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ABSTRACT 

Probabilistic maturation reaction norms (PMRNs) with up to three explanatory dimensions 

were estimated for female North Sea plaice. The three-dimensional PMRNs reported here (1) 

are the first ones to be obtained for any organism, (2) reveal the differential capacity of 

alternative life-history state variables to predict the onset of reproduction, (3) document 

consistent temporal trends in maturation, and (4) help disentangle the contributions of genetic 

and plastic effects to these trends. We first show that PMRNs based on age and weight 

provide slightly more accurate approximations of maturation probabilities than PMRNs based 

on age and length. At the same time, weight-based PMRNs imply a much wider spread of 

maturation probabilities than length-based PMRNs. We then demonstrate that including 

condition as a third explanatory variable improves predictions of maturation probability. The 

resultant three-dimensional PMRNs for age-length-condition or age-weight-condition not 

only show how, at given size and age, maturation probability increases with condition, but 

also expose how this impact of condition decreases with age and has changed over time. Our 

analysis reveals several interesting temporal trends. First, it is demonstrated that, even after 

removing plastic effects on maturation captured by age, length, weight, and condition, 

residual trends towards maturation at younger ages and smaller lengths remain. Second, we 

find that the width of both length- and weight-based PMRNs decreased significantly over 

time. Third, age and condition are nowadays affecting maturation probabilities less than they 

did decades ago. We think that plaice is currently maturing at a very low age, size and body 

condition, and think that the narrow and steep reaction norms do not allow a strong 

continuation of the observed trends. All obtained findings are in good agreement with 

predictions from life-history theory based on the hypothesis of evolutionary change caused by 

heavy exploitation. 
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INTRODUCTION 

Combinations of ages and lengths at maturation strongly influence an individual’s expected 

reproductive success, and thus a stock’s reproductive potential. Since the allocation of energy 

to reproduction decreases somatic growth (e.g., Reznick 1983), the trade-off between 

reproduction and growth implies a trade-off between current and future reproduction which 

depends on the level of mortality at different life stages (Bell 1976, 1980, Heino & Kaitala 

1999). Maturation is a complex physiological process influenced by bioenergetic factors such 

as resource availability and body reserves, which, in turn, are affected by the local 

environmental and individual experiences. The age or length at which most species mature is 

therefore not fixed, but is described by a reaction norm that can be characterized either by a 

switch curve deterministically relating maturation age to maturation length (Stearns & Koella 

1986, Heino et al. 2002a), or rather more realistically, by curves of of age- and size-dependent 

maturation probabilities (Heino et al. 2002a). Sets of such maturation probabilities are known 

as probabilistic maturation reaction norms, or PMRNs. 

It is helpful to highlight that maturation reaction norms are bivariate reaction norms 

and thus fundamentally differ from the more widely familiar univariate reaction norms 

describing how a single phenotypic character varies with a single environmental variable. 

Maturation reaction norms, by contrast, describe how two phenotypic characters – age and 

length at maturation – are jointly affected by a single environmental variable – the average 

growth rate of individuals before maturation. Environmental effects are here manifested in the 

variation of length at age, i.e., in the slopes of growth trajectories. The latter may in turn 

depend on many other environmental variables, including temperature and the abundances of 

food items or of competitors: in this way, growth rates or lengths at age conveniently integrate 

a multitude of factors of the physical and biotic environment that are eminently relevant for 
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the studied organism. This physiological integration naturally accounts for the differential 

impacts of - and potentially complex interactions between- these factors, which as such would 

typically be very difficult to pry apart empirically. Harnessing individual-level explanatory 

variables beyond age and length for describing maturation probabilities more accurately is 

conceptually straightforward (Heino et al. 2002a, Van Dooren et al. 2005) but has not been 

attempted before. 

The selection pressures on, and resulting evolution of, maturation reaction norms are 

determined by environmental conditions such as size-dependent mortality rates (Heino & 

Kaitala 1999) and resource availability (Siems & Sikes 1998). In general, ecological settings 

with low survival and slow growth among potentially reproducing individuals evolutionarily 

favour high reproductive effort at early ages (Reznick et al. 1990, Hutchings 1993, Reznick et 

al. 1997). In particular, high fishing mortality imposed on reproducing fish may cause 

evolutionary changes in maturation reaction norms by selecting for genotypes that effectively 

produce more offspring under conditions of heavy fishing (Borisov 1978, Law 2000, Heino & 

Godø 2002). Superimposed on these evolutionary effects of fishing, other changes in the 

physical and biotic environment occur, such as temperature fluctuations and changes in food 

conditions, which are also bound to influence the processes of growth and maturation (Law 

2000). Disentangling these effects of phenotypic plasticity from any underlying genetic 

changes in maturation probabilities thus becomes an important challenge (Rijnsdorp 1993). 

