aggregate national and 
sub-national data on crop production and land use for 
all major countries [7]. The data on country-specific 
crop production (rain-fed and irrigated) was obtained 
from FAO. The list of crops included all major crops 
such as wheat, rice, maize, potato, soybean, pulses, 
oil crops, coffee, tea, tobacco, and cotton. Each 
allocation unit, usually countries was subdivided into 
regular grid cells with a spatial resolution of 5 by 5 
minutes latitude/longitude (i.e., approximately 10 
square kilometers at the equator). For each spatial 
unit the algorithm used information and constraints 
on the total cultivated area in this unit, percent of 
irrigated land, multi-cropping index (i.e., how many 
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harvests may be obtained per year from a piece of 
land). The prior information guiding the downscaling 
algorithm also included suitability and attainable 
crop yields in pixels, crop prices, population density, 
and farming systems characteristics. 

6. Concluding Remarks 

This paper reviews some features of a new class of 
estimation problems, which have been termed 
“downscaling” problems, with unobservable and 
uncertain variables. We present a method that relies 
on appropriate optimization principles and uses all 
possible constraints connecting available ‘prior’ 
information at locations with other observable and 
unobservable dependent variables. For practical 
applications, the choice of appropriate ‘priors’, their 
inherent uncertainties and imprecision are among the 
major challenges of the downscaling methodology, 
ultimately determining the success of these 
procedures. 

Extensive testing of the proposed procedure for 
downscaling of agricultural production, consistent 
with national statistics and compatible with various 
geographical and technical ancillary sources of 
information, has demonstrated that the iterative 
downscaling procedures are converging fast, allow 
for great geographical detail and are very flexible in 
model specification and detail. 

In this paper we analyze numerical downscaling 
procedures only for situations when aggregate 
observed information is available and used as 
constraints on average values. For many practical 
situations this assumption may be insufficient and the 
procedures may need to be extended into more 
rigorous probabilistic treatment. For example, a prior 
probability qij for a “passenger” from location i to 
chose destination j generates a random flow ξij, 

ij ij a=∑ ξ , (ai denoting aggregate departures from 

location i), leading to total random inflows ∑i ijξ  in 

destination j. The analysis of only average flows 

ijiij qa=ξ  ijiij qax =  may not be sufficient, e.g., for 

many facility location problems. Parameters ai of 
constraints (2) for some problems with flows can be 
associated with a risk to loose a part of flow on the 
way (i, j) from i to j. Again, more rigorous risk based 
analysis requires probabilistic treatment of these 
constraints. 
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