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derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
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Abstract 

A focus on the eco-evolutionary feedback continually operating between a population’s evo-

lution and its environment helps to appreciate the generality of ESS theory. Here we illustrate, 

through a sequence of four examples, how respecting such feedback in the evolutionary dy-

namics of quantitative traits may result in qualitatively unexpected outcomes. Reviewing 

existing insights and complementing these with new results, we show (1) that evolutionary 

matrix games are fundamentally degenerate and allow a natural unfolding, (2) that selection-

driven extinction may not be rare in nature, (3) that evolutionary epidemiology should not rely 

on R0 maximization, and (4) why the occurrence of Hardy-Weinberg proportions generically 

requires an evolutionary explanation. 

Keywords 

eco-evolutionary feedback, matrix games, unfolding evolutionarily singular points, evolution-

ary suicide, evolutionary epidemiology, optimization principles, deviations from Hardy-

Weinberg, sex-dependent fitness, continuous stability 
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1  Introduction 

ESS theory provides the link between evolutionary mechanisms and natural history. Its 

strength lies in asking and answering deep questions about readily observable biological phe-

nomena, be they ecological, behavioral, physiological, or morphological. ESS theory does so 

by concentrating on the phenotype and its role in the interaction among organisms, while ne-

glecting genetic detail. It is through this simplification and focus that ESS theory facilitates a 

fruitful interplay between evolutionary modeling and experimental and observational biology. 

ESS theory originally arose from attempts to understand the evolutionary underpinnings of 

behavioral phenotypes. In such contexts, the need to account for the phenotypes of other indi-

viduals that a focal individual will interact with was particularly evident (Maynard Smith and 

Price, 1973; Maynard Smith, 1982). In this way, ESS theory helped emphasize the importance 

of frequency-dependent selection for understanding natural evolutionary change: in models 

for the evolution of behavior, the fitness of individuals is bound to depend on a population’s 

phenotypic composition. 

Approaching the feedback between a population’s composition and the underlying selec-

tion pressures from a more population dynamical angle, research in the 1970s also made 

important progress in the analysis of evolutionary outcomes under density-dependent selec-

tion (Roughgarden, 1971, 1979). As it turned out, the method of predicting evolutionary 

outcomes by optimizing a suitably chosen fitness function could be extended from problems 

with density- and frequency-independent selection to those with purely density-dependent se-

lection. In the former case, all fitness values are constant over time, while in the latter case 

they vary with (and only with) a population’s density. 

For almost two decades, these alternative approaches remained curiously disparate. Stu-

dents of evolution could either rely on optimization methods, if they felt they could safely 

ignore frequency-dependent selection, or on methods broadly referred to as ‘game theoreti-

cal,’ if they had a hunch that frequency dependence was germane to the evolutionary question 

at hand. This state of affairs, however, was rather unsatisfactory: not only did it prevent the 

transparent and accurate analysis of evolutionary problems in which density- and frequency-

dependent selection both played a role, but it also fostered the hopeful belief that most prob-

lems in life-history evolution could be solved through optimization methods, if only suitable 

fitness functions could be identified (e.g., Stearns, 1992; Roff, 1992). 

The impasse in bringing together models of evolution under density- and frequency-

dependent selection was overcome gradually. Two key ideas played a role in this process. The 

first idea, already foreshadowed in the context of game theoretical and optimization methods, 

is to envisage fitness always as a function of both phenotype and environment. To fully ap-

preciate this point and make it operational, a suitable formal definition of ‘environment’ had 
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to be established. Since the environment experienced by an individual is bound to depend on 

the current state of its population, this environment may be affected, first, by the population’s 

phenotypic composition, and second, for an unstructured population, by the population’s total 

abundance. The first dependence applies whenever selection is frequency-dependent, and the 

second one whenever selection is density-dependent. (In structured populations, the neat di-

vide between the two types of selection becomes blurred whenever densities of life stages 

affect phenotypes differentially.) In general, the evolutionary environment of an individual is 

to be described such that all outside influences impinging on any individuals contributing to 

the dynamics of the focal population, now and in the future, are covered. The evolutionary 

environment thus defined differs from the instantaneous environment familiar from describing 

population dynamics. For the latter, only the current influences on the individuals in the focal 

population are considered. Both formal notions of environment have been inspired by the the-

ory of physiologically structured populations (Metz and de Roos, 1992; Metz and Diekmann, 

1986; Diekmann et al., 2001, 2003). The second idea facilitating a merger of game theoretical 

and optimization methods is to derive the fitness functions to be analyzed from an individual-

based view of the underlying population dynamics – in earlier work, such functions had often 

been instead assumed a priori. Taken together, these ideas motivated the introduction of the 

so-called invasion fitness of a given phenotype in a given environment, defined and derived – 

analytically, numerically, or empirically – as the phenotype’s asymptotic exponential growth 

rate in the considered environment (Metz et al., 1992). 

The characteristic idea of ESS theory is that the phenotypes currently present in a commu-

nity are continually challenged by variants appearing in such small numbers that they do not 

perceivably perturb the community’s attractor. An ESS is a phenotype, or set thereof, that 

cannot be invaded by any such rare variants. Invasion fitness helps to predict the dynamics of 

invasion attempts. In an ecologically stationary community, the invasion fitness of all present 

phenotypes equals zero by definition (otherwise, the community would not be stationary). By 

contrast, rare phenotypes with positive invasion fitness may invade (usually after many un-

successful trials, owing to demographic stochasticity in the invader population), while those 

with negative invasion fitness cannot invade (unless the invaded population as a whole is so 

small that it is subject to considerable demographic stochasticity). In principle, the fate of 

variants with zero invasion fitness would have to be determined from higher-order terms – 

however, as we shall argue in Section 2, the case of variants that possess zero invasion fitness 

and are not equal to a present phenotype is so non-generic that it can safely be neglected for 

most intents and purposes. 

Nothing said so far is overly new. Not only that, there are many earlier studies that have 

implicitly shared these ideas and have contributed to their practical development. Yet it seems 
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that the unifying potential resulting from the perspective established above remains underex-

ploited. The key notion here is that of the eco-evolutionary feedback loop, continually 

operating between a population’s evolution and its environment: while the environment de-

termines current selection pressures, these pressures change a community’s phenotypic 

composition, which in turn alters its environment. Under such feedback, fitness landscapes are 

varying in shape as evolutionary changes unfold. By explicitly introducing this feedback loop, 

based on a suitable formal notion of environment, many disparate evolutionary investigations 

and phenomena can be brought under one heading, thus unifying the analysis of large classes 

of model families. Perhaps even more importantly, the evolutionary properties of realistically 

complicated models are often becoming more accessible through this natural conceptual de-

composition of the ecological theatre. 

ESS theory today has clearly moved beyond earlier models based on ad hoc payoff matri-

ces or unproven optimization principles. In this article we tout the idea that the full generality 

of ESS theory can best be brought out by concepts and tools designed to analyze eco-

evolutionary feedback. By firmly rooting evolutionary predictions in the underlying popula-

tion dynamics, fairly realistic ecological scenarios can be tackled. Below, we will highlight a 

range of evolutionary surprises resulting from such enhanced levels of ecological realism. The 

examples presented in the following four sections are also meant to illustrate some of the 

technical principles that, in our opinion, underlie the generalization of ESS theory. 

2  The fundamental degeneracy of matrix games can be unfolded 

The straightforward tractability of matrix games and ESS conditions has enabled game theory 

to become an important and popular framework for modeling phenotypic evolution. This suc-

cess, however, has come at a price, for two reasons: 

 First, beyond stylized games of behavior, continuous strategies usually offer a more con-

vincing rendering of real evolving traits than discrete strategies. By contrast, in game 

theoretical models of biological evolution, continuous strategies are typically introduced 

and analyzed merely as mixtures of pure strategies. 

 Second, for many questions in evolutionary ecology it is necessary to consider the full 

population dynamical effects of strategies. In models based on matrix games, an attempt is 

made, instead, to infer the effects of strategies on fitness directly from payoff matrices. 

Such an approach also complicates the integration of realistic types of density regulation 

into models based on matrix games. 

Whenever applications of evolutionary game theory consider mixed strategies in matrix 

games, a peculiar degeneracy raises its ugly head. This degeneracy directly follows from how 
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matrix-game payoffs of mixed strategies are determined. Let us consider a resident population 

with mixed strategy x . Here, the components of the vector x  describe the probabilities ix  

with which the resident players follow any one of k  pure strategies ki ,,1…= , with 

11 =∑ =
k
i ix . The components ijW  of the payoff matrix W  describe the payoff received by a 

player adopting the pure strategy i  against a player using the pure strategy j . The average 

payoff of players with a rare variant strategy vx  is WxxT
v  (where T denotes transposition), so 

that their excess payoff relative to a resident player is WxxWxxxxf TT
vv ),( −= . Since it is as-

sumed that variants with 0>f  can invade, while those with 0<f  cannot, the sign of f  

carries the same information as that of invasion fitness in models with explicit population dy-

namics. It is already clear from this observation that the game-theoretical case is rather 

special: whereas invasion fitness functions may be (and usually are) nonlinear, mixed strate-

gies in matrix games inevitably lead to functions f  that are linear in both x  and vx . 

It is instructive to explore the consequences of this degeneracy by considering games with 

just two pure strategies. For 2=k , a single adaptive trait suffices, )1,( ppx −=  and 

)1,( vvv ppx −= , 

 
.)])(1()()[(

])1()1()1([

])1)(1()1()1([),(

22122111v

22
2

211211
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22v21v12v11vv

WWpWWppp
WppWpWppWp

WpppWpWpppWpppf

−−+−−=
−+−+−+−

−−+−+−+=

 (1) 

From this we can see that 0),( v =ppf  for pp =v  and for *pp =  with 

)/()( 212212111222
* WWWWWWp −+−−= . Figure 1a illustrates the resultant pairwise invasibil-

ity plot for 10 * << p . This plot highlights two geometric consequences of the linearity of f : 

the non-diagonal zero-contour curve of f  at *pp =  is both straight and vertical. In other 

words, in a population of players following the mixed strategy *p , all variant strategies are 

strictly neutral, 0),( *
v =ppf  for all vp . This neutrality extends to the effect that all mixtures 

of mixed and/or pure strategies resulting in a population with strategy *p  are evolutionarily 

neutral as well. These observations reflect a general result of game theory, widely known as 

the Bishop-Cannings theorem (Bishop and Cannings, 1978). It is thus immediately clear that, 

when viewed in a broader context, the treatment of mixed strategies in matrix games is struc-

turally unstable: the slightest variation in model structure is likely to destroy the degenerate 

geometry depicted in Figure 1a, by bending and/or tilting the non-diagonal zero-contour curve 

away from a straight and vertical line. At the same time, these variations remove the evolu-

tionary neutrality of mixtures with population strategy *p . 