During the 20th century, maturation in the heavily exploited North Sea plaice 

Pleuronectes platessa L. has shifted towards younger ages and smaller lengths at 50% 

maturity (Rijnsdorp 1993, Grift et al. 2003). Statistical analyses show that improved food 

conditions caused increased growth rates during the second part of the 20th century (Rijnsdorp 

& Van Leeuwen 1992, 1996), resulting in earlier maturation. Above and beyond this effect of 

phenotypic plasticity, evidence suggests that the maturation schedule of North Sea plaice has 
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also undergone evolutionary changes (Rijnsdorp 1993, Grift et al. 2003). More specifically, 

the analysis of PMRNs for age and size at maturation (Rijnsdorp 1993, Grift et al. 2003) 

supports the hypothesis of fisheries-induced evolution towards lower ages and lengths at 

maturation and suggests a picture in which a persistent long-term trend resulting from genetic 

and plastic responses to faster growth are superimposed on short-term fluctuations originating 

from residual plastic responses. Grift et al. (2003) showed that, while length was an important 

cue for maturation, other factors, such as water temperature and food conditions, may also 

play important roles in the maturation process of North Sea plaice. 

In this article we estimate PMRNs based on different combinations of age, length, 

weight, and condition, in order to take best advantage of all information available for 

understanding the maturation schedules of female North Sea plaice, and for disentangling 

genetic and plastic changes of these schedules. We thus focus on two aspects of the 

maturation process: first we describe the roles of weight and condition in the maturation 

process, either in place of or in combination with length and second, we use the results to 

investigate if the maturation process has changed due to fisheries induced change. When 

modelling a population’s maturity status, length is most often used as a measure of size, and 

only few studies (Cook et al. 1999, Bromley 2003) have used weight. Weight may be 

expected, however, to provide a more accurate cue for maturation than length, because it more 

directly reflects the physiological status and body reserves of fish. Reflecting the importance 

of bioenergetics for maturation, condition – often measured by morphometric condition 

indices such as Fulton’s condition factor K (weight per cubed length) – can have a positive 

influence on the fraction of mature fish, as was shown for salmonids (Bohlin et al. 1990, 

Rowe & Thorpe 1991, Simpson 1992, Bohlin et al. 1994), walleye Sander vitreus (Henderson 

& Morgan 2002), cod Gadus morhua (Marteinsdottir & Begg 2002), and American plaice 

Hippoglossoides platessoides (Morgan 2004). We estimate maturation probabilities in a three-
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dimensional space, in which the effects of body size, age, and condition are considered 

simultaneously. Several studies estimated the probability of being mature at a given age, 

length and condition also (Henderson & Morgan 2002, Morgan 2004) but whereas earlier 

studies focused on probabilities of being mature, the PMRN approach helps to investigate 

probabilities of becoming mature. This means that in our analyses confounding effects 

influencing maturation via growth and survival can be separated from those effects that 

influence maturation directly. The PMRNs with three explanatory dimensions presented here 

are the first ones obtained for any organism. 

 

MATERIAL AND METHODS 

North Sea plaice 

Plaice is a sexual dimorphic iteroparous broadcast spawner following a capital spawning 

strategy (Rijnsdorp 1989, Rijnsdorp & Witthames 2005). It has been a target species of the 

mixed demersal fisheries in the North Sea since the start of the industrial revolution in the 

second half of the 19th century (Rijnsdorp & Millner 1996). Over the study period, mortality 

rates imposed by fishing have been high, exceeding the instantaneous natural mortality rate 

(of about 0.1 year–1) by a factor of two to four. From the 1950s until 1980, fishing mortality 

rate (ages 2-10) increased from 0.2 year-1 to 0.4 year-1 after which it stabilized around this 

level. The exploitation pattern has been dome shaped with a peak in fishing mortality rate at 

age 5 (Grift et al. 2003). Superimposed on changes in fishing mortality, food availability has 

increased, leading to accelerated growth of plaice smaller than 30 cm (Rijnsdorp & Van 

Leeuwen 1992, 1996). 
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Data collection 

We use data on female plaice from the Dutch sampling programme for landings by the fishing 

fleet, carried out since 1957: a detailed description of this data is provided in (Grift et al. 

2003). In addition to the date of landing and the geographical position of the catch, length 

(mm), total weight (g), sex, maturity stage (1: immature; 2: ripening; 3, 4, 5: spawning; 6: 

nearly spent; 7: spent; with stages 2-7 thus referring to mature individuals; (Rijnsdorp 1989), 

and age (years, using January 1 as the nominal birthday) were recorded. The age of fish was 

determined from the pattern of growth zones in the otoliths under the assumption that each 

zone corresponds to one year. A stratified random subset of otoliths were used to calculate 

yearly length increments of individual females by using otolith back-calculations. The age 

determination and otolith back-calculation methods have been validated (Rijnsdorp et al. 

