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The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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Abstract 

This study extends the framework of adaptive dynamics to function-valued traits. Such adap-
tive traits naturally arise in a great variety of settings: variable or heterogeneous 
environments, age-structured populations, phenotypic plasticity, patterns of growth and form, 
resource gradients, and in many other areas of evolutionary ecology. Adaptive dynamics the-
ory allows analyzing the long-term evolution of such traits under the density-dependent and 
frequency-dependent selection pressures resulting from feedback between evolving popula-
tions and their ecological environment. Starting from individual-based considerations, we 
derive equations describing the expected dynamics of a function-valued trait in asexually re-
producing populations under mutation-limited evolution, thus generalizing the canonical 
equation of adaptive dynamics to function-valued traits. We explain in detail how to account 
for various kinds of evolutionary constraints on the adaptive dynamics of function-valued 
traits. To illustrate the utility of our approach, we present applications to two specific exam-
ples that address, respectively, the evolution of metabolic investment strategies along resource 
gradients, and the evolution of seasonal flowering schedules in temporally varying environ-
ments. 

Keywords: function-valued traits, adaptive dynamics, canonical equation, evolutionary con-
straints, evolutionary branching 



 2

1  Introduction 

Many adaptive features of biological organisms are best described as function-valued traits. 
Only scalar-valued adaptive traits can be captured by single variables; when many such vari-
ables are needed to quantify a trait, the trait is called vector-valued. More complex adaptive 
traits, however, require characterizing the variation of phenotypic components along a contin-
uum: when given as a function of some other variable, such a trait is called function-valued. It 
is then the entire shape of the function that is subject to evolutionary change through mutation 
and selection, which is why such traits are also known as infinite-dimensional. Understanding 
the evolution of function-valued traits serves as an important step towards better respecting 
the complexity of adaptive processes in evolutionary ecology. 

For any function-valued trait, there is a quantity determining which specific component of the 
full function-valued trait is considered: we will refer to these quantities as the arguments of 
the function-valued trait. Examples of function-valued traits abound: 

 In studies of phenotypic plasticity, the argument is given by environmental conditions, like 
temperature or salinity, and the function-valued trait is the reaction norm of an organism, 
which describes the phenotype that is expressed in response to a particular environmental 
condition. 

 When considering the demography of physiologically structured populations, the argument 
may be given by age, weight, or size, while function-valued traits measure how, for in-
stance, resource allocation to reproduction, or the rate of dispersal vary with age, weight, or 
size. 

 In spatial ecology, the argument will often describe spatial distance: function-valued traits 
then measure the amount of competition or of dispersal occurring over a continuum of rele-
vant distances. 

 In resource utilization theory, the argument will frequently characterize types of resource – 
corresponding to gradients of size, quality, or of any other relevant continuous property in 
which resources could differ. A function-valued trait may then describe the harvesting rate 
or resource utilization spectrum of a consumer. 

 In morphological evolution, function-valued traits can be employed to describe physical 
shapes or tissue composition. In the first case, the argument could be, e.g., the axial coordi-
nate of a leaf, and the function-valued trait the leaf’s width at each of these axial 
coordinates. In the second case, the argument could be, e.g., the radius measured from the 
center of a stem, and the function-valued trait could characterize the density of woody tis-
sue along this radius. 

 In the study of iterated pairwise games, the argument could be an opponent’s last invest-
ment towards a focal individual, and the function-valued trait could characterize the level of 
investment with which the focal individual reciprocates. 
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In all these diverse cases, the considered adaptive trait is represented most naturally and accu-
rately by a function of the argument. It is also self-evident from these illustrations that 
function-valued traits will rarely be selectively neutral: we must expect that some function 
shapes will amount to improved adaptation, so that variant phenotypes expressing such shapes 
will be able to invade and replace inferior resident types. In general, therefore, evolution will 
proceed to vary the shape of these functions until no selective advantage can be gained any 
more through such variation. In this study we present a general framework for analyzing func-
tion-valued adaptive dynamics. 

In devising this framework, we build on two lines of preceding work. First, a comprehensive 
approach to describing the evolution of function-valued traits based on the methods of quanti-
tative genetics has been developed by Mark Kirkpatrick, Richard Gomulkiewicz, and 
coworkers (Kirkpatrick and Heckman 1989; Kingsolver et al. 2001; and subsequent refer-
ences in this paragraph). Two types of function-valued traits that have received particular 
attention in the context of this approach are growth trajectories, where the argument of the 
function-valued trait is age and the trait itself measures expected body size (Kirkpatrick 1988, 
1993; Kirkpatrick and Lofsvold 1989, 1992; Kirkpatrick et al. 1990), and reaction norms, 
where the argument measures an environmental condition and the function-valued trait char-
acterizes the phenotypes expressed in response to these conditions (Gomulkiewicz and 
Kirkpatrick 1992). The mathematical structures underlying the evolution of function-valued 
traits in quantitative genetics have been elucidated by Gomulkiewicz and Beder (1996) and by 
Beder and Gomulkiewicz (1998); these authors also derived results that facilitate analysis of 
several interesting classes of fitness functions used in quantitative genetics. Furthermore, the 
practical relevance of function-valued adaptation for livestock breeding has been pointed out 
(Kirkpatrick et al. 1994; Kirkpatrick 1997). 

Until now, analyses of function-valued evolution have been focused on evolution under fre-
quency-independent selection. The pioneering studies highlighted in the preceding paragraph 
therefore did not yet concentrate attention on evolutionary processes in which the success of a 
variant phenotype depends on which other phenotypes are currently resident in the evolving 
population. Such dependence occurs when the ecological environment experienced by variant 
phenotypes is affected by the frequency of resident phenotypes. While the environment in 
breeding experiments can sometimes be so tightly controlled that frequency dependence is 
avoided, this is rarely the case for natural evolution: whenever individuals are interacting in 
ways affected by their adaptive traits, and the growth of populations is limited, density- and 
frequency-dependent selection arise generically. The framework of adaptive dynamics has 
been designed to study the course and outcome of long-term evolution under such conditions 
(Metz et al. 1992, 1996a; Dieckmann 1994, 1997; Dieckmann and Law 1996; Geritz et al. 
1997, 1998; Meszéna et al. 2001). By assuming asexual inheritance and mutation-limited evo-
lution, adaptive dynamics is trading genetic detail for ecological realism: the effects of a wide 
range of density-dependent and frequency-dependent selection mechanisms, both in fecundity 
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and in survival, can thus be included into the analysis of long-term evolution. In this way 
models of adaptive dynamics allow investigating evolutionary processes that are driven by 
realistic ecological conditions. A strong point of this framework is the intimate link it estab-
lishes between evolutionary dynamics and the underlying population dynamics. This results in 
fitness measures being rigorously derived for a particular ecological setting, instead of being 
just postulated. 

Here we provide a synthesis of the two recent lines of evolutionary research described above. 
In other words, we introduce evolutionary dynamics that are particularly suited to study the 
adaptation of function-valued traits when this adaptation is driven by density-dependent and 
frequency-dependent selection. The structure of this article is as follows. Section 2 is setting 
the stage by cautioning against pitfalls that may be overlooked when modeling the evolution 
of function-valued traits. Section 3 presents three alternative models for the adaptive dynam-
ics of function-valued traits: these models establish a close link between individual-based 
ecologies and the expected evolutionary trajectories resulting from processes of mutation and 
selection. Section 4 characterizes types of outcomes of function-valued evolution. Section 5 
highlights the important role of constraints for evolving function-valued traits, and explains 
how to account for such constraints in practice. Sections 6 and 7 provide two worked exam-
ples that apply the framework introduced here. These examples focus, in turn, on the 
evolution of metabolic investment strategies and on the evolution of seasonal flowering 
schedules. 

2  Pitfalls in Modeling Function-valued Adaptive Dynamics 

Paying too little attention to proper methods for analyzing function-valued evolution is risky 
for at least three reasons: 

 In the absence of an adequate framework, interesting questions of evolutionary ecology that 
critically require investigating the evolutionary dynamics of function-valued traits under 
frequency-dependent selection will remain unstudied. Overcoming such a state of affairs is 
the purpose of this article. 

 Particular attention must be devoted to constraints on function-valued evolution. Without 
proper methods for, and experience with, accounting for such constraints, essential aspects 
of function-valued adaptation are likely to be misrepresented. We will elaborate on this ca-
veat briefly below, and more extensively in Section 5. 

 It is tempting to reduce, for simplicity’s sake, the evolution of function-valued traits to that 
of vector-valued traits, by using a low number of parameters to approximate a specific 
function-valued trait. While such a simplification may often seem desirable at first sight, 
the danger of drawing spurious and misleading conclusions is considerable, as we will de-
tail in the remainder of this section. 

The significance of the second caveat derives from the fact that the higher the dimension of an 
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adaptive trait, the more important becomes the mutational variance-covariance underlying its 
evolution. Such variance-covariance can be interpreted as imposing evolutionary constraints 
on the adaptation of vector-valued and function-valued traits: mutational variation in certain 
components of such traits may either be absent (variance constraints) and/or inevitably linked 
to variation in other components (covariance constraints). For function-valued traits, such 
constraints are most naturally expressed, derived, and analyzed in terms of variance-
covariance functions, as we will explain in Section 5. 

Figure 1 illustrates the third caveat. Let us assume that we wish to describe the evolution of a 
function-valued trait ( )x a  along a continuum of argument values 0 1a≤ ≤ . (Detailed de-
scriptions of the underlying example, its ecological motivation, and the resulting selection 
pressures are given in Section 6; here we are only interested in the evolution of this trait as a 
means to highlight some general qualitative insights.) Function-valued traits are sometimes 
called ‘infinite-dimensional’ since their accurate quantification requires specifying the value 
of ( )x a  at infinitely many argument values a  across the considered continuum. It is therefore 
common to try and reduce this dimensionality. Based on some a priori intuition about ex-
pected evolutionary outcomes, we might decide, for example, to parameterize this particular 
function-valued trait in either of three ways: (i) by the amplitude c  and parameter p  of an 
exponential function, ( ) ( )px a cE a=  with ( ) pa

pE a e= ; (ii) by the amplitude c , the mean m,  
and the standard deviation d  of a normal function, ( ) ( )m dx a cN a,= ; or (iii) by the amplitude 
c  and parameters d  and k  of a sine function ( ) ( )k dx a cS a,=  with 

( ) sin[2 ( )] 1k dS a k a dπ, = − + . With each of these three choices we have reduced the infinite-
dimensional trait ( )x a  to a merely two- or three-dimensional vector-valued trait. This sounds 
attractive – yet, each choice demonstrates a different aspect of why such reduction can be 
misleading. Figures 1a to 1d show evolutionary dynamics resulting from the three alternative 
parameterizations (initial conditions are shown as dotted curves, transients as thin curves, and 
evolutionary outcomes as thick curves): 

 Figure 1a reveals that the exponential parameterization is grossly inadequate since it is in-
capable of even qualitatively capturing the actual evolutionary outcome. It is important to 
realize, however, that this inference cannot be drawn from the vector-valued evolution as 
shown in the figure, but only from our knowledge of the outcome of the actual function-
valued evolution as derived later in this article (shown in gray). 