Below we show how the described degeneracy is readily overcome when invasion fitness 

is derived from population dynamics into which realistic aspects of ecological interactions are 

incorporated. To keep these discussions as concrete as possible, we focus on the classical 

hawk-dove game for illustration (Maynard Smith, 1982). In this game, players adopt interac-
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tion strategies that are either selfish (hawk) or cooperative (dove). When a hawk plays against 

a dove, the hawk gains a reward of value 0≥V , while the dove gains nothing. When two 

doves play against one another, they share the reward, each gaining V2
1 . By contrast, when 

two hawks interact, both of them gain )(2
1 CV −  on average, where 0≥C  measures the cost 

of hawkish encounters. With p  and vp  denoting the probabilities with which the hawk strat-

egy is used by resident and variant players, respectively, the rare variant’s excess payoff is 

given by 

 ))((),( v2
1

v pCVppppf −−=  , (2) 

implying CVp /* = . Thus, whenever the cost C  exceeds the reward V , evolution is ex-

pected to converge on the mixed strategy *p  (for VC ≤ , evolution will instead increase p  

up to 1=p ). Again, once *p  is resident, all variants are neutral. 

We now examine three slight variations of the classical hawk-dove game. First, we con-

sider a simple population dynamical embedding of the game; second, we relax the assumption 

that rewards are fixed; and third, we relax the assumption of fixed interaction rates. For sim-

plicity, we consider discrete-time models with non-overlapping generations. We assume that 

each individual has an intrinsic reproduction ratio 0≥R , which is enhanced by payoffs from 

the hawk-dove game and diminished by density regulation. For a rare variant strategy vp  in a 

resident population with strategy p  at population dynamical equilibrium, this results in a re-

production ratio of )(/]})1([{ vv2
1 pFCppppVrR −+−+ , where 0≥r  is the per generation 

rate at which individuals interact by engaging in the hawk-dove game. The density-regulating 

factor F  is obtained from observing that the resident’s own reproduction ratio equals 1 at 

population dynamical equilibrium, which gives ][)( 2
2
1 CpVrRpF −+= . Notice that the den-

sity dependence thus considered is selectively neutral, in that it affects all phenotypes alike. 

Consequently, the hawk-dove game’s degeneracy is preserved in this simple population dy-

namical embedding. Based on these assumptions, we obtain the model’s invasion fitness as 

the logarithm of the variant’s reproduction ratio, 

 
][

])1([ln),( 2
2
1

vv2
1

v CpVrR
CppppVrRppf

−+
−+−+

=  . (3) 

It is straightforward to verify that (3) is sign-equivalent to (2). 

As a further variation, we now relax the assumption that rewards in the hawk-dove game 

are strictly fixed. In realistic ecological settings, it is likely that such rewards are fluctuating 

between generations, reflecting, for example, variations in environmental conditions between 

years. To keep the treatment transparent, we consider the simplest such fluctuation by assum-

ing that the reward can switch between just two values, VcV )1(1 +=  and VcV 1
2 )1( −+= , 

where 0≥c  measures the contrast between these two rewards. In each generation, values 1V  
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and 2V  are attained with equal probability. Whereas this perturbation of the original model 

thus leaves the geometric mean of the reward invariant, the model’s invasion fitness, obtained 

from the geometric mean of the reproduction ratio resulting for the two reward values, is 

changed to 

 ∏
= −+

−+−+
=

2

1
2

2
1

vv2
1

v ][
])1([ln

2
1),(

i i

i

CpVrR
CppppVrR

ppf  . (4) 

Figure 1b illustrates a resultant pairwise invasibility plot. It turns out that the slightest reward 

contrast removes the formerly observed degeneracy. Specifically, for any 0>c , the slope of 

the non-diagonal zero-contour curve of f  is negative (i.e., the curve is tilted counter-

clockwise), while its curvature is positive (i.e., the curve is concave from the right). Accord-

ingly, the previously existing plethora of evolutionarily neutral mixtures has collapsed to a 

unique monomorphic attractor. This delicate sensitivity underscores the structural instability 

of the original model. 

So far, we have assumed that the rate r  at which individuals interact through the hawk-

dove game is strictly identical for all players. However, in ecologically realistic circum-

stances, it is quite likely that players are subtly or significantly more or less likely to engage 

in such interactions, depending on their strategy. Doves may avoid interactions and hawks 

may seek out engagements, or vice versa. To explore the consequences of such variation with 

some generality, we expand the interaction rates for strategies p  up to second order around 
*p , 

 2
2*

1
*

0 )()()( rpprpprpr −+−+=  (5a) 

with 00 ≥r , and update the model’s invasion fitness accordingly, 

 
])[(

])1()[,(~
ln),( 2

2
1

vvv2
1

v CpVprR
CppppVpprR

ppf
−+

−+−+
=  . (5b) 

Here the choice of )()(),(~
vv prprppr =  reflects the assumption that engagements are initi-

ated bilaterally and symmetrically. Figure 2 illustrates the resultant pairwise invasibility plots. 

As can be seen, the slightest departure from uniform interaction rates removes the game-

theoretical degeneracy. Notice that in this third variant of the model the non-diagonal zero-

contour curve of f  can have either positive or negative slope, and also its curvature can ei-

ther be positive or negative. 

More in general, the third model variant shows how the degenerate game-theoretical case 

serves as the organizing center (Golubitsky and Schaeffer, 1985) of a rich bifurcation struc-

ture. Since the signs of both slope and curvature of the non-diagonal zero-contour curve of 

invasion fitness qualitatively affect evolutionary predictions, the local unfolding of the game-

theoretical degeneracy always requires variation of at least two model parameters. Using the 
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non-diagonal zero-contour curve’s slope and curvature at *pp =  as generic local unfolding 

parameters, the degeneracy’s unfolding can be depicted as shown in Figure 3. Notice that, in 

this unfolding, transitions from negative to positive slopes are of particular relevance, since 

these correspond to the transformation of an evolutionarily stable strategy into an evolution-

ary branching point (Metz et al., 1996; Geritz et al., 1997). Consequently, expected 

evolutionary outcomes fundamentally differ on either side of such a transition: for an evolu-

tionarily stable strategy, a monomorphic mixed strategy is expected to evolve, whereas 

evolutionary branching points may give rise to population-level dimorphisms of strategies. 

Interestingly, the members of the dimorphisms eventually emerging after evolutionary 

branching may both be either pure or mixed strategies. A full analysis distinguishing the vari-

ous cases then enables a much more conclusive prediction of the eventual evolutionary 

outcomes than is possible based on matrix games. Unfolding the degeneracy of mixed strate-

gies in matrix games thus results not only in the removal of a perilous structural instability, 

but also offers an additional conceptual benefit: whereas, in matrix games, mixed strategies 

realized probabilistically at the level of individuals or polymorphically at the level of popula-

tions are indistinguishable, instructive insights into the interplay between these biologically 

rather different realizations of diversity can be gained once the game-theoretical degeneracy is 

overcome. 

In this section we have shown how a more extensive population dynamical embedding and 

the addition of salient elements of ecological realism help to unfold a fundamental degeneracy 

of evolutionary matrix games. We suggest that the only features of an evolutionary game 

likely to be biologically relevant are those that stay intact under such an unfolding. 

3  Selection-driven extinctions need not be rare 

For a long period during the 19th and 20th century, evolution was thought to operate so as to 

benefit the affected species. Accordingly, it was widely expected that, for example, life-

history evolution would always enhance a population’s viability. Such was Darwin’s confi-

dence in this prowess of adaptive evolution that he suggested “we may feel sure that any 

variation in the least degree injurious would be rigidly destroyed” (Darwin, 1859, p. 130) and 

”Natural selection will never produce in a being anything injurious to itself, for natural selec-

tion acts solely by and for the good of each” (Darwin, 1859, p. 228). 

Notions of optimizing selection are underlying landmarks of evolutionary theory devel-

oped during the Modern Synthesis, like Fisher’s so-called fundamental theorem of natural 

selection (Fisher, 1930), or Wright’s notion of hill climbing on genotypically or phenotypi-

cally defined fitness landscapes (Wright, 1932, 1967). Also Levins’s fitness-set approach to 
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the study of bivariate evolution (Levins, 1962, 1968), still enjoying widespread recognition in 

life-history evolution (Yodzis, 1989, pp. 324-351; Case, 1999, pp. 175-177; Calow, 1999, p. 

758), is based on the assumption that, within a set of feasible phenotypes defined by a trade-

off, evolution will maximize a population’s fitness. 

The perception that evolution worked for the good of the species was also common among 

field biologists, often based on implicit or explicit ideas of group selection, which found their 

culmination in the work by Wynne-Edwards (1962). By the 1970s, explaining adaptations in 

terms of species-level benefits had fallen into disrepute (Williams, 1966). While most biolo-

gists are thus aware that adaptive evolution, in principle, can undermine a population’s 

viability, and while such phenomena are regularly discussed in the context of the ‘tragedy of 

the commons’ (Hardin, 1968), the evolution of altruism (e.g., Axelrod and Hamilton, 1981), 

or the evolution of sex (e.g., Maynard Smith, 1978), the role of adaptive life-history evolution 

in causing extinctions has received but limited attention to date. 

