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PREFACE

Max-Min problems play an important role in the theory of
nondifferentiable optimization methods. First, the solution of
a Max-Min problem makes it possible to evaluate upper and/or
lower bounds of the objective function for some optimization
problem under uncertainty conditions and to elaborate the deci-
sion wnich guarantees the optimum objective function value in
these uncertainty conditions. Second, dual methods of decompo-
sition for solving large-scale optimization problems require
the solution of a Max-Min problem. Third, many problems of
game theory reduce to Max-Min (Min-Max) problems. In this paper
the specific of Max-Min problems is investigated and the solu-
tion methods which realize the successive approximation of op-
timal solution, both for external and internal problems, are
discussed.
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On the Theory of Max-Min

Abstract

An approach to the solution of max-min problems which takes
into account the peculiarities of both the external (max) and the
internal (min) operations is considered.

The solution allows us to develop a set of methods for the
solution of different kinds of max-min problems, including multi-
stage max-min problems, max-min problems with linked constraints,

etc.

1. Introduction

The theory of the Max-Min problem plays an important role in
making optimal decisions under conditions of uncertainty [(1),(2)].
In a majority of cases, however, only a solution method for the
"external" maximization problems were developed [(1),(3)].

This paper considers a class of methods for the solution of
Max-Min problems, which realizes the successive approximation to
optimal solutions both for "external" and "internal" problems and

develops the approach introduced in [(4),(5)].

2. Statement of the Problem

We shall consider the following problem.

Problem 1.

Find x* ¢ X, for which

max min ¢ (x,y) = min ¢ (x*,y) = , (1)
XeX ye¥ veY

where X and Y are compact sets in the euclidean spaces Rn and Rm
respectively, and the function ¢(x,y) is supposed to be defined

and continuous in D x Y, where D is some domain (open connected
set D DOX.



Along with problem (1), we shall consider the problem

min max ¢(x,y) = ot (1a)

yeY xeX

and a game T (¢,X,Y), where player I chooses x € X, player II chooses
vy €Y and the payoff is the value of function ¢ (x,y).

Generally, uf.iuf; the situation of equilibrium when w™ =w®
is possible if the function ¢ and the sets X and Y possess some
convexity properties [6].

In any case, the solution of Problem (1) and (finding) the op-
timal solution x* allows us to determine the low guaranteeing

value of the objective function, that is

o (x*,y) > w for ally e Y . (2)

Further, only problem (1) will be considered here. (Problem
la can be investigated in a similar way).

Let us introduce the function

¢*(x) = min ¢(x,y) (3)
veY
and the set
YH(x) = {y|¢(x,y) =0%(x),ye¥)} , (4)

which are defined for all x eD.
In the majority of papers devoted to the solution methods of

(1), only the maximization methods for the function ¢*(x) are con-

sidered (see, e.g. [(1),{(3)]. 1In these methods, it is necessary
for each x” (v is the number of an iteration, v=1,2,3,...) to de-
termine either the whole set Y*(xv) [{(1),(2)] or at least one

element of this set [3]; that is, for each v it is necessary to

find the global minimum of the problem (2). 1In a general case,
this requires a large amount of computation.

In this scheme, the successive approach to the solution of
(1) is realized only on the variable x. Evidently, this is not
the only way for solving (1). Thus, the problem of developing solu-

tion methods for problem (1) arises, which uses both the successive
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approach on vectors x” as well as the approach on "functions"
(set mapping) Y ¥(x) (which will be defined later). The class of
these methods are in some sense complete, including the approach
to the solution of the problem (1), both for "internal” and

"external" problems in (1).

3. Extension of the Problem

We shall replace the original Problem 1 by the following
problem.
Problem 2.

Given: functional class Y, find a vector x* and a function

Y*(x) (or the sequence of functions {Y;(x)}) in Y, which

yields
sup inf ¢ (x,¥Y(x)) = ¢(x*,¥*(x)) or lim ¢ (x*,¥}(x)) (5)
xeX Y (x)e¥ iveo -

Problem (5) needs some remarks.

