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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 119
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The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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1  Introduction 

Attempts at comprehending the structures of ecological communities have a long history in 

biology, reaching right back to the dawn of modern ecology. A seminal debate allegedly oc-

curred between early-twentieth-century plant ecologists Frederic E. Clements and Henry A. 

Gleason. Textbooks have it (e.g., Calow 1998: 145) that Clements viewed ecological commu-

nities as being structured by rich internal dependencies, akin to organisms (Clements 1916), 

while Gleason held that members of ecological communities were relatively independent of 

each other, filling ecological niches provided by the abiotic environment (Gleason 1926). 

While the actual approaches of these two luminaries of plant ecology were more complex 

than this well-worn caricature suggests (Eliot, in press), their purported positions conven-

iently established an important conceptual continuum for the mechanistic interpretation of 

community structures observed in nature. 

Modern echoes of this old debate can be found in notions of niche construction (Odling-

Smee et al. 2003), leaning towards the Clementsian end of the spectrum, or in the neutral the-

ory of biodiversity and biogeography (Hubbell 2001), which is more in line with a Gleasonian 

perspective. Like in many other fundamental disputes in ecology, neither side turns out to be 

simply right or wrong. Instead, disagreements of this kind tend to be resolved at a higher level 

– by recognizing, firstly, that the original controversy was based on unduly generalized and 

polarized claims, and secondly, by refocusing scientific attention on elucidating the specific 

factors and mechanisms that push ecological systems towards either end of the intermediary 

continuum. Below we will propose such an overarching notion for reinterpreting the 

Clements-Gleason debate. 

Early theoretical models of community structure were based on the simplifying concept of 

randomly established ecological communities (May 1973). This first wave of models sug-
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gested that larger random communities were less likely to possess stable fixed-point equilibria 

than smaller ones – thus giving rise to yet another long-lasting debate in ecology, about the 

relationship between community complexity or diversity on the one hand, and community 

stability or productivity on the other (e.g., Elton 1958; McCann 2000). A second wave of 

models subsequently imbued such investigations with a higher degree of ecological realism 

by accounting for the historical route through which new ecological communities are assem-

bled from scratch, and considering more than only infinitely small community perturbations 

(Post and Pimm 1983; Drake 1990; Law 1999). These assembly models usually relied on the 

notion of a species pool from which individual species are drawn successively and at random, 

mimicking the arrival of immigrants from outside an incipient community. A third, much 

more recent, wave of models rises above considering mere immigration from such a pre-

defined species pool, by trying to understand the potential of natural selection for shaping the 

dynamics and structures of ecological communities (Caldarelli et al. 1998; Drossel al. 2001; 

Loeuille and Loreau 2005; Ito and Ikegami 2003, 2006). Together, these alternative suites of 

models suggest that community structures in ecology can only be fully comprehended when 

processes of interaction (first-wave models), immigration (second-wave models), and adapta-

tion (third-wave models) are taken into account. Appreciating the mechanisms that generate 

and maintain diversity in ecological communities thus requires methods stretching across the 

typically different time scales of interactions, immigrations, and adaptations. 

Once the dynamics of community formation are recognized to encompass phenotypic ad-

aptation, it is instructive to recast the classic Clements-Gleason debate in terms of fitness 

landscapes. Under frequency- and density-independent selection, the fitness landscapes ex-

perienced by members of an ecological community are independent of the community’s 

composition, directly corresponding to a Gleasonian view. The resultant constant fitness land-

scapes result in what is known as ‘optimizing selection’. By contrast, when the fitness of 

community members depend on their overall density and individual frequency, fitness land-

scapes vary with a community’s composition. A situation in which this variability is very 

pronounced, and the frequency- and density-independent components of selection pressures 

within the community accordingly are relatively weak, neatly corresponds to a Clementsian 

view. As so often, reality is bound to lie in between these two extremes. 

Consequently, an evolutionary perspective on community ecology sheds new light on two 

fundamental ecological debates. On the one hand, assessing the degree to which fitness land-

scapes are varying with community composition provides a practical approach for locating 

specific communities along the Clements-Gleason continuum. On the other hand, evolution-

ary dynamics literally add new dimensions to concepts of community stability: community 

structures that are ecologically stable are unlikely also to be evolutionarily stable. This reali-



 3

zation challenges earlier conclusions as to how the stability of communities is affected by 

their complexity or diversity. In particular, ecologically unstable communities may be stabi-

lized by the fine-tuning afforded through coevolutionary adaptations, while ecologically 

stable communities may be destabilized by evolutionary processes such as arms races, taxon 

cycles, speciation, and selection-driven extinctions. 

In the time-honored quest for understanding community structures, ecology and evolution 

are thus linked inevitably and intricately, with frequency- and density-dependent selection 

pressures playing important roles. This sets the stage for considering the utility of adaptive 

dynamics theory for understanding community structure. Adaptive dynamics theory is a con-

ceptual framework for analyzing the density- and frequency-dependent evolution of 

quantitative traits, based on a general approach to deriving fitness functions, selection pres-

sures, and evolutionary dynamics from the underlying ecological interactions and population 

dynamics (e.g., Metz et al. 1992; Dieckmann 1994; Metz et al. 1996; Dieckmann and Law 

1996; Geritz et al. 1997, 1998). After introducing the main concepts and models of this ap-

proach in Section 2, this chapter proceeds, in Sections 3 and 4, to brief discussions of how 

selection pressures may drive the increase or decrease, respectively, of species numbers in 

ecological communities. Armed with this general background, four specific examples of 

community evolution models are studied in Sections 5 to 8. 

Models of evolutionary community assembly are still in their infancy. Accordingly, much 

room currently exists for investigating systematic variations of already proposed model struc-

tures, so as to separate critical from incidental model assumptions and ingredients. The main 

purpose of this chapter is to introduce readers to a particularly versatile mathematical toolbox 

for carrying out these much-needed future investigations. 

2  Models of adaptive dynamics 

The theory of adaptive dynamics derives from considering ecological interactions and pheno-
typic variation at the level of individuals. Extending classical birth and death processes 
through mutation, adaptive dynamics models keep track, across time, of the phenotypic com-
position of populations in which trait values of offspring are allowed to differ from those of 
their parents. 

Throughout this chapter we will adhere to the following notation. Time is denoted by t . 

The number of species in the considered community is N . The values of quantitative traits in 

species i  are denoted by ix , be they univariate or multivariate. The abundance of individuals 

with trait value ix  is denoted by ( )i in x , while in  denotes the total abundance of individuals in 

species i . If species i  harbors individuals with im  distinct trait values ikx , its phenotypic den-
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sity is given by 1 1( ) ( ) ( ) ( )i im n
i i i ik i ik i ikk kp x n x x x x xδ δ= == − = −∑ ∑ , where δ  denotes Dirac’s 

delta function. A species with 1im =  is said to be monomorphic. For small im , species i  may 

be characterized as being oligomorphic; when im  is large, it will be called polymorphic. The 

community’s phenotypic composition is described by 1( , , )Np p p= … . The per capita birth 

and death rates of individuals with trait value ix′  in a community with phenotypic composi-

tion p  are denoted by ( , )i ib x p′  and ( , )i id x p′ . Reproduction is clonal, mutant individuals 

arise with probabilities ( )i ixμ  per birth event, and their trait values ix′  are drawn from distri-

butions ( , )i i iM x x′  around parental trait values ix . 

If all species in the community are monomorphic, with resident trait values 1( , , )Nx x x= … , 

and if their ecological dynamics attain an equilibrium attractor, with resident abundances 

( )in x , the resultant phenotypic composition is denoted by ( )p x . The per capita birth, death, 

and growth rates of individuals with trait value ix′  will then be given by 

( , ) ( , ( ))i i i ib x x b x p x′ ′= , ( , ) ( , ( ))i i i id x x d x p x′ ′= , and ( , ) ( , ) ( , )i i i i i if x x b x x d x x′ ′ ′= − , respectively. 

In adaptive dynamics theory, the latter quantity is called invasion fitness. For a mutant ix′  to 

have a chance of invading a resident community x , its invasion fitness needs to be positive. 

The notion of invasion fitness ( , )i if x x′  makes explicit that the fitness if  of individuals with 

trait values ix′  can only be evaluated relative to the environment in which they live, which, in 

the presence of density- and frequency-dependent selection, depends on x . Invasion fitness 

can be calculated also for more complicated ecological scenarios, for example, when species 

exhibit physiological population structure, when they experience non-equilibrium ecological 

dynamics, or when they are exposed to fluctuating environments (Metz et al. 1992). If a 

community’s ecological dynamics possess several coexisting attractors, invasion fitness will 

be multi-valued. While strictly monomorphic populations will seldom be found in nature, it 

turns out that the dynamics of polymorphic populations can often be well approximated and 

understood in terms of the simpler monomorphic cases. For univariate traits, depicting the 

sign structure of invasion fitness results in so-called pairwise invasibility plots (Matsuda 

1985; van Tienderen and de Jong 1986, Metz et al. 1992, 1996; Kisdi and Meszéna 1993; 

Geritz et al. 1997). 