A notion still lingers in the biological community that it should be only under very excep-

tional circumstances that adaptive evolution worsens a population’s lot to the extent of 

causing extinction. Earlier ESS theory (e.g., Maynard Smith, 1982) did not address this issue, 

since classical matrix games are not concerned with the impact of strategies on population 

density. Also modern applications of ESS theory based on the replicator equation (Taylor and 

Jonker, 1978; Schuster and Sigmund, 1983; Hofbauer and Sigmund, 1998) tend to focus at-

tention on changes in the frequencies, rather than the density, of strategies. For an alternative 

approach to game dynamics that aimed at including densities, see Cressman (1990). 

While classical ESS theory, then, does not easily lend itself to the study of selection-driven 

extinction, frequency-dependent selection, a consistently emphasized aspect of ESS theory, 

plays an important role in such processes. Frequency-dependent selection is crucial for under-

standing selection-driven extinction because it allows the invasion of populations by a 

strategy that is beneficial to individuals as long as that strategy is rare, while ruining the popu-

lation’s viability once that strategy has become common. Models of selection-driven 

extinction cannot do without density-dependent selection either: if fitness values are inde-

pendent of density, equilibrium population densities, and thus extinctions, cannot be 

predicted. It thus becomes clear that models of selection-driven extinction need to include 

both frequency- and density-dependent selection. In other words, they must incorporate a suf-

ficient degree of ecological realism. 

A verbal and lucid example of a mechanism capable of causing selection-driven extinction 

comes from considering overtopping growth in plants. Taller trees get more sunlight while 

casting shade onto their neighbors. As selection causes the average tree height to increase, 

fecundity declines, as more of the tree’s energy budget is diverted from seed production to 
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wood production. Under such circumstances it may also take longer for trees to reach matur-

ity. Thus, arborescent growth as an evolutionary response to selection for competitive ability 

can cause deterioration both in a population’s carrying capacity and in its intrinsic growth 

rate. The logical conclusion of such a process may be population extinction, as was first ex-

plained by Haldane (1932). Various later authors have explored eco-evolutionary models of 

selection-driven extinction based on similar ingredients. Below we provide a review of three 

salient studies. 

Matsuda and Abrams (1994a) analyzed a Lotka-Volterra model in which individuals are 

subject to asymmetric competition and a carrying capacity that depends on their body size. 

Specifically, the competitive impact experienced by an individual with body size vx  in a 

population with mean body size x  was assumed to be ))(exp(),( vv xxhxx −−= αα , and the 

carrying capacity of a population monomorphic in body size vx  was 

))(exp()( v0 xhKxK K−= . The nonlinear function αh  preserved the sign of its argument, and 

the non-negative function Kh  went to infinity when its argument did. Matsuda and Abrams 

(1994a) concluded that, under these circumstances, adaptive evolution continues to increase 

body size indefinitely – provided the advantage of large body size (as described by αh ) is big 

enough and the cost of increased body size (as described by Kh ) is small enough. Since large 

body sizes resulted in small carrying capacities, adaptive evolution thus perpetually dimin-

ished population density, a phenomenon Matsuda and Abrams (1994a) called ‘runaway 

evolution to self-extinction’. Since population density in this model never vanished (it just 

continued to deteriorate), additional stochastic factors were required to explain extinction. 

Mathias and Kisdi (in press) modeled such extinctions explicitly. 

In a model by Dercole et al. (2002), the per capita growth rate in a monomorphic popula-

tion with adult body size x  and population density )(xN  has a logistic component 

)()0()( xNxr α− , with the monotonically decreasing function )(xr  capturing the negative 

influence of larger body size on fecundity, and with )()0( xNα  measuring the extra mortality 

caused by intraspecific competition between individuals of the same body size. As in the pre-

vious model, the function α  measured the competitive impact between individuals: for 

phenotypes x  and vx , the competitive impact of x  on vx  is )()( v xNxx −α , where α  in-

creases with vxx − , implying asymmetric competition. Dercole et al. (2002) also incorporated 

an Allee effect by reducing per capita growth rates in proportion to ])(1/[)( 22 xNxN + . This 

Allee effect caused bistability in equilibrium population densities )(* xN : for low x , only a 

high-density equilibrium existed, for high x , only a low-density equilibrium existed, and for 

intermediate x , the two stable equilibria coexisted. The selection pressure on x  could be de-

rived from the assumptions summarized here and turned out to possess two antagonistic 

components: the assumed shape of r  favored small adult body size, whereas the asymmetry 
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of competition favored larger body size. Consequently, strong competition at the high-density 

equilibrium increased body size evolutionarily, while the dominance of the fecundity effect of 

body size at the low-density equilibrium decreased body size. The interplay of ecology and 

evolution in this model thus brought about an evolutionary hysteresis: body size increased at 

the high-density equilibrium until the population dropped to the low-density equilibrium, at 

which point body size decreased until the population switched back to the high-density equi-

librium. At the low-density equilibrium, demographic or environmental stochasticity was 

expected to result in a greatly elevated extinction risk. 

Also a model developed by Gyllenberg and Parvinen (2001) was based on asymmetric 

competition and the incorporation of an Allee effect. Their model is similar to the previous 

one, except for three features: fecundity )(xb  was assumed to be peaked at an intermediate 

value of body size x , a trait- and density-independent mortality d  was considered, and the 

Allee effect reduced fecundity by the factor )](1/[)( xNxN + . The model’s invasion fitness 

was thus given by 

 )()()](1/[)()(),( vvv xNxxdxNxNxbxxf ∗∗∗ −−−+= α  . (6a) 

The invasion fitness yields the model’s equilibrium density and selection gradient. The equi-

librium density )(xN ∗  is inferred from 0),( =xxf , 

 )]0(2/[]})0(4)]0()([)0()({,0)( 2 αααα ddxbdxbxN −−−±−−=∗  . (6b) 

The extinction equilibrium 0)( =∗ xN  was stable for all x. For intermediate values of x , two 

positive equilibria coexisted, with the high-density one being stable, separated from the ex-

tinction equilibrium by an unstable low-density equilibrium. The model’s selection gradient, 

 )()0()](1/[)()(),()( *
v

vv
xNxNxNxbxxfxg

xxx α′−+′== ∗∗
=∂

∂  , (6c) 

was positive for all x , provided that )0(α′  was sufficiently negative, i.e., whenever competi-

tion was sufficiently asymmetric. The adaptive dynamics of body size x  thus drove the 

population to the threshold at which the two positive equilibria vanished by collision: above 

this threshold, only the stable extinction equilibrium remained. In this model, therefore, adap-

tive evolution did not reduce population density gradually to zero, as in the two previous 

examples, but instead caused the population to go extinct abruptly. Figure 4 illustrates this 

scenario. 

Such abrupt transitions to extinction, caused by directional selection, have been termed 

‘evolutionary suicide’ by Ferrière (2000). More precisely, evolutionary suicide is defined as a 

trait substitution sequence driven by mutation and selection that takes a population toward 

and across a boundary in a population’s trait space beyond which the population cannot per-

sist. Once the population’s traits have evolved close enough to this boundary, variants can 
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invade that are viable as long as the current resident trait value abounds, but that are not vi-

able on their own. When these variants start to invade the resident population, they initially 

grow in density; once they have become sufficiently abundant, concomitantly reducing the 

former resident’s density, the variants bring about their own extinction. 

It thus appears that the ecological requirements for selection-driven extinction are easily 

met. Whenever competitive ability trades off strongly with longevity or fecundity, and com-

petition is sufficiently asymmetric, directional selection on traits underlying competitive 

ability is expected to reduce population density. If the resultant densities fall below the 

threshold density of an Allee effect, or if they imply a much elevated risk of accidental extinc-

tion, the population is doomed. The potential ubiquity of selection-driven extinctions is 

underscored by other examples of extinctions caused by adaptation in different traits, includ-

ing anti-predator behavior (Matsuda and Abrams, 1994b), sexual traits (Kirkpatrick, 1996; 

Kokko and Brooks, 2003), dispersal rates (Gyllenberg et al., 2002), mutualism rates (Ferrière 

et al., 2002), cannibalistic traits (Dercole and Rinaldi, 2002), maturation reaction norms (Er-

nande et al., 2002), levels of altruism (Le Galliard et al., 2003), and selfing rates (Cheptou 

2004); see also the review by Parvinen (2006). Furthermore, Dieckmann and Ferrière (2004) 

showed, by examining ecologically explicit multilocus models featuring either diallelic loci or 

continua of alleles, that the incidence of evolutionary suicide is by no means restricted to phe-

notypic models of asexual evolution, but robustly occurs also when sexual inheritance is taken 

into account. 

It is not accidental that two of the examples described in some detail above involved dis-

continuous transitions in population density at critical trait values. In the context of a model of 

dispersal evolution in metapopulations, Gyllenberg et al. (2002) proved that discontinuous 

transitions to extinction, implying catastrophic bifurcations, are a prerequisite for evolutionary 

suicide. This finding applies more generally: wherever a population goes to extinction 

through a continuous transition, it cannot undergo evolutionary suicide (Gyllenberg and Par-

vinen, 2001). This is easily shown for cases in which a population’s density N  and adaptive 

trait x  are both one-dimensional (Dieckmann and Ferrière, 2004). The generic continuous 

transition to extinction then is the transcritical bifurcation, in which a positive equilibrium and 

the extinction equilibrium collide and exchange their stability at a critical trait value cx . In the 

vicinity of cx , population dynamics can always be written as rNKNxxNdt
d ]/)[( c −−= , 

where 0>K  scales N  and 0>r  scales Ndt
d  (up to redirection of x ; Guckenheimer and 

Holmes, 1997, p. 145). With the per capita growth rate of a variant with trait value vx  in an 

environment with population density N  thus being given by rKNxx ]/)[( cv −− , and with 

the equilibrium population density of a resident population with trait value cxx =  vanishing, 

0=N , we obtain the invasion fitness rxxxxf )(),( cvcv −=  for the rare variant competing 
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with the critical resident. In addition, the consistency condition 0),( =xxf  for ecological 

equilibrium has to be fulfilled for all x . When making the generic assumption that ),( v xxf  

has a leading linear order around xv, x = xc , i.e., cxxcxxf += vvv ),( , the coefficients vc  and 

c  can be determined from the two constraints rxxxxf )(),( cvcv −=  for all vx , and 

0),( =xxf  for all x , which yields rxxxxf )(),( vv −= . The selection gradient operating on 

the adaptive trait x  is thus given by rxxf
xxx =

=∂
∂

vv
),( v , which is always positive. This means 

that adaptive evolution takes x  away from cx  by making it larger, thus increasing the equilib-

rium population density from 0)( c
* =xN  to KxxxN )()( c

* −= . Therefore, adaptive 

evolution in this system can never cause evolutionary suicide by driving x  toward the critical 

trait value cx . Similar conclusions were reached by Gyllenberg and Parvinen (2001) and by 

Webb (2003). 