Definition 1. The sequence of functions Y;(x) eV
(1=1,2,3,...) is called the solution of the problem
inf ¢ (x,Y(x)) (6)
Y(x)eVY

in a given class of functions VY, if for any fixed x € X the limit of

the sequence ¢(x,YI(x)), i-»», exists and

lim ¢(x,Y; (x)) = 0% (x) . (7)

1>

To illustrate Problem 2 and Definition 1, let us consider
the problem

inf J ¢ (x,Y (x))dx , (8)
¥(x)eVY X

¢(x,Y(x)) >0 for all xeX and Y(x) e V.
It is clear that if the sequence {YI(X)} is a solution of (6)

in the sense of Definition 1, then it is also a solution of (8):




The solution of (8) is defined in an ordinary way: the
sequence of functions Y;(x) eV (1=1,2,3,...) is a solution of

(8) in a given class of functions Y, if

lim { P{x,Y*(x))dx < J o(x,Y(x))dx
i+oo X 1 - X .

for all Y(x) ¢ V.

(
lim J ¢(x,Yf(x))dx = inf J ¢ (x,y(x))dx
i+e 1 Y(x)eV

% X
On the other hand, evidently if a sequence {Y;(x)}, Y;(x) ey

(i=1,2,...) is a solution of (8), then each function Yi(x) dif-

fers from Yz(x) only on a set of points x € X with measure zero.

Definition 1 immediately implies the following assertion:

Lemma 1. The upper bound of Problem 2 is achieved and coin-

cides with the upper bound of Problem 1:

sup inf ¢(x,Y(x)) = max o¢*(x) = 4~
xeX Y(x)eV xeX

In this sense, Problems 1 and 2 are equivalent. On the other
hand, they differ in the solution of the "inner" problem; that is,
in the case of Problem 2, the strategy of player II is evaluated
not in separate points xe X {(as in (1)), but is characterized on
the whole, for all x e X.

Such an extension of Problem 1 has some remarkable properties
and allows us to simplify, in many cases, the solution of Problem 1
through taking more completely into account the specifics of
the optimal strategy of Y*(x) of the player II.

In particular, Problem 2 possesses saddle-point properties
without any convexity assumption, that is, the game T'(¢,X,Y) with
strategies x € X, Y(x) € Y has a saddle-point solution under only
the continuity assumption [(6), (4)].

However, in this paper we shall not consider these properties
of Problem 2, but shall investigate the interrelations between

Problems 1 and 2.



4. The Class of Feasible Functions

Before introducing the definition of the class of feasible
functions Y, let us consider the properties of the original
Problem 1.

Under the assumption given above, the following given

assertions are true [(1),(2)]:

1. The function ®*(x) is continuous in D.

2. Y*(x) is an upper-semicontinuous point-to-set
mapping, that is for any neighborhood w(Y* (X))
of the set Y*¥(x,) a positive § > 0 exists, such
that Y*(x,)C w(Y*(x,)), if only

|x -x%o] <86 , x,x9 €D .

If Y*¥(x) is a single valued function for the point x =x,,
e.g. the set Y*(x,) contains only one element {y*(x,)} =
Y*(xp), then 2 implies the continuity of the function

y*(x) at the point x,.

3. Let the function ¢(x,y) have a gradient 3¢ (x,y)/ox
continuous with respect to x and y at the point x,
for all y. Then the function ¢*(x) has a directional

derivative g € R at this point given by

0d* (x) _ . * (xp+eg)—0* ( .
g = llﬁ. 0 gE Xo) min QEA§%4X1,9> . (9)
e~>0 yeY* (x)

Bearing in mind these properties of Y*(x), let us introduce
the set of feasible functions V.

Definition 2. [4,7] A finite set of domains {D,,...,D_}
defines the decomposition of the domain D, if 1 N

1. the boundary of each domain Di (i=1,...,n) is piece-wise

smooth (e.g. gonsists of a finite number of manifolds);
2. DinDj=ﬂ, it3;

3. D.SD (i=1,...,N);

r

(D is the closure of D).



Let us denote

Mi ...y =10D; N D (v=1,...,r) (10)
1 r
where M; ceeig is either an empty set or a connected smooth mani-

fold (Fig. 1).
M1

Figure 1.