 Figure 1b indicates that also the normal parameterization is of limited utility, since, al-
though it does provide a rough approximation of the actual evolutionary outcome (compare 
the thick curve with the gray curve), it misses out on important qualitative features, like the 
significantly asymmetric shape of the actual solution and the fact that the actual solution 
vanishes at particular argument values. 

 A particularly important and insidious discrepancy between parameterized and function-
valued evolution is highlighted in Figures 1c and 1d. While here the chosen parameteriza-
tion would allow, in principle, to approximate the actual solution reasonably well (Figure 
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1c), the parameterized evolutionary dynamics easily get trapped in spurious evolutionary at-
tractors (Figure 1d, where the initial condition is varied only very slightly compared to 
Figure 1c). Low-dimensional parameterizations lead to spurious outcomes, since these 
parameterizations are prone to block so-called ‘extra-dimensional bypasses’ (Conrad 1990). 
Such blockage is an undesired effect often imposed by low-dimensional dynamics and is il-
lustrated schematically in Figure 1e. 

Figure 1f finally shows the function-valued adaptive dynamics, as derived in Section 6, which 
is free from all these confounding impediments. Notice that the three types of pitfalls in pa-
rameterizing function-valued traits illustrated here can be hard to detect in practice: without 
analyzing the function-valued evolution itself, it is impossible to decide which one of the al-
ternative evolutionary predictions provided in Figures 1a to 1d can actually be trusted. Only 
by investigating function-valued evolution directly, such problems and ambiguities can be 
overcome. 

The considerations above lead us to realize that, while function-valued traits may seem com-
plex at first sight, they compare favorably with seemingly simpler representations, by offering 
a more natural and less treacherous platform for many interesting studies in evolutionary 
ecology. 

3  Models of Function-valued Adaptive Dynamics 

We now consider models for describing the evolution of a function-valued trait ( )x a . We re-
fer to the specific form or shape which the function x  takes in an individual as that 
individual’s trait value. The variable a  belongs to what we call the trait’s argument space or 
domain, while the function x  itself belongs to the trait space of the considered population. In 
this article we focus on the dynamics of a single function-valued trait with a one-dimensional 
argument; generalizations to the joint evolution of several traits and to multi-dimensional ar-
guments are readily made. 

To describe the ecological dynamics underlying function-valued evolution we assume, very 
generally, that the per capita birth and death rates of individuals depend on their trait value x , 
as well as on the phenotypic composition p  of the population as a whole, ( )xb p  and ( )xd p . 
The variable p  contains information about abundance and trait values of all individuals pre-
sent in the population; for mathematical details see Appendix A. In addition to the selection 
pressures originating from ecological interactions, evolutionary processes require a mecha-
nism for generating phenotypic variation on which natural selection can operate. In asexual 
organisms such variation is created through mutation. With the mutation probability xμ  a 
birth event in an individual with trait value x  gives rise to mutant offspring with trait value 
x′ , whereas the offspring faithfully inherits the parental trait value x  with probability 1 xμ− . 
The new trait value x′  is chosen according to a mutation distribution ( )M x x′, . Natural selec-
tion arises from the resulting ecology, in particular from the dependence of the per capita 
growth rate, ( ) ( ) ( )x x xf p b p d p= − , on the function-valued traits of individuals. Unless the 
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function-valued trait x  is selectively neutral, or an evolutionarily stable trait has already been 
reached, a population with a resident trait value x  is bound to be invaded and replaced by 
mutants with varied trait values x′ . 

Although individual-based models like the one specified here are healthily close to the eco-
logical processes that underlie evolutionary change, directly following the resultant stochastic 
dynamics of function-valued traits through individual-based simulations is a fairly complex 
undertaking. Our goal in this article is therefore to provide a more tractable deterministic 
model describing the expected course of function-valued evolution. For this purpose, we 
make three simplifying assumptions: 

 We consider populations of sufficient size for the demographic stochasticity of total popula-
tion size to be negligible. (Under typical circumstances, this means that the resulting 
approximations are not suited for describing populations of less than about 100 individu-
als.) 

 We adhere to the standard assumption that the adaptive process unfolds on an evolutionary 
timescale that is longer than that of ecological change. This means that mutations which are 
both viable and advantageous are supposed not to occur too frequently. (Exceptions to this 
assumption do exist in rapidly mutating organisms like pathogens.) 

 We concentrate on processes of gradual adaptation, in which average mutational steps are 
small. (This focus seems relatively safe, since ‘hopeful monsters’ arising from large muta-
tional jumps are usually not viable in higher organisms.) 

Even with these simplifying assumptions, stochastic aspects of evolutionary change remain 
important. This is for two reasons. First, mutations are inherently stochastic, and thus have to 
be treated as such. Second, the demographic stochasticity of mutants can never be safely ig-
nored, since mutants enter a population at population size 1. Consequently, the formal link 
between the individual-based ecology with mutations specified above, which is fast and sto-
chastic, and a description of the expected evolutionary process, which is slow and 
deterministic, has to be carefully constructed. To this end we consider a hierarchy of three 
evolutionary models that have previously been devised for studying scalar-valued and vector-
valued evolution (Dieckmann 1994; Dieckmann et al. 1995; Dieckmann and Law 1996): 

 Polymorphic stochastic model, PSM. This model provides a full, individual-based descrip-
tion of eco-evolutionary dynamics as specified above. It can be formulated as a function-
valued master equation (Dieckmann 1994), and accounts for the stochastic mutation-
selection process in polymorphic populations, i.e., in populations that simultaneously com-
prise individuals with different trait values. 

 Monomorphic stochastic model, MSM. The second model retains the stochasticity arising 
from the occurrence and demography of mutants, but assumes that the ecological and the 
evolutionary timescale are sufficiently separated. The evolutionary process then is muta-
tion-limited: selection usually has enough time to take effect before a new viable and 



 8

advantageous mutant enters the population. Consequently, variation in the distribution of 
trait values is small enough for an assumption of monomorphism to provide a good ap-
proximation (Dieckmann and Law 1996). The monomorphic stochastic model describes the 
evolutionary process as a directed random walk in trait space. Stochastic steps occur when a 
resident trait value is replaced by a successfully invading advantageous mutant, x x′→ ; a 
series of such substitutions is called a trait substitution sequence (Metz et al. 1992). 

 Monomorphic deterministic model, MDM. This is a deterministic approximation to the 
monomorphic stochastic model above, based on the assumption of mutational steps being 
relatively small (Dieckmann and Law 1996). This model is given in terms of a differential 
equation describing a trait’s expected evolutionary path, and is the main target of this arti-
cle. 

The sequence PSM →  MSM →  MDM, then, provides a route for deriving the adaptive dy-
namics of function-valued traits. Details of the derivation are given in Appendix A. One of 
the essential ingredients in this derivation is the concept of invasion fitness f : after a resident 
population with trait value x  has attained its ecological attractor, it is the average initial per 
capita growth rate ( )f x x′,  of a new mutant with trait value x′  arising in the resident popula-
tion that determines whether or not the mutant may invade the resident population (Metz et al. 
1992; Dieckmann 1994; Rand et al. 1994; Ferrière and Gatto 1995; Dieckmann and Law 
1996). When the resident population’s ecological attractor is a fixed point, a model’s invasion 
fitness is easily obtained from the underlying vital rates as ( ) ( ) ( )f x x b x x d x x′ ′ ′, = , − ,  with 

( ) ( )xb x x b p′′, = , ( ) ( )xd x x d p′′, = , where x xp n= Δ  denotes the phenotypic distribution of 
the resident population with trait value x  and equilibrium population size xn . While a mutant 
with ( ) 0f x x′, <  cannot invade, a mutant with ( ) 0f x x′, >  can (owing to the high risk of 
accidental extinction at low mutant population size, successful invasions usually happen only 
after many unsuccessful trials). For mutations of small effect, x x′ ≈ , the condition 

( ) 0f x x′, >  does not only imply that the mutant can invade, but also that it generically will 
take over the resident population (Dieckmann 1994; Geritz et al. 2002). 

Appendix A shows that the monomorphic deterministic model, and thus the expected adaptive 
dynamics of function-valued traits, is governed by the following equation, 

 21( ) ( ) ( )
2 x x x x

d x a n a a g a da
dt

μ σ ′ ′ ′= ,∫ . (1) 

Equation (1) is referred to as the canonical equation of function-valued adaptive dynamics (or 
canonical equation for short). It applies when mutations are rare, small, and symmetrically 
distributed. Notice that the second and third of these assumptions can easily be relaxed (see 
the end of Appendix A). Notice also that the factor 1

2  in the equation above simply reflects 
the fact that, whenever 0xg ≠ , always only exactly one half of all possible small mutational 
steps x x′→  are selectively advantageous. In Equation (1), the equilibrium population size of 
the resident population with trait value x  is denoted by xn , and 2

xσ  is the variance-covariance 
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function of the mutation distribution M  at trait value x , 

 2 ( ) [ ( ) ( )][ ( ) ( )] ( , )x a a x a x a x a x a M x x dxσ ′ ′ ′ ′ ′ ′ ′, = − −∫ , (2) 

where the integration extends over all feasible trait values x′ . The function xg  is the selection 
gradient and is obtained as the functional derivative of f  at trait value x  (Kirkpatrick and 
Lofsvold 1992; Gomulkiewicz and Beder 1996), 

 
0

( ) ( )( ) lim lim
a

x x

f x x x f x xg a
δ ε

ε
εΔ → →

+ Δ , − ,= . (3a) 

This selection gradient is itself simply a function of a : for each a  it describes the strength 
and direction of selection on ( )x a , by probing the sensitivity of invasion fitness f  at a . This 
is accomplished by considering the fitness consequences of perturbations xεΔ  around the 
resident trait value x , as two limits are approached: first, the amplitude ε  of these perturba-
tions is send to 0 (this is the same construction as is familiar from the definition of any scalar 
derivative), and second, the perturbations are made increasingly localized around a . The lat-
ter is achieved by letting xΔ  converge to aδ , the Dirac delta function peaked at location a ; 
see Appendix B for a gentle introduction to delta functions. Notice that residents are always 
neutral with regard to invading their own population, ( ) 0f x x, =  for all x , which simplifies 
the ratio in Equation (3a) to ( ) /f x x xε ε+ Δ , . We can rewrite Equation (3a) as 

 
0

( ) ( )x ag a f x x
ε

εδ
ε =

∂= + ,
∂

, (3b) 

yielding a simpler relation that is valuable in applications. When using this second expression 
for determining selection gradients, we just need to keep in mind that, in accordance with the 
definition in Equation (3a), the epsilon derivative is to be taken before the delta function 
property is exploited in any calculation of expressions like that on the right-hand side of 
Equation (3b). Finally, whenever the invasion fitness is given by an integral, 

( ) ( ( ), ( ), )a
af x x I x a x a a da+

−
′ ′, = ∫ , a third expression for calculating selection gradients is 

readily obtained from Equation (3b), 

 
( )

( ) ( , ( ), )x
y x a

g a I y x a a
y =

∂=
∂

. (3c) 

Since integral expressions for invasion fitness occur very frequently in applications, the sim-
ple relation in Equation (3c), free from any consideration of delta functions, turns out to be of 
great practical utility (Parvinen et al. 2006). 

