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Max-Min problems play an important role in the theory of 
nondifferentiable optimization methods. First, the solution of 
a Max-Min problem makes it possible to evaluate upper and/or 
lower bounds of the objective function for some optimization 
problem under uncertainty conditions and to elaborate the deci- 
sion which guarantees the optimum objective function value in 
these uncertainty conditions. Second, dual methods of decompo- 
sition for solving large-scale optimization problems require 
the solution of a Max-Min problem. Third, many problems of 
game theory reduce to Max-Min (Min-Max) problems. In this paper 
the specific of Max-Min problems is investigated and the solu- 
tion methods which realize the successive approximation of op- 
timal solution, both for external and internal problems, are 
discussed. 





On t h e  Theory of flax-f.lin 

Abstract 

An approach t o  t h e  s o l u t i o n  of max-min problems which t a k e s  
i n t o  account t h e  p e c u l i a r i t i e s  of both t h e  e x t e r n a l  (rnax) and t h e  
i n t e r n a l  (min) ope ra t ions  i s  considered.  

The s o l u t i o n  a l lows us t o  develop a  s e t  of methods f o r  t h e  
s o l u t i o n  of d i f f e r e n t  kinds  of max-min problems, i nc lud ing  mult i -  
s t a g e  max-min problems, max-min problems wi th  l i nked  c o n s t r a i n t s ,  
e t c .  

I .  Introduction 

The theory  of  t h e  Max-Min problem p lays  an important  r o l e  i n  

making opt imal  d e c i s i o n s  under cond i t ions  of unce r t a in ty  [ ( I ) ,  ( 2 ) l .  

I n  a  ma jo r i ty  of c a s e s ,  however, only a  s o l u t i o n  method f o r  t h e  

" e x t e r n a l "  maximization problems were developed [ ( 1 ) , ( 3 ) 1 .  

This  paper cons ide r s  a  c l a s s  of methods f o r  t h e  s o l u t i o n  of 

Max-Min problems, which r e a l i z e s  t h e  success ive  approximation t o  

opt imal  s o l u t i o n s  both f o r  " e x t e r n a l "  and " i n t e r n a l "  problems and 

develops t h e  approach int roduced i n  [ ( 4 ) ,  ( 5 )  1 . 

2. Statement of the Problem 

We s h a l l  cons ider  t h e  fol lowing problem. 

Problem 1 .  

Find x* E X ,  f o r  which 

- 
maxmin $ ( x , y )  = m i n  $ (x* ,y )  = w , 
X E X  Y E Y  y&Y 

n  where X and Y a r e  compact s e t s  i n  t h e  euc l idean  spaces  R 
and R~ 

r e s p e c t i v e l y ,  and t h e  func t ion  $ ( x , y )  i s  supposed t o  be def ined  

and continuous i n  D x  Y ,  where D i s  some domain (open connected- 

s e t  D > x .  



Along with problem (I), we shall consider the problem 

+ 
min max @(x,y) = w 
yEY XEX 

and a game r(QI,X,Y), where player I chooses x E X ,  player I1 chooses 

Y E  Y and the payoff is the value of function @(x,y). - + - + 
Generally, o - < w ; the situation of equilibrium when w = w  

is possible if the function 4 and the sets X and Y possess some 
convexity properties [61 . 

In any case, the solution of Problem (1) and :(finding) the op- 

timal solution x* allows us to determine the low guaranteeing 

value of the objective function, that is 

- 
@(x*,y) 2 w for all y E Y ( 2 )  

~urther, only problem (1) will be considered here. (Problem 

l a  can be investigated in a similar way). 

Let us introduce the function 

Q*(x) = min @(x,Y) 
Y EY 

and the set 

which are defined for all x ED. 

In the majority of papers devoted to the solution methods of 

(I), only the maximization methods for the function Q*(x) are con- 

sidered (see, e.g. 1 , 3 In these methods, it is necessary 
V for each x ( v  is the number of an iteration, v = 1,2,3, ... ) to de- 

termine either the whole set Y*(xV) I , 2 I or at least one 

element of this set [31; that is, for each v it is necessary to 

find the global minimum of the problem (2). In a general case, 
this requires a large amount of computation. 