Definition 3. [4] A multivalued function v(x) is feasible
(that is, belongs to V), if
1. A decomposition of the domain D exists, given by the
function Y(x) in such a way that Y(x) coincides on each
D, with a function yi(x), defined and continuously dif-

ferentiable on a domain 3i:>5i;
2. Y(x)c Y for all x € D;

3. For any point Xo eMj, ,.i., Y(%,) is the set of values
of yiv(xo), where Yiv(xo) is a limit of functions

Yiv(x)' when X+ x¢ within the domain Div (v=1,...,r)

e.g.
Yi (x) ~ Ys (x0) X > X9 , X € Dy ;
\Y) v V)
4. The following equalities are true:
¢(xo,YiV(Xo)) = const for all v=1,...,r (11)

and x EMi1...ir



Remarks: For some points X €Mi1~--ir it is possible that

dyi(x)
—_—| > ° |, X * Xy ’ X e D

dx

Then it is assumed that

| A
Q

3y = < o© , X *>Xy , X £ D.

(8¢(x:yi( x)))T dy, (x) ‘

It is also possible that Y(x) is a continuous function vy (x)
on some manifolds Mi1...ir' that is

v: (Xo) = y(xo) Xo € My , (v=1,...,1r)

i .o.i

v 1 r

Then it is assumed that at point xo the derivative of vy (xy)
is discontinuous.

The Definitions 2,3 allows us to introduce a function
d({x) = ¢(x,¥(x)) , Y(x) e ¥ . (12)

Let W be a domain in R™ xR™; WoDx Y. The following properties of
the function 9 (x) are true:

1. If ¢(x,y) is continuous in W, then ¢(x) is a continuous

function in D.

2. If ¢(x,y) is continuously differentiable in W, then ¢ (x)

is continuously differentiable in Di (i=1,...,N) and

IXO € D.
1

a0 (xg) _ 20wy o)) [dyi(XO)]T 3¢ (Xo,y; (%0))
) (13)

dx Yy

ax X

where

X
a _[20] . a0 _[as] | fy_l=[d_yl,]
dx 35 oy Syk dx axJ




(3=1,...,n; k=1,...,m i=1,...,N)

Let xoe:Mi1...i and define a cone at the point xg:
r

K; (xq) = K(x,,X) = {g|geRP; x, +eg eD;; O<e <€} , (14)

where €& is some positive number depending on x, and D; -
The closure Ri(xo) of the set (14) is usually called the

cone of feasible directions of the set D; at the point x,

(see, for example, [2]).
n
Definition 4. A vector g at a point X, eMj . ..i_ = (N Div(\ﬁ
v=1

is directed to a domain D;, if ge:Ki(xo).
If x, €D, then Kj(x,) coincides with all of the space R"
and any vector g e R" is directed to D; at this point x,.

Let us also define

Ty ey (00) = 0K () w=1.m (15)

Tir"'ir(XO) is a hyperplane, tangent to Mi1...ir at the point xjy.

i then the function ¢(x) is differentiable
r

in any direction g'eRp and

3- If Xo €Mi1c.o

8¢(xp_)_ _ ABCD(XOrYi(Xo)) g s B(D(xo,yi(xc)) ' dyl(xo) o (16)

g oxX y dx

g e K;j(xo), i e {dijp.0nrdi b

If xoe:Mi1_,,ir and ge:Ti1,,,ir(x0), then for all v=1,...,r:

1
38 (xo) yo| + , v gl (17)

dg ox oy dx

ad>(Xo,yi (%0)) 9¢ (x0,y; (x0)) dy. (x0)
Vv v

The proof of the statements 1 -3 follows directly from Defini-
tions 2,3 and properties of the function ¢(x,y).



As the equality (16) is also true for g ERi(xo) (due to (11),
(12) and the definition of Ri(xo)), then it follows from (16) and
(17) that 3%(x,)/3g is a continuous function of g (x, is fixed)

and may be a discontinuous function of x, (g is fixed).

Definition §. Let functions y1(x) and y2(x) be defined and

have continuous derivatives of orders k, k=0,1,...,%2 in D. Let
a function ¢(x,y) be defined in WOD x ¥ and have continuous deri-
vatives of orders s, s=0,1,...,2"', &' >R.

If the relation

k
o x) 00ty (0)  d%lxyy (%)

dxk dxk dxk

holds for all k=0,1,...,%, and some x ¢D, then the functions y1(x)
and y2(x) are called f-equivalent at the point x e€D.

The f~equivalence of functions yi(x) in direction g (or in some
domain D) is defined in a similar way.