In this section we reviewed how the proper population dynamical embedding of models of 

adaptive life-history evolution, including both frequency-dependent and density-dependent 

selection pressures, results in predictions of selection-driven extinction under a wide range of 

ecologically plausible scenarios. We propose that the commonly accepted null hypothesis of 

population extinctions in the fossil record to have resulted from ecological or externally im-

posed environmental changes needs to be reconsidered: at the present state of knowledge, 

adaptive evolution cannot be ruled out as a potentially widespread agent of population extinc-

tions. 

4  Evolutionary epidemiology cannot rely on R0 maximization 

In this section, we provide a concrete illustration of the very general, and hence unavoidably 

abstract, concept of the environmental feedback loop, by analyzing a few simple but exem-

plary cases. By focusing on the evolution of virulence, these examples also demonstrate the 

potential for mutual illumination between applied and abstract ESS theory. 

For a long time, it was close to dogma in epidemiological theorizing (e.g., Anderson and 

May, 1982, 1991) that the main basis for the study of virulence evolution should be sought in 

the maximization of R0 , defined as the number of secondary infections engendered by a pri-

mary infection in an otherwise infection-free population. To this end, R0  is considered as a 

function of the disease’s demographic parameters, which in turn are envisaged as functions of 

some underlying trait vector x  that is supposed to be under evolutionary control. 

At the opposite extreme of the abstraction spectrum, Metz et al. (1996b), extending results 

by Mylius and Diekmann (1995), proved that for ESSs to be characterizable in terms of an 

optimization principle it is necessary and sufficient that 
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(A) there exists a function RER →×:ς , with R denoting the real numbers and E the 

realizable environmental conditions, increasing in its first argument, and a function 

RX →:ψ , with X denoting the set of potential values of the trait vector, such that 

 )),(( sign),( sign vv ExEx ψςρ =  , (7) 

with ),( v Exρ  denoting invasion fitness, defined as the asymptotic per capita rate of popula-

tion increase of a variant with trait vx  in a resident environment E . 

Metz et al. (1996b) also proved (A) to be equivalent to 

(B) there exists a function RRX →×:η , decreasing in its second argument, and a func-

tion RE →:φ  such that 

 ))(,( sign),( sign vv ExEx φηρ =  . (8) 

Conditions (A) and (B) can be paraphrased as follows: (A) means that the trait values af-

fect fitness effectively in a one-dimensional monotone manner, and (B) means that the 

environment acts effectively in a one-dimensional monotone manner. The reason for the epi-

thet ‘effectively’ is that the one-dimensionalness and monotonicity only need to pertain to the 

range of fitness values that matter in ESS considerations, i.e., to those surrounding the change 

from negative to positive values. 

Relations (7) and (8) can be related to each other by the observation that, if an optimization 

principle exists, 

(C) it is possible to choose the functions φ  and ψ  such that 

 ))()(( sign),( sign vv ExEx φψρ −=  , (9) 

where φ  and ψ  are connected through the relation 

 ))(()( attr xEx φψ =  , (10) 

with )(attr xE  denoting the environment engendered by any attractor attained by the commu-

nity dynamics for the parameter vector x . This of course implies that a suitable function φ  

will yield the same value for all the attractors that may possibly by attained by x . With this 

additional notation in place, we can also be more precise about the set E of realizable envi-

ronmental conditions: E = E attr (X). For environments outside this set, invasion fitness ρ  may 

assume any shape, just as the supposed existence of an optimization principle does not impose 

any restrictions on ρ  except locally around the subset of E × X for which 0),( v =Exρ . 

To better connect with the notation used in the previous two sections, it may be helpful to 

observe that the environment-dependent and resident-trait-dependent notions of invasion fit-

ness (denoted throughout this article by ρ  and f , respectively) are related to each other by 

))(,(),( attrvv xExxxf ρ= , for any variant trait vx  and resident trait x . 
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Naturally, results (A) to (C) hinge on the interpretation of the term ‘optimization princi-

ple’. The latter is defined by Metz et al. (1996b) as a function from trait values to real 

numbers such that, for any possible constraint on the traits, the ESS(s) can be calculated by 

maximizing this function. The proviso in the previous sentence mirrors the usual practice of 

combining an optimization principle, derived from the population dynamics, with a discussion 

of the dependence of the evolutionary outcome on the possible constraints. Details of these 

considerations may be found in Metz et al. (1996b), available at http://www.iiasa.ac.at/cgi-

bin/pubsrch?WP96004. What matters here is that, while condition (A) is close to trivial, the 

equivalent condition (B) and relation (10) in condition (C) provide a useful tool for either de-

riving optimization principles or proving the non-existence of such principles, for large 

collections of population dynamical models. Below we will demonstrate their application by 

means of some simple examples. 

Just as evolution maximizes the function ψ  appearing in (A), it minimizes the function φ  

in (B). Therefore, and since φ  can be interpreted as a measure of environmental quality, the 

latter has been dubbed a pessimization principle by Diekmann and Mylius (1995): in the end, 

the worst attainable world remains, together with those types that can just cope with it. 

As an aside, it may be worth pointing out that the pairwise invasibility plots for eco-

evolutionary models allowing an optimization principle exhibit an immediately recognizable, 

very special geometry, as illustrated in Figure 5. This geometry is a direct consequence of the 

linear pre-order established by any optimization principle and illustrates, in a visually easily 

recognizable manner, the structural instability of optimization models. 

The epidemiological models that we consider below have been chosen for the simplicity of 

the calculations they engender. In particular, their community dynamics possess unique inter-

nal point attractors (which is almost a sine qua non for obtaining analytical results). That these 

models also allow explicit solutions for the equilibria is a boon (when no explicit solutions are 

available, the same results can usually be derived through an implicit differentiation of the 

equilibrium equations). For a discussion of the epidemiological implications and a similar 

analysis of another suite of models see Dieckmann (2002). 

We start out by giving a full population dynamical description of the ecological context, 

before reverting to considerations focusing on infected individuals. It is the individual-based 

dynamics of the latter that provides the basis for the classification of the environmental feed-

back loop based on its consequences for the ESSs of disease traits. The details of the 

population dynamics surrounding infected individuals is relevant only in so far as it acts as an 

environment affecting the population dynamical behavior of the infected individuals. 

To characterize the potential instantaneous environmental conditions to which infected in-

dividuals may be exposed, we follow standard notation by letting S  denote the density of 
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susceptible individuals, while I  denotes the density of infected individuals. After specifying 

the dynamics of this instantaneous environment, the corresponding evolutionary environments 

can be calculated from the attractors of this dynamics. Infections occur according to the sim-

ple law of mass action, with a fixed rate constant β . Infected individuals do not recover but 

die at a per capita rate α , acting on top of the per capita death rate experienced by susceptible 

and infected individuals alike. In the absence of the disease, 0=I , the population grows in a 

density-dependent manner, with per capita birth rate )0,(b0 Shb −  and per capita death rate 

)0,(d0 Shd + , with b0 > d0 > 0. The functions hb  and hd  both increase in S , with 

0)0,0()0,0( db == hh . The full population dynamical equations are then given by 

 SIISdISb
t
S ]),(),([

d
d β−−=  , IISdS

t
I )],([

d
d

−−= αβ  , (11a) 

with 

 ),(),( b0 IShbISb −= , ),(),( d0 IShdISd +=  . (11b) 

(The implicit assumption that infected individuals are not allowed to reproduce greatly simpli-

fies the proofs of the attractivity of the equilibria, but can probably be relaxed.) The 

parameters α  and β  are assumed to be under evolutionary control by the disease (evolution in 

host-controlled traits is not considered here). As usual, we assume α  and β  to be connected 

by a constraint: β  cannot become too high and α  simultaneously not too low, which can be 

expressed as g(α,β) ≤ m  with g  increasing in β  and decreasing in α . As evolution acts to 

increase β  and decrease α , it will quickly run into this constraint. From there on, evolution 

will effectively be restricted to the curve g(α,β) = m , alternatively parameterized as 

β = β(α) , or as ))(),(( xx βα  for some scalar physiological trait x . 

Within the general class of models (11), we consider four exemplary cases, 

 
.)(),(,0),((iv),),(,0),((iii)

,),(,0),((ii),0),(,)(),((i)

db
2

db

dbdb

ISIShIShSIShISh
SIShIShIShISISh
+====

===+=
κκ

κκ
 (11c) 

These model families have been rigged so that for model (i) and (ii) the environmental 

feedback for the disease is one-dimensional monotone. According to conditions (A) and (B), 

these models thus support an optimization principle. For model (i) the optimization principle 

is equivalent (i.e., monotonically related) to R0 , while for model (ii) this is not the case. For 

model (iii) the environment feedback acts one-dimensionally but not monotone, and for model 

(iv) it acts two-dimensionally. It should be understood that the specific examples in Equation 

(11c) are chosen primarily for didactical purposes. For their individual-based underpinning 

one may think of population regulation through fighting. For models (i) and (iv) fighting may 

be initiated by all individuals, whereas for models (ii) and (iii) infected individuals are as-

sumed to suffer from fights without being able to initiate such fights themselves. Model (iii) is 
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based on the assumption of aggression increasing linearly with aggressor density. Fighting, of 

course, may here be replaced by any other form of interference competition. 