In this scheme, the successive approach to the solution of 

(1) is realized only on the variable x. Evidently, this is not 

the only way for solving ( 1  ) . Thus, the problem of d-eveloping solu- 

tion methods for problem (1) arises, which uses both the successive 



approach  on v e c t o r s  xv a s  w e l l  a s  t h e  approach  on " f u n c t i o n s "  

( s e t  mapping) Y '(x) (which w i l l  b e  d e f i n e d  l a t e r )  . The c l a s s  o f  

t h e s e  methods a r e  i n  some s e n s e  comple te ,  i n c l u d i n g  t h e  approach  

t o  t h e  s o l u t i o n  o f  t h e  problem (11 ,  b o t h  f o r  " i n t e r n a l "  and 

" e x t e r n a l "  problems i n  (1  ) . 

3. Extension of t h e  P r o b Z e m  

W e  s h a l l  r e p l a c e  t h e  o r i g i n a l  Problem 1  by t h e  f o l l o w i n g  

problem. 

Problem 2. 

Given: f u n c t i o n a l  c l a s s  Y ,  f i n d  a  v e c t o r  x* and a f u n c t i o n  

Y* ( x )  ( o r  t h e  sequence  o f  f u n c t i o n s  {Yf ( x )  1) i n  Y ,  which 

y i e l d s  

SUP i n f  O ( x , Y ( x ) )  = @ ( x * , Y * ( x ) )  o r  l i m  $ ( X * , Y : ( ~ ) )  
X E X  Y ( x )  G.Y i + m  

- ( 5  

Problem ( 5 )  needs  some remarks .  

Definition I .  The sequence  o f  f u n c t i o n s  Y f ( x )  E Y 

( i = 1 2 3 . . )  i s  c a l l e d  t h e  s o l u t i o n  o f  t h e  problem 

i n f  @ ( x , Y ( x ) )  
Y(x) E Y  

i n  a g i v e n  c l a s s  o f  f u n c t i o n s  Y ,  i f  f o r  any f i x e d  X E X  t h e  l i m i t  o f  

t h e  sequence  @ x  x  ) , i -t e x i s t s  and 

To i l l u s t r a t e  Problem 2  and D e f i n i t i o n  1 ,  l e t  u s  c o n s i d e r  

t h e  problem 

~ ( x , Y ( x ) )  - > O  f o r  a l l  X E X  a n d ~ ( x )  E Y .  

I t  i s  c l e a r  t h a t  i f  t h e  sequence  {V; (X)}  i s  a s o l u t i o n  o f  ( 6 )  

i n  t h e  s e n s e  o f  D e f i n i t i o n  1 ,  t h e n  it i s  a l s o  a  s o l u t i o n  o f  ( 8 ) :  



The solution of (8) is defined in an ordinary way: the 

sequence of functions Y?(x) E Y = 1 , 2 , 3 ,  . is a solution of 
1 

(8) in a given class of functions Y ,  if 

lim ] @(x,Y* (x))dx < ] d(x,Y(x))dx 
1 - 

i +m 

for all Y (x) E Y. 

On the other hand, evidently if a sequence {P.; (x) 1 ,  Y; (x) E Y 
(i= 1,2, ... ) is a solution of (81, then each func-tion Y?(x) dif- 

1 * fers from Yiix) only on a set of points X E X  with measure zero. 

Definition 1 immediately implies the following assertion: 

Lemma I. The upper bound of Problem 2 is achieved and coin- 

cides with the upper bound of Problem I: 

sup inf @ (x,y(x)) = max @ *  (x) = u- -, 

XEX Y(X) EY  XEX 

In this sense, Problems 1 and 2 are equivalent. On the other 

hand, they differ in the solution of the "inner" problem; that is, 

in the case of Problem 2, the strategy of player I1 is evaluated 

not in separate points x E X  (as in (I)), but is characterized on 

the whole, for all x EX. 

Such an extension of Problem 1 has some remarkable properties 

and allows us to simplify, in many cases, the solution of Problem 1 

through taking more completely into account the specifics of 

the optimal strategy of Y*(x) of the player 11. 

In particular, Problem 2 possesses saddle-point properties 

without any convexity assumption, that is, the game r(@,x,Y) with 

strategies x E X ,  Y(x) E Y has a saddle-point solution under only 
the continuity assumption [ (6) , ( 4 )  1 . 