Let v(x) be a function in Y, then it follows from Definition
5 that any piecewise continuous functions y(x), y(x)ec Y(x), xeD
are O-equivalent in D (in accordance with (11)).

Functions Yy (x) (v=1,...,r) of Definition 3 are l1-equivalent
v
in directions g eTi1,,,ir(x0) at x, €eMj,, . .i,., because the

equalities (16) hold true for them.

The idea of function equivalence permits us to simplify
the class of function VY considerably and reduce it actually to the
class of piecewise smooth functions. For example, the multivalued
function Y1(x) on Fig. 1 is equivalent to the piecewise smooth

function Y2 (x), two-valued only at the point x;, =Mq,.

However, the guestion arises as to what measure Problems 1
and 2 are similar. The answer to this gquestion has two approaches.
The first consists' of investigating the proximity of Problems 1
and 2, when the properties of the function ¢ and the sets X and Y
are fixed. 1In the second appreach, the conditions on {¢,X,Y} are
searched for, such that Y*(x) €Y, whrre Y*(x) is defined in (3).

We shall consider shortly both approaches. One can

verify the following statement.
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Figure 2.
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Theorem 1. Let the function ¢ be continuous in WD D x Y. Then
a sequence of functions Yg(x)CS/(ﬁ =1,82,...) exists, such that for

each x € D:

lim ¢ (x,¥] (x)) = o*(x)

1>

Proof: Since ¢ is a continuous function with respect to
y € Y for all x € D and Y is a compact set, a solution Y* (x)

of the problem

min ¢ (x,y)
YEY

exists for each x ¢ D (by Weierstrass's theorem).

Therefore, according to (2) and (3):
o* (x) = ¢(X:Y* (x)) . X e D

However, the multivalued function Y*(x) may not belong to
the class of functions Y; as only the property 2 of section 4
is true.
Theorem 1 states that the functions Y (x) from the class of
functions VY can approximate Y*(x) with an arbitrary accuracy.
For proving this, let us single out some subset D C D.
We assume that p(ﬁ) > e >0, where p(ﬁ) is the diameter of
the set D.
By appropriate choice of D we can always reduce the behavior

of Y*(x) to the following four cases:
1) Y*(x) ¢ Y for all x ¢ D;

2) Y*(x) is a multivalued function (point-to-set mapping)

for each x ¢ 5;

3) Y*(x) = y*(x) is a single valued continuous function
(point-to-point mapping), which has discontinuous derivative

for all x ¢ 5;

4) Y*(x) induces an infinite decomposition on D, that is,
an infinite number of domains D;<: D exists, such that
Y*(x) = ¥¥(x), x € DI, and y*(x) is a continuously differentiable

function in D;.
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Let us consider each case separately.

1) If Y*(x) ¢ Y, then the assertion of the theorem reduces to

~

dp(x,¥*¥(x)) = &*(x), x e D .

2) If Y*(x) is a point-to-set mapping for all x € D, then a
function y*(k), defined and continuously differentiable on D,

can be chosen, for which

y*(x) € Y¥(x) , x e D ;
o*(x) = ¢(x,Y*(x)) = ¢(x,y*(x)) , x e D
Evidently, y*(x) € Y. In the case considered this can always

be done due to the properties of Y*(x) and the class of functions

Y (see also Definition 5).

3) If Y*(x) = y*(x) is a continuous function for all x e D,
then one can choose smooth functions y;(x) e ¥, such that for

any given € > 0

|y*(x) - y:(x)I <eg, i3>N, xeD,

holds, where |y| is an appropriate norm of a function y.
Using the continuity properties of the function ¢, one can

easily obtain the statement of the theorem for this case.

4) If an infinite number of domains D;(: D exists, we can
define using the properties of Y*(x) for any given € > 0

a set DG' such that
* g »
DjCDSCD ’ J 2 M
p(Da) < 8

and

Y* (x) CZwE(Y*(xo)) ’ X, x; € Dg

where wE(Y*) is an e-neighborhood of the set Y¥*,.
Using the last relation, one can define a sequence of functions
Yz(x) € Y on Dg in such a way that, again,
| Y* (x) - Y;(x)| < e, 13N, xeDg .