Equations (1) to (3) are readily interpreted. The first equation describes the expected evolu-
tionary change in the function-valued trait ( )x a  and comes in two parts. The first three factors 
on the right-hand side, including the mutation probability and the average population size, are 
all positive: therefore, they just scale the rate of evolutionary change. By contrast, the integral 
on the right-hand side can be either positive or negative, and hence determines the direction 
evolution takes. According to Equations (3), the selection gradient carries information about 
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whether an increase in the current trait value x  at argument value a  is advantageous 
( ( ) 0xg a > ) or deleterious ( ( ) 0xg a < ). In the former case, ( )x a  would, at first sight, always 
be expected to increase, and to decrease in the latter case. This, however, does not yet account 
for effects of mutational covariance. According to Equation (2), the function 2( )x a aσ ′,  de-
scribes the average mutational side effects that an altered trait value at argument value a  has 
on trait values at all other argument values a a′ ≠ . If, for example, a selective advantage is 
obtained by increasing x  at argument value a , but this increase is inevitably linked to delete-
rious changes at other argument values a′ , then ( )x a  might, in fact, decrease. Generally, for 
each a  in Equation (1), the integral balances the directional effect of ( )xg a  at a  against di-
rectional effects of ( )xg a′  at all other argument values a′ , with the weighting of effects 
provided by 2( )x a aσ ′, . Evolution thus proceeds in the direction of the net effect. 

4  Outcomes of Function-valued Adaptive Dynamics 

Outcomes of function-valued evolution can be of different types. According to Equation (1), 
three conditions can result in the expected evolutionary change ( )dx a dt/  to vanish for all ar-
gument values a : 

 Selection-induced equilibria. For the first type of equilibrium, it simply is the selection gra-
dient that vanishes for all argument values a , ( ) 0xg a = . The location of such equilibria in 
trait space is thus determined by selective forces alone. It must be noted, however, that, in 
contrast to their location, the asymptotic stability of these evolutionary equilibria under 
Equation (1), determining whether they are attracting or repelling, may critically depend on 
subtle features of the mutation process (see Marrow et al. 1996 and Leimar 2001 for exam-
ples that demonstrate this fact for two-dimensional vector-valued traits). Explicit criteria for 
this so-called convergence stability are provided below. 

 Covariance-induced equilibria. Another important type of equilibrium can result from con-
straints imposed by the mutation process. If the variance-covariance function is singular, 
i.e., if 2 ( ) ( )x xa a g a daσ ′ ′ ′,∫  vanishes for all argument values a  and for some function 

0xg ≠ , then a selection gradient that is proportional to xg  is said to lie in the null space of 
2
xσ , and cannot cause any evolutionary change. In such cases, the restricted availability of 

mutants around an adaptive trait value x  causes positive and negative contributions to the 
integral in Equation (1) to cancel: even though further adaptation would be possible without 
such covariances, evolutionary change is ground to a halt by mutational side effects. 

 Extinction-induced equilibria. A third type of equilibrium arises when the evolutionary dy-
namics in Equation (1) reaches viability boundaries in its trait space. Such boundaries are 
given by the condition 0xn = . In this case, the trait value x  results in a non-viable popula-
tion, and – short of any individuals that could produce mutants – evolutionary change 
evidently cannot proceed. 

Mixtures of the first two fundamental types of evolutionary equilibrium can readily occur: 
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this happens when evolution causes the selection gradient to vanish in parts of argument 
space, while evolution in the other parts is impeded by covariance constraints (Figures 2d and 
2e show an example). 

Selection-induced evolutionary equilibria are also known as evolutionarily singular strategies 
or evolutionary singularities (Metz et al. 1996a; Geritz et al. 1998), and are denoted by x∗  
below. Notice that evolutionary equilibria need not be asymptotically stable under the canoni-
cal equation of adaptive dynamics, Equation (1): if they are attracting, they are called 
convergence stable (Christiansen 1991). If a convergence stable evolutionary equilibrium is 
also locally evolutionarily stable, i.e., if it is immune to invasion by neighboring variants 
(Hamilton 1967; Maynard Smith and Price 1973; Maynard Smith 1982), it is referred to as a 
continuously stable strategy (Eshel 1983). Convergence stability, however, by no means im-
plies local evolutionary stability or vice versa (Eshel and Motro 1981; Eshel 1983; Taylor 
1989; Christiansen 1991; Takada and Kigami 1991): evolutionary processes can therefore 
converge to equilibria at which small mutational steps in different directions generate viable 
invaders that can coexist with the original population at the evolutionary equilibrium. Such 
equilibria are called evolutionary branching points (Metz et al. 1996a; Geritz et al. 1997, 
1998); their importance for understanding adaptation in function-valued traits will be high-
lighted in Section 7. 

To formulate analytic conditions for the convergence stability and local evolutionary stability 
of an evolutionarily singular function-valued trait x∗ , it is helpful first to construct the four 
second functional derivatives of invasion fitness ( )f x x′, , 

 
2

,
0

( , ) ( )aamm x
h a a f x x

ε ε

ε δ εδ
ε ε∗

∗ ∗
′

′= =

∂′ ′= + + ,
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, (4a) 
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εδ ε δ
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′∂ ∂
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2

,
0

( , ) ( )aarr x
h a a f x x

ε ε

ε δ εδ
ε ε∗

∗ ∗
′

′= =

∂′ ′= , + +
′∂ ∂

. (4d) 

The function mmh  is known as the mutant Hessian, rrh  as the resident Hessian, while mrh  and 

rmh  are referred to as mixed Hessians (note that T
mm mmh h= , T

rr rrh h= , and T
mr rmh h= ). The 

condition for the local evolutionary stability of an evolutionarily singular function-valued trait 
x∗  is that invasion fitness ( )f x x∗′,  possesses a local maximum at x x∗′= , which means that 
the mutant Hessian 

,mm x
h ∗  is negative definite. To evaluate the convergence stability of x∗ , we 

construct the Jacobian of the right-hand side of Equation (1) and thus conclude that x∗  is 
convergence stable if and only if the dominant eigenvalue of 2

, ,
( )

x mm x mr x
h hσ ∗ ∗ ∗+  possesses a 

negative real part. From this we see that the convergence stability of x∗  may be affected by 
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the variance-covariance function 2
x

σ ∗ . To identify situations in which changes in 2
x

σ ∗  cannot 
cause changes in convergence stability, Leimar introduced the very helpful notion of strong 
convergence stability (Leimar 2001; Leimar, in press). Following his definition and reason-
ing, we define an evolutionarily singular function-valued trait x∗  as strongly convergence 
stable if and only if the symmetric component of 

, ,mm x mr x
h h∗ ∗+  is negative definite. Using the 

relation 0mm mr rm rrh h h h+ + + = , which follows directly from ( ) 0f x x, =  for all x , we ob-
tain 1 1

2 2, , , , , ,
( ) ( )T T

mm x mm x mr x mr x mm x rr x
h h h h h h∗ ∗ ∗ ∗ ∗ ∗+ + + = −  for the symmetric component of 

, ,mm x mr x
h h∗ ∗+ . This means that we may equivalently define the strong convergence stability of 
x∗  by the negative definiteness of the difference between the mutant and resident Hessians, 

, ,mm x rr x
h h∗ ∗− . 

5  Constraints on Function-valued Adaptive Dynamics 

The canonical equation of function-valued adaptive dynamics, Equation (1), captures the in-
terplay between the selection gradient and the mutational variance-covariance function of an 
adapting population. The selection gradient is determined by the underlying ecology and its 
trait dependence, while the variance-covariance function reflects how adaptive constraints re-
strict the course of evolution. In this section we describe and formalize the later relation. As 
we will see, retaining the natural infinite-dimensional structure of a function-valued trait sim-
plifies such reasoning. 

Adaptive constraints on function-valued traits can take various forms and may originate from 
many causes. Let us look at three examples. First is a dispersal kernel, describing the prob-
ability ( )x a  of a dispersing individual or propagule to settle after having covered a certain 
distance a . Here, the evolution of trait values x  is limited by two separate constraints: first, 
by (i) ( ) 1x a da=∫ , because x  is a probability density and the disperser’s probability of 
eventual settlement equals 1; and second, by (ii) ( ) 0x a ≥  for all a , since negative probability 
densities are not meaningful. Second is a distribution ( )x a  of foraging times that an herbivore 
spends across a continuum of plant types a  in the course of a day. In this case evolution again 
ought to respect the constraint ( ) 0x a ≥  for all a . An additional limitation is given by (iii) 

24h( )x a da ≤∫  – the total daily foraging time cannot exceed a day’s length. Third is the 
growth trajectory of an individual, given by its body size ( )x a  at age a . Once more, we have 

( ) 0x a ≥  for all a , but we also need to fix the initial condition before growth starts: (iv) 

0(0)x x= , where 0x  denotes the body size at birth. 

Adaptive constraints on function-valued traits can be classified according to two dichotomies: 
constraints can be given either by equalities (i and iv) or by inequalities (ii and iii), and such 
constraints may apply either locally (ii and iv) or globally (i and iii) in argument space. Equal-
ity constraints are sometimes also referred to as holonomic, and inequality constraints as non-
holonomic. Equality and inequality constraints both limit the range of available trait values, 
but differ fundamentally in their way of doing so: 

 Global equality constraints can always be expressed in the form ( ) 0c x = , where c  is a 
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suitable functional that maps trait values x  to numbers. For such constraints, any location 
x  in trait space has neighboring trait values that are prohibited by the constraint. A global 
equality constraint thus restricts adaptive dynamics to a constraint manifold in trait space: 
for a trait value lying on this manifold, only those neighbors that also lie on it correspond to 
permissible mutants. Local equality constraints affect trait values only at specific argument 
values and can formally be expressed as a special case of global equality constraints: this is 
demonstrated by the equivalence of 0 0( ) ( ) ( ) 0c x x a a a da xδ= − − =∫  with 0 0( )x a x= . 
Also this local type of equality constraint thus implies that any trait value is surrounded by 
excluded trait values. 