However, in this paper we shall not consider these properties 

of Problem 2, but shall investigate the interrelations between 

Problems 1 and 2. 



4. The Class of Feasible Functions 

Before introducing the definition of the class of feasible 

functions Y, let us consider the properties of the original 

Problem 1. 

Under the assumption given above, the following given 

assertions are true [ (1 ) , (2) 1 : 

1. The function @*(x) is continuous in D. 

2. Y*(x) is an upper-semicontinuous point-to-set 

mapping, that is for any neighborhood w(Y* (xo) ) 

of the set Y*(xo) a positive 6 > 0 exists, such 

that Y*(xo)cw(~*(xo)), if only 

If Y* (x) is a single valued function for the point x = xo , 
e.g. the setY*(xo) contains only one element (y*(xo)) = 

Y*(xo), then 2 implies the continuity of the function 

y* (x) at the point xo. 

3. Let the function $(x,y) have a gradient a$(x,y)/ax 

continuous with respect to x and y at the point xo 

for all y. Then the function @*(x) has a directional 

derivative g €Rn at this point given by 

a@* (x) = lim @ *  (xo+€q)-@* (xo) 
ag E+O+ E = YEY* min (x) (am(:lr~),g) . ( 9 )  

Bearing in mind these properties of Y*(x), let us introduce 

the set of feasible functions Y. 

Definition 2 .  [ 4 , 7 ]  A finite set of domains [D~,...,D~) 

defines the decomposition of the domain D, if 

1. the boundary of each domain Di = , , n  is piece-wise 
smooth (e.g. consists of a finite number of manifolds); 

(5 is the closure of D) . 



Let us denote 

Mil ... i = nD. n D (v= I,...,r) v 1 (10) 
r 

a is either an empty set or a connected smooth mani- where Mil.. .l r 
fold (Fig. 1). 

Figure 1. 

Definition 3. [ 4 ]  A multivalued function y(x) is feasible 

(that is, belongs to Y )  , if 

1. A decomposition of the domain D exists, given by the 

function Y(x) in such a way that Y(x) coincides on each 

D. with a function y.(x), defined and continuously dif- 
1 1 

ferentiable on a domain 8.3?ji; 
1 

3 .  For any point xo €Mil...irr Y(xo) is the set of values 

of yi, (xo), where yi, (xo) is a limit of functions 

yi, (x) , when x + xo within the domain Di (v = 1 , ... , r) v 
e. g. 

4. The following equalities are true: 

@(xo,yiv(xo)) = const for all v = 1 ,.. . ,r 
and xo €Mi l...ir 



Remarks: For some points xo EM= ... ; it is possible that 
1 -r 

Then it is assumed that 

It is also possible that Y(x) is a continuous function y(x) 

on some manifolds M il.. .ir , that is 

Then it is assumed that at point xo the derivative of y(xo) 

is discontinuous. 

The Definitions 2,3 allows us to introduce a function 

Let W be a domain in Rn x Rm; W 2 D  x Y. The following properties of 

the function @ (x) are true: 

1. If @(x,y) is continuous in W, then @(x) is a continuous 

function in D. 

2. If @(x,y) is continuously differentiable in W, then @(x) 

is continuously differentiable in Di (i = 1, ..., N )  and 

where 



Let xo &Mil ... and define a cone at the point xo: 
ir 

where E is some positive number depending on x, and Di. 
The closure Ri (x,) of the set ( 1 4 )  is usually called the 

cone of feasible directions of the set D at the point x, i 
(see, for example, [ 2 ] ) .  

n - 
Definition 4. A vector g at a point x, &Mil...ir = 0 DivnD 

v=1 is directed to a domain DiI if g &Ki(x0). 

If x, E Di, then Ki (x,) coincides with all of the space Rn 

and any vector g E Rn is directed to Di at this point x,. 

Let us also define 

Ti ... (xo) is a hyperplane, tangent to M ilg**ir at the point xo. 
r ir 

3. If xo &Mi ... , then the function @(x) is differentiable 
1 ir 

in any direction g E Rn and 

If xo&Mi ...i and g & T i  ...i (xo), then for all v = l ,  ..., r: 
1 r 1 r 

The proof of the statements 1 - 3 follows directly from Defini- 
tions 2,3 and properties of the function $(x,y). 