Since X is a compact set and p(D) > € > 0, the finite number
of such sets D constitutes the covering of X. This completes the

proof.
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From this theorem it follows that for any € >0 we find a

function Y;(x)e Y and a point x €D, such that

0 < ¢(x,¥5(x)) - min ¢(x,y) < € (18)
- yEY
¢ (X0, Yy (x0)) = min ¢ (xo,y) (18a)
veEY

for all xeD and fixed xo €D (e-optimal solution of Problem (6)).
Thus, if ¢ (x,y) is continuous in D, then Problem 2 approxi-
mates Problem 1 with respect to "internal" operation with arbi-
trary accuracy while the solutions of Problems 1 and 2 coincide
with respect to "external"” operations.
If stronger conditions on ¢ (x,y) are imposed, then Y*(x) €Y
and Problems 1 and 2 become completely equivalent. Thus, the fol-

lowing statement is true.

Theorem 2. Let the second order derivatives
2 2 2 2
0 ¢ (x,y) - o 9 (XIY) . 0 ¢(X,y> - d ¢(X’X)
33y 3x53y 3y 2 aySay?
(k,3=1,...,m; s=1,...,n)

of the function ¢ be continuous in WDD xY and let the matrix

326 (x,y)
8y2
be nonsingular at xe:Di (2 =1,...,N).
Then Y*(x) €Y and
dy. (x) 82¢(x y. (x)) -1 82¢(x (x))
yi _ 7 i Iyi
dx 8y2 90X 3y (19)

0 0
if zeD., Y*(x) e Y (Y 25 the interior of the set Y).

The proof of the Theorem follows from the implicit function
theorem.
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If the conditions of Theorem 2 are not true, then, in general,

Y*(x) doesn't belong to Y. Let us consider two examples.

Examnle 1. Let §(x,y) =y3—3xy; x,yeR1, x>0, y>0. Here
¢;Y:=O at point (0,0) and
Y*(x) = vVx , x>0 ; ¥ (x) = -2xv/x

Evidently, dv*(x)/dx += if x - 0% but do*(x),/dx~+0, x - o'.
Supposing Y* (x) =Y, (x) = V%, x eD1 ={x >0}, Y*(x) =y2(x) = -Vx,

xeD2={x_<_0}, one obtains Y*(x) eV.
Example 2. Let ¢(x,y)==[2y-—(y2+3x2)
u " : v . ' ) .

Here ¢xy’ ¢YY are 1nf1n%te at point {0,0}, but ¢X, ¢Y exist and
are continuous. For this example Y*(x) = |x| and is thus single-

%]2n, x,ye:R1,11i1.

valued and continuous. At the same time, the function dy*(x) /dx
is discontinuous at point x=0. However, if we let

={x <0},

v*(x) =y, (x) =x, xeD, ={x>01}, Y¥(x) =y, (x) =-X; xeD, <

then Y*(x) e V.

The examples show, that for almost practically all interesting
cases, the function Y*(x) will belong to the class Y (taking into
account the remarks relating to Definition 3 and the Definition 5).

Let us make a last remark. It is known that any continuous
functions can be uniformly approximated by infinitely differenti-

able function. As the function ¢*(x) =min ¢(x,y) is continuous,
YEY
an infinitely differentiable function ¢(x), exists such that

®(x) - min ¢(x,y) <e for all x € D .
yeyY

If 3(x), ¢ (x,y) are smooth functions, then it seems one can
find a smooth function ¥(x) in D, such that ¢(x) = ¢ (x,T(x)) for
all xeD.

This is not true. Let us consider an example.

Example 3. Find

min max (x-y)2 , x| <1 , lyl <1 .
Xy
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Evidently,
(x+1)2 , x >0
d* (x) = max (x-y) = 5
|y|i1 (x=1) ’ x <0
-1 ’ x >0
Y*(X) =
1 ’ x <0

The function ¢*(x) is continuous in its domain of definition,
Y#(x) is multivalued at the point x=0. The minimal value ¢*(x),
|X| <1 is equal to 1 and achieved at the point x* =0. At the same
time, any continuous curve y(x), which is defined in the square
|x| <1, |y| <1, intersects the straight line y =x and, consequent-

ly, min (x—y(x))2==0 for any continuous functions y(x), |y(x)]| <1,

| x| <1
|x| <1 (Fig. 3).
L y ‘
Yx) 1
y(x)
o -4
1] y*(x)
Figure 3.