Since we only have to deal with point attractors of the community dynamics, we can use 

R, the lifetime per capita production of new disease cases by a variant disease case, as a 

proxy for invasion fitness. We start by expressing R as a general function of the variant traits 

),( vvv βα=x  and of the variables (S,I) parameterizing the potential environmental condi-

tions, 

 
.

)(
),;,((iv),),;,((iii)

,),;,((ii),),;,((i)

0v

v
vv2

0v

v
vv

0v

v
vv

0v

v
vv

ISd
SISR

Sd
SISR

Sd
SISR

d
SISR

+++
=

++
=

++
=

+
=

κα
ββα

κα
ββα

κα
ββα

α
ββα

 (12) 

It is only later that we will confine attention to the realizable environments, given by the equi-

librium values )),(),,(( ** βαβα IS  produced by the possible residents ),( βα=x . 

To derive firm conclusions from (12), we have to make sure that the dynamical equations 

(11) indeed have unique equilibrium points as their only internal attractors. This appears in-

deed to be the case for models (i), (ii), and (iv). For model (iii), bistability can occur, with the 

state space divided into the basin of an internal locally stable equilibrium and the basin of the 

disease-free boundary equilibrium. Since the statements about ESSs to be made below are 

predicated on the presence of the disease, these stay true, though vacuous, in the absence of 

that disease. All conclusions to be derived from (12) will thus be valid. 

For model (i), R increases with S . So the optimization principle can be constructed di-

rectly from (10). Minimizing S*, which can easily be seen from (11) to yield S* = (α + d0) /β , 

should thus be equivalent to maximizing ψ(α,β) = −S* = −(α + d0) /β . To calculate R0  for this 

model, we observe that R0(α,β) = R(α,β;S0,0) = βS0 /(α + d0) , with S0  denoting the equilib-

rium value for S  in the absence of the disease. It is not difficult to see that R0  and the ψ  

resulting from our general construction are indeed monotonically related, independently of the 

value of S0 . 

For model (ii), R is again monotone in S . With S* = (α + d0) /(β −κ), we find that two 

equivalent optimization principles can be constructed as counterparts in trait space of mini-

mizing S*: ψ = −(α + d0) /(β −κ) and ˜ ψ = (β −κ) /(α + d0) . However, neither of these is 

equivalent to maximizing R0 = βS0 /(α + d0 + κS0) = β(b0 − d0) /[κ(α + b0)], where we used 

S0 = (b0 − d0) /κ  as for model (i). To see this non-equivalence, it suffices to observe that the 

contour lines, defined by R0(α,β) = R0(α0,β0)  and ψ(α,β) =ψ(α0,β0) for given (α0,β0) , dif-

fer, as can be seen from the lack of coincidence in their derivatives at (α0,β0) , calculated via 

an implicit differentiation of the defining relations: dα /dβ = (κα0 + b0) /(β0κ) for R0 , which 

differs from dα /dβ = (α0 + d0) /(β0 −κ) for ψ . 
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The fact that invasion fitness in model (iii) is non-monotone in any possible single scalar 

summary of the condition of the environment, and that the evolutionary environment in model 

(iv) is essentially two-dimensional, can already be guessed from (12). However, to prove 

these statements, we have to deal with the fact that, for instance, in model (iii) R should be 

non-monotone relative to whatever summary variable, if its domain is restricted to the realiz-

able values of S  and in addition to an infinitesimal neighborhood of those combinations of 

),( vv βα  and S*(α,β) for which 1)),(;,( *
vv =βαβα SR . Doing so involves many technicali-

ties. These are collected in Appendix A. The reason for going through the motions there is 

that the utilized techniques are representative for a class of techniques that allow dealing with 

much more difficult problems of a similar ilk. 

For the more biologically oriented reader, we add a small dessert in the form of a fifth 

model. The fact that for models (ii) to (iv) the ESS cannot be calculated by maximizing R0  

may not pass the naive practitioner unnoticed, as in these models maximization of R0  gives 

the counterintuitive result that the outcome of the maximization depends in an essential man-

ner on the value of S0 . So the R0 -maximization strategy seems harmless: just maximize R0 , 

and if you cannot do so independently of S0 , start thinking a little better. Our last example is 

specifically geared to deal with this potential objection against our denouncement of R0 -

maximization (for further corroborative examples, see Dieckmann, 2002). The fifth model is 

defined by 

 ,])1([
d
d,]),([

d
d(v) 00 IdIS

t
ISIdISb

t
S

−+−=−−= θαββ  (13a) 

with 

 )](1[),( 0 ISkbISb +−=  , (13b) 

i.e., here the disease-dependent mortality increases with the severity of the infection in the 

population. As a tongue-in-cheek explanation, one may think of a reduction in the efficiency 

of the health care system occurring when too many people are infected. This model again has 

a unique internal point attractor. Our proxy of invasion fitness is given by 
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vv )1(
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SISR
++

=
θα

ββα  . (14) 

In an as yet uninfected population, this reduces to the usual R0(α,β) = βS0 /(α + d0) , as in 

model (i). So here maximizing R0  gives a result that is independent of S0 , which means that 

the non-applicability of R0 -maximization may easily elude the naive practitioner. However, 

since the feedback environment in model (v) is two-dimensional, there exists no optimization 

principle, and the ESS cannot be calculated by maximizing R0 . All that remains in cases like 
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this is to do a full ESS calculation based on the fitness proxy (14) and the equilibrium solu-

tions 

 (v)   
kk

dbdkS
θαββ
θααββα

++
−−++

=
)(

)())((),( 000*  , 
θα

αβαββα 0
*

* ),(),( dSI −−
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Also for models (iii) and (iv), such a full ESS calculation could be carried out based on using 

the equilibrium solutions of these models, 

 (iii)   S* =
β − β 2 − 4κ(α + d0)

2κ
 , (15b) 

 (iv)   
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000* ))(( ddbI , 
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Equations (15) bring out the unfortunate consequence of having to rely on a full ESS calcula-

tion: for even slightly more complicated models, the ensuing formulas have a tendency to be 

rather opaque, to say the least. 

The overall take-home message of this section perhaps does not come as a surprise in a 

special issue on ESS theory: simple optimization can rarely be used to predict evolutionary 

outcomes – and even when an optimization principle exists, it is rarely equivalent to R0  (see 

also Mylius and Diekmann, 1995). This general conclusion applies to evolutionary epidemi-

ology in particular (Dieckmann, 2004), where R0  maximization ruled maybe even more 

firmly than in other areas of population biology. Conditions (A) and (B) provide a complete 

characterization, phrased in terms of the properties of the environmental feedback loop, of all 

cases in which an optimization principle does a proper job. In addition, relation (10) in condi-

tion (C) provides a useful tool for getting hold of such an optimization principle if one exists. 

5  Generically, Hardy-Weinberg ratios occur for evolutionary reasons only 

The fourth of the surprises brought about by the incorporation of more realistic environmental 

feedback loops into evolutionary models is wholly conceptual, without an immediate unex-

pected biological phenomenon in its wake. The reason is that the evolutionary phenomenon to 

be discussed in this section has been unwittingly presaged by a standard textbook simplifica-

tion, which, however, rarely applies in ecological reality. In almost any textbook chapter on 

the mathematics of selection for randomly mating populations, the Hardy-Weinberg law at the 

level of new zygotes is presented as a useful generalization, introduced and motivated from a 

purely mechanistic basis. In contrast to this treatment, we will show below that, even when 

assuming the global random union of gametes, almost no population dynamical model with 

ecologically realistic life histories has its zygotic genotype frequencies on the Hardy-

Weinberg manifold. Yet, even in those cases, Hardy-Weinberg frequencies may well be seen 
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in practice. The apparent contradiction between the preceding two statements is resolved by 

the demonstration, to be given below, that the exceptional parameter values necessary for 

Hardy-Weinberg frequencies occur as ESSs in a large class of ecologically more realistic 

models. Thus, the Hardy-Weinberg law may indeed reign in nature, but for evolutionary in-

stead of purely mechanistic reasons. 

In textbooks on evolutionary biology, it is close to dogma that under the random union of 

gametes, be it due to a mixing of gametes in broadcast spawners or to random mating, the 

newly formed zygotes occur in Hardy-Weinberg proportions. However, as is neatly stressed 

for the case without selection in the unpublished textbook by Felsenstein (2005), available at 

http://evolution.genetics.washington.edu/pgbook/pgbook.html, the Hardy-Weinberg law for 

zygotes only holds when allele frequencies in the two sexes are equal (without selection, the 

zygotic genotype frequencies relax to Hardy-Weinberg proportions in one generation, at least 

in the case of autosomal genes). With selection, it should not be so much the allele frequen-

cies in the two sexes that should be equal, but the allele frequencies in their gametic outputs. 

This is where ecological considerations kick in. 

The condition for generically having equal micro- and macrogametic allele frequencies is 

that, for all feasible environmental trajectories, the expected micro- and macrogametic outputs 

in the different genotypes are proportional at all ages. If we restrict attention to equilibria, a 

proportionality of the lifetime outputs is sufficient. Although customarily assumed, such pro-

portionality is actually exceptional, when seen against the background of most life histories 

encountered in the field. We may think, for instance, of a life history in which females repro-

duce for the first time at age 1, and males at age 2, and otherwise produce age-independent 

gametic output. When considering an age-independent annual density-dependent survival s, 

we can envisage a mutant allele that, in the heterozygote, changes this survival by a factor α . 