1990). 

 

Data selection 

Only data of cohorts from 1955 onwards were used, since this cohort was the first that 

occurred in the sampling programme from age 2 onwards. Only data collected in the first 

quarter of each year were selected, because during this period adult fish return to their 

spawning grounds in the southern-eastern North Sea. Rijnsdorp (1989) showed that samples 

from commercial landings during the spawning season allow for a reliable estimate of the 

maturity-length and maturity-age relationships. Sample locations were restricted to the south-

eastern North Sea (51°–56° N, east of 2° E, and 51°–53.5° N, 1°–2° E. Data of females of 

ages 2–6 years were used, because younger female plaice are not landed and because at age 7 

all females were mature. We only used data from female plaice, because males mature at a 

size well below the minimum landing size of 27 cm (Rijnsdorp 1989). In total, data on the 

length, weight, age, and maturity status of 18,416 females were available for analysis. For the 
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analysis of annual length increments, back-calculated lengths of 2,429 females were used 

from an updated dataset  from Rijnsdorp and van Leeuwen (1996). 

 

Normalization of observed weights 

Weights of mature females strongly and systematically vary within the spawning season, due 

to the seasonal cessation of feeding and the spawning of eggs (Figure 1). The observed 

weights of mature females of different maturity stages were therefore adjusted to account for 

these changes. The dependence of weight (W in g) on length (L in mm) and year (Y) for the 

different maturity stages (M = 2 to 7) were analysed by a linear model, using log-transformed 

weights and lengths, 

log W ~ log L + FM + Y + (log L × FM) + (log L × Y) + (FM × Y),      (1) 

where weight, length, and year are continuous variables, and the maturity stage (FM) of 

mature females is a class variable. This model describes weights well (R2 = 0.97, 21 df) and 

was thus used to normalize the observed weights of mature females, as if they had all been 

collected when in maturity stage 2 (ripening). In other words, the normalized weight is 

obtained by adding to the observed weight the difference between observed weight and 

weight predicted for an individual with the same length but with maturity stage 2 in the same 

year. Weights of immature fish were not corrected. In our subsequent analysis, we have thus 

controlled for otherwise unaccounted egg mass and for the metabolic loss of body weight that 

occurs because plaice do not feed during the spawning season (Rijnsdorp & Ibelings 1989). 

 

Estimation of Maturity ogives 

The fraction of mature fish of a particular age or size is customarily described by maturity 

ogives. In our analysis, these ogives were estimated using logistic regression, with cohort, 

age, weight, length, and condition as independent variables. Assuming a binomial error 
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structure, the fraction of mature females (O) is logit transformed, logit(O)= log[O/(O–1)]. 

Ogives were modelled using the GENMOD procedure of the SAS software system in which 

the log-likelihood functions with respect to the regression parameters are maximized (Allison 

1999). Four ogive models were used, and their performance to explain the fraction of mature 

females compared, to comprehensively investigate the effects of cohort, age, weight, length, 

and condition, 

logit(O) ~ L + A + FC + (L × A) + (L × FC) + (FC × A),        (2) 

logit(O) ~ W + A + FC + (W × A) + (W × FC) + (FC × A),        (3) 

logit(O) ~ L + K + A + FC + (L × K) + (L × A) + (L × FC) + (K × A) + (K × FC) + (A × FC),  (4) 

logit(O) ~ W + K + A + FC + (W × K) + (W × A) + (W × FC) + (K × A) + (K × FC) + (A × FC)

               (5) 

where length (L), weight (W), condition factor (K = W/L3), and age (A) are continuous 

variables, and cohort (FC) is a class variable. The additional value of including condition in 

models (4) and (5) was statistically tested by computing a likelihood-ratio test statistic and the 

Akaike Information Criterion (AIC) in which model (4) was compared to model (2), and 

model (5) was compared to model (3). By using Fulton’s condition factor we thus assumed a 

cubic relationship between length and weight. This assumption is reasonable because the 

exponent in the length-weight relationship is 3.2 for female plaice (linear model for all data, 

18416 observations, P<0.0001, R2=0.96). To check the validity of the assumption, all 

analyses were also executed with the length independent condition factor (K = W/L3.22) but 

this did not lead to different results or conclusions. 

Whether these models were linear on the logit-scale was evaluated by testing the 

effects of logarithmic and square-root transformations of length and weight and by using the 

technique of fractional polynomials (Royston & Altman 1994, Hosmer & Lemeshow 2000). 