Derivatives of invasion fitness help to understand the course and outcome of evolution. 

The selection pressure ( ) ( , )
i

i i
i i ix x x

g x f x x∂
′∂ ′=

′=  acting on trait value ix  is given by the local 

slope of the fitness landscape ( , )i if x x′  at i ix x′ = . When ix  is multivariate, this derivative is a 

gradient vector. Selection pressures in multi-species communities are characterized by 

1 1( ) ( ( ), , ( ))N Ng x g x g x= … . Trait values *x  at which this selection gradient vanishes, 
*( ) 0g x = , are called evolutionarily singular (Metz et al. 1992). Also the signs of the second 

derivatives of invasion fitness at evolutionarily singular trait values reveal important informa-

tion. When the mutant Hessian 2

2
* *

*
,

,
( ) ( , )

i
i i

mm i i ix x x x x
h x f x x∂

′∂ ′= =
′=  is negative definite, *

ix  is at a 
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fitness maximum, implying (local) evolutionary stability. When , ,( ) ( )mm i rr ih x h x∗ ∗−  is nega-

tive definite, where 2

2
* *

*
,

,
( ) ( , )

i
i i

rr i i ix x x x x
h x f x x∂

∂ ′= =
′=  denotes the resident Hessian, subsequent 

invasion steps in the vicinity of *
ix  will approach *

ix , implying (strong) convergence stability. 

Based on these considerations, four classes of models are used to investigate the adaptive 

dynamics of ecological communities at different levels of resolution and generality. Details 

concerning the derivations of these models are provided in the Appendix and their formal re-

lations are summarized in Figure 2. We now introduce these four model classes in turn. 

Individual-based birth-death-mutation processes: polymorphic and stochastic. Under the 

individual-based model specified above, polymorphic distributions of trait values stochasti-

cally drift and diffuse through selection and mutation (Dieckmann 1994; Dieckmann et al. 

1995). See Figure 1a for an illustration. Using the specification of the birth, death, and muta-

tion processes provided by the functions ib , id , iμ , and iM , efficient algorithms for this class 

of models (Dieckmann 1994) will typically employ Gillespie’s minimal process method (Gil-

lespie 1976). 

Evolutionary random walks: monomorphic and stochastic. In large populations character-

ized by low mutation rates, evolution in the individual-based birth-death-mutation process 

proceeds through sequences of trait substitutions (Metz et al. 1992). During each trait substi-

tution, a mutant with positive invasion fitness quickly invades a resident population, typically 

ousting the former resident (Geritz et al. 2002). The concatenation of trait substitutions pro-

duces the sort of directed random walk depicted in Figure 1b, formally described by the 

master equation 

( ) [ ( , ) ( ) ( , ) ( )]d P x r x x P x r x x P x dx
dt

′ ′ ′ ′= −∫  

for the probability density ( )P x  of observing trait value x , with probabilistic transition rates 

1,1

( , ) ( ) ( ) ( , ) ( ) ( , ) ( )
N N

i i i i i i i i i i j j
j j ii

r x x x b x x M x x n x s x x x xμ δ
= ≠=

′ ′ ′ ′= , −∑ ∏  

(Dieckmann 1994; Dieckmann et al. 1995; Dieckmann and Law 1996). Here δ  again denotes 

Dirac’s delta function, and ( , ) max(0, ( , )) / ( , )i i i i i is x x f x x b x x′ ′ ′=  is the probability with which 

the mutant ix′  survives accidental extinction through demographic stochasticity while still be-

ing rare in the large population of resident individuals (e.g., Athreya and Ney 1972). If also 

the resident population is small enough to be subject to accidental extinction, 
2 ( , ) 2 ( , ) ( )( , ) (1 ) /(1 )i i i i if x x f x x n x

i is x x e e� �′ ′− −′ = − −  with ( , ) ( , )) /[ ( , ) ( , )]i i i i i i i if x x f x x b x x d x x� ′ ′ ′ ′= +  pro-

vides a more accurate approximation (e.g., Crow and Kimura 1970). The resulting 

evolutionary random walk models are again typically implemented using Gillespie’s minimal 

process method (Dieckmann 1994). 
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Gradient-ascent models: monomorphic and deterministic. If mutation steps are not only 

rare but also small, the dynamics of evolutionary random walks are well approximated by 

smooth trajectories, as shown in Figure 1c. These trajectories represent the evolutionary ran-

dom walk’s expected path and can be approximated by the canonical equation of adaptive 

dynamics (Dieckmann 1994; Dieckmann et al. 1995; Dieckmann and Law 1996), which, in its 

simplest form, is given by 

21 ( ) ( ) ( ) ( )
2i i i i i i i

d x x n x x g x
dt

μ σ=  

for 1, ,i N= … , where 

2 ( ) ( ) ( ) ( , )T
i i i i i i i i i ix x x x x M x x dxσ ′ ′ ′ ′= − −∫  

is the variance-covariance matrix of the symmetric mutation distribution iM  around trait val-

ue ix . Implementations of this third class of models typically rely on simple Euler integration 

or on the fourth-order Runge-Kutta method (e.g., Press et al. 1992). 

Reaction-diffusion models: polymorphic and stochastic. In large populations characterized 

by high mutation rates, stochastic elements in the dynamics of the phenotypic distributions 

become negligible. This enables formal descriptions of reaction-diffusion type (e.g., Kimura 

1965; Bürger 1998). Specifically, the reaction-diffusion approximation of the birth-death-

mutation process described above is given by 
2

2
2

1( ) ( , ) ( ) ( )* ( ) ( , ) ( )
2i i i i i i i i i i i i i i

i

d p x f x p p x x x b x p p x
dt x

σ μ∂
= +

∂
 

for 1, ,i N= … , where 2 ( )i ixσ  is the variance-covariance matrix of the symmetric and homo-

geneous mutation distribution iM , and where ∗  denotes the elementwise multiplication of 

two matrices followed by summation over all resultant matrix elements.. An illustration of 

reaction-diffusion dynamics is shown in Figure 1d. Models of this fourth class are best im-

plemented using so-called implicit integration methods (e.g., Crank 1975). It ought to be 

highlighted, however, that the infinitely extended tails that the distributions ip  instantane-

ously acquire in this framework can give rise to artifactual dynamics that offer no good match 

to the actual dynamics of the underling birth-death-mutation processes in finite populations. 

The derivation of finite-size corrections to the traditional reaction-diffusion limit overcomes 

these shortcomings (Dieckmann, unpublished). 

At the expense of ignoring genetic intricacies, models of adaptive dynamics are geared to 

analyzing the evolutionary implications of complex ecological settings. In particular, such 

models can be used to study all types of density- and frequency-dependent selection, and are 

equally well geared to describing single-species evolution and multi-species coevolution. As 

explained above, the four model classes specified in this section are part of a single concep-



 7

tual and mathematical framework, which implies that switching back and forth between alter-

native descriptions of any evolutionary dynamics driven by births, deaths, and mutations – as 

mandated by particular problems in evolutionary ecology – will be entirely straightforward. 

3  Selection-driven increases in species numbers 

Frequency-dependent selection is crucial for understanding how selection pressures can in-

crease the number of species within an ecological community: 

 First, whenever selection is optimizing, a single type within each species will be most fa-

vored by selection, leaving no room for the stable coexistence of multiple types per 

species. Frequency-dependent selection pressures, by contrast, can readily create an ‘ad-

vantage of rarity,’ so that multiple types within a species may be stably maintained: as 

soon as a type’s abundance becomes low, the advantage of rarity boosts its growth rate and 

thus stabilizes the coexistence. 

 Second, whereas gradual evolution under optimizing selection can easily bring about stabi-

lizing selection, it can never lead to disruptive selection. This is because, under optimizing 

selection, the two relevant notions of stability – evolutionary stability on the one hand 

(Maynard Smith and Price 1973) and convergence stability on the other (Christiansen 

1991) – are strictly equivalent: a strategy will be convergence stable if and only if it is evo-

lutionarily stable, and vice versa (e.g., Eshel 1983; Meszéna et al. 2001). Frequency-

dependent selection pressures, by contrast, allow for evolutionary branching points, at 

which directional selection turns disruptive. A gradually evolving population is then 

trapped at the underlying convergence stable fitness minimum until it splits up into two 

branches, which subsequently will diverge. This makes the speciation process itself adap-

tive, and underscores the importance of ecology for understanding speciation. 