Then, at any prescribed density, carrying one copy of this mutation changes the lifetime ga-

metic output of females by a factor α 1−s
1−αs , and that of males by a factor α 2 1−s

1−αs . To achieve 

proportionality of the macro- and microgametic outputs of the different genotypes, the ratio of 

these two factors must be 1. As long as both alleles are present, the genotype frequencies in 

the newly produced zygotes do not lie on the Hardy-Weinberg manifold. In particular, if the 

invasion ends in a stable polymorphism, this departure from Hardy-Weinberg frequencies 

persists. Similar statements apply essentially whenever the age dependence of micro- and 

macrogametic production is not exactly in proportion. This is even so in hermaphroditic an-

nual plants – which may be perceived as the example best conforming to the simplified 

ecology of the population genetics textbooks – when genetic differences affect seed produc-

tion relative to flower production. The latter would apply, in particular, to any adaptive trait 

affecting relative competitive ability during the seed-setting phase. 
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Observationally, transient polymorphisms are probably much less important than polymor-

phic ESSs. In recent days, it has been become clear, i.a. from evolutionary game theory 

(Maynard Smith, 1982), from the consideration of fluctuating environments (e.g., Ellner, 

1996), and most recently as a result of the adaptive dynamics research program (Metz et al., 

1996a; Geritz et al., 1998; Doebeli and Dieckmann, 2000), that realistic ecologies more often 

than not are conducive to the generation of diversity. In some cases, such diversity is realized 

through species formation (Dieckmann et al., 2004), but on many other occasions some 

within-species form of diversity results, be it purely phenotypic or genetically based (Leimar, 

2005). It is this genetically based diversity that has our interest here. 

We will illustrate our point with a very simple eco-genetic model. To that end, we concen-

trate on an annual organism with a potentially polymorphic locus with two segregating alleles, 

leading to phenotype vectors Gx , with G = aa, aA, AA. The expected macrogametic output 

of an individual with phenotype x  is given by ),( Exλ , where E  denotes the instantaneous 

ecological environment. Similarly, the expected microgametic output is given by ),( Exμ . In 

this way, we may incorporate any determination of sexual roles, from hermaphroditism to ge-

netically determined dioicy. The environment E  may, for instance, be an m -dimensional 

vector, 

 )),(, ... ,),(( 1 ∑∑= G GGkG GG nxEnxEFE φφ  , (16a) 

where nG  denotes the population density of genotype G. For the φi one may think of the per 

capita use of resources like light, water, space, and various nutrients. The function F  then 

represents the outcome of the resource dynamics given these demands. When the frequency of 

A  in the micro- and macrogametic outputs is denoted by pA  and qA , respectively, then, under 

the assumption of random mating, we have 

 Nqpn aaaa =  , Nqpqpn AaaAaA )( +=  , Nqpn AAAA =  , (16b) 

where N = naa + naA + nAA  denotes total population density, and pa = 1− pA  and qa =1− qA . 

Moreover, with next generation values denoted by Ap′  and Aq′ , pA and qA  satisfy the recur-

rences 

 )(2
1

AaaAaAAAAAA qpqpqpp ++=′ μμμ  , (17a) 

 )(2
1

AaaAaAAAAAA qpqpqpq ++=′ λλλ  , (17b) 

where μG  and λG  are abbreviations for ),( ExGμ  and ),( ExGλ , respectively, and 

 aaaaaAAaaAAAAA qpqpqpqp μμμμ +++= )(  , (17c) 

 aaaaaAAaaAAAAA qpqpqpqp λλλλ +++= )(  . (17d) 
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As a matter of convenience, we absorb all density regulation in λ , i.e., we include in μ fertil-

izing propensities, but not realized effectivities in the form of offspring numbers, so that we 

can do the full zygote-to-zygote bookkeeping through λ . For the total population density we 

thus obtain the recurrence 

 NN λ=′  , (18) 

which completes the specification of our eco-genetic model. 

Based on the setting captured by (16) to (18), we can now examine under what conditions 

the new zygote genotype frequencies will stay on the Hardy-Weinberg manifold. As can be 

seen from (16b), this requires AA qp ′=′  in (17), for all relevant allele frequencies and popula-

tion densities. The latter is ensured if λG = θμG  for all G, but generally does not apply 

otherwise. 

More important than the recurrences themselves are the equilibria they engender. These 

can be calculated from (16) to (18) after dropping the primes. When we refer to (16) to (18) 

below, it will be assumed, unless mentioned otherwise, that the primes have been dropped and 

that, accordingly, pA and qA  denote equilibrium values. 

The seeming oversimplification of the model specified by (16) to (18) is justified by the 

fact that it is actually much less special than our initial description suggests. Following argu-

ments initiated by Charlesworth (1976, 1994), it was shown by Diekmann et al. (2003) that, 

under the assumption of random mating, the same equilibrium equations follow from a large 

class of physiologically structured population models. For this, we have to interpret λ  as the 

expected lifetime macrogametic output from a new zygote times the probability of their fer-

tilization, μ as the expected lifetime microgametic output times their fertilization propensity, 

and nG  and N  as birth rates. The simple and the general case of course differ in their internal, 

i.e., population dynamical, stability properties. However, when it comes to external stability, 

i.e., the stability towards invasion by variants altering phenotypic expression, the two cases 

coincide, since all that matters in both cases is whether a generation-based linearized recur-

rence for the frequency of variant heterozygotes predicts their increase or decrease. 

The system of equilibrium equations (16) to (18) allows, in principle, two different classes 

of equilibria, characterized by the routes one can follow in the solution process. Along the 

first route, one assumes that at least two of the λG  or two of the μG  differ. In that case, given 

the λG  and μG , (17) produces up to three isolated internal solutions for pA  and qA  (these solu-

tions have been extensively studied by Owen, 1952; Bodmer, 1965; and Mandel, 1971; see 

also Karlin and Lessard, 1986, and Diekmann et al., 2003). We will call these equilibria 

‘population genetic’ solutions. The second route is based on the possibility, first discussed by 

Lewontin (1958), of a solution in which all λG  are equal, and so are all μG . We will call these 
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equilibria ‘feedback-driven’ solutions. Any feedback-driven solution satisfies the alternative 

equilibrium equations 

 1=== AAaAaa λλλ  , (19a) 

 AAaAaa μμμ ==  , (19b) 

together with (16). Whereas for a population genetic equilibrium the number of equations, 

m + 2 +1 for equations (16), (17), and (18) together, neatly matches the number of unknowns, 

E , pA  and qA , and N , this is not the case for feedback-driven equilibria, since (19) actually 

contains five equalities that need to be satisfied. This means that, generically, there is no solu-

tion, except for special cases, such as when it is assumed that AAaA xx = , so that both 

λaA = λAA  and μaA = μAA  hold a priori. Thus, if there are any polymorphic equilibria, we may 

expect them to be population genetic ones. Consequently, except in the equally nongeneric 

case that λG = θμG  for G = aa,  aA, AA , the zygotic genotype frequencies are off the Hardy-

Weinberg manifold. 

The previous considerations were based on the assumption that the phenotypes Gx  are 

given a priori. However, in nature traits do not just take on any values, but are shaped by evo-

lution. There are two ways in which the Gx  may change evolutionarily. Either some new 

allele α  appears on the scene, or an expression modifier, denoted by B, appears at a locus 

that previously only carried an allele b. For the sake of concreteness, and since the loci under-

lying the expression of phenotypes x  are likely to extend beyond the single locus considered 

so far, we shall proceed on the assumption that the evolution of Gx  is primarily driven by 

modifiers. Accordingly, we mentally promote our focal locus to the status of a genetic switch, 

with three states, aa,  aA  and AA, and assume that the output of this switch to a phenotypic 

expression is under evolutionary control. One particular reason for this ploy is that it will al-

low us to discuss more easily so-called ‘ideal free’ ESSs (Bulmer, 1994; see also Fretwell and 

Lucas, 1970). 

To examine the evolution of phenotypic expression, we need to consider the invasion fit-

ness of the modifiers. For this we shall use a fitness proxy, denoted RB , with this notation 

intended to stress the proxy’s interpretation as an expected lifetime offspring number sensu 

Diekmann et al. (1990). In principle, the B allele can be transmitted in four different states, in 

a macro- or a microgamete, together with either a  or A , and the appropriate (but necessarily 

complicated) procedure would be to go through a bookkeeping argument to derive the lin-

earized recurrences for the four corresponding frequencies, followed by a calculation of RB  as 

the associated dominant eigenvalue. Luckily, we can fall back on a shortcut invented by Eshel 

and Feldmann (1984), and worked out for the most general case by Liberman (1988), who 

showed that RB  can be written as a weighted sum, 
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 )~~~~~~( 3213212
1

BbAABbaABbaaBbAABbaABbaaB wwwwwwR λλλμμμ +++++=  (20a) 

with weights 

 w1 = pB ,aqa + paqB ,a , w2 = pB ,aqA + pB ,Aqa + paqB ,A + pAqB ,a , w3 = pB ,AqA + pAqB ,A  , (20b) 

where λλλ /~
=  and ˜ μ = μ /μ . The averages λ , μ , as well as the gamete frequencies 

pa ,  qa ,  pA ,  qA , are to be determined from (16) to (18) for the resident equilibrium. The long-

term relative frequencies of the different transmission states of B, aBp , , aBq , , ABp , , and ABq , , 

are to be calculated as the components of the normalized eigenvector of the linear recurrences 

mentioned above. For the considerations below, there is no need to determine the weights wi; 

it suffices to know that all of them are positive, that Σiwi = 1, and that, necessarily, Rb =1. 

Armed with the fitness proxy given by (20), we can now introduce the idea of ‘ideal free’ 

ESSs. If there are no genetic constraints, in the sense that for any feasible phenotype there ex-

ists a potential modifier realizing it, the fitness contributions through the different routes – 

here corresponding to the states of the genetic switch – should be equal, i.e., 
˜ μ bbaa + ˜ λ bbaa = ˜ μ bbaA + ˜ λ bbaA = ˜ μ bbAA + ˜ λ bbAA . For, if they were not, then a modifier B  that were 

to change the expression of all phenotypes with a smaller fitness contribution to that of the 

phenotype with the highest contribution would have an RB >1. (Let us assume, for the sake of 

the argument, that ˜ μ bbaa + ˜ λ bbaa < ˜ μ bbaA + ˜ λ bbaA  and ˜ μ bbaA + ˜ λ bbaA > ˜ μ bbAA + ˜ λ bbAA ; then changing 

both bbaax  and bbAAx  to bbAAx  would lead to 

1)~~()~~( 2
1

2
1 =>+=+= ∑ bbbaAbbaAbbaAbbaAi iB RwR λμλμ , independently of the values of the 

weights wi for either b or B.) The notion of ‘ideal free’ ESSs is customarily used to set apart 

ESSs that equalise fitness contributions obtained through different routes, reflecting the fact 

that such ESSs often obtain in the ideal situation of a total freedom from constraints. (The 

only constraints that matter here are genetic ones; constraints on trait values remain allowed 

when considering ideal free ESSs.) 