Logarithmic and square root transformations did not lead to an increase in the fraction of 
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deviance explained (R2). Fractional polynomials resulted in a significant (P < 0.0001) but 

very small absolute increase of R2 (less than 0.01). As the parameter estimates of such a 

model had large standard errors (more than 50% of the parameter estimate), we chose to use 

the generalized linear models specified above. 

 

Estimation of probabilistic maturation reaction norms 

In view of the data available for plaice, the probability of maturation at a certain age and size 

needs to be estimated with a method based on maturity ogives and annual size increments. 

Here size can be given by either length or weight, S = L, W. Based on the probability O of 

being mature at age A and size S, given by the maturity ogive O(A, S), the probability P of 

maturation at age A and size S is given by (Barot et al. 2004a): 

P(A, S) = [O(A, S) – O(A–1, S–δS)] / [1– O(A–1, S–δS)],     (6) 

where (A-1) indicates the age previous to the one for which we estimate the probability to 

mature and (S-δS) being the size increment between age (A-1) and age (A). The method 

assumes iteroparity which is the case for North Sea plaice. We used length and weight as 

proxies for measures of size. We also considered a model where maturation probability 

depends on age, size (s, length or weight) and condition (K): 

P(A, S, K) = [O(A, S, K) - O(A-1, S-δS, K-δK)] / [1- O(A-1, S-δS, K-δK)]  (7) 

Estimation of the maturation probabilities for each cohort and age comprised three 

steps (Grift et al. 2003, Barot et al. 2004a): (A) estimation of maturity ogives; (B) estimation 

of annual increments in length, weight, and condition; and (C) estimation of maturation 

probabilities and thus of PMRNs. Two further steps then consisted of (D) estimating 

confidence limits around the estimated PMRN midpoints using a bootstrap method, and (E) 

testing the significance of trends in maturation probabilities. The general rationale and 
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assumptions underlying this procedure are described in Barot et al. (2004a,b; see also Grift et 

al., 2003). Our procedure’s five steps are described in more detail below. 

(A) Maturity ogives. Whereas models (2), (3), (4), and (5) were used to investigate the 

effects of cohort, length, age, weight, and/or condition on the maturation process, simpler sub-

models were used for estimating maturity ogives and maturation probabilities. The model 

selection was based on the significance of variables (P < 0.05) and on the standard errors of 

their parameter estimates (Table 1). Whereas models for age and size were constructed with 

cohort (FC) as a class variable, models with age, size and condition were constructed with 

cohort (C) as a continuous variable, to reliably reveal trends in the resultant three-dimensional 

PMRNs.  

(B) Annual increments. Annual length increments δL were estimated as the differences 

in mean length between two consecutive ages of a cohort. The mean length at each age was 

calculated for each cohort from the back-calculated lengths. Annual weight increments δW 

and annual changes δK in condition factor between age groups of cohorts were estimated 

based on the otolith data combined with length-weight relationships estimated from the 

maturity data. From the otolith data, lengths at all ages for all individual fish for which 

otoliths had been measured were retrieved. Next, length-weight relationships were estimated 

for each year using a linear model with log-transformed weights and lengths. Fish below age 

4 were not representative for the length-weight relationship in the population, because the 

fishery selects for the larger individuals of these age groups. Relationships were thus based on 

ages 4–10. There was a significant (P < 0.0001) but small (absolute increase of R2 by 0.06) 

effect of age on the length-weight relationship. We thus chose to omit this small effect of age 

and extrapolated length-weight relationships to ages 1–3. With these relationships, length at 

age from otolith readings was transformed to weight at age and condition at age for ages 1–6 

for each individual fish. Then, the average weight and condition of each age of each cohort 
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was calculated and the annual weight increments δW and changes δK in condition factor were 

estimated as the differences in mean weight and condition, respectively, between two 

consecutive ages of a cohort. We assumed that increments were similar for all immature and 

mature individuals within an age group of a particular cohort. Obviously this assumption is 

not accurately met in a natural population, but Barot et al. (2004a) showed that the method is 

not sensitive to violation of the assumption. 

(C) Maturation probabilities. Equations (6) and (7) were used to estimate the 

probabilities of maturation for each cohort, age, and size class, with a resolution of 1 cm for 

length and of 1 g for weight. Linear interpolation was used, when necessary, to estimate the 

combinations of explanatory variables that yield a specific maturation probability (e.g., 10%, 

25%, 50%, 75%, 90% denoted below by subscripts P10, P25, P50, P75, and P90 

respectively). In particular, the term ‘reaction norm midpoint’ applies to the combinations of 

length, weight, and/or condition that yield a maturation probability of 50% at a certain age. 