As the equality (1 6) is also true for g E Ei (>: , I  (due to (1 1 )  , 
(12) and the definition of Ri(x0)), then it follows from (16) and 

(17) that a@ (x,)/ag is a continuous function of g (x, is fixed) 

and may be a discontinuous function of x, (g is fixed). 

D e f i n i t i o n  5 .  Let functions yl(x) and y2(x) be defined and 

have continuous derivatives of orders k, k=O,1, ..., R in D. Let 

a function @(x,y) be defined in W 2 D x Y  and have continuous deri- 

vatives of orders s, s =O,1, ..., R', R' - > R. 

If the relation 

holds for all k =  0,1, ..., R, and some x ED, then the functions yl(x) 
and y2 (x) are called R-equivalent at the point x ED. 

The R-equivalence of functions y.(x) in direction g (or in some 
1 

domain D) is defined in a similar way. 

Let y(x) be a function in Y, then it follows from Definition 

5 that any piecewise continuous functions y (x) , y (x) c Y (x) , x E D 
are 0-equivalent in D (in accordance with (11)). 

Functions y (x) (v= 1, ..., r) of Definition 3 are I-equivalent 
iv 

in directions g ~Ti~...i,(x,) at x, €Mil--.ir1 because the 

equalities (16) hold true for them. 

The idea of function equivalence permits us to simplify 
the class of function y considerably and reduce it actually to the 

class of piecewise smooth functions. For example, the multivalued 

function yl('x) on Fig. 1 is equivalent to the piecewise smooth 

function y2(x), two-valued only at the point x, =M12. 

However, the question arises as to what measure Problems 1 

and 2 are similar. The answer to this question has two approaches. 

The first consists~ of investigating the proximity of Problems 1 

and 2, when the properties of the function @ and the sets X and Y 

are fixed. In the second approach, the conditions on { @ , X , Y )  are 

searched for, such that Y*(x) E: Y, whzre Y*(x) is defined in (3). 

We shall consider shortly both approaches. One can 

verify the following statement. 



Figure 2. 



Theorem 1 .  L e t  t h e  f u n c t i o n  @ be c o n t i n u o u s  i n  W 3 D x Y .  Then 

a  s e q u e n c e  o f  f u n c t i o n s  YZ(xI C Y ( i  = 1 , 2 , .  . . 1 e x i s t s ,  s u c h  t h a t  f o r  

e a c h  x ED: 

P r o o f :  Since @ is a continuous function with respect to 

y E Y for all x E D and Y is a compact set, a solution Y*(x) 

of the problem 

min @ ( ~ I Y )  
Y EY 

exists for each x E D (by Neierstrass's theorem) . 
Therefore, according to (2) and (3) : 

However, the multivalued function Y*(x) may not belong to 

the class of functions y; as only the property 2 of section 4 

is true. 

Theorem 1 states that the functions Y(x) from the class of 

functions Y can approximate Y*(x) with an arbitrary accuracy. 

For proving this, let us single out some subset 6 C D. 
w 

We assume that p (D) > E > 0, where p (6) is the diameter of 
the set D. 

By appropriate choice of 6 we can always reduce the behavior 
of Y* (x) to the following four cases: 

1) Y*(x) E Y for all x E D; 

2) Y* (x) is a multivalued function (point-to-set mapping) 

for each x E D; 

3) Y* (x) = y* (x) is a single valued continuous function 

(point-to-point mapping), which has discontinuous derivative 

for all x E 6 ;  

4) Y*(x) induces an infinite decomposition on 6, that is, 

an infinite number of domains ~f C D exists, such that 
* Y* (x) = Y; (x) , x E Di , and yf (x) is a continuously differentiable 

function in D* 
i' 



Let us consider each case separately. 

1 )  If Y*(x) E Y, then the assertion of the theorem reduces to 

2) If Y*(x) is a point-to-set mapping for all x E 6, then a 

function y* (k) , defined and continuously differentiable on 6, 
can be chosen, for which 

Evidently, y*(x) E Y. In the case considered @his can always 

be done due to the properties of Y*(x) and the class of functions 

Y (see also Definition 5). 