It is thus clear that frequency-dependent selection is necessary both for the endogenous origin 

and for the stable maintenance of coexisting types within species. 

For univariate traits, the normal form for the invasion fitness of mutants with trait values 

x′  in resident populations with trait values x  that are close to an evolutionary branching 

point with trait value * 0x =  is given by 
2 2( , ) (1 )f x x x cx c x x′ ′ ′= + − +  

with 1c >  (e.g., Dieckmann 1994: 91). From this we can see that the selection pressure at *x  

ceases, *( ) 0g x = , that *x  is not locally evolutionarily stable, *( ) 1 0mmh x = > , and that *x  is 

convergence stable, * *( ) ( ) 1 0mm rrh x h x c− = − < . Under these conditions, trait substitutions in 

x  converge to *x  as long as the evolving population is monomorphic, then respond to the dis-
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ruptive selection at *x  by creating a dimorphism of trait values around *x , and finally cause 

the divergence of the two stably coexisting branches away from *x . 

When considering processes of evolutionary branching in sexual populations, selection for 

reproductive isolation comes into play. As lineage splits are adaptive at evolutionary branch-

ing points, in the sense of freeing populations from being stuck at fitness minima, the 

evolution of premating isolation is favored under such circumstances. Any evolutionarily at-

tainable or already existing mechanism of assortative mating can be recruited by selection to 

overcome the forces of recombination that otherwise prevent sexual populations from splitting 

up (e.g., Udovic 1980; Felsenstein 1981). Since there exist a plethora of such mechanisms for 

assortativeness (based on size, color, pattern, acoustic signals, mating behavior, mating 

grounds, mating season, the morphology of genital organs etc.), and since only one out of 

these many mechanisms is needed to take effect, it would indeed be surprising if many natural 

populations would remain stuck at fitness minima for very long (Geritz et al. 2004). Models 

for the evolutionary branching of sexual populations corroborate that expectation (e.g., 

Dieckmann and Doebeli 1999; Doebeli and Dieckmann 2000, 2003, 2005; Geritz and Kisdi 

2000; Doebeli et al. 2005). 

Processes of adaptive speciation (Dieckmann et al. 2004), resulting from the frequency-

dependent mechanisms described above, are very different from those stipulated by the stan-

dard model of allopatric speciation through geographical isolation (Mayr 1963, 1982), which 

have dominated speciation research for decades. Closely related to adaptive speciation are 

models of sympatric speciation (e.g., Maynard Smith 1966; Johnson et al. 1996), of competi-

tive speciation (Rosenzweig 1978), and of ecological speciation (Schluter 2000), which all 

point in the same direction: patterns of species diversity are not only shaped by exogenous 

processes of geographical isolation and immigration, which can be more or less arbitrary, but 

can instead by driven by endogenous processes of selection and evolution, which are bound to 

imbue such patterns with a stronger deterministic component. 

In conjunction with mounting empirical evidence that rates of race formation and sympat-

ric speciation are potentially quite high, at least under certain conditions (e.g., Bush 1969; 

Meyer 1993; Schliewen et al. 1994), these considerations suggest that understanding proc-

esses and patterns of community formation will crucially benefit from notions developed in 

the context of adaptive speciation. 
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4  Selection-driven decreases in species numbers 

Frequency-dependent selection and density-dependent selection are also crucial for under-

standing how selection pressures can decrease the number of species within an ecological 

community: 

 First, in evolutionary game theory – including all evolutionary models based on matrix 

games or on the replicator equation – a population’s density is not usually part of the 

model, which describes only the frequencies of different types. Without enhancements, 

these types of model therefore cannot account for any density-dependent selection pres-

sures, or capture selection-driven extinctions during which a population’s density drops to 

zero. 

 Second, in optimization approaches of evolution, a constant fitness landscape governs the 

course and outcome of evolution, and, accordingly, frequency-dependent selection is ab-

sent. Again, the density of the evolving population is usually not part of the model. Even 

when it is, selection-driven extinctions cannot occur, as no acceptable constant fitness 

function will be maximized when a population goes extinct. 

These two limitations explain why, until relatively recently, population extinctions caused 

by natural selection were rarely modeled. In particular, landmarks of evolutionary theory are 

based on notions of optimizing selection: this includes Fisher’s so-called fundamental theo-

rem of natural selection (Fisher 1930) and Wright’s notion of hill climbing on fitness 

landscapes (Wright 1932, 1967). Also Levins’s seminal fitness-set approach to the study of 

constrained bivariate evolution (Levins 1962, 1968) is based on the assumption that, within a 

set of feasible phenotypes defined by a trade-off, evolution will maximize a population’s fit-

ness. Even the advent of evolutionary game theory (Maynard Smith 1982), with its 

conceptually most valuable refocusing of attention towards frequency-dependent selection, 

did not help as such, since, for the sake of simplicity, population densities were usually re-

moved from consideration in such models (for an alternative approach to game dynamics 

aimed at including densities, see Cressman 1990). 

And yet the potential of adaptations to cause the collapse of populations was recognized 

early on. Haldane (1932) provided a verbal example by considering overtopping growth in 

plants. Taller trees get more sunlight while casting shade onto their neighbors. As selection 

thus causes the average tree height to increase, fecundity and carrying capacity decline be-

cause more of the tree’s energy budget is diverted from seed production to wood production, 

and the age at maturation increases. Arborescent growth as an evolutionary response to selec-

tion for competitive ability can therefore cause the decline of a population’s abundance as 

well as of its intrinsic growth rate, potentially resulting in population extinction. The phe-
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nomenon of selection-driven extinction is closely related to Hardin’s (1968) tragedy of the 

commons. In both cases, strategies or traits that benefit the selfish interests of individuals, and 

that are therefore bound to invade, undermine the overall interests of the evolving population 

as a whole once these strategies or traits have become common. Such a disconnect between 

individual interest and population interest can only occur under frequency-dependent selec-

tion – under optimizing selection, the two are equivalent. It is thus clear that frequency-

dependent selection and density-dependent selection are both necessary for capturing the po-

tential of adaptive evolution in a single species to cause its own extinction. 

Processes of selection-driven extinction can come in several forms: 

 First, evolutionary suicide (Ferrière 2000) is defined as a trait substitution sequence driven 

by mutation and selection taking a population toward and across a boundary in the popula-

tion’s trait space beyond which the population cannot persist. Once the population’s trait 

values have evolved close enough to this boundary, mutants can invade that are viable as 

long as the current resident trait value abounds, but that are not viable on their own. When 

these mutants start to invade the resident population, they initially grow in number. How-

ever, once they have become sufficiently abundant, concomitantly reducing the former 

resident’s density, the mutants bring about their own extinction. Webb (2003) refers to 

such processes of evolutionary suicide as Darwinian extinction. 

 Second, adaptation may cause population size to decline gradually through perpetual selec-

tion-driven deterioration. Sooner or later, demographic and environmental stochasticity 

will then cause population extinction. This phenomenon has been dubbed runaway evolu-

tion to self-extinction by Matsuda and Abrams (1994a). 

 Third, the population collapse abruptly brought about by an invading mutant phenotype 

may not directly lead to population extinction but only to a substantial reduction in popula-

tion size (Dercole et al. 2002). Such a collapse will then render the population more 

susceptible to extinction by stochastic causes and may thus indirectly be responsible for its 

extinction. 

For univariate traits, the normal form for the invasion fitness of mutants with trait values 

x′  in resident populations with trait values x  that are close to a critical trait value * 0x =  at 

which evolutionary suicide occurs is simply given by 

( , )f x x x x′ ′= − , 

with the corresponding equilibrium abundance 
21 0

( )
0 0
cx x

n x
x

⎧ + ≤
= ⎨

>⎩
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with 0c > . From this we can see that the selection pressure at *x  is positive, *( ) 1 0g x = > , so 

that trait substitutions in x  converge to *x , where the evolving population’s equilibrium 

abundance abruptly drops from 1 to 0 . 

The occurrence here of a discontinuous transition to extinction is not accidental. As has 

been explained by Gyllenberg and Parvinen (2001), Gyllenberg et al. (2002), Webb (2003), 

and Dieckmann and Ferrière (2004), such a catastrophic bifurcation is a strict prerequisite for 

evolutionary suicide. The reason is that selection pressures at trait values at which a continu-

ous transition to extinction occurs (e.g., through a transcritical bifurcation) always point in the 

trait direction that increases population size: evolution towards extinction is then impossible. 

Allee effects, by contrast, provide standard ecological mechanisms for discontinuous transi-

tions to extinction. 