(D) Confidence limits. In this step, a bootstrap analysis was carried out. A new dataset 

was created by choosing observations of individual fish chosen randomly from the maturity 

and otolith data with replacement. This selection was stratified by age and cohort such that the 

new dataset had the same number of samples per age and cohort. With the new dataset, the 

reaction norm midpoints were calculated for each age and cohort. This procedure was 

repeated 1000 times and the confidence limits of the reaction norm midpoints were 

approximated as the 2.5 and 97.5 percentiles of the distribution of the 1000 midpoints of each 

age and cohort (Manly 1997). 

(E) Trends in maturation probabilities. The effect of cohort on reaction norm 

midpoints (WP50) of the two-dimensional PMRNs for age and weight was analysed per age 

group using a linear model with cohort as a continuous variable. In this model, the estimated 

reaction norm midpoints were weighted with the inverse of the variance of each midpoint, 
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with the variance estimates being obtained from the bootstrap analysis. Because three-

dimensional PMRNs were constructed with cohort as a continuous variable, and hence all 

parameters in these ogive models were continuous parameters, we could demonstrate trends 

by only showing resulting PMRNs from the beginning and end of our study period. We chose 

to show results from cohorts 1960 and 1994 because from these cohorts, sufficient fish were 

sampled to illustrate how observed sizes and conditions fit in the estimated PMRNs. 

 

RESULTS 

Our analysis shows that individual weight is a slightly better variable than length for 

explaining the fraction of mature female plaice (Table 1). The maturity ogive model with 

cohort, age, and length (model 2, 123 df) explained 44% of the deviance, whereas the 

analogous model with weight instead of length (model 3, 123 df) explained 48% of the 

deviance. 

Including condition in addition to length or weight resulted in small increases of 

predictive power. The model with cohort, age, length, and condition (model 4, 165 df) 

explained 51% of the deviance, whereas the analogous model with weight instead of length 

explained 52% of the deviance (model 5, 165 df). Table 1 shows that when length was used as 

the first component in the build-up of model (4), inclusion of a single term for condition 

explained a statistically significant extra 6.1% of the deviance. Analogously, when weight 

was used as the first component in the build-up of model (5), inclusion of a single term for 

condition explained an additional 1.1% of the deviance. Models in which condition was 

included (models 4 and 5) performed significantly better than models without (models 2 and 

3; lower AIC values, significance based on chi-square test for likelihood-ratio test statistic, 

165 df, P < 0.0001). 
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All estimated PMRNs turned out to have negative slopes, such that the weight (and 

length) at which plaice attains a certain probability of maturation decreases with age: in other 

words, at the same weight (or length), older females have a higher maturation probability than 

younger ones (Figure 2). 

PMRNs for weight and age are much wider than PMRNs for length and age (Table 2). 

The difference between WP90 and WP10 (averaged across all cohorts and expressed relative to 

WP50 on a logarithmic scale) ranges between 1.34 and 2.26 for the different age groups, 

whereas the corresponding difference between LP90 and LP10 only ranges between 0.41 and 

0.47 (see Table 2 for details). The wider PMRNs for weight are to be expected given the 

curvi-linearity in the weight-length relationship. This can explain the difference in age group 

3 and perhaps 4, but not in the older age groups. The ratio of the width of the PMRNs for 

weight and length was close to the slope of the weight-length relationship (3.2) in age group 3 

and 4 (2.9 and 3.4, respectively), but exceeded this slope in age group 5 and 6 (4.3 and 5.2, 

respectively). Moreover, the width of PMRNs for weight and age increases sharply with age, 

whereas the width of PMRNs for length and age is almost constant across all ages.  

Three-dimensional PMRNs show the additional effect of condition, on top of size and 

age, on the probability to mature. Results are shown for two selected cohorts only (Figure 3). 

The isoprobability surfaces of this PMRN are tilted along the condition axis, resulting in a 

lower SP50 at higher condition. This corroborates the expectation that female plaice of a 

certain length or weight and age will have a higher probability of maturation if they are in 

better condition. Interestingly, this facilitating effect of good condition on maturation 

probability decreases with age. This can be seen more clearly when the three-dimensional 

PMRNs are projected on the length-condition plane (Figure 4): in both of the shown cohorts, 

the PMRN gets steeper with increasing age, indicating a weaker effect of condition on the 

probability of maturation. PMRNs based on weight give analogous results (Figure 4). 
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Our analysis also revealed three interesting temporal trends, in the form of significant 

cohort effects. First, over the whole period and for all ages, the weight (and length) at which 

fish had a certain maturation probability decreased significantly (Figure 6; R2 = 0.37 to 0.54; 

P < 0.0001 for all ages). Second, the width of both length- and weight-based PMRNs 

decreased significantly over time (Figures 5 and 7; P < 0.01 for all ages, except for age 2 

where P = 0.07 for trend in WP75–WP25). Third, the influence of both age and condition on 

maturation probability has decreased. The decreased contribution of age can be inferred from 

the fact that in both length-based and weight-based three-dimensional PMRNs the midpoints 

of all ages have converged (Figure 4). The decreased contribution of condition can be inferred 

from the fact that both length-based and weight-based PMRNs have become steeper (Figures 

4 and 5). There was a significant (P < 0.0001) but very weak (R2=0.15 %) and small (0.038 g 

/ cm-3 per cohort) temporal trend in the average condition. On average, the condition factor 

increased with 1.5 % over the 41 cohorts studied.   