 The situation is quite different for inequality constraints: these only affect certain regions of 
trait space where trait values are getting close to a constraint manifold. Global inequality 
constraints take the form ( ) 0c x ≥ . For trait values x  that are not yet in the vicinity of the 
constraint manifold given by ( ) 0c x = , all neighboring trait values are allowed. As long as 
mutational effects are mostly small, excluded mutants (situated on the far side of the mani-
fold) are only likely to arise once trait values get close enough to the constraint manifold. 
Such exclusion thus unfolds as a gradual process: the closer an evolving population gets to 
the constraint manifold, the more potential mutants will be excluded, until eventually no 
feasible mutants remain that would take the population across the manifold. The same con-
clusion applies to local inequality constraints, for which a condition ( ) ( )xx a c a+≤  or 

( ) ( )xx a c a−≥  holds for all or some values a  in argument space. Notice that the functions 
c±  may vary with x . 

The canonical equation of function-valued adaptive dynamics, Equation (1), needs no modifi-
cation for incorporating adaptive constraints. Instead, constraints like those described above 
require suitable variance-covariance functions to be utilized. How is this achieved? Again, the 
answer depends on the type of constraint. In particular, equality constraints require singular 
variance-covariance functions, and also the reverse is true: singular variance-covariance func-
tions imply equality constraints. The null space of a singular variance-covariance function 
contains all directions of change that, if applied to a function-valued trait, would violate the 
associated equality constraints. For illustration, let us consider typical equality constraints of 
global and local type: 

 Global equality constraints can take many forms. One of the most important example con-
serves the normalization, ( ) 1x a da=∫ , of a probability density x . The simplest variance-
covariance function respecting this constraint is 

 2 2( ) [ ( ) 1/ ]x a a a a Lσ σ δ′ ′, = − − , (5a) 

where 2σ  is the unconstrained variance and L  is the length of argument space. This choice 
implies, first, that the variance at all argument values a  is the same, since the amplitude of 
the delta function is uniform along the diagonal a a′= . Second, we immediately see from 
the constancy of 1/ L  that an increase or decrease of ( )x a  at a particular argument value a  
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is compensated uniformly across all other argument values a′ , thus ensuring that the trait’s 
normalization stays intact. A third feature is that, with this choice, there will be no cohesion 
of trait values ( )x a  between adjacent argument values a , since the delta function’s vari-
ance is zero. Taken literally, this is clearly unrealistic. We thus ought to think of the delta 
ridge along a a′=  in Equation (5a) – or, for that matter, of the delta ridge in the simplest 
covariance-free function 2 2( ) ( )x a a a aσ σ δ′ ′, = −  – as the idealization of a narrow ridge. No-
tice that, even though Equation (5a) describes mutation processes that do not preserve the 
continuity of function-valued traits, this continuity is retained when considering the ex-
pected adaptive dynamics of function-valued traits in Equation (1). Again, this subtlety 
vanishes for variance-covariance functions with a narrow ridge instead of a delta ridge. An 
alternative normalization-preserving variance-covariance function that overcomes the 
somewhat unrealistic third feature, and may thus be of particular importance in many appli-
cations, is derived in Appendix C. The evolutionary implications of such a function are 
explored in Heino et al. (submitted). Other global equality constraints are dealt with by a 
variant of the method described for global inequality constraints; see below. 

 Local equality constraints prevent the trait value at a particular argument value 0a  from 
changing, 0 0( )x a x= . Consequently, all corresponding mutational variances and covari-
ances have to be zero, 

 2 2
0 0( ) ( ) 0x xa a a aσ σ′, = , =  for all x , a , and a′ . (5b) 

How gradually or abruptly such required troughs in the two-dimensional variance-
covariance landscape are attained is at a modeler’s discretion: if a local equality constraint 
at 0a  should affect trait evolution at adjacent argument values, variance-covariance func-
tions should be continuous around the trough’s bottom at 0. Local equality constraints can 
of course also be defined for continuous ranges of argument values, 0 0a A∈ . While the im-
plications for the corresponding variance-covariance functions are obvious, such continuous 
ranges will rarely be of relevance in practice, since the interior of 0A  can then just as well 
be excluded from the evolutionary model. 

Inequality constraints imply that the mutational variance-covariance function changes gradu-
ally across a boundary layer adjacent to the constraint manifold: sufficiently far away from 
the manifold the variance-covariance function is essentially unaffected, while very close to a 
smooth constraint manifold exactly one half of all potential mutants is excluded. In some 
studies, this gradual transition might be of interest in its own right; in most cases, however, 
the complex details of how the variance-covariance function varies close to the constraint 
manifold do not matter at all, and using a simpler, approximate representation is then advis-
able. Such approximations are motivated by the fact that the canonical equation of adaptive 
dynamics is derived for small mutational steps (Section 3 and Appendix A). Accordingly, the 
boundary layer induced by inequality constraints will be very narrow whenever the canonical 
equation offers a valid description. This is why it will mostly be convenient to assume the 
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layer’s thickness to be zero, by utilizing approximate variance-covariance functions: 

 Global inequality constraints, ( ) 0c x ≥ , can be represented by linearly transforming an un-
constrained variance-covariance function ( )xU a a′, , 

 2 ( ) ( , ) ( ) ( , )x x x xa a P a a U a a P a a da da� �σ ′ ′ ′′ ′′ ′′′ ′′′ ′′ ′′′, = ,∫∫ , (5c) 

with ( ) ( ) ( ( )) ( ( ) ( ) ) ( )x x x xP a a a a H c x H g a N a da P a a� �δ′ ′ ′′ ′′ ′′ ′, = − − − − ,∫ , ( )xP a a′, =  
( ) ( )x xN a N a� �′ , 2( ) ( ) / ( )x x xN a N a N a da� ′ ′= ∫ , and 

0
( ) ( )x aN a c xε ε

εδ∂
∂ =

= + . By its con-
struction as a gradient, the function xN  is orthogonal to ( ) 0c x =  at x , which means that 
the function / | |x x xN N N� =  is the normalized normal on the constraint manifold at x . Ac-
cordingly, the transformation T T

x x x xP P N N� �= =  projects any function onto xN� . Since the 
Heaviside function H  equals 0 for negative arguments and is 1 otherwise, the transforma-
tion ( ( )) ( )T T

x x x x xP P H c x H g N P� � �δ= = − − −  removes the normal component of any function 
if the constraint manifold is reached, ( ) 0c x = , and further evolution along the selection 
gradient xg  would penetrate it, 0T

x xg N� ≤ . As long as these conditions are not met together, 
we simply have xP� δ= , where the Dirac delta function δ  represents the identity transfor-
mation. The transformation xP�  in Equation (5c), 2

x x x xP U P� �σ = , thus removes the normal 
component of the unconstrained variance-covariance function xU  if and only if the adaptive 
dynamics would violate the global inequality constraint ( ) 0c x ≥ . This ensures that the 
adaptive dynamics slides along the constraint manifold, without ever penetrating it. Notice 
that all global equality constraints, ( ) 0c x = , can be dealt with by deleting the Heaviside 
function ( ( ))H c x−  from the definition of xP� . 

 Local inequality constraints, ( ) ( )xx a c a−≥  and ( ) ( )xx a c a+≤ , can also be represented by 
multiplying an unconstrained variance-covariance function ( )xU a a′,  with a correction 
term, 

 
0

2
, 0 0 0

,
( ) ( ) [1 ( ( ( ) ( ))) ( ( ))]s

a a ax x x x
s

a a U a a H s x a c a H sg aσ ′=
=+ −

′ ′, = , − −∏ . (5d) 

Notice that the second term in the square bracket is 1 at all argument values 0a  at which a 
local inequality constraint has been reached, 0 0( ) ( )xx a c a±= , and at which, moreover, pur-
suit of the selection gradient would violate these constraints, 0( ) 0xg a± > . Consequently, 
the correction term in Equation (5d) annuls all variances and covariances that would breach 
a local inequality constraint. 

The considerations above show how to account for equality and inequality constraints by 
choosing suitable variance-covariance functions. We note in passing that the constrained vari-
ance-covariance functions in Equations (5a) to (5d) preserve, as they must, both the symmetry 
and the non-negative definiteness of the underlying unconstrained functions. 

When constructing specific evolutionary models, one should take care not to confound evolu-
tionary constraints, which strictly exclude certain trait values, with fitness costs, which merely 
imply that certain trait values possess low fitness. A useful guideline is to restrict the use of 
constraints as those described above to immutable mathematical or physical requirements, and 
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to employ costs to account for developmental, physiological, or morphological limitations. 

6  First Example: Evolution of Metabolic Investment Strategies 

In this and the following section we illustrate our approach by investigating two specific eco-
evolutionary problems. In the first example we find evolutionarily singular metabolic invest-
ment strategies for consumers that are confronted with the opportunity of harvesting a range 
of different resource types. Almost any utilization of resources requires prior physiological or 
morphological investments in handling and processing. In particular, the chemical diversity of 
resource types necessitates a variety of adequate biochemical pathways for metabolizing these 
resources efficiently, and these pathways are expected to be costly. It is therefore important to 
address the question how a consumer should allocate its metabolic effort on building and 
maintaining the morphological and physiological machinery needed for accessing, decompos-
ing, and utilizing the different types of resource it encounters in its diet. 

We consider a function-valued trait ( )x a  that describes the metabolic effort invested across 
different resource types a . Obviously, this effort cannot be negative, implying local inequal-
ity constraints ( ) 0x a ≥  for all a . Furthermore, the total effort ( ) ( )E x x a da= ∫  cannot 
become too large, since otherwise an individual’s energy balance becomes negative. Below, 
we reflect this limitation through a fitness cost. 

Types of resources are characterized by their digestibility a , standardized to take values be-
tween 0 and 1; low values of a  correspond to high digestibility. The less digestible a type of 
resource, the more effort is needed to achieve a given level of efficiency in processing it. If no 
effort is invested on a resource type, then it is metabolized with efficiency zero, and consum-
ing the resource can provide no gain. It is natural to assume that efficiency increases with 
increasing effort, while investing too much effort on a particular resource type leads to dimin-
ishing returns. Thus, metabolic efficiency is described by a positive function ( ( ))e a x a,  that is 
decreasing in its first and increasing in its second argument (with an asymptotic value of 1). 
Such a function is given, for instance, by ( ( )) ( ) [ ( ) ]e a x a x a x a a, = / + . 