Thus, the class Y of pilecewise smooth functions, which have
been introduced in this section, is not only suffieient in some

sense, but also is necessary for replacing Problem 1 by Problem 2.

5. Optimality Conditions

Let us fix some function Y (x) ¢ ¥ and consider the problem

max ®(x) = max ¢ (x,¥Y(x)) . (20)
XeEX xeX
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Let x* be a solution of (20); define the cone of feasible

variations at the point x*.

Ko(x*) = K(x*,X) = {g|x*+egeX, 0<e<c¢e} (21)
Let
. . = . N M, . = . e
Nl 00012 OMl\) 11--olr v 1’ Ir (22)

where M. is an external boundary of Di (Fig. 1).
v v

Using conventional reasoning in the theory of mathematical

programming, one can prove the following statement.

Theorem 3. Let x*E:Ni . be a solution of (20). Then
1 r
3P (x*,y. (x*)) 3P (x*,y. (x*)) dy. (x*)
5@[%2] = 1 Jgl + = , —= g) <0 (23)
9 9x ay dx

for all gE:%o(x*)r\§£(x*), Z e{iz,...,ir}.

Here yi(x*) is the value of Y(x), if x> x*, xe:Di.
In particular, if x* is a point only of Mj’ then (23) is true

for all g Eio(x*). If x*E:Mi . then (23) is true for all
r

g-eii (x*) (v=1,...,r), and if x*e:Di, then (23) is true for all
\V

1-¢-i

g € R" and

36 (x*,y, (x*)) I:dyi(x*) ].T 26 (x*,y, (x%))
+ -

X dx oY
Now let x, be an arbitrary point of X and Y*(x) ¢ ¥V is optimal

(e-optimal) for Problem (g).

Theorem 4. If 3d(x,y)/dy exists and is continuous in W DDx Y

and the boundary of the set Y is pilecewise smooth, then

0 (x0,vE(x0)) dy% (x0) '\
’ g =0
3y dx
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where xo €M, |, . 5 g ek (xo), ¢ e{i],---,ip} and y *(xo) is the

r
value of Y*(xo) at the point Tg,  *Tqe, & €D..

Proof: 1In accordance with (18a), let us specify the (e-opti-

mal) solution Y*(xo) of (6) in such a way that

$(xo,y¥(x0)) = min ¢(xo,y) . (24)
YEY

The point yI(x) can move, when X »>x,, X eDi, either inside of
the set ¥, or on its boundary.
If y;(xo) is interior to Y, then, by virtue of (24):

3¢(Xo:y;(xo))

=0 (25)

y

If the point yi(xo) is on the boundary of Y, then, evidently
vectors
*
* dyl(XO)

8y (xo) = ——g———— g
X

for all feasible vectors g generate the linear manifold
T(yi(xo)), tangent to Y at the point yi(xo). In this case the
30 (Xx.v. (x0))
<1
9y
of the optimality of yi(xo); that is

gradient will be orthogonal to T(y;(xo)) by virtue

3¢(X01Y§(Xo))

r Sy¥(xo)) =0 (26)
dy
for all Gy;(xo) eT(yz(xo)).
Finally, it is possible, that T(y¥(x,)) reduces to a single

point yi(xo):=const at some vicinity of x,. In that case,

*

dx
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For a more formal proof of the last two equalities, let us

suppose that the set Y is given by the system of inequalities:

£i(y) €0 (G=1,...,8)

where the functions fj :Rm~*R1 are continuously differentiable.

Let J(y) be the set of active constraints at the point y,

J(y) = {j|fj(y) =0,3=1,...,8}

and suppose that the gradients

af . (y*)
1 - j e J(y*)

