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Abstract

This paper analyzes the growth effects of competition in a product-
cycle model where R&D firms both innovate and imitate and house-
holds are subject to non-diversifiable risk. I prove that product market
competition promotes growth when the initial level of competition is
high enough. In contrast to the earlier product-cycle models with di-
versifiable risk, I show also the following. Some positive profits are
necessary for technological change. The larger the proportion of in-
dustries subject to price competition, the slower economic growth.
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1 Introduction

This paper considers the growth and welfare effects of competition when

households cannot wholly diversify their investment risk and economic growth

is characterized by product cycles as follows. Through the development of

new products, an innovator achieves a temporary advantage earning monopoly

profits. This advantage ends when an imitator succeeds in copying the inno-

vation, enters the market and starts competing with the innovator.

Product cycle models start from Segerstrom (1991), who assumes that

(i) incumbents and outsiders have the same costs of innovation, and (ii)

households eliminate investment risk wholly by diversification. Assumption

(i) leads to leapfrogging: innovations will always be performed by outsiders

and the current industry leaders will be wholly replaced. To eliminate this

unrealistic outcome, Aghion et al. (1997, 2001) construct models where tech-

nological laggards must first catch up with the leading-edge technology be-

fore battling “neck-to-neck” for technological leadership in the future. They

represent competition by the elasticity of substitution between firms’ prod-

ucts and show that competition has in general a positive effect on economic

growth. Mukoyama (2003) constructs a model in which only leaders can con-

duct next-round innovation, while outsiders can become leaders by imitation.

He represents competition by the relative proportion of competing industries

and shows that competition very commonly promotes economic growth.

The three papers above are based on Segerstrom’s assumption (ii) of

full diversification. Wälde (1999a, 1999b) shows that with non-diversifiable

risk investment decisions are made by households rather than firms, and the

equilibrium conditions differ substantially. To examine competition policy

with non-diversifiable risk, I extend Wälde’s one-industry growth model for

an economy with many industries and incorporate Mukoyama’s (2003) as-

sumptions on imitation and cumulative technology into it. The model of this

study is therefore characterized as follows:

(i) Labor is homogeneous and inelastically supplied. It is used in innovation,

imitation or the production of the intermediate goods.

(ii) Competitive firms produce the consumption good from a great number

of intermediate goods according to Cobb-Douglas technology.
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(iii) Firms’ products are imperfect substitutes. A successful innovator of

a new technology crowds out all products made with old technology

and becomes a monopolistic producer until its technology is imitated.

A successful imitator starts producing a substitute for the innovator’s

product and establishes an innovation race with the incumbent produc-

ers. Imitation is necessary for an outsider to become an innovator.

(iv) R&D firms finance their expenditure by issuing shares. The households

save only in these shares. Each R&D firm distributes its profit among

those who had financed it in proportion to their investment in the firm.

The remainder of this paper is organized as follows. Sections 2 and 3 con-

sider firms in production and R&D. Section 4 examines households deciding

on saving. Section 5 considers the effects of competition.

2 Production

I assume a great number of intermediate-good industries that are placed

over the limit [0, 1]. Industry j ∈ [0, 1] contains intermediate-good firms

κ = 1, ..., aj. The representative consumption-good firm makes its output y

from the products of all intermediate-good firms through technology

log y =

∫ 1

0

log[Bjxj]dj, xj =

[
a
−1/ε
j

aj∑
κ=1

x
1−1/ε
jκ

]ε/(ε−1)

,

ε > 1, (1)

where Bj is the productivity parameter in industry j, aj the number of firms

in industry j, xj the quantity of intermediate good j, xjκ the output of firm

κ in industry j, and ε the elasticity of substitution between the products in

the same industry.1 The consumption-good firm maximizes its profit

Πc .
= Py −

∫
j∈[0,1]

aj∑
κ=1

pjκxjκdj

by its inputs xj, taking the output price P and the input prices {pjκ} as

fixed. I normalize total consumption expenditure Py at unity. Because the

1With the specification (1), the price pj for the composite product of industry j will (in
the symmetric equilibrium pjκ = pj1) be independent of the number of producers in that
industry, aj . Otherwise, the effect of aj on pj would excessively complicate the analysis.
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consumption-good firm is subject to constant returns to scale, we then obtain