To keep the example as simple as possible, the abundance of resource types is assumed to re-
main constant under utilization, so that the abundance of the different types a  of resource is 
described by the resource density ( )r a . Such a situation arises if ecological factors other than 
availability of the considered resource are limiting the abundance of the consumer population. 
Examples include rare species within the grazing guild of savannas, or species that rely on an 
exogenous food supply, like trichopteran larvae filter-feeding on food particles drifting in a 
river. Other scenarios with more complicated ecological feedbacks can be analyzed similarly 
(Heino et al., submitted).  

The gain from a resource of type a  is the product of its abundance and of the efficiency with 
which it is metabolized, ( ) ( ( ))r a e a x a, . Assuming that there is no diet selection, the total in-
take of resources is then given by the integral of this product over the resource axis 
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( ) ( ) ( ( ))G x r a e a x a da= ,∫ . We assume that the costs incurred by a particular strategy x  for 
the metabolic effort are given by ( )cE x , with the positive constant of proportionality c  scal-
ing the expenses of metabolic investment. High metabolic efforts thus lead to higher gains, 
but at the same time are limited by the costs an individual can sustain. 

To study the adaptive dynamics of metabolic investment, we now embed the model for the 
allocation of metabolic effort into a simple population dynamics. Specifically, we assume the 
birth rate of individuals to depend on their net gain, ( ) ( ) ( )b x x G x cE x′ ′ ′, = − . The death rate 
regulates population size xn  and is of logistic type with carrying capacity K , 

( ) xd x x n K′, = / . At population dynamical equilibrium, the resident’s population growth rate 
goes to zero, ( ) ( )b x x d x x, = , ; the equilibrium population size is thus given by 

max(0, [ ( ) ( )])xn K G x cE x= − . For the invasion fitness we hence obtain 

 ( ) [ ( ) ( )] [ ( ) ( )]f x x G x cE x G x cE x′ ′ ′, = − − − . (6a) 

The result shows that evolution in this example obeys an optimization principle: the optimal 
strategy x∗  maximizes ( ) ( )G x cE x∗ ∗− , and thus 

x
n ∗ . This means that the calculus of varia-

tions can be used to determine x∗  (Parvinen et al. 2006). Here we instead proceed with a 
dynamic mode of analysis that allows us to assess transient evolution as well as evolutionary 
outcomes. 

The selection gradient is determined by applying Equation (3c) to Equation (6a), 

 2

( )( )
( ( ) )x

r a ag a c
x a a

= −
+

. (6b) 

Following Equations (1) and (5d), while otherwise assuming the simplest possible mutation 
structure – constant mutation probability, xμ μ= , and absence of covariance, 

2 2( ) ( )x a a a aσ σ δ′ ′, = −  – we obtain 

 

2

2
2

1( ) ( ) ( , ) ( , ) ( )
2
1 ( )[ ] ( , ) ,
2 ( ( ) )

x x

x

d x a n a a C x a C x a g a da
dt

r a an c C x a
x a a

μ σ δ

μσ

′ ′ ′ ′= −

= −
+

∫
 (6c) 

where the factor ( , ) 1 ( ( )) ( ( ))xC x a H x a H g a= − − −  results from the local inequality con-
straints, ( ) 0x a ≥  for all a . Recall from above that H  equals 0 for negative arguments and is 
1 otherwise; consequently, ( , )C x a  equals either 0 or 1, and thus 2( , ) ( , )C x a C x a= , which 
explains the result of the integral above. 

According to Equation (6c), the evolutionarily singular strategy x∗  for the investment of 
metabolic effort, defined by ( ) 0d

dt x a∗ =  for all a , is given by 

 ( ) if ( )( )
0 otherwise.

a
c r a a r a acx a∗

⎧⎪ − >⎪= ⎨⎪⎪⎩
 (7) 

This finding shows that metabolic effort will be invested only on resource types that are abun-
dant enough to balance the costs of metabolic investment. The lower the digestibility of a 
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resource type (large a ), the higher is this investment threshold (since ( )r a  must exceed ac ). 

Figure 2 illustrates the results for this model for 1
2c =  and for a quadratic resource density 

( ) 4 (1 )r a a a= − . Starting from different initial conditions, adaptive transients vary; yet, the 
evolutionarily singular strategy x∗  is convergence stable and serves as a global evolutionary 
attractor. Notice that the evolutionarily singular metabolic effort is skewed: most metabolic 
effort is invested into resource types that are more easily digested than those that have the 
highest abundance. By contrast, only little effort needs to be invested into resource types that 
are easily digested: for these, a relatively high metabolic efficiency is achieved even with 
modest investment and, due to diminishing returns, higher investments would be wasteful. 
Beyond the threshold at 71

4 81a c= − = , investment ceases completely. 

7  Second Example: Evolution of Seasonal Flowering Schedules 

In our second example, we analyze the evolution of seasonal flowering schedules in plants 
that inhabit a temporally varying environment. Flowers opening at different parts of the sea-
son are facing different ecological conditions, for instance, in terms of the availability of 
pollinators or of the risk of being destroyed by herbivores. Assuming that a plant can produce 
only a limited number of flowers during the whole flowering season, it is expected that selec-
tion favors flowering schedules that track the seasonal pattern in expected pollination success. 
Here we introduce a simple model to study that hypothesis. 

The flowering season in our model can either last throughout the year or for only part of it. 
We scale its duration to one, so that each moment in time during the flowering season is iden-
tified by a argument value a , ranging from 0  to 1 . We denote the amount of flowers 
produced at time a  during the season by ( )x a : the function-valued trait x  thus characterizes 
a plant’s temporal profile of flowering intensity, or seasonal flowering schedule. We assume 
that the total number of flowers a plant can produce during a season is limited by the amount 
of resources it has available, so that flowering schedules are restricted by the global equality 
constraint ( ) const.x a da =∫  For convenience, we normalize x  such that ( ) 1x a da =∫ . 

Flowers produced at any time during the flowering season compete for pollinators and herbi-
vore-free space; the effect of such competition is to decrease the probability of setting seed. 
We describe this probability by ( ) ( )( ) xn x a K a

xp a e− /= , where xn  is population size, ( )xn x a  is 
the total amount of flowers open at time a , and ( )K a  serves as a time-dependent carrying 
capacity. Accordingly, K  describes seasonal factors affecting pollination success, such as the 
abundance of pollinators. 

Traveling between flower heads decreases a pollinator’s efficiency of foraging. With more 
flowers per flower head, foraging efficiency increases. Thus, pollinators are likely to find 
flower heads more attractive the more flowers they have. Among the flowering plants, this 
causes asymmetric competition for pollinators. A mutant individual which, at a given time of 
the season, sports a higher flowering intensity than the resident population possesses an ad-
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vantage at that time. Since the total amount of flowers produced during the season is limited, 
gain at one time is necessarily coupled to loss at some other time. Specifically, we assume 
that asymmetric competition alters the pollination success at time a  of a plant with flowering 
schedule x′  competing with a plant with schedule x  by a factor ( )( ( )) 2 (1 )e ac e a e α−= / + ,  
where ( )e a  denotes the mutant’s excess flowering intensity compared to the resident. The 
exponent α  determines the strength of asymmetric competition; for 0α=  we obtain 

( ( )) 1c e a = , corresponding to symmetric competition. For small excesses ( )e a  the gain 
( ( ) 0e a > ) or loss ( ( ) 0e a < ) in pollination success is proportional to ( )e a ; marginal gains 
and losses level off when differences in flowering intensity become large. The function 

( ) [ ( ) ( )] / ( )e a x a x a x a β′= − , chosen below, allows measuring the mutant’s excess flowering 
intensity along a range from absolute ( 0β = ) to relative ( 1β = ) differences. 

The birth rate of a rare mutant individual with flowering schedule x′  in a resident population 
with schedule x  is given by ( ) ( ) ([ ( ) ( )] / ( ) ) ( )xb x x x a c x a x a x a p a daβ′ ′ ′, = −∫ , while the 
death rates of individuals are assumed to be constant, ( )d x x d′, = . Consequently, the inva-
sion fitness for this ecological setting is given by 

 ( ) ( ) ([ ( ) ( )] / ( ) ) ( )xf x x x a c x a x a x a a da dpβ′ ′ ′, = − −∫  (8a) 

with ( ) ( )( ) xn x a K a
xp a e− /= . The condition ( ) 0f x x, =  defines the equilibrium population size 

xn . From the invasion fitness we obtain the selection gradient according to Equation (3c), 

 11( ) ( )[1 ( ) ]
2x xg a a x ap βα −′ ′ ′= + . (8b) 

Following Equation (5a), the influence of the global equality constraint ( ) 1x a da =∫  is taken 
into account by using the variance-covariance function 2 2( ) [ ( ) 1]x a a a aσ σ δ′ ′, = − − . We thus 
assume that any mutational increase (decrease) in flowering intensity at time a  is balanced by 
a uniform decrease (increase) in flowering intensity at other times during the season. The mu-
tation probability is assumed to be constant, xμ μ= , and the local inequality constraints, 

( ) 0x a ≥  for all a , are handled like in Section 6. The canonical equation of function-valued 
adaptive dynamics, Equation (1), thus becomes 

 

2

2 1 1

1( ) [ ( ) 1] ( , ) ( , ) ( )
2
1 1 1[ ( )(1 ( ) ) ( )(1 ( ) ) ( , ) ] ( , )
2 2 2

x x

x x x

d x a n a a C x a C x a g a da
dt

n a x a a x a C x a da C x ap pβ β

μ σ δ

μσ α α− −

′ ′ ′ ′= − −

′ ′ ′ ′= + − +

∫

∫
 (8c) 

with ( , ) 1 ( ( )) ( ( ))xC x a H x a H g a= − − −  as in Section 6. The evolutionarily singular strategy 
x∗  for this example, satisfying ( ) 0d

dt x a∗ =  for all a , cannot be obtained analytically. Nu-
merical integration of Equation (8c), however, is an efficient way of studying the adaptive 
dynamics leading to x∗ . Figure 3b illustrates how the seasonal flowering schedule evolves 
towards an evolutionarily singular schedule x∗  that indeed tracks the temporal pattern, shown 
in Figure 3a, of seasonal factors affecting pollination success. Integrating Equation (8c) from 
various initial conditions demonstrates that all populations featuring a single flowering sched-
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ule converge towards the global evolutionary attractor x∗ . 