 

DISCUSSION 

Weight versus length as a measure of size 

Weight as a measure of size for predicting maturation probabilities offers one advantage over 

length, in that ogive models for age and weight performed slightly but significantly better 

than ogive models for age and length. Although using weight as a measure of size thus 

yielded models that explained more variation based on the same degrees of freedom, this 

approach suffers from at least two drawbacks. 

First, weight can vary much more significantly than length. The resulting fluctuations 

may reflect, for example, food conditions, reproductive stage, and/or diseases. While these 

changes may well be caused by factors that are relevant for the onset of maturation (such as 
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the level of body reserves), they may equally well be caused by factors that are completely 

irrelevant in that regard (such as current stomach content or the accumulation and release of 

eggs). In the analysis reported here, measured weights had to be normalized. While the need 

for this normalization seems incontrovertible, having to take decisions about how to 

accomplish it in practice is inconvenient, and the uncertainty thus introduced is practically 

impossible to account for in the subsequent analyses. Length, in contrast, provides a more 

robust measure of size, as it is less sensitive to environmental fluctuations. 

Second, length can only increase during the life of a fish, while weight can readily 

decrease. Since the state of maturity can be reached via diverse growth trajectories (Bernardo 

1993), and since maturation probabilities average across all of them, the extra fluctuations in 

weight are bound to increase uncertainty in the estimation of maturation probabilities. Only 

few studies of maturation processes actually use the weight of fish as a measure of size (e.g., 

(Cook et al. 1999, Bromley 2003), but these do not account for negative slopes in the growth 

trajectory. In accordance with these considerations, our results show that the relative widths 

of PMRNs for age 5 and 6 are much higher when based on weight instead of on length. We 

also found that the widths of weight-based PMRNs increase sharply with age, which, for 

example, makes the extrapolation and interpolation of maturation probabilities across ages 

more problematic than it is for length-based PMRNs.  

Considering these extra difficulties, and balancing them against the only slightly 

elevated predictive power afforded by weight-based PMRNs in female plaice, in our opinion 

strengthens the case for length-based PMRNs. 

 

The impact of condition on maturation 

The three-dimensional reaction norms confirm that good condition has a significant and 

positive effect on maturation, in line with earlier research (Rowe & Thorpe 1991, Bohlin et al. 
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1994, Morgan 2004). While this is just as expected based on standard bioenergetic 

considerations, it has to be pointed out that in the present study an entirely different 

explanation based on the timing of measurements might also apply, as is explained below. 

In the selected data, maturation stage was measured during the spawning season, from 

January to March, rather than at the time at which plaice actually mature or initiate their 

maturation process: maturation starts in summer, when oocytes become vitellogenic 

(Rijnsdorp & Witthames 2005). Both maturing and non-maturing plaice will still grow 

considerably thereafter, with maturing fish partitioning their surplus energy between somatic 

growth and energy reserves for reproduction, while the latter investment naturally is absent in 

non-maturing fish. Since investment into reproduction increases the weight, but not the 

length, of fish at the time of spawning, it results in a higher condition factor K. Indeed, mature 

female plaice had a significantly higher condition factor than immature ones (comparison of 

means, P < 0.0001, K = 0.0102 and 0.0094 g cm–3 respectively). This effect may contribute to 

the observed positive effect of condition on the probability of maturation. In this alternative 

interpretation, the higher condition factor is not the cause but rather the consequence of 

maturation. Data on other measures of condition, such as liver weight, are not available for 

North Sea plaice. In flatfish, body condition is, however, a better indicator for the condition 

than liver weight because energy reserves are mainly stored in the soma (Dawson & Grimm 

1980, Morgan 2004), in contrast to for instance gadoids (Lambert & Dutil 1997, Marshall et 

al. 1999).  

Our finding that the facilitating effect of better condition on maturation decreases with 

age means that particularly young female plaice mature at earlier ages and smaller lengths 

when they have above-average condition, while older females in good and bad condition 

instead mature similarly. This agrees with observations on walleye, for which a good 

condition was found to increase the probability of maturation for younger females, while 
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older females matured even if they were in poor condition (Henderson & Morgan 2002). 