The potential ubiquity of selection-driven extinctions is underscored by numerous exam-

ples based on the evolutionary dynamics of many different traits, including competitive 

ability (Matsuda and Abrams 1994a; Gyllenberg and Parvinen 2001; Dercole et al. 2002), 

anti-predator behavior (Matsuda and Abrams 1994b), sexual traits (Kirkpatrick 1996; Kokko 

and Brooks 2003), dispersal rates (Gyllenberg et al. 2002), mutualism rates (Ferrière et al. 

2002), cannibalistic traits (Dercole and Rinaldi 2002), maturation reaction norms (Ernande et 

al. 2002), levels of altruism (Le Galliard et al. 2003), and selfing rates (Cheptou 2004). Dieck-

mann and Ferrière (2004) showed, by examining ecologically explicit multi-locus models, 

that selection-driven extinction robustly occurs also under sexual inheritance. Relevant over-

views of the mathematical and ecological underpinnings of selection-driven extinction have 

been provided by Webb (2003), Dieckmann and Ferrière (2004), Rankin and López-Sepulcre 

(2005), and Parvinen (2006). 

Also coevolutionary dynamics can cause extinctions. An early treatment, which still ex-

cluded the effects of intraspecific frequency-dependent selection, was provided by 

Roughgarden (1979, 1983). This limitation has been overcome in modern models of coevolu-

tionary dynamics based, for example, on the canonical equation of adaptive dynamics (e.g., 

Dieckmann et al. 1995, Dieckmann and Law 1996; Law et al. 1997). Also in this multi-

species context it is important to distinguish between continuous and discontinuous transitions 

to extinction. As has been explained above, evolutionary suicide cannot contribute to an evo-

lutionarily driven continuous transition to extinction. Moreover, such continuous extinctions 

cause mutation-limited phenotypic evolution in the dwindling species to grind to a halt, since 

fewer and fewer individuals are around to give birth to the mutant phenotypes that fuel the 

adaptive process. This stagnation renders the threatened species increasingly defenseless by 

depriving it of the ability to counteract the injurious evolution of its partner through suitable 
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adaptation of its own. For these two reasons, continuous evolutionary extinctions are driven 

solely by adaptations in the coevolving partners. By contrast, when a transition to extinction is 

discontinuous, processes of evolutionary suicide and of coevolutionary forcing may conspire 

to oust a species from the evolving community. 

5  First example of community evolution: monomorphic and deterministic 

Simple community modules comprising two, three, or four interacting species have often been 

used for investigating how trophic interactions organize simple communities. These studies 

have laid the foundations for theories (i) of competition, including the *R  rule (Tilman 1982), 

(ii) of predation within the context of exploitative ecosystems, including work on trophic cas-

cades (Oksanen et al. 1981; Oksanen and Oksanen 2000), and (iii) of omnivory, including 

research on intraguild predation (Holt and Polis 1997; Diehl and Feissel 2000; Mylius et al. 

2001; HilleRisLambers and Dieckmann 2003). All these studies, however, did not account for 

the potential of evolutionary changes in the ecological interactions between the considered 

species. Overcoming this restriction is important as patterns of species interactions encoun-

tered in nature ought to be interpreted in light of not only ecological stability but also of 

evolutionary stability. 

Here we take a step in this direction by investigating the evolution of feeding preferences 

within a simple community module. In particular, we examine evolutionary dynamics in sim-

ple food webs comprising a basal resource and two antagonistic consumer species, where 

each consumer is capable of feeding on the resource, on its antagonist, or on a combination of 

both (HilleRisLambers and Dieckmann 2003). The relative investments into resource or an-

tagonist feeding characterize the consumers’ feeding preferences and can evolve subject to a 

trade-off. In this way, all of the classic three-species community modules – including linear 

food chains, two consumers sharing a resource, omnivory on the part of one consumer, and 

mutual intra-guild predation between two consumers – can be realized in the model. By exam-

ining how feeding preferences – and thus the trophic linkages between species – evolve, we 

can chart the possible evolutionary pathways connecting all these classic community modules 

(HilleRisLambers and Dieckmann, submitted). Since density- and frequency-dependent selec-

tion pressures are important for addressing these questions, and since it is desirable to derive 

the considered evolutionary dynamics from the underlying population dynamics, models of 

adaptive dynamics provide a useful framework for this kind of analysis. 

The abundances Cn  and Dn  of the two antagonistic consumers change according to Lotka-

Volterra dynamics, assuming intrinsic mortalities and linear functional responses. The basal 

energetic input is provided by a dynamic resource, whose abundance Rn  changes according to 
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semichemostat dynamics and consumer feeding. The community’s population dynamics are 

thus given by 

( )C C CR CR R CD CD D DC D C
d n n e a n e a n a n d
dt

= + − − , 

( )D D DR DR R DC DC C CD C D
d n n e a n e a n a n d
dt

= + − − , 

( ) ( )R R R R R CR C DR D
d n r k n n a n a n
dt

= − − + , 

with attack coefficients a , conversion efficiencies e , and intrinsic mortality rates d . The car-

rying capacity and intrinsic growth rate of the resource are denoted by Rk  and Rr , 

respectively. 

The feeding preferences of the two consumers are affected by a trade-off between the at-

tack coefficients for resource feeding and antagonist feeding, 

max,
is

iR i ia a x= , max, (1 ) is
ij i ia a x= − , 

for ,i C D=  and ,j D C= , where, for consumer i , max,ia  is the maximal attack coefficient, is  

is the trade-off strength, and the adaptive trait 0 1ix≤ ≤  determines the feeding preference, 

measured as the relative investment into resource feeding. Intermediate feeding strategies, 

0 1ix< < , characterize omnivorous consumers. For 1is > , generalist feeding strategies 

( 1
2ix ≈ ) are disfavored compared with specialist feeding strategies ( 0,1ix ≈ ), resulting in 

specialist advantage. The reverse is true for 1is < , which thus corresponds to generalist ad-

vantage. On this basis, the canonical equations (Section 2) for the two adaptive traits Cx  and 

Dx  are given by 

1 12
max,

1 [ (1 ) ]
2

i is s
i i i i i i iR i R ij i j

d x n a s e x n e x n
dt

μ σ − −= − − , 

for ,i C D=  and ,j D C= , where equilibrium abundances are denoted by n , and iμ  and 2
iσ  

are the mutation probability and variance in consumer i . 

Coevolutionary dynamics unfold within the constraints of ecological coexistence. HilleR-

isLambers and Dieckmann (2003) found that, in the model specified above, regions of 

coexistence open up around linear three-species food chains, ( , ) (0,1), (1,0)C Dx x = , where one 

consumer is a better antagonist feeder, while the other consumer is a better resource feeder. 

When the trade-off strengths Cs  and Ds  are varied together, C Ds s= , two extreme scenarios 

can be distinguished: 

 At strong specialist advantage, linear three-species food chains are evolutionarily stable (in 

the sense of the corresponding trait combinations being asymptotically stable under the 

adaptive dynamics described by the two simultaneous canonical equations for Cx  and Dx ). 

Under these conditions, selection simplifies community structure by causing the evolution 
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of neighboring trait values towards ( , ) (0,1), (1,0)C Dx x = . This means that the better re-

source feeder will invest even more into resource feeding, while the better antagonist 

feeder will invest even more into antagonist feeding, until the evolving three-species food 

chain has become strictly linear. 

 At strong generalist advantage, trait combinations ensuring ecological coexistence are se-

verely limited (HilleRisLambers and Dieckmann 2003). Under these conditions, linear 

three-species food chains become evolutionarily unstable, and both the better resource 

feeder and the better antagonist feeder evolve towards generalist strategies, which ulti-

mately results in the exclusion of the former by the latter. Also here the end result is a 

simplified community structure, in this case given by a simple two-species food chain. 

At intermediate trade-off strengths, ecologically feasible communities evolve towards linear 

two- or three-species food chains, largely depending on the initial feeding preference of the 

better antagonist feeder. 