Evolutionary convergence towards such a monomorphic equilibrium, however, does not guar-
antee evolutionary stability. If the evolutionarily singular strategy x∗  permits the invasion and 
coexistence of similar flowering schedules, evolution can give rise to a dimorphic population 
via evolutionary branching (Metz et al. 1992, 1996a; Geritz et al. 1997, 1998) and x∗  is called 
an evolutionary branching point. The possibility of a population being driven by directional 
selection towards a point at which selection turns disruptive is a feature of many adaptive dy-
namics models that properly account for frequency-dependent selection (e.g., Doebeli and 
Dieckmann 2000). To test whether x∗  allows for evolutionary branching, and to investigate 
the potentially ensuing dimorphic evolution, we extend the monomorphic adaptive dynamics 
given by Equation (8c) to the dimorphic case. 

We denote the two resident types of a dimorphic population by 1( )x a  and 2( )x a , and their 
population sizes at ecological equilibrium by 

1xn and 
2xn , respectively. The degree of asym-

metric competition ( ( ))c e a  experienced by a rare mutant at any time a  now depends on the 
population mean flowering intensity, 

1 21 2( )x x xx n x n x n= + /  with 
1 2x x xn n n= + , through 

( ) [ ( ) ( )] / ( )e a x a x a x a β′= − . For the invasion fitness of a mutant x′  in a resident population 

1 2( )x x,  we then have 

 1 2( ) ( ) ([ ( ) ( )] / ( ) ) ( )xf x x x x a c x a x a x a a da dpβ′ ′ ′, , = − −∫ . (9a) 

The equilibrium population sizes 
1 2

( )x xn n,  can be obtained numerically from the two equa-
tions 1 1 2( ) 0f x x x, , =  and 2 1 2( ) 0f x x x, , = . With the two selection gradients 

 ( )1( ) ( ) ( ( ))[1 ( ) ( ( )) ( ) ]
2

i

i

e a
x i i ixg a a c e a x a c e a e x ap α βα − −= + , (9b) 

for 1 2i = ,  and with ( ) [ ( ) ( )] / ( )i ie a x a x a x a β′= − , we obtain the canonical equation for the 
dimorphic flowering schedule model, 

 21( ) [ ( ) ( ) ( , ) ] ( , )
2 i i ii x x x i i

d x a n g a g a C x a da C x a
dt

μσ ′ ′ ′= −∫ . (9c) 

As initial condition for the dimorphic adaptive dynamics in Equation (9c) we chose a pair of 
small perturbations of the evolutionarily singular flowering schedule, by shifting x∗  slightly 
to the left and to the right, see Figures 3c and 3d. If x∗  was evolutionarily stable, then the re-
sulting dimorphic population would converge back to the monomorphic equilibrium x∗ . 
However, as Figures 3c and 3d demonstrate, the two strategies instead start to diverge from 
x∗  and from each other, until a complete phenological segregation of flowering schedules is 
reached. This result is the first demonstration that evolutionary branching also naturally oc-
curs in function-valued traits. 

In nature, the initiation and cessation of flowering is bound to be less sharp than predicted by 
the simple model analyzed here. Once localized covariances, as introduced in Appendix C, 
are incorporated, the vertical flanks in the presented dimorphic flowering schedules will natu-
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rally be smoothed out. Also the simplistic global equality constraint considered above would 
benefit from being replaced with a mechanistically motivated fitness cost. These interesting 
and ecologically relevant refinements exceed the scope of the introductory treatment here and 
will be investigated elsewhere (Parvinen et al., in preparation). 

8  Discussion 

We have introduced a comprehensive and flexible theoretical framework for studying the 
long-term evolution of function-valued traits. Three features of our approach may deserve be-
ing highlighted. First are the advantages of respecting the function-valued nature of many 
phenotypes of interest in evolutionary ecology. This prevents falling prey to the misleading 
results of oversimplified models (Section 2) and enables analyses of questions that would be 
difficult to address otherwise (Sections 6 and 7). Second is the need to deal with realistic 
feedback between ecological and evolutionary dynamics. Our approach permits studying evo-
lutionary problems involving any kind of density-dependent and/or frequency-dependent 
selection pressures (Section 3), which in turn opens up new perspectives on the richness of 
phenomena driven by the long-term evolution of function-valued traits (Section 7). The inti-
mate connection between adaptive dynamics and population dynamics, which enables the 
derivation of invasion fitness, is particularly valuable here (Sections 3, 6, and 7; Appendix A). 
Third is the systematic treatment of evolutionary constraints, which proper analyses of func-
tion-valued evolution cannot do without (Sections 4, 5, 6, and 7). We have shown how such 
constraints are readily incorporated by choosing suitable variance-covariance functions for 
describing the availability of trait values. The general solutions offered here for working with 
the four most important classes of constraints, local and global, as well as based on equalities 
and inequalities, should considerably facilitate their treatment in specific models (Section 5). 

The two worked examples in Sections 6 and 7 showcase the utility of our approach. While 
these examples are based on reasonably realistic ecological models, they were kept deliber-
ately simple to serve as illustrations. Models with a higher degree of ecological complexity 
based on the framework introduced here have been devised to study the evolution of reaction 
norms in spatially heterogeneous environments (Ernande and Dieckmann 2004), of reaction 
norms for age and size at maturation (Ernande et al. 2004), of seasonal flowering schedules 
(Parvinen et al., in preparation), and of resource utilization spectra under complex ecological 
conditions (Heino et al., submitted). 

Our framework for the evolution of function-valued traits is based on adaptive dynamics the-
ory and complements an earlier body of corresponding work (e.g., Kirkpatrick and Heckman 
1989; Kingsolver et al. 2001) based on quantitative genetics theory. At first sight, there is a 
striking similarity between the canonical equation of adaptive dynamics (Dieckmann and Law 
1996) and equations based on Lande’s model of quantitative genetics (Lande 1976, 1979). In 
both types of model, evolutionary rates are proportional to selection gradients and to measures 
of genetic variability. This observation, in conjunction with a recognition of the multitude of 
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closely related models (e.g., Brown and Vincent 1987a, 1987b, 1992; Rosenzweig et al. 1987; 
Hofbauer and Sigmund 1988, 1990; Vincent 1990; Iwasa et al. 1991; Takada and Kigami 
1991; Taper and Case 1992; Abrams et al. 1993; Marrow and Cannings 1993; Vincent et al. 
1993), provided the original motivation for referring to dynamics like those in Equation (1) as 
‘canonical’ (Dieckmann and Law 1996). 

The similarity between the equations resulting from adaptive dynamics and quantitative ge-
netics has misled some authors into suggesting that the corresponding models are not just 
superficially similar, but fundamentally equivalent (e.g., Waxman and Gavrilets 2005). Since 
such uncritical lumping undermines a proper understanding of the complementary strengths 
and weaknesses of models alternatively based on adaptive dynamics or quantitative genetics, 
it may be helpful, also in the present context of function-valued evolution, to recall the main 
differences between these models: 

1. First are elementary distinctions in the described biological processes. As detailed in Sec-
tion 3 and Appendix A, the canonical equation describes the expected course of an 
evolutionary random walk resulting from mutation and selection, through the successive 
invasion of advantageous mutants into essentially monomorphic resident populations. By 
using such adaptive dynamics models, we are thus looking at the expectation of a mono-
morphic stochastic process. By contrast, Lande’s model and its later extension to function-
valued traits describe how the mean of a population’s distribution of quantitative traits 
evolves under the action of selection. By using such quantitative genetics models, we are 
thus looking at the mean of a polymorphic deterministic process. 

2. These differences naturally go along with disparate key assumptions made in the derivation 
of the two types of model. The canonical equation describes the effects of selection when 
successful mutations are rare and small, while Lande’s model describes the effects of se-
lection when a population’s trait distribution is normal and its genetic variance-covariance 
constant. 

3. The fundamentally different nature of both models becomes most evident when these sim-
plifying assumptions are relaxed. When larger mutational steps are considered in models of 
adaptive dynamics, correction terms are incorporated into the canonical equation (Dieck-
mann and Law 1996; Appendix A). These terms contain higher derivatives of invasion 
fitness beyond the selection gradient and higher moments of the mutation distribution be-
yond its variance. When variable genetic variances are considered in models of 
quantitative genetics, new equations for the variance’s dynamics need to be introduced and 
coupled with the equation for the mean’s dynamics (e.g., Vincent et al. 1993; Turelli and 
Barton 1994). Since quantitative genetics models describe the dynamics of distributions of 
quantitative traits, they are equivalent only to the entire hierarchy of moment equations, 
given by the dynamics of the distribution’s mean, variance, skewness etc. Accordingly, the 
distribution’s variance assumed to be constant in Lande’s model in actual fact is a hidden 
state variable, whose changes are exactly prescribed by the distributional dynamics from 
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which Lande’s model for the change in the distribution’s mean is derived. The simplicity 
of Lande’s model is thus afforded by making the mental leap of treating this dynamic vari-
able as a constant parameter, so as to truncate the otherwise intractable hierarchy of 
moment equations. It should be kept in mind that no moment hierarchy, and therefore also 
no such truncation, underlies the derivation of the canonical equation. 

A proper appreciation of these details allows us to draw the following conclusions: 

1. Adaptive dynamics and quantitative genetics models are both based on simplifying as-
sumptions that are unlikely to be closely met in real processes of long-term evolution. At 
the simplest level of modeling, however, the two approaches result in equations that are 
very similar and therefore can often be used interchangeably. Also the solutions presented 
in Section 5 and Appendix C for the systematic construction of constrained mutational 
variance-covariance functions carry over to the variance-covariance functions of con-
strained genetic polymorphisms needed in quantitative genetics models. 

2. Yet the similarity between the two approaches must not be exaggerated. Specifically, the 
essential equivalence of results breaks down (a)  when the scaling of evolutionary rates 
with population abundances matters (in adaptive dynamics models, evolutionary rates are 
proportional to population size, while in quantitative genetics models they are not), 
(b)  when the effects of frequency-dependent selection are to be described accurately 
(which in Lande’s model requires variance-covariance corrections in the fitness function 
itself, causing deviations from the invasion fitness underpinning adaptive dynamics mod-
els), (c)  when the dynamical emergence of dimorphisms through evolutionary branching 
has to be treated (which in adaptive dynamics models is easy, and can be done consistently 
with the described mutation-selection process, while Lande’s model is not geared to this 
task), or, generally, (d)  when the simplifying assumptions underlying the models are re-
laxed (which results in very different types of correction). 