3y

are linearly independent at the point y*. Then the optimality

conditions for the problem (24) can be written as

36 (x0,y¥ (x0)) S £.(y* (x0))
L = D, A (xo) —d 1 (27)
oy =1 J oy
where the Lagrange multipliers Aj(xo) satisfy the conditions
* = . *
Aj(xo)fj(yi(xo)) 0 ; xj(xo) >0 , fj(yi(xo)) <0
(3j=1,...,8)
If J(y;(xo)):=g, i.e. yI(xo) is an interior point of the
set Y, then all Aj(xo)==0 and (25) is true.
Now let
fj(yI(xo)) =0 ] e J(y;(xo)) £ 0 (28)

differentiate both parts of the equality (28) in the direction

ge:ii(xo). It is assumed, that x, eMi ee.q OF xoe:Di
r r



is:{i1--°ir}. In any case,

If . (y¥(x0)) dy¥ (xo)
] : gl =0 , 3o Iy xe)) . (29)
ay dx

If the rank of the matrix

of . (y*¥(xo))
ALyt (o)) = || H ;3 dlytxe)), k=1,...,m

Byk

is equal to m, then from (29) it follows that

dy; (Xo) _
_— g =0 , g € K, (xq)
dx =
If the rank of the matrix A(YI(XO)) is less than m, then

the system of equations (29) has a nonzero solution

dyz(xo)
——— g #0 (30)

dx

Multiplying both parts of the equality (27) from the right by
the vector of (30) and considering (29), one can assume that in

this case (26) holds. This completes the proof.

Theorems 3 and 4 specify the optimality conditions for prob-

lems (20) and (6). Now consider Problem 2.

Theorem 5. Let {x*,Y*(x)} be a solution of Problem 2. Then

the inequality

30 (x*,y¥ (x*))

/9] <0 (31)

90X
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holds for all ge‘ﬁo(x*)F]ﬁi(x*), where y*(x)‘*yz(x*), x T a*,

xeD., x*eM. . or x*eEWN, . zeld ,...,7 }.
rL-’ 1 oo 7 .,.,LJ 1.9 K P
7 r 7 r

If x* eDi, then the inequality (31) is replaced by the
equality.

The proof of this theorem follows from Theorems 3 and 4.
To connect the optimality conditions of Problem 2 stated in
Theorem 5, with optimality conditions of Problem 1 [(1),(2)],

let us prove the following assertion.

Theorem 6. Let xg € bi and Y{(x) be an arbitrary function
of Y. Then
min 0¢ (Xo,v (X0)) gl + 3¢ (X0,y (X0)) ) dy (Xo) g -
Y {x0) €Y (Xo) oX oy dx
3¢(Xo,yi(xo)) 3¢(Xo,yi(xo)) dyi(Xo)
= g+ ' g (32)
o9x oy dx

where g Eki(xo), Y(x)-*yi(xo), x> 2, X EDi’ ylxo) € Y(xy).

Proof: When x, eDi (i=1,...,N) the equality (32) holds
trivially, because in this case Y(x0)=:yi(xo).
Now let xos;Mij. The manifold Mij is the set of x, satis-

fying the relation
o (x,y; (x)) = ¢(x,yj(X)) '
or

F(x) = ¢(x,yi(x)) - ¢(x,yj(x)) =0

The plane tangent to Mij at the point X, is the set of g,
satisfying

dF(Xo)
I
dx
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and the gradient dF(x,)/dx is directed to the side of increase

of F(x).

If g eKj(xo), then

if geK,(xo), then

dF (xo) .\ <o . (34)
dx

From (33), (34) and (15), one can obtain (32). The case

Xo EMi ...: can be considered in a similar way-
r

Using Theorems 3, 6 and Definition 4, one can prove that

the equality

3¢(X01YI(X0))

[0} .
900 (%0) _ i [20(xe.y) ] - ,g (35)
3G yEY* (Xo) ERS ox

holds, where Y*(x;) is defined in (3), yi(x) is any of the 1-
eguivalent values of Y*(xy) in the domain D,s X eﬁi.

Now Theorem 6 can be restated as follows.

Theorem 7. Let a*, Y*(x) be a solution of Problem 1. Then

*
min _B_M Pef i 0
yeY* (x*) IxX

for all g QEO(x*).
The optimality conditions of Theorem 7 are given, for ex-

ample, in [2].
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6. Conclusion

The results given above allow us to develope methods which
V(x)} > {x*,Y*(x*)}, v+ both for ex-

ternal and internal operations of Max-Min problems. This permits

, v
realize the approach {x",Y

us to take into consideration the specific features of the prob-

lems and thus to develop efficient methods of their solution.
Evidently, these methods incorporate the usual scheme

{x”,v*(x")} > {x*,¥* (x*)}.

The author wishes to thank R. Mifflin for many helpful

comments and suggestions on this subject.
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