It must be expected that the trade-offs constraining the attack coefficients of consumer spe-

cies are not identical, C Ds s≠ . Considering intermediate trade-off strengths, we find that if the 

better antagonist feeder is more constrained at generalist feeding strategies than the better re-

source feeder, linear food chains are evolutionarily unstable, and evolutionarily stable food 

webs exhibiting more complex trophic interactions may be realized. Figure 3a shows such a 

coevolutionary attractor with ( , ) (0,1), (1,0)C Dx x ≠ . Figure 3a also shows that different coevo-

lutionary attractors may coexist. Depending on the initial food web configuration, coevolution 

leads to one of the three outcomes depicted in Figure 3b: (i) coexistence between two omni-

vores, (ii) coexistence between an omnivore and a pure antagonist feeder, or (iii) evolutionary 

exclusion of the better resource feeder. Which of these occurs is affected largely by the initial 

feeding preference of the better antagonist feeder and also by the relative scaling of the evolu-

tionary rates in the two consumers, measured by 2 2/C C D Dμ σ μ σ . Specifically, the basin of 

attraction for outcome (iii) increases when the better antagonist feeder evolves faster than the 

better resource feeder. It is also possible that communities of type (i) exhibit cyclical fluctua-

tions in the feeding preferences Cx  and Dx , akin to those found by Dieckmann et al. (1995) 

for predator-prey coevolution and by Law et al. (1997) for coevolution under asymmetric 

competition. These evolutionary cycles may come dangerously close to the boundaries of co-

existence, so that small environmental perturbations may then lead to a shift from outcome (i) 

to (iii). 

We can summarize the results of the analysis here by concluding that linear three-species 

food chains are most likely to persist evolutionarily under strong specialist advantage, 

whereas the evolutionary exclusion of consumers is most likely under strong generalist advan-
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tage. By contrast, complex trophic interactions in this model are difficult to stabilize evolu-

tionarily. They are most likely to occur in communities in which trade-off strengths are 

intermediate and the better antagonist feeder experiences a stronger trade-off than the better 

resource feeder, especially when the latter evolves faster than the former. 

6  Second example of community evolution: oligomorphic and stochastic 

Some existing models of food web evolution incorporate realistic population dynamics, but at 

the same time rely on interactions mediated by high-dimensional traits that lack clear and di-

rect ecological interpretations (e.g., Caldarelli et al. 1998; Drossel al. 2001). By contrast, a 

model by Brännström et al. (in preparation), described below, builds on previous foundational 

work by Loueille and Loreau (2005) and accordingly is based on body size as an evolving 

trait of high physiological and ecological relevance. 

The considered community comprises one autotrophic and N  heterotrophic species evolv-

ing through mutation-limited phenotypic adaptation. Each species i  possesses a trait value ix  

determining its body size on a logarithmic scale. From these body sizes, species-specific 

properties such as energy requirements, competitive interactions, and attack coefficients are 

determined. The community’s demographic processes follow Lotka-Volterra dynamics, with 

the dynamics of the non-evolving autotrophic species 0i =  given by 

0 0 0 0 0 0 0
1

[ / exp( ) ( ) ]
N

j j j
j=

d n = n b n k x x F x x n
dt

− − − −∑  

and the per capita birth and death rates, respectively, of the heterotrophic species 1, ,i N= …  

given by 

0
( , ) exp( ) ( )

N

i j i i j j
j=

b x n = e x x F x x n− −∑ , 

1 1
( , ) ( ) ( ) ( )exp( )

N N

i i j i j i j j j
j= j=

d x n = d x F x x n C x x x n+ − + −∑ ∑ . 

The four terms on the two right-hand sides above correspond, in turn, to reproduction, in-

trinsic mortality, mortality from predation, and mortality from interference competition: 

 Energy inflow from foraging results in reproduction as described by the first term. The rate 

at which new individuals enter the focal species through birth thus depends on the abun-

dance of available prey, on the relative difference in size between predator and prey, and 

on a predator’s ability to attack a prey. The latter is characterized by a shifted Gaussian 

function F  of the relative size difference, with F  being referred to as the foraging kernel. 

The degree to which energy is lost as prey biomass is converted into offspring is measured 

by the trophic efficiency e . 
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 The intrinsic mortality rate in the second term is assumed to decrease with body size ac-

cording to a power law resulting in body-size-dependent generation times consistent with 

empirical observations (e.g., Peters 1983). 

 Losses resulting from predation are captured by the third term, which immediately follows 

from the considerations concerning the foraging kernel. 

 Interference competition between individuals is described by the fourth term. The increase 

in mortality caused by interference from other individuals depends on their biomass and on 

the relative size difference. This is characterized by a Gaussian function C , centered at 

zero and referred to as the competition kernel. Accordingly, two individuals that greatly 

differ in size will compete much less than two individuals that have similar sizes. The ex-

ponential term ensures that smaller individuals are affected more by interference 

competition. 

The evolutionary dynamics of this community are modeled under the assumption that mu-

tations are rare, so that a new mutant will either successfully invade the resident community 

or be extinct by the time the next successful mutation occurs. We can then employ an oligo-

morphic extension of the evolutionary random walk model described in Section 2. Mutations 

occur at a rate proportional to the total birth rate of the corresponding resident species, and 

mutant trait values are assumed to be normally distributed around those of their parent. 

Whether or not a mutant morph can invade the resident community will depend on its inva-

sion fitness, with the success probabilities of potentially invading mutants given in Section 2. 

When a successful invasion occurs, its community-level consequences can be determined 

from the Lotka-Volterra dynamics specified above. However, since the underlying time inte-

gration is time-consuming, an approximate, but in practice accurate, algorithm is used, known 

as the oligomorphic stochastic model (Ito and Dieckmann, unpublished). The steps in this al-

gorithm aim at inferring the structure of the post-invasion community without time integration 

whenever possible. Simulations of the evolutionary process end when the community-level 

probability of successful invasion falls below a prescribed threshold. 

Figure 4a shows how the interplay between mutation and selection gradually leads from a 

single ancestral species to a community of seven heterotrophic species, through a process of 

sequential evolutionary branching. The structure of the resulting food web is depicted in Fig-

ure 4b. 

To isolate and determine the factors governing diversity, two complementary approaches 

were used. First, the asymptotic number of species was evaluated numerically, as described 

above. Second, the strengths of disruptive selection at the first and second branching points 

were determined as a function of model parameters. This enabled analytical insights into 
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which parameters are important for the initial stages of food web evolution. Interference com-

petition and metabolic scaling (in the form of reduced mortality at larger body size) proved to 

be critical components in this regard. The former promotes evolutionary branching and is a 

prerequisite for diversity to develop, while the latter offsets the advantage that smaller species 

enjoy in terms of increased encounter rates per unit of biomass. In simulations in which either 

interference competition or metabolic scaling were absent, evolution did not lead to communi-

ties with more than just one or two species. 

It proved useful to group parameters according to their role in the model, with energy pa-

rameters directly affecting the energy flow, foraging parameters determining the shape of the 

foraging kernel, and competition parameters governing the interference competition between 

individuals of similar size. With this grouping and terminology in place, it turned out that the 

initial stages of food web evolution primarily depend on the energy and competition parame-

ters. While these same parameters were naturally also important for the asymptotically 

evolving diversity, their role there was largely overshadowed by the foraging parameters. The 

fact that some parameters are mainly important in the early stages of community evolution 

while others become crucial only during the later stages shows that an analysis that stopped 

prematurely after investigating only the first or second incidence of evolutionary branching 

would be insufficient for determining which mechanisms and parameters affect the longer-

term structuring of ecological communities. 

7  Third example of community evolution: polymorphic and deterministic 

Explaining the evolutionary origin and history of food webs through sequential adaptive di-

versification is a challenge that has as yet been tackled by few evolutionary models. It is 

therefore interesting to explore to what extent the coevolution of predator-prey interactions 

underlying trophic community structures can induce recurrent evolutionary branching. 

In nature the ecological dynamics of phenotypes engaged in trophic interactions depend on 

how the considered individuals perform in their roles as predator on the one hand and as prey 

on the other. Both of these components must be expected to evolve. Ito and Ikegami (2003, 

2006) therefore considered bivariate adaptive traits ( , )r ux x x= , with the first trait component 

rx  determining how an individual is exposed as a resource (strategy as prey) and the second 

trait component ux  determining how the individual is utilizing such resources (strategy as 

predator). Resources may have many relevant phenotypic properties – including body size, 

toxicity, proportion of protective tissue, ability to hide, running speed etc. – which jointly can 

be described by a vector z . The contribution an individual with resource trait rx  makes to the 

density in this potentially multivariate resource space is denoted by ( , )r rp x z , and analo-
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gously the utilization spectrum of an individual with utilization trait ux  is ( , )u up x z . Given a 

phenotypic distribution ( )p x , the distribution of resource properties is thus 

( ) ( , ) ( , ) ( )r r u u r r rP z p x x dx p x z dx S z= +∫ ∫ , where S  accounts for sources of resource supply 

from outside the modeled population. Likewise, the population’s utilization spectrum is 

( ) ( , ) ( , )u r u r u u uP z p x x dx p x z dx= ∫ ∫ . Ito and Ikegami (2003, 2006) then considered the fol-

lowing ecological and evolutionary dynamics, 
2

2
2

( ) 1( ) ( ) ( , ) ( ) ( , ) ( ) * ( )
( ) 2

u
u u r r

r

P zd p x e F z p x z dz F z p x z dz d p x p x
dt P z x

μσ
⎛ ⎞ ∂

= − − +⎜ ⎟ ∂⎝ ⎠
∫ ∫ , 

where e  measures trophic conversion efficiency and d  is the intrinsic death rate. The func-

tion 1/ 2( ) ( ) /(1 ( ) / )r rF z aP z P z P= +  is a Holling type II functional response, with maximum a  

and half-saturation constant 1/ 2P . As explained in Section 2 and in the Appendix, the popula-

tion-level effect of frequent mutations can be approximated by a diffusion term with diffusion 

coefficient matrix 21
2 μσ  (to avoid dynamical artifacts, values of ( )p x  are reset to zero after 

falling below a very low cutoff threshold). 