Py = 1, Πc = 0, pjxj = 1 and pj =

[
1

aj

aj∑
κ=1

p1−ε
jκ

]1/(1−ε)

for all j,

xjκ =
∂pj

∂pjκ

xj =
1

aj

(
pj

pjκ

)ε

xj =
1

aj

pε−1
j p−ε

jκ for all j and κ, (2)

where pj is the price of the composite product xj.

I assume that all intermediate-good firms produce one unit of their out-

put from one labor unit. Technological change is random. I assume that a

successful innovator in industry j makes a perfect substitute for intermediate

good j that is composed of the outputs all incumbent firms with older tech-

nology in industry j.2 The innovator’s profit is Πj1 = (pj1 −w)xj1, where pj1

is its output price, xj1 its output (= labor input) and w is the wage.

The innovator’s product provides exactly the constant μ > 1 times as

many services as the intermediate good of earlier generation. Firm κ of

earlier generation earns the profit Πo
jκ = (po

jκ−w)xo
jκ, where po

jκ is its output

price and xo
jκ its output. The innovator pushes the old firms out of the market

by choosing its price pj1 so that these earn no profit, Πo
jκ = 0 and po

jκ = w.

This and (2) yield pj1/μ = po
j = po

jκ = w, the mark-up rule pj1 = μw and the

innovator’s output and profit as follows:

xj = xj1 = 1/pj1 = 1/(μw) and

Πj1 = (pj1 − w)xj1 = (1 − 1/μ)pj1xj1 = 1 − 1/μ
.
= Π for aj = 1. (3)

The innovator is the first leader (i.e. the first incumbent producer) in

industry j. A successful imitator of the state-of-art good is able to make a

close substitute for the product of the innovator. Thus with each imitation,

the number of leaders and products increases by one. I assume that all leaders

1, ..., aj in industry j behave in Bertrand manner, taking each other’s prices

as given. Given (1) and (2), leader κ in industry j maximizes its profit

πjκ = pjκxjκ − wxjκ = (pjκ − w)xjκ, (4)

by its price pxjκ, assuming that the prices pjı for the other leaders ı �= κ

in industry j are kept constant. It therefore sets the wage w equal to the

2This assumption is in line with technology (1), because xj = xj1 for aj = 1.
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marginal product of labor. Noting (2), this leads to the first-order condition

∂πjκ

∂pjκ

= xjκ + (pjκ − w)

[
∂xjκ

∂pjκ

+
∂xjκ

∂pj

∂pj

∂pjκ

]

= xjκ + (pjκ − w)

[
−ε

xjκ

pjκ

+ (ε − 1)
xjκ

pj

1

aj

(
pj

pjκ

)ε]

= xjκ

{
1 +

(
1 − w

pjκ

)[
−ε +

ε − 1

aj

(
pj

pjκ

)ε−1]}
= 0. (5)

Because the conditions (2) and (5) hold for all κ = 1, ..., aj, the symmetry

pjκ = pj holds throughout all κ. This, (1), (2), (4) and (5) yield

pjκ/w =
{
1 − [ε + (1 − ε)/aj]

−1
}−1 .

= Φ(aj), Φ′ < 0, ajpjκxjκ = 1,

πjκ = (pjκ − w)xjκ =
[
1 − Φ(aj)

−1
]
pjκxjκ =

[
1 − Φ(aj)

−1
]
/aj,

xj = ajxjκ = 1/pjκ = 1/[Φ(aj)w]. (6)

In order to make product market competition effective, I assume that the

entry of the second leader decreases the first leader’s mark-up:

μ > Φ(2). (7)

If anyone invests in imitative R&D to enter an industry with one leader,

then his prospective profit is πjκ

∣∣
aj=2

, but if he invests (with the same cost)

in imitative R&D to enter an industry with more than two leaders, then his

prospective profit is πjκ

∣∣
aj>2

. Because, by (6), the profit is smaller with more

than two leaders, πjκ

∣∣
aj=2

> πjκ

∣∣
aj>2

, investors invest in imitative R&D only

to enter in one-leader industries. Thus, each industry has one or two leaders.