It may thus be conjectured that models of function-valued evolution based on quantitative ge-
netics theory are better suited for describing short-term evolution, during which selection acts 
on substantial additive genetic variation within populations. In such settings, the variance-
covariance functions characterizing population-level genetic variation, as well as the fitness 
functions characterizing selection pressures, may be assumed to stay reasonably constant over 
short periods of time. This makes models of this type especially relevant for describing selec-
tion experiments. By contrast, the models introduced here might be deemed better suited for 
describing long-term evolution, during which selection relies on infrequent evolutionary in-
novations, and fitness functions substantially change over time, owing to density and 
frequency dependence. Clearly, also mutation distributions may change in the course of long-
term evolution, and such changes could be taken into account in models of function-valued 
adaptive dynamics. Yet, assuming the constancy of the variance-covariance function of muta-
tion distributions (as is often done in adaptive dynamics models) is more justifiable than 
assuming the constancy of the variance-covariance function of population distributions (as is 
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often done in quantitative genetics models), since the latter is directly subject to selection. 
This holds in particular when the effects of mutational constraints approached by an evolu-
tionary process are accounted for by the methods introduced in Section 5. 

A valuable extension of the framework presented here stems from its linkage with the calcu-
lus of variations (e.g., Wan 1995). Only in the absence of frequency-dependent selection can 
evolution be described by optimization principles (Mylius and Dieckmann 1995; Metz et al. 
1996b; Heino et al. 1998; Meszéna et al. 2001). In such special circumstances, the calculus of 
variations can be used directly to predict outcomes of function-valued evolution. Interest-
ingly, however, methods from the calculus of variations can be harnessed more widely, even 
for applying the framework advanced here to ecological settings in which selection is fre-
quency-dependent. The resulting novel methodological avenues complement the approach 
presented here and are explored in a separate study (Parvinen et al. 2006; concrete applica-
tions are also presented in Heino et al., submitted). 

We suggest that the scope of exciting problems in evolutionary ecology that become accessi-
ble by studying the evolutionary dynamics of function-valued traits under frequency-
dependent selection is enormous. In particular the evolutionary branching of function-valued 
traits opens up fascinating opportunities for scrutinizing the interplay between individual-
level plasticity (described by function-valued traits) and population-level diversity (described 
by polymorphisms thereof). It is therefore hoped that the methods introduced in this study 
make a valuable contribution to the increasingly powerful toolbox of theoretical evolutionary 
ecologists. 

Acknowledgments 

It is a pleasure to thank Mark Kirkpatrick, Hans Metz, and an anonymous reviewer for 
thoughtful comments on an earlier version of this article. The authors gratefully acknowledge 
financial support by the European Research Training Network ModLife (Modern Life-History 
Theory and its Application to the Management of Natural Resources, funded through the Hu-
man Potential Programme of the European Commission; UD, MH & KP); by the Austrian 
Science Fund (UD); and by the Austrian Federal Ministry of Education, Science, and Cultural 
Affairs (UD). 

Appendix A: Derivation of the Canonical Equation 

In this appendix we describe the steps by which the canonical equation of function-valued 
adaptive dynamics, Equation (1), is derived. As outlined in Section 3, this derivation proceeds 
in three steps. 

Polymorphic Stochastic Model, PSM. We start from an individual-based description of the 
ecology of an evolving population (Dieckmann 1994; Dieckmann et al. 1995). The pheno-
typic distribution p  of a population of n  individuals is given by 1 i

n
xip == Δ∑ , where ix  are 
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the function-valued traits of individual i , and 
ixΔ  denotes a generalized delta function 

peaked at ix  (see Appendix B). We can think of ( )p x  as a density distribution in the space of 
function-valued traits x , with one peak positioned at the trait value of each individual in the 
population. This implies ( ) 0p x =  unless x  is represented in the population. Since 

( ) 1
ix x dxΔ =∫  for any ix , we also have ( )p x dx n=∫ . If ( ) 0p x ≠  for more than one x , the 

population is called polymorphic, otherwise it is referred to as being monomorphic. The birth 
and death rates of individual i  are given by ( )

ixb p  and ( )
ixd p . Each birth by a parent with 

trait value x  gives rise, with probability xμ , to mutant offspring with a trait value x x′ ≠ , 
distributed according to ( , )M x x′ . (Appendix C shows how to obtain such distributions from 
assumptions about the underlying mutational changes.) A master equation (e.g., van Kampen 
1981) describes the resultant birth-death-mutation process, 

 ( ) [ ( , ) ( ) ( , ) ( )]d P p r p p P p r p p P p dp
dt

′ ′ ′ ′= −∫ . 

The equation describes changes in the probability ( )P p  for the population to be in state p . 
This probability increases with transitions from states p p′ ≠  to p  (first term) and decreases 
with transitions away from p  (second term). A birth event causes a single generalized delta 
function, peaked at the trait value x  of the new individual, to be added to p , 

xp p p′→ = +Δ , whereas a death event corresponds to subtracting such a generalized delta 
function from p , xp p p′→ = −Δ . The rate ( , )r p p′  for the transition p p′→  is thus given 
by 

 ( , ) [ ( ) ( ) ( ) ( )]x x x xr p p r p p p r p p p dx+ −′ ′ ′= Δ +Δ − + Δ −Δ −∫ . 

Notice that subscripts of the generalized delta function equaling 0 are omitted. The terms 
( )xp p′Δ +Δ −  and ( )xp p′Δ −Δ −  ensure that the transition rate r  vanishes unless p′  can 

be reached from p  through a birth event (first term) or death event (second term). The death 
rate ( )xr p−  at trait value x  is given by multiplying the per capita death rate ( )xd p  with the 
abundance ( )p x  of individuals at that trait value, 

 ( ) ( ) ( )x xr p d p p x− = . 

Similarly, the birth rate ( )xr p+  at trait value x  is given by 

 ( ) (1 ) ( ) ( ) ( ) ( ) ( , )x x x x xr p b p p x b p p x M x x dxμ μ+
′ ′ ′ ′ ′= − +∫ , 

with the first and second terms corresponding to births without and with mutation, respec-
tively. The master equation above, together with its transition rates, describes so-called 
‘generalized replicator dynamics’ (Dieckmann 1994) and offers a generic formal platform for 
deriving simplified descriptions of individual-based mutation-selection processes. 

Monomorphic Stochastic Model, MSM. If the time intervals between viable and advantageous 
mutations are long enough for evolution to be mutation-limited, 0xμ →  for all x , the evolv-
ing population will be monomorphic at almost any moment in time. We can then consider 
transitions resulting from the emergence of single viable and advantageous mutant individuals 
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in a monomorphic resident population that has attained its ecological equilibrium. Denoting 
trait values and population sizes by x  and n  for the resident and by x′  and n′  for the mutant, 
we can substitute the dimorphic density x xp n n ′′= Δ + Δ  into the generalized replicator dy-
namics defined above to obtain a master equation for the probability ( , )P n n′  of jointly 
observing resident population size n  and mutant population size n′ . Assuming that the mu-
tant is rare while the resident is sufficiently abundant to be described deterministically, this 
master equation is equivalent to the joint dynamics 

 [ ( ) ( )]x x x x
d n b n d n n
dt
= Δ − Δ  

for the resident population and 

 ( ) ( ) ( 1) ( ) ( 1)x xx x
d P n b n P n d n P n
dt ′ ′′ ′ ′= Δ − + Δ +  

for the mutant population, where ( )P n′  denotes the probability of observing mutant popula-
tion size n′ . When the resident is at its equilibrium population size xn , defined by 

( ) ( )x x x x x xb n d nΔ = Δ , the rare mutant thus follows a homogeneous and linear birth-death 
process. The probability of an emerging mutant to survive accidental extinction through 
demographic stochasticity is thus given by ( , ) max(0, ( , )) / ( , )s x x f x x b x x′ ′ ′=  (e.g., Athreya 
and Ney 1972), with ( , ) ( )x xxb x x b n′′ = Δ , ( , ) ( )x xxd x x d n′′ = Δ , and 

( , ) ( , ) ( , )f x x b x x d x x′ ′ ′= − . Once mutants have grown beyond the range of low population 
sizes in which accidental extinction through demographic stochasticity is still likely, they are 
generically bound to go to fixation and thus to replace the former resident, provided that their 
trait value is sufficiently close to that of the resident, x x′ ≈  (Geritz et al. 2002). Hence the 
transition rate ( , )r x x′  for the trait substitution x x′→  is given by multiplying (i) the distribu-
tion ( ) ( , )x xb x x n M x xμ ′,  of arrival rates for mutants x′  among residents x , with (ii) the 
probability ( , )s x x′  of mutant survival given arrival, and with (iii) the probability 1 of mutant 
fixation given survival, 

 ( , ) ( ) ( , ) ( , )x xr x x b x x n M x x s x xμ′ ′ ′= , . 

Accordingly, the master equation for the probability ( )P x  of observing trait value x , 

 ( ) [ ( , ) ( ) ( , ) ( )]d P x r x x P x r x x P x dx
dt

′ ′ ′ ′= −∫ , 

describes the directed random walks in trait space that result from sequences of such trait sub-
stitutions. 

Monomorphic Deterministic Model, MDM. If mutational steps are small, the average of many 
realizations of the evolutionary random walk model described above is closely approximated 
by 

 ( ) [ ( ) ( )] ( , )d x a x a x a r x x dx
dt

′ ′ ′= −∫  

(e.g., van Kampen 1981). After inserting ( , )r x x′  as derived above, this yields 
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 ( ) ( ) ( , )[ ( ) ( )] ( , )x x
d x a b x x n s x x x a x a M x x dx
dt

μ ′ ′ ′ ′= , −∫ . 

By expanding ( , ) max(0, ( , )) / ( , )s x x f x x b x x′ ′ ′=  around x  to first order in x′ , we obtain 
( , ) max(0, ( ) ( , ) )xs x x x x b x x g′ ′= −  with xg  as defined in Equations (3). We can rewrite this 

by spelling out the multiplication of the two functions x x′−  and xg  and by extracting 
( , ) 0b x x ≥ , which gives ( , ) ( , ) max(0, [ ( ) ( )] ( ) )xs x x b x x x a x a g a da′ ′ ′ ′ ′ ′= −∫ . This means 

that in the x′ -integral above only half of the total x′ -range contributes, while for the other 
half the corresponding integrand is 0. If we assume that ( , )M x x′  is symmetric, 

( , ) ( , )M x x x M x x x+Δ = −Δ  for all x  and xΔ , we obtain 

 1( ) [ ( ) ( )][ ( ) ( )] ( , ) ( )
2 x x x

d x a n x a x a x a x a M x x dx g a da
dt

μ ′ ′ ′ ′ ′ ′ ′ ′= − −∫∫ . 