For the sake of simplicity, here we assume a one-dimensional resource space, strictly local-

ized functions ( , ) ( )r r rp x z z xδ= −  and ( , ) ( )u u up x z z xδ= − , where δ  denotes Dirac’s delta 

function, a normally distributed source of external resources, 20 0,
( ) ( )

S
S z S N z

σ
= , and traits rx  

and ux  confined to the unit interval. Within a wide range of parameter values, the dynamics of 

initially unimodal phenotypic distributions ( )p x  then comprises phases of directional evolu-

tion and evolutionary branching. Phenotypic clusters with few prey and many predators go 

extinct, while phenotypic clusters with many prey and few predators rapidly increase in den-

sity and subsequently split through evolutionary branching. Since branching in rx  often 

induces branching in ux , and vice versa, the branching sequences resulting from this positive 

feedback bring about a richly structured food web. Large food webs are maintained through a 

dynamic balance between selection-driven branching and extinction. 

Implementation of sexual reproduction, akin to the model by Drossel and McKane (2000), 

does not change these dynamics qualitatively (apart from the fact that phenotypic clusters be-

come reproductively isolated). Giving rp  and up  a certain width, by assuming Gaussian 

functions instead of delta functions, also does not qualitatively affect evolutionary outcomes. 

Finally, interference competition among predators can be considered by using 

1/ 2( ) ( ) /( ( ) ( ) / )r u rF z aP z P z P z P= + , which gives rise to a ratio-dependent functional response 

(Arditi and Ginzburg 1989) and facilitates the evolutionary origin and maintenance of com-

plex food webs, as illustrated in Figure 5. 
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8  Fourth example of community evolution: polymorphic and stochastic 

The examples presented so far may create the impression that trophic interactions were a nec-

essary prerequisite for the evolutionary origin and maintenance of complex community 

structures. This is clearly not the case. Purely competitive interactions have long been shown 

to ensure the maintenance of large species numbers, with early work on the species packing 

problem dating back to MacArthur and Levins (1967), Vandermeer (1970), May (1973), and 

Roughgarden (1974). 

To illustrate and underscore the potential of purely competitive interactions to bring about 

and structure multi-species communities through evolutionary dynamics including adaptive 

radiations, we consider adaptations under asymmetric competition. Specifically, we assume 

that interactions between individuals are affected by a univariate quantitative trait x , of which 

we may think, for example, as representing stem height in plants or adult body size in ani-

mals. In either case, individuals with a small trait value will suffer a lot from competition 

against individuals with a large trait value, while the reverse effects will often be negligible. 

And if individuals are too far apart in their trait values, so as to occupy essentially different 

ecological niches, they will hardly interact at all. These qualitative dependencies are captured 

by the function 
2 2

2 2
2

( )1( ) exp exp
2 2

C
C

C

x xC x x σ βσ β
σ

⎛ ⎞′− +⎛ ⎞′− = −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 

which has been used to describe the strength of competition exerted by an individual with trait 

value x′  on an individual with trait value x  (Rummel and Roughgarden 1985; Taper and 

Case 1992). Here 0β =  corresponds to symmetric competition, while 0β >  causes asym-

metric competition favoring larger trait values. We also assume that trait values differ in their 

intrinsic carrying capacity, 

2 2
0 0

1( ) exp ( ) /
2 KK x K x x σ⎛ ⎞= − −⎜ ⎟

⎝ ⎠
, 

which, by itself, causes stabilizing selection towards 0x x= . On this basis, we can specify the 

per capita birth and death rates of individuals with trait values x  in a community with pheno-

typic density p , 

0( , )b x p b= , 
1

1 1( , ) ( ) ( ) ( )
( ) ( )

n

k
k

d x p C x x p x dx C x x
K x K x =

′ ′ ′= − = −∑∫ , 

resulting in simple population dynamics of Lotka-Volterra type. 

The individual-based birth-death-mutation model introduced in Section 2 is well suited to 

explore the resultant evolutionary dynamics (Doebeli and Dieckmann 2000). Figure 6 shows a 

typical realization of this stochastic process. As we can see, directional selection towards lar-
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ger trait values initially causes convergence to a primary evolutionary branching point. Evolu-

tionary branching subsequently enlarges the number of morphs in the community, until the 

maximum number resulting from limitations on species packing has been reached. Perpetual 

coevolutionary change then ensues, through (i) the selection-driven extinction of morphs with 

large trait values, which run out of carrying capacity, (ii) the laminar and gradual flow of resi-

dent morphs towards the larger trait values favored by asymmetric competition, and (iii) the 

continual replenishment of morphs at low trait values through adaptive radiations triggered by 

the opening up of ecological opportunities resulting from the first two effects. It is worthwhile 

to highlight that in this model the incessant coevolutionary turnover is caused entirely by in-

trinsic or endogenous mechanisms. No environmental forcing needs to be invoked for 

understanding the systematic trends in the observed macroevolutionary pattern. 

9  Summary 

In this chapter we have shown how models of adaptive dynamics provide a variety of flexible 

tools for studying the evolutionary dynamics of ecological communities. Once demography 

and mutations have been specified, evolutionary and coevolution processes – including those 

that increase or decrease the number of species in the community – can be analyzed at several 

mutually illuminating levels of description. While individual-based descriptions of birth, 

deaths, and mutations provide the finest level of detail, such models are often too computa-

tionally intensive and too unwieldy to be comprehensively examined. It is then helpful to 

have available other classes of models that provide tried and tested approximations. Depend-

ing on the features of the evolving community and the nature of the addressed research 

questions, evolutionary random walks, gradient-ascent models, or reaction-diffusion models 

may alternatively be best suited for systematically investigating evolving community struc-

tures. 

Until relatively recently, community models have focused either on the ecological dynam-

ics of large communities or on the evolutionary dynamics of small communities. Now the 

time seems ripe to bring together these two previously independent strands of inquiry in a 

new, more ambitious synthesis. Even though it thus has already become clear that a rich di-

versity of ecological mechanisms can drive the persistent diversification of ecologically 

relevant adaptive traits, and thus of ecological community structure, much research remains to 

be done in this area. The eventual goal will be to arrive at a systematic understanding of the 

ways through which processes of interaction, immigration, and adaptation can work together 

to generate the rich, but at the same time not arbitrary, community structures observed in na-

ture. 
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Theoretical models of community evolution are revealing the stunning capacity of ecologi-

cal interactions, in conjunction with the selection pressures thus engendered, to result in the 

emergence of non-random community patterns. It thus seems safe to conclude that neither of 

the old Clementsian or Gleasonian notions – viewing ecological communities as either organ-

ismically or externally structured – can do justice to the subtle interplay of endogenous and 

exogenous demographic and evolutionary pressures unfolding in real communities. Fueled by 

the mutual shaping and reshaping of ecological niches caused by community evolution, natu-

ral community structures appear to occupy a highly complex middle ground. 
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Appendix: Specification and derivation of adaptive dynamics models 

This appendix provides salient mathematical details on how the four models of adaptive dy-

namics are defined and derived. 

Polymorphic Stochastic Model. We start from an individual-based description of the ecol-

ogy of an evolving multispecies community (Dieckmann 1994; Dieckmann et al. 1995). The 

number of species in the considered community is N . The phenotypic distribution ip  of a 

population of in  individuals in species i  is given by 1
i

ik

n
i xkp δ==∑ , where ikx  are the trait 

values of individual k  in species i , and 
ikxδ  denotes the Dirac delta function peaked at ikx , 

( ) ( )
ikx i i ikx x xδ δ= − . As a reminder we mention that Dirac’s delta function is defined alge-

braically through its so-called sifting property, 0 0( ) ( ) ( )i i iF x x x dx F xδ − =∫  for any 

continuous function F . This implies ( ) 0i ip x =  unless ix  is represented in species i . We can 

thus think of ( )i ip x  as a density distribution in the trait space of species i , with one peak po-

sitioned at the trait value of each individual in that species. Since ( ) 1
ikx x dxδ =∫  for any ikx , 

we also have ( )i i i ip x dx n=∫ . If ( ) 0i ip x ≠  for more than one ix , the population in species i  

is called polymorphic, otherwise it is referred to as being monomorphic. The community’s 

phenotypic composition is described by 1( , , )Np p p= … . 