In one-leader industries the followers imitate and in two-leader industries the

leaders innovate. I denote the set of one-leader industries by Θ ⊂ [0, 1], and

the relative proportion of one-leader (two-leader) industries, α (β) by

α =

∫
j∈Θ

dj, β
.
=

∫
j /∈Θ

dj = 1 − α. (8)

Noting aj = 2, (3), (6), (7) and (8), a firm’s profit π (Π) and and total

output xα (xβ) in one-leader (two-leader) industry are given by

Πj

∣∣
j∈Θ

= Π, Πjκ

∣∣
j /∈Θ, aj=2

.
= [1 − 1/Φ(2)]/2

.
= π ∈ (0, Π/2), 1/Φ(2) = 1 − 2π,

xβ = xj

∣∣
j /∈Θ, aj=2

=
1

Φ(2)w
=

1 − 2π

w
> xα = xj

∣∣
j∈Θ

=
1

μw
=

1 − Π

w
. (9)
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The higher the elasticity of substitution between the products, ε, the closer

Φ(2) to its lower limit 1 and the smaller π.3 There are now two measures

of competition: a competing firm’s profit π and the relative proportion of

the competing (two-leader) industries, β. The purpose of this paper is to

examine the growth and welfare effects of these.

Noting (1), (3), (8) and (9), and summing up throughout all firms and

industries, one obtains that the employment of labor in production, x, and

total output y are determined as follows:

x
.
= αxα + (1 − α)xβ =

ϕ

w
, ϕ(α, π)

.
= (1 − Π)α + (1 − α)(1 − 2π) < 1 − 2π,

∂ϕ

∂α
= 2π − Π < 0,

∂ϕ

∂π
= 2(α − 1) < 0, xα = (1 − Π)

x

ϕ
,

∂

∂π

(xα

x

)
> 0,

xβ = (1 − 2π)
x

ϕ
> xα,

∂

∂π

(xβ

x

)
= (2π − 1)

x

ϕ2

∂ϕ

∂π
− 2

x

ϕ
= 2(Π − 1)

αx

ϕ2
< 0,

(10)

where x is employment and ϕ = wx wage expenditure. A decrease in a

competing firm’s profit π increases employment x and total wages in pro-

duction, ∂ϕ/∂π < 0. Because competing industries j /∈ Θ employ more

than monopoly industries j ∈ Θ (i.e. xβ > xα), a smaller proportion α of

monopoly industries raises employment x and total wages ϕ in production.

3 Research

There are three types of R&D firms: the first leader (successful innovator),

which I call firm 1, the second leader (successful imitator), which I call firm

2, and followers, which I call firm 0. In two-leader industry j /∈ Θ, firms

1 and 2 innovate and no firm imitates. The technological change of firm

κ ∈ {1, 2} is characterized by a Poisson process qjκ in which the arrival rate

of innovations, Λjκ, is in fixed proportion λ to the firm’s own labor input ljκ:

Λjκ = λljκ for j /∈ Θ and κ ∈ {1, 2}. (11)

During a short time interval dν, there is an innovation dqjκ = 1 in firm κ with

probability Λjκdν, and no innovation dqjκ = 0 with probability 1 − Λjκdν.

3In papers that consider imitation in a framework with no growth, it is common to
measure competition directly by the level of profit [Cf. Kanniainen and Stenbacka (2000)].
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In one-leader industry j ∈ Θ, the representative follower (firm 0) imitates

and no firm innovates. The technological change of firm 0 is characterized

by a Poisson process Qj in which the arrival rate of imitations is given by

Γj = γl1−ς
j0 �ς

β for j ∈ Θ, (12)

where lj0 is the firm’s own labor input, �β the average labor input to innova-

tive R&D in the economy and γ > 0 and ς ∈ (0, 1) are constants. The input

�β characterizes the immediate spillover of knowledge from innovative to im-

itative R&D.4 During a short time interval dν, there is an imitation dQj = 1

with probability Γjdν, and no imitation dQj = 0 with probability 1 − Γjdν.