3 )  I£ Y*(x) = y*(x) is a continuous function for all x E 6, 

then one can choose smooth functions y*(x) E Y, such that for 
1 

any given E > 0 

holds, where l y l  is an appropriate norm of a function y. 

Using the continuity properties of the function @, one can 

easily obtain the statement of the theorem for this case. 

4 )  If an infinite number of domains D* C 6 exists, we can 
3 

define using the properties of Y*(x) for any given E > 0 

a set Dg, such that 

D*C D , C ~  , 
3 

j 2 M  

p(D6) < 6 

and 

where wE(Y*) is an E-neighborhood of the set Y*. 

Using the last relation, one can define a sequence of functions 

Y~(x) E y on D6 in such a way that, again. 

\Y*(x) -Y*(x)l < E , i > ~  , X E D ~  . 
1 

Since X is a compact set and p(6) > E > 0, the finite number 

of such sets 6 constitutes the covering of X. This completes the 

proof. 



From this theorem it follows that for any E > 0 we find a 

function Y:(x) E Y and a point x ED, such that 

for all x E D and fixed xo E D  (&-optimal solution of problem ( 6 ) ) .  

Thus, if $(x,y) is continuous in D, then Problem 2 approxi- 

mates Problem 1 with respect to "internal" operation with arbi- 

trary accuracy while the solutions of Problens 1 and 2 coincide 

with respect to "external" operations. 

If stronger conditions on @(x,y) are imposed, then Y*(x) E Y  

and Problems 1 and 2 become completely equivalent. Thus, the fol- 

lowing statement is true. 

Theorem 2 .  Let  t h e  second order  d e r i v a t i v e s  

axay 

(kt j = I,. . . ,m; s = 1,. . . ,n) 
o f  t h e  f u n c t i o n  @ be c o n t i n u o u s  i n  W 2 D  x Y  and l e t  t h e  m a t r i x  

be n o n s i n g u l a r  a t  x  E Di (i = 1 , .  . . ,I). 
Then y x  f x )  E Y and 

2 
dy, (x) a 2 x y  x -' 3 ~ ( X I Y ;  (x)) 

0 0 

i f  x  E D i ,  y r  f x )  E y f Y  i s  t h e  i n t e r i o r  o f  t h e  s e t  Y ) .  

The proof of the Theorem follows from the implicit function 

theorem, 



If the conditions of Theorem 2 are not true, then, in general, 

Y*(x) doesn't belong to Y. Let us consider two examples. 

@,Y 
= O  at point (0,O) and 

Evidently, dy* (x) /dx -t w if x -+ 0: but d@* (x) /dx -+ 0, x -+ 0'. 

Supposing Y* (x) = y (x) = , x E Dl = lx > 01, Y* (x) = y2 (x) = - a ,  1 - 

X E D ~ = { X < O I ~  - one obtains Y*(x) E Y .  

Example 2. Let $ lx,y 
2 2 f 2 n  1 

) = [2y- (y +3x ) ] , X,YER , n>1. - 

Here 0''  xyt qY are infinite at point {0,0), but $4. $ '  exist and 
Y 

are continuous. For this example Y*(x) = 1x1 ant is thus single- 
valued and continuous. At the same time, the function dy*(x)/dx 

is discontinuous at point x =  0. However, if we let 

y*(x) = y  (x) =x, x & D l  =lx>O), Y*(x) =y2(x) =-X; x ~ D ~ = l x ~ O ) ,  1 - 
then Y* (x) E Y. 

The examples show, that for almost practically all interesting 

cases, the function Y*(x) will belong to the class Y (taking into 
account the remarks relating to ~efinition 3 and the ~efinition 5). 

Let us make a last remark. It is known that any continuous 

functions can be uniformly approximated by infinitely differenti- 

able function. As the function @*(x) =min $(x,y) is continuous, 
J'EY 

an infinitely differentiable function @(x), exists such that 

'U 

@(x) - min $ (x,y) < E for all x E D . - 
YEY 

If F(x), $(x,y) are smooth functions, then it seems one can 

find a smooth function y(x) in Dl such that F(x) = $ (x,y(x) ) for 

all x E D. 

This is not true. Let us consider an example. 