The birth and death rates of an individual with trait value ix  in species i  are given by 

( , )i ib x p  and ( , )i id x p . Each birth by a parent with trait value ix  gives rise, with probability 

( )i ixμ , to mutant offspring with a trait value i ix x′≠ , distributed according to ( , )i i iM x x′ , 

whereas with probability 1 ( )i ixμ−  trait values are inherited faithfully from parent to off-

spring. A master equation (e.g., van Kampen 1981) describes the resultant birth-death-

mutation process, 

( ) [ ( , ) ( ) ( , ) ( )]d P p r p p P p r p p P p dp
dt

′ ′ ′ ′= −∫ . 

The equation describes changes in the probability ( )P p  for the evolving community to be in 

state p . This probability increases with transitions from states p p′ ≠  to p  (first term) and 

decreases with transitions away from p  (second term). A birth event in species i  causes a 

single Dirac delta function, peaked at the trait value ix  of the new individual, to be added to 

ip , 
ii xp p p u δ′→ = + , where the elements of the unit vector iu  are given by Kronecker delta 

symbols, 1( , , )i i Niu δ δ= … . Analogously, a death event in species i  corresponds to subtracting 

a Dirac delta function from p , 
ii xp p p u δ′→ = − . 

The rate ( , )r p p′  for the transition p p′→  is thus given by 

1

( , ) [ ( , ) ( ) ( , ) ( )]
i i

N

i i i x i i i x i
i

r p p r x p p u p r x p p u p dxδ δ+ −

=

′ ′ ′= Δ + − + Δ − −∑∫ . 
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Here Δ  denotes the generalized delta function introduced by Dieckmann (1994), which ex-

tends the sifting property of Dirac’s delta function to function spaces, i.e., 

0 0( ) ( ) ( )F p p p dp F pΔ − =∫  for any continuous functional F . The terms ( )
ii xp u pδ ′Δ + −  

and ( )
ii xp u pδ ′Δ − −  thus ensure that the transition rate r  vanishes unless p′  can be reached 

from p  through a birth event (first term) or death event (second term) in species i . The death 

rate ( , )i ir x p−  is given by multiplying the per capita death rate ( , )i id x p  with the density 

( )i ip x  of individuals at that trait value, 

( , ) ( , ) ( )i i i i i ir x p d x p p x− = . 

Similarly, the birth rate ( , )i ir x p+  at trait value x  is given by 

( , ) [1 ( )] ( , ) ( ) ( ) ( , ) ( ) ( , )i i i i i i i i i i i i i i i i i ir x p x b x p p x x b x p p x M x x dxμ μ+ ′ ′ ′ ′ ′= − +∫ , 

with the first and second terms corresponding to births without and with mutation, respec-

tively. The master equation above, together with its transition rates, describes so-called 

generalized replicator dynamics (Dieckmann 1994) and offers a generic formal framework for 

deriving simplified descriptions of individual-based mutation-selection processes. 

Monomorphic Stochastic Model. If the time intervals between successfully invading muta-

tions are long enough for evolution to be mutation-limited, ( ) 0i ixμ →  for all i  and ix , the 

evolving populations will remain monomorphic at almost any moment in time (unless and un-

til evolutionary branching occurs). We can then consider trait substitutions resulting from the 

successful invasion of mutants into monomorphic resident populations that have attained their 

ecological equilibrium. Denoting trait values and population sizes by ix  and in  for the resi-

dents in species 1, ,i N= "  and by jx′  and jn′  for a mutant in species j , we can substitute the 

density 
11( , , )

N jx N x j j xp n n u n…δ δ δ ′′= +  into the generalized replicator dynamics defined above 

to obtain a master equation for the probability ( , )jP n n′  of jointly observing resident popula-

tion sizes n  and mutant population size jn′ . 

Assuming that the mutant is rare while the residents are sufficiently abundant to be de-

scribed deterministically, this master equation is equivalent to the joint dynamics 

[ ( , ) ( , )]i i i i i i
d n b x p d x p n
dt

= −  

for the resident populations with 1, ,i N= "  and 

( ) ( , ) ( 1) ( , ) ( 1)j j j jj j j j
d P n b x p P n d x p P n
dt

′ ′ ′ ′ ′= − + +  

for the mutant population in species j , where 
11( , , )

Nx N xp m m…δ δ=  and ( )jP m′  denotes the 

probability of observing mutant population size jm′ . The rare mutant thus follows a homoge-

neous and linear birth-death process. 
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Assuming that the resident community is at its equilibrium, the conditions 

( , ) ( , )i i i ib x p d x p=  for all species 1, ,i N= "  define ( )in x  and thus 

11( ) ( ( ) , , ( ) )
Nx N xp x n x n x…δ δ= , ( , ) ( , ( ))j j j jb x x b x p x′ ′= , ( , ) ( , ( ))j j j jd x x d x p x′ ′= , and 

( , ) ( , ) ( , )j j j j j jf x x b x x d x x′ ′ ′= − . When the resident population in species j  is small enough to 

be subject to accidental extinction through demographic stochasticity, 
2 ( , ) 2 ( , ) ( )( , ) (1 ) /(1 )j j j j jf x x f x x n x

j js x x e e
� �′ ′− −′ = − −  with ( , ) ( , )) /[ ( , ) ( , )]j j j j j j j jf x x f x x b x x d x x� ′ ′ ′ ′= +  

approximates the probability of a single mutant individual with trait value ix′  to survive acci-

dental extinction through demographic stochasticity and to go to fixation by replacing the 

former resident with trait value ix  (e.g., Crow and Kimura 1970). When the resident popula-

tion in species j  is large, ( )jn x → ∞ , this probability converges to the simpler expression 

( , ) max(0, ( , )) / ( , )j j j j j js x x f x x b x x′ ′ ′=  known from branching process theory (e.g., Athreya 

and Ney 1972). 

Once mutants have grown beyond the range of low population sizes in which accidental 

extinction through demographic stochasticity is still very likely, they are generically bound to 

go to fixation and thus to replace the former resident, provided that their trait value is suffi-

ciently close to that of the resident, j jx x′ ≈  (Geritz et al. 2002). Hence the transition rate 

( , )r x x′  for the trait substitution x x′→  is given by multiplying (i) the distribution 

( ) ( ) ( , )j j j j j j jx b x x M x xμ ′,  of arrival rates for mutants jx′  among residents x , with (ii) the 

probability ( , )j js x x′  of mutant survival given arrival, and with (iii) the probability 1 of mu-

tant fixation given survival, 

1,1

( , ) ( ) ( ) ( , ) ( ) ( , ) ( )
N N

j j j j j j j j j j i i
i i jj

r x x x b x x M x x n x s x x x xμ δ
= ≠=

′ ′ ′ ′= , −∑ ∏  

(Dieckmann 1994; Dieckmann et al. 1995; Dieckmann and Law 1996). Here the product of 

Dirac delta functions captures the fact that all but the j th component of x  remain unchanged, 

while the summation adds the transition rates for those j th components across all species. 

Based on these transition rates, the master equation for the probability ( )P x  of observing 

trait value x , 

( ) [ ( , ) ( ) ( , ) ( )]d P x r x x P x r x x P x dx
dt

′ ′ ′ ′= −∫ , 

then describes the directed evolutionary random walks in trait space resulting from sequences 

of trait substitutions. 

Monomorphic Deterministic Model. If mutational steps i ix x′→  are small, the average of 

many realizations of the evolutionary random walk model described above is closely ap-

proximated by 
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( ) ( , )i i i
d x x x r x x dx
dt

′ ′ ′= −∫  

for 1, ,i N= "  (e.g., van Kampen 1981). After inserting ( , )r x x′  as derived above, this yields 

( ) ( ) ( ) ( , )( ) ( , )i i i i i i i i i i i i i i
d x x b x x n x s x x x x M x x dx
dt

μ ′ ′ ′ ′= , −∫ . 