Similarly, turbot Scophthalmus maximus had a higher probability to mature when they were 

fed well before maturation (Bromley et al. 2000). These findings can be interpreted by 

supposing that all these fish can mature at low age and small length only if they have ample 

surplus energy stores, whereas at higher ages they mature anyway, even if they suffer from 

relatively low energy reserves and even though the extra costs of reproduction may further 

decrease their survival rate. An understanding of these patterns is likely to relate to the so-

called ‘desperado’ effect (Grafen 1987), through which an individual chooses a risky strategy 

due to a lack of alternative options. 

 

Interpretation of maturation trends 

Trends in the maturation process of North Sea plaice suggest that the trade-off between 

current and future reproduction of female plaice may have shifted to increased current 

reproduction by maturing at a very low age, size, and body condition, thus decreasing the 

potential for future reproduction. This conclusion is based on three clear temporal trends: for 

all ages, the weight and length at which fish had a certain maturation probability decreased 

significantly, the width of both length- and weight-based PMRNs decreased significantly over 

time and the influence of both age and condition on the maturation probability has decreased. 

Although the trend in the weight at maturation (Fig. 6) was not corrected for any trend in 

condition factor, we think that the small increase in average condition could only explain a 

minor part of the decreased WP50. Fig. 4 shows that the 1.5 % by which the condition factor 

increased over 41 cohorts would lead to a decrease in WP50 of 3-4 % whereas over all cohorts, 

WP50 decreased by 32-37 %. The observed trends are in good agreement with a general 

prediction from life-history theory: if fish are faced with high adult mortality, such as in the 

North Sea plaice population, investment into future reproduction may not pay and, 
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consequently, selection will not only favour earlier reproduction but also higher reproductive 

effort at age, at the expense of body growth and/or survival (Heino & Kaitala 1999). We do 

not know if plaice is currently maturing at the lowest possible age, size and body condition, 

but we think that the narrow and steep reaction norms do not allow a strong continuation of 

the observed trends. 

In a study based on the same dataset as was used here, an analysis trying to elucidate 

explicit fisheries-induced changes in reproductive investment in North Sea plaice remained 

inconclusive (Rijnsdorp et al. 2005). A review of fecundity and ovary weight data of female 

plaice from the literature, however, tentatively suggested that an increase in reproductive 

investment occurred since the late 1940s. This finding is consistent with expectations based 

on the hypothesis of fisheries-induced evolutionary change (Rijnsdorp et al. 2005). 

The question is to what extent the observed changes in the maturation process are due 

to phenotypic plasticity or to genetic evolution. Our method has dealt with the phenotypically 

plastic response to varied growth and to variations in body condition, revealing a residual 

trend that, in the absence of alternative equally plausible explanations, suggests evolutionary 

changes in maturation. Possible factors that may influence the process of maturation other 

than through their effects on growth and condition, are temperature (Grift et al. 2003, Dhillon 

& Fox 2004, Dembski et al. 2006) and social factors (Sohn 1977, Hobbs et al. 2004). 

No observational study can exclude – as a matter of principle – the possibility that 

uncontrolled, and potentially as yet unimagined, factors might fully account, through 

phenotypic plasticity, for the observed phenotypic trends in maturation. A conclusive proof of 

genetic evolution would require explicit data on changes in the sequences of genes together 

with functional insights into how such genetic changes affect maturation. Similarly, no 

observational study can ever unambiguously demonstrate that fisheries-induced selection is 

the cause of maturation trends, since observational studies can achieve no more than the 
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establishment of suggestive correlations. Yet the present analysis, in conjunction with the 

consistency of patterns found in many studies based on other exploited species and on 

different parts of the oceans (e.g., (Heino et al. 2002b, Barot et al. 2004b, Olsen et al. 2004, 

Barot et al. 2005, Olsen et al. 2005), leads us to suggest that fisheries-induced evolution 

indeed offers the most parsimonious explanation of the residual trends reported here. 
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Tables 

Table 1. Results of maturity ogive models (2), (3), (4), and (5). The columns labelled R2 show 

the deviance additionally explained as terms in these models are successively introduced from 

one row to the next (L: length; A: age; C: cohort; W: weight; K: condition factor). All terms 

where highly significant (P < 0.001), except those in italics (P > 0.10). Terms in bold were 

selected for the maturity ogive models used in the estimation of PMRNs where models (4) 

and (5) were adapted such that cohort was treated as a continuous variable. The lower rows 

show the R2 of the complete model (Total) and of the model with selected terms only (Total 

selected), and the value of the Akaike information criterion (AIC). 