Example 3. Find 

2 
minmax (x-y) , 1x1 L 1 I Y I  L 1 
X Y  



Evidently, 

2 
2 (x+l) , x > o  - 

@* (x) = max (x-y) = 

I~lll 1 (x-1) , x < O  - 

The function @*(x) is continuous in its domain of definition, 

.Y*(x) is multivalued at the point x =  0. The minimal value @*(x), 

1x1 - < 1 is equal to 1 and achieved at the point x* = O .  At the same 

time, any continuous curve y(x), which is defined in the square 

1x1 2 1 ,  I Y (  2 1 ,  intersects the straight line y = x  and, consequent- - 
L ly, min (x-y(x)) = O  for any continuous functions y(x), ly(x) 151, 

xJ<1 I - 
xl < 1 (Fig. 3). I - 

Figure 3. 

Thus, the class Y of piecewise smooth functions, which have 
been introduced I n  this section, is not only sufficient in some 

sense, but also is necessary for replacing Problem 1 by Problem 2. 

5. OptimaZity C o n d i t i o n s  

Let us fix some function Y(x) E Y and consider the problem 

max @(XI = max @(x,Y (x)) . 
XEX XEX 



Let x* be a solution of (20); define the cone of feasible 

variations at the point x*. 

Let 

where Mi is an external boundary of D (Fig. 1 ) .  
v i v 

Using conventional reasoning in the theory of mathematical 

programming, one can prove the following statement. 

Theorem 3 .  L e t  x*  E Ni  . , i b e  a  s o l u t i o n  o f  ( 2 0 ) .  Then 
1 r 

f o r  a l l  g E K o ( x * )  n zi ( x * ) ,  i E {i l , .  . . , i r l .  

Here y i  (x*) is the value of Y ( x )  , if x + x*, x E D i ' 
In particular, if x* is a point only of Mi, then (23) is true 

J 

for all g €RO(x*). 1f x*  EM^ ... , then (23) is true for all 
1 ir - 

g E Kiv (x*) (v = 1 ,.. . ,r) , and if x* E D then (23) is true for all 
i ' 

g E: R" and 

Now let xo be an arbitrary point of X and Y*(x) E: Y is optimal 
(€-optimal) for Problem (6) . 

Theorem 4 .  I f  a $ ( x ,  y )  / ay  e x i s t s  and i s  c o n t i n u o u s  i n  W 3 D  x Y 

and t h e  boundary  o f  t h e  s e t  Y i s  p i e c e w i s e  smooth,  t h e n  



g s Z i i x o l ,  i E {i ,...,i 1 and ~ t i a o l  is t h e  where  xo cMi ...i . 
1 r 1 r 

v a l u e  o f  Y*(xo l  a t  t h e  p o i n t  X O ,  x  + X O ,  x ED_.. 

P r o o f :  I n  accordance  w i t h  ( I s a ) ,  l e t  us  s p e c i f y  t h e  ( E - o p t i -  

mal)  s o l u t i o n  Y *  (xo)  o f  ( 6 )  i n  such a  way t h a t  

@ ( x o , y f  ( x o l )  = min @ ( x o . y )  . 
Y E Y  

The p o i n t  y* ( x )  can  move, when x  + x  ,, x  E D i ,  e i t h e r  i n s i d e  of  
1 

t h e  s e t  Y ,  o r  on i t s  boundary. 

I f  y! ( x o )  i s  i n t e r i o r  t o  Y ,  t h e n ,  by v i r t u e  of  (24)  : 

I f  t h e  p o i n t  y T ( x o )  i s  on t h e  boundary of  Y ,  t h e n ,  e v i d e n t l y  

v e c t o r s  

f o r  a l l  f e a s i b l e  v e c t o r s  g  g e n e r a t e  t h e  l i n e a r  man i fo ld  

T ( y f ( x o ) ) ,  t a n g e n t  t o  Y a t  t h e  p o i n t  y r ( x o ) .  I n  t h i s  c a s e  t h e  
a@(x. , , .  ( X O )  

1 1  g r a d i e n t  
ay 

w i l l  be o r t h o g o n a l  t o  T (y* ( x o  ) ) by v i r t u e  
1 

o f  t h e  o p t i m a l i t y  of  y ; ( x o ) ;  t h a t  i s  

f o r  a l l  6yf ( x o  ) E T  (y* ( x o  ) ) . 
1 

F i n a l l y ,  it i s  p o s s i b l e ,  t h a t  T ( y r ( x o ) )  r educes  t o  a  s i n g l e  

p o i n t  y T ( x o )  = c o n s t  a t  some v i c i n i t y  of x o .  I n  t h a t  c a s e ,  