By expanding ( , ) max(0, ( , )) / ( , )i i i i i is x x f x x b x x′ ′ ′=  around ix  to first order in ix′ , we obtain 

( , ) max(0, ( ) ( )) / ( , )i i i i i i is x x x x g x b x x′ ′= −  with ( ) ( , )
i

i i
i i ix x x

g x f x x∂
′∂ ′=

′= ; notice here that 

( , ) 0i if x x = . This means that in the ix′ -integral above only half of the total ix′ -range contrib-

utes, while for the other half the integrand is 0 . If mutation distributions iM  are symmetric – 

( , ) ( , )i i i i i i i iM x x x M x x x+Δ = −Δ  for all i , ix , and ixΔ  – we obtain 

1 ( ) ( ) ( ) ( ) ( , ) ( )
2

T
i i i i i i i i i i i i

d x x n x x x x x M x x dx g x
dt

μ ′ ′ ′ ′= − −∫ . 

The integral is the variance-covariance matrix of the mutation distribution iM  around trait 

value ix , denoted by 2 ( )i ixσ . Hence we recover the canonical equation of adaptive dynamics 

(Dieckmann 1994; Dieckmann and Law 1996), 

21 ( ) ( ) ( ) ( )
2i i i i i i i

d x x n x x g x
dt

μ σ=  

for 1, ,i N= " . When mutational steps i ix x′→  are not small, higher-order correction terms 

can be derived: these improve the accuracy of the canonical equation and also cover non-

symmetric mutation distributions (Dieckmann 1994; Dieckmann and Law 1996). 

Polymorphic Deterministic Model. When mutation probabilities are high, evolution is no 

longer mutation-limited, so that the two classes of models introduced above – both being de-

rived from the analysis of invasions into essentially monomorphic populations – cannot offer 

quantitatively accurate approximations of the underlying individual-based birth-death-

mutation processes. Provided that population sizes are sufficiently large, it instead becomes 

appropriate to investigate the average distribution-valued dynamics of many realizations of 

the birth-death-mutation process, 

( ) [ ( ) ( )] ( , )d p x p x p x r p p dp
dt

′ ′ ′= −∫ . 

Inserting the transition rates ( , )r p p′  specified above for the individual-based evolutionary 

model, we can infer (by collapsing the integrals using the sifting properties of the Dirac delta 

function and of the generalized delta function) 

( ) ( , ) ( , )i i i i i
d p x r x p r x p
dt

+ −= −  

for 1, ,i N= " . Inserting ( , )i ir x p+  and ( , )i ir x p−  from above, this gives 
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( ) [1 ( )] ( , ) ( ) ( ) ( , ) ( ) ( , ) ( , ) ( )i i i i i i i i i i i i i i i i i i i i i
d p x x b x p p x x b x p p x M x x dx d x p p x
dt

μ μ ′ ′ ′ ′ ′= − + −∫ . 

Further analysis is simplified by assuming that the mutation distributions iM  are not only 

symmetric but also homogeneous – ( , ) ( , )i i i i i i i iM x x x x M x x′ ′+Δ +Δ =  for all i , ix ′ , ix , and 

ixΔ . Expanding ( ) ( , ) ( )i i i i i ix b x p p xμ ′ ′ ′  up to second order in x′  around ix , 

2

2

( ) ( , ) ( ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( )

1 ( ) [ ( ) ( , ) ( )]( ),
2

i i i i i i i i i i i i i i i i i i i i
i

T
i i i i i i i i i i

i

x b x p p x x b x p p x x x x b x p p x
x

x x x b x p p x x x
x

μ μ μ

μ

∂′ ′ ′ ′= + −
∂

∂′ ′+ − −
∂

 

then yields 
2

2
2

1( ) ( , ) ( ) ( )* ( ) ( , ) ( )
2i i i i i i i i i i i i i

i

d p x f x p p x x x b x p p x
dt x

σ μ
∂

= +
∂

, 

with ( , ) ( , ) ( , )i i i i i if x p b x p d x p= − , 2 ( ) ( ) ( ) ( , )T
i i i i i i i i i ix x x x x M x x dxσ ′ ′ ′ ′= − −∫ , and with ∗  

denoting the elementwise multiplication of two matrices followed by summation over all re-

sultant matrix elements. This result also provides a good approximation when mutation 

distributions are heterogeneous, as long as 2 ( )i ixσ , rather than being strictly independent of 

ix , varies very slowly with ix  on the scale given by its elements. 
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Figures 

 

Figure 1. Models of adaptive dynamics. Panel (a) illustrates the individual-based birth-death-
mutation process (polymorphic and stochastic), panel (b) shows an evolutionary random walk 
(monomorphic and stochastic), panel (c) represents the gradient-ascent model (monomorphic 
and deterministic, described by the canonical equation of adaptive dynamics), and panel (d) 
depicts an evolutionary reaction-diffusion model (polymorphic and deterministic). 
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Figure 2. Formal relations between the models of adaptive dynamics. The four classes of 
model are shown as rounded boxes, and the three derivations as arrows. Arrow labels high-
light key assumptions. 
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Figure 3. Evolution of community structure in first example. Traits Cx  and Dx  measure the 
degree to which consumers C and D invest into feeding on the resource R, as opposed to feed-
ing on each other. For C Dx x> , C is the better resource feeder, while D is the better antagonist 
feeder. In panel (a), the evolutionary isoclines of Cx  and Dx  are depicted by continuous and 
dashed curves, respectively. Regions in panel (a) indicate different potentials for coexistence 
and coevolution. Region C: C and R can coexist, while D goes extinct. Region D: D and R 
can coexist, while C goes extinct. Region C/D: ecological bistability between coexistence of 
R with either C or D. Regions (i), (ii), and (iii): C, D, and R can coexist, so that C and D can 
coevolve. The community structures resulting from these coevolutionary dynamics then de-
pend on the initial conditions for ( , )C Dx x  and are shown in panel (b). Region (i): Coevolution 
towards attractor depicted by filled circle, corresponding to omnivorous mutual intraguild 
predation. Region (ii): Coevolution towards attractor depicted by filled square, corresponding 
to omnivory on the part of just one consumer. Region (iii): Coevolution towards Region D, 
corresponding to the exclusion of consumer C. Parameters: 0.82Cs = , 1.5Ds = , 

max, max, 0.4C Da a= = , 0.2CR DRe e= = , 0.8CD DCe e= = , 0.05C Dd d= = , 0.2Rr = , 100Rk = , 
2 2/ 5C C D Dμ σ μ σ = . 
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Figure 4. Evolution of community structure in second example. Panel (a) shows the temporal 
development of community structure through recurrent evolutionary branching, utilizing a 
logarithmic time scale. Panel (b) depicts the resulting community structure. Each species is 
represented by a circle, with its vertical position given by its trophic level. Circles are con-
nected by arrows, from prey to predator, where the energy flow between the two 
corresponding species account for more than 10% of the total energy inflow to the recipient 
species. Arrows connecting to the bottom indicate consumption of the autotrophic species (or 
basal resource, which is not displayed). Parameters: 0 1x = , 0 100k = , 0 1b = , 0.3e = , 

0( ) exp( )i id x d qx= −  with 0 0.2d =  and 0.75q = ; F  is a lognormal function with mean 3 , 
standard deviation 1.5 , and amplitude 2.5 ; C  is a lognormal function with mean 0 , standard 
deviation 0.6 , and amplitude 0.0025 . 
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Figure 5. Evolution of community structure in third example. When two trait components for 
an individual’s strategy as prey, rx , and for its strategy as predator, ux , evolve under selection 
pressures resulting from predator-prey interactions, complex food webs can emerge through 
recurrent evolutionary branching. Panel (a) shows the temporal development of community 
structure, with the widths of tubes reflecting the densities of phenotypic clusters. Panels (b) to 
(d) show the evolving food web at three different moments in time. Spheres represent pheno-
typic clusters, with diameters reflecting the corresponding densities. On the bottom planes, 
the shadows of these spheres show the distribution ( )p x . Tubes represent trophic links, with 
diameters reflecting the corresponding interaction strengths. Tubes connecting to the bottom 
planes indicate consumption of the external supply of resources (which is assigned trophic 
level 0). The resultant trophic levels of phenotypic clusters are shown along the vertical axes 
in (b) to (d). Parameters: 0.1e = , 1d = , 20a = , 1/ 2 17P = , 2 2 31

2 ((3 10 ,0), (0,10 ))μσ − −= ⋅ ,  

0 200S = , 0.08Sσ = . 
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Figure 6. Evolution of community structure in fourth example. When a trait governing 
asymmetric competition evolves, selection-driven increases and decreases in morph number 
are embedded into a macroevolutionary pattern of perpetual laminar flow of morphs towards 
larger trait values. The individual-based dynamics shown involved more than 420,000,000 
explicitly simulated birth and death events. Parameters: 0 1b = , 0 1000K = , 0 2x = , 1Kσ = , 

0.3Cσ = , 2β = , 0.005μ = , 0.025σ = . 
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