The invention of a new technology in industry j raises the number of

technology in that industry, tj, by one and the level of productivity, B
tj
j , by

μ > 1. Given this and (10), the average productivity in the economy, B, is a

function of the technologies of all industries, {tk}, as follows:

log B{tk} .
=

∫ 1

0

log B
tj
j dj, Btj+1

/
B

tj
j = μ, (13)

where {tk} denotes a vector that consists of tk for all k. The arrival rate of

innovations in industry j /∈ Θ is the sum of the arrival rates of both firms in

the industry, Λj1 + Λj2. The average growth rate of Bj due to technological

change in industry j in the stationary state is then given by

E
[
log B

tj+1
j − log B

tj
j

]
= (Λj1 + Λj2) log μ,

where E is the expectation operator.5 Because only industries j /∈ Θ inno-

vate, then, noting (11), the average growth rate of the average productivity

B in the stationary state is given by

g
.
=

∫
j /∈Θ

E
[
log B

tj+1
j − log B

tj
j

]
dj = (log μ)

∫
j /∈Θ

(Λj1 + Λj2)dj

= λ

∫
j /∈Θ

(lj1 + lj2)dj. (14)

4In the case ς = 0 investment in imitative R&D were subject to constant returns to scale
and there were no equilibrium for a household (see section 4 and Appendix A, especially
equations (45) and (46)). With the spillover effect ς > 0, the average product of labor in
innovative R&D, Γj/lj0, falls with the increase in labor input lj0. This property ensures
that a household has an equilibrium.

5For this, see Aghion and Howitt (1998), p. 59.

6



Total employment in R&D is given by

l
.
=

∫
j /∈Θ

(lj1 + lj2)dj +

∫
j∈Θ

ljdj. (15)

There exists a fixed number N of households, each supplying one labor unit.

Total labor supply N is equal to inputs in production, x, and R&D, l:

N = x + l. (16)

In industry j ∈ Θ firm 0 and in industry j /∈ Θ firms 1 and 2 issue shares

to finance their labor expenditure in R&D. Because the households invest in

these shares, one obtains

N∑
ι=1

Sιj0 = wlj0 for j ∈ Θ,
N∑

ι=1

Sιjκ = wljκ for κ ∈ {1, 2} and j /∈ Θ, (17)

where wlj0 is the imitative expenditure of firm 0 in industry j ∈ Θ, wljκ

the innovative expenditure of firm κ ∈ {1, 2} in industry j /∈ Θ, Sιj0 (Sιjκ)

household ι’s investment in firm 0 in industry j ∈ Θ (firm κ in industry

j /∈ Θ), and
∑N

ι=1 Sιj0

(∑N
ι=1 Sιjκ

)
aggregate investment in firm 0 in industry

j ∈ Θ (firm κ in industry j /∈ Θ). Household ι’s relative investment shares

in the firms are given by

iιj0
.
=

Sιj0

wlj0
for j ∈ Θ; iιjκ

.
=

Sιjκ

wljκ
for j /∈ Θ. (18)

I denote household ι’s income by Aι. Total income throughout all house-

holds ι ∈ {1, ..., N} is then equal to income earned in the production of

consumption goods, Py, and in R&D, wl. Since Py = 1 by (2), this yields

N∑
ι=1

Aι = Py + wl = 1 + wl. (19)

4 Households

The utility for risk-averting household ι ∈ {1, ..., N} from an infinite stream

of consumption beginning at time T is given by

U(Cι, T ) = E

∫ ∞

T

Cσ
ι e−ρ(ν−T )dν with 0 < σ < 1 and ρ > 0, (20)
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where ν is time, E the expectation operator, Cι the index of consumption, ρ

the rate of time preference and 1/(1−σ) is the constant relative risk aversion.