The just introduced ideal free ESSs do not yet satisfy the proportionality conditions 

bbaabbaa θλμ = , bbaAbbaA θλμ = , and bbAAbbAA θλμ = . To ensure this, we need the additional as-

sumption (to be called IF in the remainder of this section) that gene expression is allowed to 

be sex-dependent and that we can write ),( ,, GfGmG xxx = , ),(),( , ExEx GmG μμ �= , 

),(),( , ExEx GfG λλ
�

= , without any physiological constraints tying Gmx ,  to Gfx ,  and without 

any hard restriction on the realization of the feasible combinations of Gmx ,  and Gfx ,  by single 

mutational steps. For such “even more ideal free” ESSs, or IF-ESSs, we have λaa = λaA = λAA  

and μaa = μaA = μAA , by the same argument as given earlier. Consequently, once an IF-ESSs 

has been attained by evolution, zygotic gene frequencies will follow the Hardy-Weinberg law. 

Another matter is that for continuous trait spaces the probability of directly jumping into an 

ideal free ESS or IF-ESS will generally be negligible, to the extent of being observationally 
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irrelevant. Therefore, the question remains whether IF-ESSs are locally evolutionarily attract-

ing. Determining attractivity is easy for one-dimensional strategy spaces (e.g., Taylor, 1989; 

Christiansen, 1991; Metz et al., 1996a; Eshel et al., 1997; Geritz et al., 1998), but very diffi-

cult otherwise. Leimar (2001, in press) provides a solution for cases in which, close to an 

ESS, mutational steps are still sufficiently small relative to the distance from that ESS that the 

analysis can be based on the canonical equation of adaptive dynamics (Dieckmann and Law, 

1996, Durinx and Metz, 2005; Champagnat et al., this issue). In principle, convergence to the 

ESS may depend on the mutational covariance matrix. However, Leimar (2001, in press) de-

rived conditions characterizing those cases in which convergence, or divergence, is 

determined only by the dependence of the selective regime on the ecology. These conditions 

are expressed in terms of local derivatives of the invasion fitness function at the ESS. (In this 

context, it may be worth noting that we have derived a general canonical equation for the 

modifier-driven evolution scenario described above; De Kovel and Metz, in preparation) Un-

fortunately, the very idea of ideal free ESSs, and thus also of IF-ESSs, is based on the 

assumption that mutational steps are not small: in the argument leading up to the definition of 

ideal free ESSs, we had to assume the potential occurrence of mutational steps that change the 

phenotype at one setting of the genetic switch to the phenotype occurring at another setting. In 

Appendix B, we sketch a research program that we believe may, in the long run, resolve the 

convergence issue, at least in principle, based on the assumption that the mutation distribution 

is sufficiently smooth in phenotype space. 

In this section we have argued that, once an IF-ESS has been reached evolutionarily, zy-

gotic allele frequencies will lie on the Hardy-Weinberg manifold. Although the Hardy-

Weinberg law may thus reign in nature, using it as a widely applicable primary assumption 

based on purely mechanistic reasons is misleading, in particular when sex-structured popula-

tions are embedded in realistic ecological settings. We have also argued that, in general, 

Hardy-Weinberg frequencies will not apply during the evolutionary transients leading to an 

IF-ESS. That the law applies after these transients are over, is caused by a lucky combination 

of environmental feedback with sufficient developmental and genetic freedom. Given such 

conditions, long-term evolution either keeps moving, or engenders polymorphisms that give 

the appearance of being selectively neutral ( λaa = λaA = λAA  and μaa = μaA = μAA ), so that, even 

for complicated life histories, the classical arguments of Hardy (1908) and Weinberg (1908) 

hold sway at the zygotic level. 
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6  Summary 

All intelligent modeling and theorizing rely on idealizations. Good models, just as successful 

theories, require stripping away the non-essential, to allow an unobstructed view onto a phe-

nomenon’s core. To delineate the domain of validity of models and theories, and thus to 

assess whether perhaps more than the non-essential has been stripped away, robustness checks 

are to be carried out. 

Here we have shown, in a sequence of four robustness checks, how the incorporation of 

enhanced degrees of ecological realism results in evolutionary phenomena not predicted by 

the underlying simplified models: 

 When evolutionary matrix games are embedded in more realistic ecological settings, mixed 

ESSs no longer render neutral all involved pure strategies and their mixtures. By overcom-

ing this fundamental structural instability, more conclusive predictions of evolutionary 

outcomes can be made, with population-level polymorphisms of individual-level mixed 

strategies becoming amenable to analysis (Section 2). 

 When realistic types of density- and frequency-dependent selection are considered in mod-

els of life-history evolution, adaptations can no longer be assumed to maximize a 

population’s viability. Instead, adaptive evolution can become responsible for bringing 

about a population’s extinction under a variety of ecologically plausible scenarios (Section 

3). 

 When models of disease evolution are equipped with realistic ecological detail, attempts at 

predicting evolutionary outcomes through optimization principles typically become futile. 

As soon as the effective dimension of the feedback loop governing the interaction of an 

evolving population with its environment exceeds 1, optimization-based predictions will 

necessarily be in error (Section 4). 

 When studying the population genetics of sex-structured populations in realistic ecological 

settings, the Hardy-Weinberg law for zygotic proportions loses it validity. It can be shown, 

however, that adherence to this law may be reestablished in the course of evolution, pro-

vided the underlying genetic system possesses sufficient flexibility (Section 5). 

In all these robustness checks, the investigated perturbations of the simplified models have 

qualitative implications: loss of neutrality (Section 2), loss of viability (Section 3), loss of op-

timality (Section 4), and loss of Hardy-Weinberg proportions (Section 5). In some 

circumstances the tiniest perturbations suffice (Section 2), in other cases the amplitude of the 

new phenomena grow with the considered perturbation (Sections 4 and 5), and sometimes 

perturbations may need to exceed a threshold level (Section 3). 

Obviously, the failed robustness checks documented in this study must not be misinter-

preted as rendering the underlying simplified models useless. Instead, great care ought be 
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taken not to abuse these idealized models by drawing biological inferences that fall outside 

their documented domain of validity. Since the ecological theater of most evolutionary plays 

occurring in nature is complex, that may be a tall order. Modern ESS theory is increasingly 

living up to this challenge. 
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Appendix A: Ascertaining the dimension of the eco-evolutionary feedback 

To assess the monotonicity or the effective dimension of the feedback loop in the evolution-

ary models of epidemiological dynamics discussed in Section 4, we need to examine the 

dependence of )),(),,(;,( **
vv βαβαβα ISR  on the resident trait (α,β)  locally around those 

combinations (α,β)  that yield 1)),(),,(;,( **
vv =βαβαβα ISR , for all values of the variant 

trait ),( vv βα . 

To show that in model (iii) the feedback loop is non-monotone, we start from (12) and 

(15). R depends on E = (S,I) and therefore on (α,β)  in a one-dimensional manner, through 

S  alone. R as a function of S  has a maximum at καβα /)(),( 0vvvmax dS += , and possesses 

no other internal extrema. We now consider the set M  of resident trait values that as residents 

maximize R, )},(),(|),{( *
max βαβαβα SSM == . For (α,β) ∈ M  we have 

1)),(;,( max =βαβα SR , and therefore sign ln R(α,β;Smax (α,β)) = sign ρ(α,β;Smax (α,β)) = 0. 

(To ward off potential confusion, we repeat that the maximization is with respect to the resi-

dent trait (α,β) , and not with respect to the variant trait ),( vv βα , as is common in ESS 

calculations.) The elements of M  are thus precisely those trait values around which the poten-

tially interesting things happen: they mark the traits for which R fails to be locally monotone 

in S , and the variants close to these straddle the border between positive and negative values 

of ln(R) . The monotonicity or non-monotonicity of R in S  is of concern only in the 

neighborhood of M . The salient point here is that M  does not consist of just a single point 

but is a one-dimensional manifold, as can be seen from its definition. Any function 

R∈)(: SS φφ 6  having a non-decreasing relation with );,(ln(sign vv SR βα , considered as 

a function of S  for a given (αv,βv ) ∈ M , should have its maximum at ),( vvmax βαS  – as in 

the close neighborhood of M , by the very construction of that manifold, we have 

sign ln(R(αv ,βv;S) = 0  for S = Smax (αv,βv ) and sign ln(R(αv ,βv;S) = −1 for S ≠ Smax (αv,βv ). 

Accordingly, there can be a single function φ  fulfilling condition (B) for all M∈),( vv βα  

only if ),( vvmax βαS  is constant on M . The latter, however, is not the case. Hence, model (iii) 

does not allow an optimization principle. 

In models (i) to (iii), where the feedback loop acts through S  alone, it is immediately clear 

that the dimension of the feedback is 1. In model (iv), where R is also influenced by I , it is 

necessary to be more precise. For when the evolving population itself appears in the feedback, 

the very fact that there may be more than one type present in that population may increase the 

number of environmental variables that it is necessary to keep track of. However, the fact that 

infected individuals were treated on a par with susceptible individuals, through the sum S + I , 

in their influence on the density-dependent death rate, strongly suggests treating all types of 

individuals identically when it comes to determining the density-dependent deaths. If we pro-

ceed on this assumption, we may conclude that the environment of the infected individuals is 
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at most two-dimensional, spanned by the densities of susceptible and infected individuals. 

What we still have to check is whether or not, by some quirk, the model components conspire 

around the subset of R4 defined by 1)),(),,(;,( **
vv =βαβαβα ISR , to produce a lower ef-

fective dimension. 

To prove that the effective environmental dimension for model (iv) is larger than 1, we 

first introduce a property that is shared by all evolutionary models having effective environ-

mental dimension equal to 1, and then show that model (iv) does not possess this property. 