For a more formal proof of the last two equalities, let us 

suppose that the set Y is given by the system of inequalities: 

where the functions f : R~ + R' are continuously differentiable. 
j 

Let J(y) be the set of active constraints at the point y, 

and suppose that the gradients 

are linearly independent at the point y*. Then the optimality 

conditions for the problem (24) can be written as 

where the Lagrange multipliers A.(xo) satisfy the conditions 
3 

If ,J(y; (xo) ) = g ,  i. e. y* (x,) is an interior point of the 
1 

set Y, then all A .  (xo) = 0 and (25) is true. 
3 

Now let 

differentiate both parts of the equality (28) in the direction 

~ E % ~ ( x ~ ) .  It is assumed. that x, cMi or xo E D  
r ir i 



i ~ { i  ***irl. In any case, 1 

If the rank of the matrix 

is equal to m, then from (29) it follows that 

If the rank of the matrix A(~"X~)) is less than m, then 
1 

the system of equations ( 2 3 )  has a nonzero solution 

dyf (XO) 
g + O  

dx 

Multiplying both parts of the equality (27) from the right by 

the vector of (30) and considering (29), one can assume that in 

this case ' (26) holds. This completes the proof. 

Theorems 3 and 4 specify the optimality conditions for prob- 

lems (20) and ( 6 )  . Now consider Problem 2. 

Theorem 5.  L e t  (x*,Y*(x)} b e  a  s o l u t i o n  o f  Prob lem 2 .  Then  

t h e  i n e q u a l i t y  



holds for all g i koix*) n x .  ix*), where y*(x) + Y;(X*), x + x*, 
Z 

If x* €Di, then the inequality (31) is replaced by the 

equality. 

The proof of this theorem follows from Theorems 3 and 4. 

To connect the optimality conditions of Problem 2 stated in 

Theorem 5, with optimality conditions of Problem 1 [ (1),(2)], 

let us prove the following assertion. 

Theorem 6. Let xo E 5 and Y(x) be an arbitrary function i 
of Y. Then 

min 
dx 

I (32) 
dx 

where g cKi(xo), Y(x)+yi(x0), X + X O ,  x E Di, ~ ( x o )  E Yixo). 

Proof: When xo E D i = 1 . . . N the equality (32) holds i 
trivially, because in this case Y (xo ) = yi (x,) . 

Now let xo &Mij. The manifold Mij is the set of x, satis- 

fying the relation 

The plane tangent to Mij at the point XO, is the set of g, 
satisfying 



and the gradient dF(xo)/dx is directed to the side of increase 

of F (x) . 

If g €1: ( ~ 0 ) ~  then 
j 

if g €Ki(xo), then 

From (33), (34) and (15), one can obtain (32). The case 

x o  E M i  ... can be considered in a similar way. 
1 r 

Using Theorems 3, 6 and Definition 4, one can prove that 

the equality 

a @  (XO) - - min 
a9 YEY* (XO 1 

holds, where Y* (xo) is defined in (3), y? (x) is any of the 1- 

equivalent values of Y*(xo) in the domain Di, xo chi. 
Now Theorem 6 can be restated as follows. 

Theorem 7 .  L e t  x", Y*(x) be a s o l u t i o n  o f  Prob lem 1 .  Then  

min ( 
YEY* (x*) 

f o r  a t 2  g E KO (5"). 

The optimality conditions of Theorem 7 are given, for ex- 

ample, in [ 2 ] .  



The results given above allow us to develope methods which 
V V 

realize the approach {x ,Y (XI) +{x*,Y*(x*)), v + w  both for ex- 

ternal and internal operations of Max-Min problems. This permits 

us to take into consideration the specific features of the prob- 

lems and thus to develop efficient methods of their solution. 
Evidently, these methods incorporate the usual scheme 

V 
{x ,Y* (xV) 1 ' {x*,Y* (x*) 1 .  

The author wishes to thank R. Mifflin for many helpful 

comments and suggestions on this subject. 
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