Because investment in shares in R&D firms is the only form of saving in

the model, the budget constraint of household ι is given by

Aι = PCι +

∫
j∈Θ

Sιj0dj +

∫
j /∈Θ

(Sιj1 + Sιj2)dj, (21)

where Aι is the household’s total income, Cι its consumption, P the consump-

tion price, and Sιj0 (Sιjκ) the household’s investment in firm 0 in industry

j ∈ Θ (firm κ in industry j /∈ Θ). When household ι has financed a success-

ful R&D firm, it acquires the right to the firm’s profit in proportion to its

relative investment share. Thus, I define:

sιjκ household ι’s true profit from firm κ in industry j when the uncertainty

in R&D is taken into account;

iιjκ household ι’s investment share in firm κ in industry j [Cf. (18)];

Πiιjκ household ι’s expected profit from firm κ ∈ {1, 2} in industry j /∈ Θ

after innovation in firm κ have changed the two-leader industry j into

a one-leader industry;

πiιj0 household ι’s expected profit from firm 0 in industry j ∈ Θ after imita-

tion in firm 0 have changed the one-leader industry j into a two-leader

industry.

The changes in the profits of firms in industry j are functions of the

increments (dqj1, dqj2, dQj) of Poisson processes (qj1, qj2, Qj) as follows:6

dsιjκ = (Πiιjκ − sιjκ)dqjκ − sιjκdqj(ζ �=κ) when j /∈ Θ;

dsιj0 = (πiιj0 − sιj0)dQj when j ∈ Θ. (22)

These functions can be explained as follows. If a household invests in leader

κ in industry j /∈ Θ, then, in the advent of a success for that leader, dqjκ = 1,

the amount of its share holdings rises up to Πiιjκ, dsιjκ = Πiιjκ − sιjκ, but in

the advent of success for the other leader ζ �= κ, its share holdings in leader

6This extends the idea of Wälde (1999a, 1999b).
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κ fall down to zero, dsιjκ = −sιjκ. If a household invests in imitating firm 0

in industry j ∈ Θ, then, in the advent of a success for the firm, dQj = 1, the

amount of its share holdings rises up to πiιj0, dsιj0 = πiιj0 − sιj0.

Household ι’s total income Aι consists of its wage income w (the household

supplies one labor unit), its profits sιj1 from the single leader in each industry

j ∈ Θ and its profits sιj1 and sιj2 from the two leaders 1 and 2 in each industry

j /∈ Θ. Given this and (9), one obtains

Aι = w +

∫
j∈Θ

sιj1dj +

∫
j /∈Θ

(sιj1 + sιj2)dj. (23)

Household ι maximizes its utility (20) by its investment, {Sιj0} for j ∈ Θ

and {Sιj1, Sιj2} for j /∈ Θ, subject to its budget constraint (21), the stochas-

tic changes (22) in its profits, the composition of its income, (23), and the

determination of its relative investment shares, (18), given the arrival rates

{Λjκ, Γj}, the wage w and the consumption price P . In the households’ sta-

tionary equilibrium in which the allocation of resources is invariable across

technologies, noting (8), (10), this maximization yields (see Appendix A):

ljκ = �β for j /∈ Θ,
lj0 = �α for j ∈ Θ,

�α

�β

= ψ(π)
.
=

[
πγ/2

Πλμσ

]1/ς

,

ψ′ =
ψ

ςπ
> 0, (24)

g =
(2λ log μ)l

αψ/(1 − α) + 2
, (25)

ρ +
1 − μσ

log μ
g = Δ

(
l, ϕ(α, π)

) .
=

λμσΠ(N − l)

ϕ(α, π) + ϕ(α, π)2l/(N − l)
,

∂Δ/∂l < 0, ∂Δ/∂ϕ < 0. (26)

Result (24) says that with a lower profit π investors spend relatively more in

innovative than imitative R&D (i.e. a higher �β/�α). According to (25), the

growth rate g is proportional to labor devoted to R&D, l. Result (26) states

that a household’s subjective discount factor ρ+ 1−μσ

log μ
g is in equilibrium equal

to the rate of return to savings, Δ.