Denoting the inner integral with 2( )x a aσ ′,  according to Equation (2), we recover the canonical 
equation of function-valued adaptive dynamics, Equation (1). 

Two of the simplifying assumptions used in the derivation above can be relaxed, should this 
be desirable for specific applications. First, when mutational steps x x′→  are small but 
asymmetrically distributed, we have to replace 2 ( )x a aσ ′,  in Equation (1) with 

 2 ( ) 2 [ ( ) ( )][ ( ) ( )] ([ ( ) ( )] ( )) ( , )x xa a x a x a x a x a H x a x a g a M x x dx�σ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′, = − − −∫ , 

where the Heaviside function H  equals 0 for negative arguments and is 1 otherwise. Notice 
that xg  breaks the symmetry of 2

x�σ , so that the relation 2 2( ) ( , )x xa a a aσ σ′ ′, =  does not extend 
to 2

x�σ . Second, when mutational steps x x′→  are not small, introducing correction terms up 
to order 1k >  improves the accuracy of the canonical equation (Dieckmann and Law 1996), 

 
1

( ) ( ) max(0, ( ) ( ) / !)[ ( ) ( )] ( , )
k i

x x i
i

d x a b x x n x x D x i x a x a M x x dx
dt

μ
=

′ ′ ′ ′= , − −∑∫ . 

Here the mutation distribution ( , )M x x′  may be symmetric or asymmetric, and ( )iD x  denotes 
the i th functional derivative of ( , ) / ( , )f x x b x x′ ′  with respect to x′  evaluated at x . 

Appendix B: Delta Functions 

In this appendix we summarize the essential properties of delta functions, for readers unfamil-
iar with this tool. Delta functions can be defined for integers, real numbers, and functions; 
these are described these in turn below. 

Integers. It is simplest to start with the delta function for integers, also known as the 
Kronecker symbol iiδ ′ . This function depends on two integers, i  and i′ , and takes the value 1 
if these are equal and the value 0 if not. Formally speaking, the Kronecker symbol can be de-
fined by requiring the relation ii i iiF Fδ′ ′ ′ =∑  to hold for all vectors F . Notice that, for 

1F = , this implies 1i iiδ′ ′ =∑ . 

Real numbers. The notion of a function of two arguments that differs from 0 only if the argu-
ments coincide was generalized from integers to real numbers by Dirac (1926, 1958). He 
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defined what is known today as the Dirac delta function by the relation 
( ) ( ) ( )F r r r dr F rδ′ ′ ′− =∫  for all functions F . This identity is called the sifting property of 

the Dirac delta function: since the term ( )r rδ ′−  has to be 0 except at r r′=  (where the delta 
function’s argument vanishes), only at that point can the value of F  contribute to the integral. 
By setting 1F =  one sees that the sifting property implies ( ) 1r r drδ ′ ′− =∫ . That integral 
can only equal 0 – while ( ) 0r rδ ′− =  for r r′ ≠  – if (0)δ  is infinite. The shape of ( )r rδ ′−  
thus becomes clear: it is 0 everywhere, except at r r′=  where it possesses an infinitely high 
peak. This also implies that the Dirac delta function is symmetric, ( ) ( )r r r rδ δ′ ′− = − . 
Sometimes the Dirac delta is not defined algebraically by the sifting property as above, but 
analytically as the limit of a series of regular functions. Setting ( )h rε  to 1/ ε  for 2r ε< /  and 
to 0 elsewhere, we can write 0( ) lim ( )r h rε εδ →= . Alternatively setting hε  to a normal distri-
bution with mean 0 and standard deviation ε  has the same effect. For convenience, the 
location of a delta function’s peak is often given as a subscript, ( ) ( )rr r rδ δ′ ′− = . 

Functions. The generalized delta function extends the idea of the Kronecker symbol and the 
Dirac delta function from the realm of integers and real numbers, respectively, to that of func-
tions (Dieckmann 1994, Dieckmann and Law 2000). We can envisage the generalized delta 
function Δ  as an infinitely narrow and infinitely high peak in the space of functions, with its 
maximum being located at a particular function x . Such a heuristic notion is made exact by 
defining the generalized delta function by the sifting property ( ) ( ) ( )F x x x dx F x′ ′ ′Δ − =∫  
for an arbitrary functional F . Again, the location of Δ ’s peak may be given as a subscript, 

( ) ( )xx x x′ ′Δ − =Δ . It is important to realize that here we do not have to be concerned at all 
with the potential intricacies of integrating over function spaces, since the algebraic definition 
of Δ  amounts to a mere rewriting rule. Once combined according to this definition, neither 
functional integrations nor generalized delta functions remain in the end result. Or, in the 
words of Dirac (1958): “The use of delta functions thus does not involve any lack of rigour in 
the theory, but is merely a convenient notation, enabling us to express in a concise form cer-
tain relations which we could, if necessary, rewrite in a form not involving delta functions, 
but only in a cumbersome way which would tend to obscure the argument.” 

Appendix C: Normalization-preserving Variance-Covariance Functions 

In this appendix we derive a family of variance-covariance functions that preserve the nor-
malization of a function-valued trait while also featuring localized covariances. 

Mutation distribution. For the purpose of this derivation, we consider mutational changes xΔ  
in a function-valued trait x  with argument space 0 1a≤ ≤  that have only two actual degrees 
of freedom: the argument value 0a  at which the amount of mutational change is maximal, and 
the amplitude 0xΔ  that scales this amount. We also assume that (a) the values of 0a  are dis-
tributed uniformly over the interval 0 1a≤ ≤ , (b) the values of 0xΔ  are distributed normally 
with mean 0 and standard deviation xσΔ , (c) the mutational impact around 0a  attenuates ac-
cording to a normal distribution with mean 0 and standard deviation aσ , and (d) the overall 
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effect of mutation leaves the normalization of the function-valued trait intact, 1
0 ( ) 1x a da =∫ . 

From these assumptions, we obtain the mutation distribution ( , )M x x x+ Δ  as 

 
0

1

0 0 0 , 0 00
( , ) ( ) ( ) ( )

x aaM x x x U a N x x x m da d xσ σΔ
+Δ = Δ Δ Δ −Δ Δ∫ ∫  

with 

 0
0

1 0 1
( )

0 otherwise
a

U a
≤ ≤⎧

= ⎨
⎩

, 

 2 21
0 02( ) exp( / ) /( 2 )

x x xN x x π
Δ Δ ΔΔ = − Δσ σ σ , 

 
0

2 21
, 0 02( ) exp( ( ) / ) ( , )

aa a am a a a c a= − − −σ σ σ , 

 0 0 0( , ) / 2[erf ( /( 2)) erf ((1 ) /( 2))]a a a ac a a aπ= + −σ σ σ σ , 

and with Δ  denoting the generalized delta function (Appendix B). The offset c  in the defini-
tion of 

0 , aam σ  guarantees that each possible mutation preserves the function-valued trait’s 
normalization. 

Variance-covariance function. From this specification of the full distribution M  of muta-
tional effects, we obtain the mutational variance-covariance function for the function-valued 
trait x  according to Equation (2), 

 
0 0

1
2 2

, , 00
( , ) ( ) ( ) ( , ) ( ) ( )

a ax x a aa a x a x a M x x x d x m a m a daσ σσ σΔ′ ′ ′= Δ Δ +Δ Δ =∫ ∫ . 

(On the right-hand side, the mutational parameters xσΔ  and aσ  could, in general, be varied 
with x .) The normalization-preserving variance-covariance function provided by this con-
struction is illustrated in Figure 4. 
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Figure Captions 

Figure 1.  Pitfalls in parametrizing function-valued traits. Panels (a) to (d) illustrate the evolu-
tionary dynamics and outcomes resulting from different low-dimensional approximations of a 
function-valued trait. Dynamics are determined by the canonical equation of vector-valued 
adaptive dynamics (Dieckmann and Law 1996; with mutational variances equal and covari-
ances absent). Initial trait values are shown as thin dotted curves, intermediate values as thin 
continuous curves, and final values as thick continuous curves. Parametrizations: (a) exponen-
tial function, (b) normal function, (c) and (d) sine function (shown for two different initial 
trait values). Panel (e) illustrates an extra-dimensional bypass (Conrad 1990). On the one-
dimensional fitness landscape (black curve), two local maxima exist. By contrast, on the two-
dimensional fitness landscape (gray surface) these points are connected by a monotonic ridge, 
resulting in a single local maximum. Panel (f) shows the dynamics and outcome resulting 
from function-valued evolution (as derived in Section 6). For easier comparison, this outcome 
is also indicated by continuous gray curves in panels (a) to (d). 

Figure 2.  Evolution of metabolic investment strategies. (a) Density ( )r a  of different re-
source types a . (b) Relation between metabolic investment ( )x a  and metabolic efficiency 

( ( ), )e x a a  for different resource types 0.1,0.2, ,1.0a = …  (top to bottom). (c) Selection gradi-
ent ( )xg a  for the uniform trait 1

4( )x a = . (d) and (e) Dynamics and outcomes of the evolution 
of metabolic investment ( )x a , for two different initial trait values. Initial and intermediate 
trait values are shown as thin curves, and final values as thick curves. Arrows indicate the ef-
fect of the selection gradient. (f) Metabolic efficiencies ( ( ), )e x a a∗  resulting from the 
evolutionary outcome x∗  for different resource types a . Parameters: 1

2c =  and 
( ) 4 (1 )r a a a= − . 

Figure 3.  Evolution of seasonal flowering schedules. (a) Carrying capacity ( )K a  at different 
times a  during the season. (b) Dynamics and outcome ( )x a∗  of monomorphic evolution of 
flowering intensity ( )x a . (c) and (d) Dynamics and outcome of dimorphic evolution of flow-
ering intensities 1( )x a  and 2( )x a  started from the neighborhood of the monomorphic 
evolutionary outcome ( )x a∗ . Initial and intermediate trait values are shown as thin curves, 
and final values as thick curves. Insets show changes in equilibrium population sizes resulting 
from the depicted evolutionary change. Parameters: 1α= , 0.9β = , 1

2d = , and 
2 1

4( ) 100[2 sin(2 (( 1) ))]K a aπ= + − − . 

Figure 4.  Normalization-preserving variance-covariance function with localized covariances, 
as derived in Appendix C. (a) Surface plot. (b) Contour plot. Departures of the variance-
covariance function 2( )a aσ ′,  from 0, occurring both in the positive or negative direction, are 
indicated by increasingly dark shades of gray, with white corresponding to 2( ) 0a aσ ′, = . Pa-
rameters: 1xΔ =σ  and 0.1a =σ . 
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