Model 
(2) 

R2 (%) Model 
(3) 

R2 (%) Model 
(4) 

R2 (%) Model 
(5) 

R2 (%)

L 38.5 W 43.7 L 38.5 W 43.7

A 1.4 A 1.1 K 6.1 K 1.1

C 2.2 C 2.2 A 2.3 A 2.3

L x A 0.2 W x A 0.0 C 2.7 C 2.6

L x C 0.8 W x C 0.7 L x K 0.0 W x K 0.0

A x C 0.6 A x C 0.7 L x A 0.1 W x A 0.0

    L x C 0.6 W x C 0.6

    K x A 0.0 K x A 0.0

    K x C 0.0 K x C 0.4

    A x C 0.7 A x C 0.7

Total 44  48  51  52

Total 
selected 

44  47  48  48

AIC 13129.2  11865.9  11250.0  11234.3
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Table 2. Probabilistic widths of length- and weight-based PMRNs. Probabilistic widths are 

expressed on a log-scale, relative to the average value of the reaction norm midpoint, LP50 or 

WP50. Widths are averaged across all cohorts for each age group. The most right column 

presents the ratio between the width of weight and length based PMRNs. 

Age PMRN for age and length PMRN for age and weight Ratio 

 LP50 (cm) log LP90 / LP50 
– log LP10 / LP50 

WP50 (g) log WP90 / WP50 
– log WP10 / WP50 

(width weight /  
width length) 

2 38.6 0.47  453 n.a. n.a. 

3 34.6 0.45  357 1.34 2.94 

4 32.3 0.43  314 1.48 3.43 

5 30.7 0.41  269 1.75 4.27 

6 29.7 0.43  239 2.26 5.22 



Three-dimensional reaction norms for plaice 27 

 

Figures 

80

100

120

Ja
n

Fe
b

M
ar

A
pr

M
ay Ju

n

Ju
l

A
ug

S
ep O
ct

N
ov

D
ec

50 cm
40 cm
30 cm

R
el

at
iv

e 
w

ei
gh

t (
%

 o
f a

ve
ra

ge
)

Month  

Figure 1. Seasonal changes in the weight of mature female plaice, illustrated for three 

lengths. For each month and length, weights relative to the yearly average weights were 

averaged across ages 4 to 10 and years 1990 to 1999. The hatched vertical line indicates the 

end of the first quarter, to which data used in this study were restricted. 
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Figure 2. Probabilistic maturation reaction norms (PMRNs) and growth trajectories for 

weight and age. Weights at which the probability of maturation reaches 10%, 50%, and 90% 

(WP10, WP50, and WP90) are shown as black curves of increasing thickness. Growth trajectories, 

depicted as grey curves, are based on averaging age-specific weights across the cohorts 

indicated for each panel. Values of WP90 for age 2 in all periods and for age 3 in the first 

period could not be estimated. 
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Figure 3. Three-dimensional probabilistic maturation reaction norms (PMRNs) for age, size, 

and condition, with size being measured as either length (top row) or weight (bottom row). 

The shown midpoint surfaces indicate the combinations of age, size, and condition for which 

maturation probabilities equal 50% for the cohorts of 1960 (left column) and 1994 (right 

column). While these figures transparently highlight the three-dimensional nature of the 

estimated PMRNs, they are difficult to read. The resultant contour plots in Figures 4 and 5, 

based on the same information, prove to be more informative. 
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Figure 4. Projections of three-dimensional probabilistic maturation reaction norms (PMRNs) 

for age, size, and condition onto the size-condition plane, with size being measured as either 

length (top row) or weight (bottom row). Reaction norm midpoint lines are shown for ages 2 

to 6 for the cohorts of 1960 (left column) and 1994 (right column). These lines thus indicate, 

separately for each age, the combinations of size and condition for which maturation 

probability equals 50%. Filled circles indicate the median size and condition factor for each 

age group in the cohort (observations for age-6 females did not occur in the dataset for either 

cohort). 
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Figure 5. Projections of three-dimensional probabilistic maturation reaction norms (PMRNs) 

for age, size, and condition on the size-condition plane, with size being measured as either 

length (top row) or weight (bottom row). Contours for 10%, 25%, 50%, 75%, and 90% 

maturation probability are shown for age-3 of cohorts 1960 (left column) and 1994 (right 

column). Open circles indicate the median size and condition factor for immature age-3 

females in the cohort, while the attached whiskers indicate the corresponding 10% and 90% 

percentiles. Filled circles and attached whiskers show the same information restricted to 

mature females. 
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Figure 6. Trends in reaction norm midpoints WP50 (filled circles) and 95% confidence limits 

(error bars) for ages 2 to 6 of all cohorts. Trends in midpoints, based on a linear model, are 

highlighted by continuous lines. 
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Figure 7. Trends in the width of probabilistic maturation reaction norms (PMRNs) for age 

and weight (open circles and thin line) and for age and length (filled circles and thick line). 

These trends are illustrated for age 3 (R2= 0.15 for WP75–WP25; R2=0.31 for LP75–LP25). 
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