5 General equilibrium

When an innovation occurs in an industry, this industry switches from the

set of two-leader to that of one-leader industries, and when an imitation

9



occurs in an industry, this switches from the set of one-leader to that of two-

leader industries. In a steady-state equilibrium, every time a new superior-

quality product is discovered in some industry, imitation must occur in some

other industry.7 The rate at which industries leave the group of two-leader

industries k /∈ Θ, β(Λj1 + Λj2)dν, is then equal to the rate at which the

industries leave the group of one-leader industries j ∈ Θ, αΓjdν. This implies

β(Λk1 + Λk2) = αΓj for k /∈ Θ and j ∈ Θ. (27)

Given (14), (24) and (27), one obtains that if π = 0, then Γj = lj0 = �α = 0

for j ∈ Θ and g = Λk1 = Λk2 = 0 for k /∈ Θ. In other words, without profits

in the two-leader industries (i.e. π = 0), there is no growth (g = 0). This

result can be rephrased also as follows:

Proposition 1 Some positive profits π > 0 in the two-leader industries are

necessary for growth g > 0.

With non-diversifiable risk, households hold the shares of all innovating firms

in their portfolios. Given this, they have no incentives to invest in imitating

R&D unless there are profits during the innovation race. Without imitation,

all firms will end up in the set of one-leader industries. This means that

there will be no firms to innovate and no growth.

Equations (8), (11), (12), (24) and (27) yield

α

1 − α
=

α

β
=

Λj1 + Λj2

Γj

=
λ(l1−ς

j1 + l1−ς
j2 )

γl1−ς
j0

=
2λ�1−ς

β

γ�1−ς
α

=
2λ

γψ
ψς =

πμ−σ

Πψ

= (2λ/γ)1/ς(Πμσ)1/ς−1π1−1/ς . (28)

Inserting this into (25), one obtains that the ratio of the growth rate to labor

devoted to R&D, g/l, falls with a higher profit in the two-leader industries:

g = ε(π)l, ε(π)
.
=

2λ log μ

μ−σπ/Π + 2
, ε′ < 0. (29)

The two equations (26) and (29) form a system of two unknowns (l, g).

Unfortunately, these results are ambiguous, because an increase in the growth

rate g lowers both a household’s subjective discount factor ρ+ 1−μσ

log μ
g and the

7Cf. Segerstrom (1991), p. 817.
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rate of return to savings, Δ, through lower employment l in R&D. For this

reason, I assume the following stability property for the equation (29).8 After

a small perturbation, the actual growth rate of the economy, g, adjusts to its

stationary equilibrium level according to

dg/dν = δ
(
ε(π)l − g

)
with δ′ > 0, (30)

where ν is time and δ a differentiable function. Noting (8), (10), (24) and

(30), and differentiating the equation (26) totally, one can in equilibrium

with dg/dν = 0 define the function [Appendix B]

g
(
π, ϕ(α, π)

)
,

∂g

∂π
< 0,

∂g

∂ϕ
< 0,

∂g

∂ϕ

∂ϕ

∂β
= − ∂g

∂ϕ

∂ϕ

∂α
< 0,

∂g

∂ϕ

dϕ

dπ

∣∣∣∣
π>π0

> 0,
∂g

∂ϕ

dϕ

dπ

∣∣∣∣
π<π0

< 0,
dg

dπ

∣∣∣∣
π<π0

=

[
∂g

∂π
+

∂g

∂ϕ

dϕ

dπ

]
π<π0

< 0.

(31)

The results (31) can be rephrased as follows:

Proposition 2 The proportion β of industries subject to price competition

is negatively associated with the growth rate g. An increase in product market

competition (i.e. a decrease in π) promotes growth when the initial level of

competition is high enough (i.e. π < π0).

A higher proportion of two-leader industries raises the demand for labor

in production. This decreases labor devoted to R&D and the growth rate.