Assume that there does exist a function RE →:φ  and a function RRX →×:g , not nec-

essarily increasing in its second argument, such that )))(;(ln(sign attrv xExR  = 

)))((;(sign attrv xExg φ . Then the family of manifolds in X defined by 1))(;( attrv =xExR , pa-

rameterized by vx , equals the family of manifolds defined by 0attr ))(( φφ =xE  with φ0  defined 

by 0);( 0v =φxg , as is illustrated in Figure 6. Translated into the notation of model (iv), this 

means that a curve through a point (α,β) = (α0,β0) defined by 

1)),(),,(;,( **
vv =βαβαβα ISR  will not change if we change ),( vv βα  in such a manner that 

the resulting curve still passes through the point (α0,β0) . To check that this property does not 

hold for R in (12), with S*and I* defined by (15), it suffices to calculate the derivative in 

(α0,β0)  of different curves 1)),(),,(;,( **
vv =βαβαβα ISR , with 2

vv ),( +∈ Rβα , passing 

through (α0,β0) , which is easily done through an implicit differentiation in the defining equa-

tion. Since this derivative depends on ),( vv βα , the curves through (α0,β0)  for different 

),( vv βα  do not coincide, as they should if the effective dimension of the environment 

equaled 1. 

Appendix B: Ascertaining continuous stability in more dimensions 

How can we resolve whether or not IF-ESSs are evolutionarily attracting when mutational 

steps are not necessarily small, as is the assumption implicitly made in the consideration of 

IF-ESSs? Here we sketch, in a phrasing adapted to that problem, a research program that we 

expect to be helpful in addressing this open research question in the case in which the distri-

butions of mutational steps are smooth and relatively wide. 

We denote the potential variant trait combinations engendered by a heterozygote modifier 

as 3
.., ),,( X∈= aaBaABaaBB xxxx , with X denoting the space of traits of single individuals. A 

similar notation, 3
.., ),,( X∈= aabaAbaabb xxxx , applies to the residents. We move the origin of 

the space X3 to the ESS. Moreover, we emphasize the dependence of RB  on the variant and 

resident traits, );( bBB xxRR = . Using this notation, we define }1);(|{)( >= bb xxRxxH , so 

that 3)( X⊂bxH  is the set of potentially successful invaders of bx . It follows from Taylor-

expanding R that the family of sets )( bxH  is scale-invariant close to the origin: if we neglect 
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higher-order terms in )( bxH , multiplying the space X3 with a constant will map the family 

onto itself. Figure 7 illustrates such scale invariance for a simpler two-dimensional problem. 

Since, for small mutational steps, the invasion probability of a variant calculated from a 

branching-process approximation depends on R linearly, this probability satisfies similar 

scale invariance. Moreover, by the smoothness and large extent of the mutation distribution, 

we may assume all variants arising from Xb  through mutation to be uniformly distributed in 

)( bxH . For the time being, we assume that any successful invasion leads to a substitution. 

We can then decompose the process of sequential substitutions into an autonomous process 

on the unit sphere in X3, together with a subjugated radial process. The logarithm of the radial 

process is a random walk with dependent steps. Convergence or divergence of the radial proc-

ess corresponds to convergence of the log-radial process to either ∞−  or ∞+ . This 

convergence, in turn, depends on whether the steps are positive or negative on average. A 

negative average implies almost sure convergence of the radial process to zero, whereas a 

positive average implies that any neighborhood of zero will almost surely be left forever. 

Having said this, we run into the first real difficulty: to calculate these average steps, we first 

have to calculate the stationary distribution of the process on the unit sphere. Based on our 

work so far, we can only say that this distribution satisfies a forbidding looking integral equa-

tion. 

A second difficulty is that invasion does not necessarily imply substitution. As we concen-

trate on only a small range of phenotypic possibilities, we may assume that the genotype-to-

phenotype map is additive to first order of approximation. Close to the ESS, selection is weak 

relative to recombination. So, to the required order of approximation, we can describe a 

polymorphism in terms of the corresponding average phenotype ),,( aaaAaa xxxx = , together 

with a list of variable length, corresponding to the number of modifiers, consisting of ele-

ments (π B ,XB ) , where π B = (pB + qB ) /2 denotes the frequency on a modifier B , with pB  

being its frequency in the microgametes and qB  its frequency in the macrogametes, and Bx  

denotes the modifier’s allelic effect. [Note that for given ),( BB xπ , π b  and bx  can be calcu-

lated from π b =1− π B  and 0=+ BBbb xx ππ . By writing pB = π B + δB  and qB = π B −δB  and 

by expanding the genetic recurrences around the IF-ESS, it can be seen, moreover, that up to 

second order π B  satisfies a classical genetic equilibrium equation, with “viabilities” 

2/)],(~),(~[/),( ExExvExv μλ +=  of a type considered by Zhivotovsky and Gavrilets (1993) 

and by Hermisson et al. (2003). Furthermore, δB  is first-order in the distance to the IF-ESS, 

and can, up to this order, be expressed explicitly in terms of the π B  and the differences of the 

relative female and male gametic outputs, ),(~),(~ ExEx λμ − .] The states of the long-term 

evolutionary process then correspond to the population dynamically feasible lists of this kind. 

This full process satisfies the same scale invariance as before, and can therefore be decom-
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posed into a scale-free configuration process, with states represented by xx /  together with 

lists )/,( xxBBπ , and a subjugated radial process x . And, just as in the simple case, the 

log-radial process is a random walk. However, the task of calculating the stationary distribu-

tion of the configuration process, and from that the average step of the log-radial process, is 

even more daunting than for the earlier introduced toy process based on the (close to an ESS 

often incorrect) assumption that invasion implies substitution. The three reasons for yet pro-

viding this sketch are that (i) it indicates where the difficulties lie, (ii) it may put 

mathematicians on a potentially interesting track, and (iii) it shows that the local attractivity of 

an IF-ESS is an all-or-nothing phenomenon, and can thus be determined by a single simula-

tion run. 

As a final point we remark that although the program sketched above is both mathemati-

cally interesting and possibly also rewarding, it is, for its biological meaning, predicated on 

the assumption that deterministic forces stay dominant. When the ESS is approached, the fit-

ness values of invaders get closer and closer to zero, so that, for finite populations, the 

strength of selection will eventually become comparable to that of mutation and/or random 

drift. It thus depends on the interplay between many factors whether or not the conclusions 

derived from the idealization sketched above make biological sense. Salient questions are as 

follows. How close an approximation of the ESS are we interested in? What are the relative 

curvatures of the fitness landscape and of its dependence on the resident traits? What is the 

size of the population we are considering? What is the frequency of the occurrence of new 

modifier alleles with effects in the right range? How long has the process been going on since 

the last externally imposed change in the environment? Clarifying whether convergence oc-

curs in the idealized case of unrestricted mutation limitation is thus only the natural first step 

in studying a diversity of factors and their interplay. 
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Figures 

 

Figure 1.  Pairwise invasibility plots for (a) the original hawk-dove game and for (b) an eco-

logical embedding with fluctuating rewards. The non-diagonal zero-contour curve is strictly 

straight and vertical in (a), whereas this curve is tilted counter-clockwise and concave from 

the right in (b). Even though both effects are only slight, they do imply a qualitative change in 

evolutionary behavior. Parameters: 5.0=V , 1=C , 2=R , and 0=c  (a), 1=c  (b). 
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Figure 2.  Pairwise invasibility plots and unfolding for an ecological embedding of the hawk-

dove game with variable interaction rates. The classical game-theoretical case (Figure 1a) is 

located at 021 == rr ; it is thus straddling three bifurcation curves, reflecting its structural in-

stability. In the top-left panel, the non-diagonal zero-contour curve is tilted clockwise and is 

concave from the right; in the top-right panel, the curve is titled clockwise and is concave 

from the left; in the bottom-left panel, the curve is tilted counter-clockwise and is concave 

from the left; and in the bottom-right panel, the curve is tilted counter-clockwise and is con-

cave from the right. Evolutionary branching is predicted to occur for parameters in the white 

and light grey regions of the central panel, as can be seen from the top-left and top-right pair-

wise invasibility plots. Parameters: 5.0=V , 1=C , 2=R , and 10 =r . 
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Figure 3.  General unfolding of mixed ESS in evolutionary matrix games. 
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Figure 4.  Illustration of evolutionary suicide. (a) Equilibrium density )(* xN  resulting for 

trait values x . Continuous and dotted curves depict stable and unstable equilibria, respec-

tively. (b) Selection gradient )(xg  resulting for trait values x . For all viable initial trait 

values, directional selection increases x  up to a critical trait value at which the evolving 

population goes extinct. The equilibrium density, trait value, and selection gradient at which 

extinction occurs are indicated by open circles. Parameters: xxebxb −= 0)( , 

)1/(1)( xkex Δ−+=Δα , 100 =b , 5=k , and 1=d . 
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Figure 5.  Optimization principles (upper rows; horizontal axes: adaptive trait, vertical axes: 

quantity optimized by evolution), together with the corresponding pairwise invasibility plots 

(lower rows; horizontal axes: resident trait, vertical axes: variant trait). Notice that the exis-

tence of an optimization principle amounts to no more and no less than that all feasible values 

of the trait vector can be a linearly pre-ordered: after dividing out over the equivalence rela-

tion “equally good”, one obtains a linearly ordered set of equivalence classes. The geometric 

implications are two-fold. First, the antisymmetry of linear orders translates into the skew 

symmetry of the pairwise invasibility plots. Second, the transitivity of linear orders translates 

into the fact that any isolas of the non-diagonal zero-contour curve (these isolas correspond to 

local maxima of the optimization principle that are exceeded by its global maximum) have 

counterparts in wiggles in any other non-diagonal zero-contour curves that span the same 

range of trait values, either horizontally or vertically. 
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Figure 6.  Curves defined by 1)),(),,(;,( **
vv =βαβαβα ISR , or equivalently by 

0
** )),(),,(( φβαβαφ =IS  with φ0  defined by 0);,( 0vv =φβαg . 
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Figure 7.  Configuration of sets of variants with positive invasion fitness for different resi-

dents (small black dots) around an ESS (large black dot). 
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