An increase in product market competition leads to faster growth through

the competition-escaping effect. Households, which hold the shares of both

leaders in their portfolios, attempt to get rid of competition by investing

in R&D in both firms. In the case of successful innovation by either of

the leaders, they get a higher profit from the remaining leader than from

the two leaders before the innovation. On the other hand, an increase in

competition leads to to slower growth through the wage effect as follows.

With competition the leaders charge lower prices, produce more and employ

more labor in production. This transfers labor from R&D into production,

and the growth rate falls. The competition-escaping effect dominates at high

initial levels of product market competition.

8Cf. Dixit (1986), for the use of stability properties in refining comparative statics.
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6 Conclusions

This paper examines a multi-industry economy in which growth is generated

by creative destruction. In each industry, a firm creating the newest tech-

nology by a successful innovative R&D project crowds out the other firms

with older technologies from the market and becomes the first leader of the

industry. A firm creating a copy of the newest technology starts producing

a close substitute for the innovator’s product and establishes an innovation

race with the first leader. Because there is systematic investment risk that

cannot be eliminated by diversification, the households hold the shares of all

firms in their portfolios.

In this paper, I show that an increase in product market competition (as

measured by the elasticity or product substitution) speeds up growth through

the competition-escaping effect. Households, which hold the shares of both

leaders in their portfolios, attempt to get rid of competition by investing in

R&D in both firms. In the case of successful innovation by either of the

leaders, they get a higher profit from the remaining leader than from the two

leaders before the innovation. On the other hand, an increase in competition

hampers growth through the wage effect as follows. With competition the

leaders charge lower prices, produce more and employ more labor in pro-

duction. This transfers labor from R&D into production, and the growth

rate falls. The competition-escaping effect dominates at high initial levels of

competition. In Aghion et al. (1997, 2001), the utility function is linear in

labor so that there is an infinite supply of labor at a given wage. Thus, in

their model there is only the competition-escaping but no wage effect, and

competition is unambiguously growth promoting.

Note that the competition-escaping effect in this paper differs from that

in the earlier product-cycle models which assume diversifiable risk as fol-

lows.9 With diversifiable risk, firms choose their optimal inputs to R&D at

a given market interest rate. In such a case, the two competing leaders in

a market attempt to get rid of each other by investing in R&D. With non-

diversifiable risk, households make investment decisions by purhasing shares

of R&D firms. Thus, they purchase the shares of both leaders in other to

earn higher profit from one leader after a successful innovation by either of

9Cf. [e.g. Aghion et al. (1997, 2001).
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the leaders than from the two leaders before. In both cases, however, the

competition-escaping effect leads to a higher growth rate of the economy.

Mukoyama (2003) argues that in the presence of fully diversifiable risk

firms imitate in order to be able to participate in the innovation race, al-

though during the race they had no profits. I show that this does not hold

with non-diversifiable risk. Because the households hold shares of all innovat-

ing firms in the same portfolios, they have no incentives to invest in imitating

R&D unless there are profits during the innovation race. Mukoyama (2003)

shows that in the presence of diversifiable risk there are cases where the pro-

portion of industries subject to price competition and the growth rate are

positively correlated. I show that with non-diversifiable risk this is vice versa.

An increase in the proportion of industries that have more than one producer

raises the demand for labor in production. This decreases labor devoted to

R&D and the growth rate.

Appendix

A. Results (24)-(25)

I denote:

Ω
({sιkυ}, {tk}

)
the value of receiving profits sιkυ from all firms υ in all in-

dustries k using current technology tk.

Ω
(
Πiιjκ, 0, {sι(k �=j)υ}, tj + 1, {tk �=j}

)
the value of receiving the profit Πiιjκ

from firm κ in industry j /∈ Θ using technology tj +1, but receiving no

profits from the other firm which was a leader in that industry when

technology tj was used, and receiving profits sι(k �=j)υ from all firms υ in

other industries k �= j with current technology tk.

Ω
(
πiιj1, πiιj2, {sι(k �=j)υ}, {tk}

)
the value of receiving profits πiιjκ from firms

κ ∈ {1, 2} in industry j ∈ Θ, but receiving profits sι(k �=j)υ from all firms

υ in the other industries k �= j with current technology tk.

The Bellman equation associated with the household’s maximization is10

ρΩ
({sιkυ}, {tk}

)
= max

Sιj ≥ 0 for all j
Ξι, (32)

10Cf. Dixit and Pindyck (1994).
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where

Ξι
.
= Cσ

ι +

∫
j∈Θ

Γj

[
Ω

(
πiιj1, πiιj1, {sι(k �=j)υ}, {tk}

) − Ω
({sιkυ}, {tk}

)]
dj

+

∫
j /∈Θ

∑
κ=1,2

Λjκ

[
Ω

(
Πiιjκ, 0, {sι(k �=j)υ}, tj + 1, {tk �=j}

) − Ω
({sιkυ}, {tk}

)]
dj.

(33)

Because ∂Cι/∂Sιjκ = −1/P by (21), the first-order conditions are given by

Λjκ
d

dSιjκ

[
Ω

(
Πiιjκ, 0, {sι(k �=j)υ}, tj + 1, {tk �=j}

) − Ω
({sιkυ}, {tk}

)]
=

σ

P
Cσ−1

ι

for j /∈ Θ and κ ∈ {1, 2}, (34)

Γj
d

dSιj0

[
Ω

(
πiιj1, πiιj2, {sι(k �=j)υ}, {tk}

) − Ω
({sιkυ}, {tk}

)]
=

σ

P
Cσ−1

ι

for j ∈ Θ. (35)

I try the solution that for each household ι the propensity to consume,

hι, and the subjective interest rate rι are independent of income Aι, i.e.

PCι = hιAι and Ω = Cσ
ι /rι. Let us denote variables depending on technology

tk by superscript tk. Since according to (23) income A
{tk}
ι depends directly

on variables {stk
ιk}, I denote A

{tk}
ι ({stk

ιk}). Assuming that hι is invariant across

technologies yields

P {tk}C{tk}
ι = hιA

{tk}
ι ({stk

ιk}). (36)

The share in the next innovator tj +1 is determined by investment under the

present technology tj, s
tj+1
ιjκ = Πi

tj
ιjκ for j /∈ Θ. The share in the next imitator

is determined by investment under the same technology tj, s
tj
ιjκ = πi

tj
ιjκ for

j ∈ Θ. The value functions are then given by

Ω
({sιkυ}, {tk}

)
= Ω

(
πiιj1, πiιj2, {sι(k �=j)υ}, {tk}

)
=

1

rι

(
C{tk}

ι

)σ
,

Ω
(
Πiιjκ, 0, {sι(k �=j)υ}, tj + 1, {tk �=j}

)
=

1

rι

(
C

tj+1,{tk �=j}
ι

)σ
. (37)

Given this, one obtains

∂Ω
({sιkυ}, {tk}

)
∂S

tj
ιj

= 0. (38)

14



From (18), (23), (36), (37), s
tj+1
ιjκ = Πi

tj
ιjκ for j /∈ Θ, and s

tj
ιjκ = πi

tj
ιjκ for j ∈ Θ

it follows that

∂s
tj+1
ιjκ

∂i
tj
ιjκ

= Π for j /∈ Θ,
∂s

tj
ιj0

∂i
tj
ιj0

= π for j ∈ Θ,
∂A

tj+1,{tk �=j}
ι

∂s
tj+1
ιjκ

=
∂A

{tk}
ι

∂s
tj
ιjκ

= 1,

∂i
tj
ιj0

∂S
tj
ιj0

=
1

w{tk}l{tk}j0

for j ∈ Θ,
∂i

tj
ιjκ

∂S
tj
ιjκ

=
1

w{tk}l{tk}jκ

for j /∈ Θ,

∂Ω
(
Πiιjκ, 0, {sι(k �=j)υ}, tj + 1, {tk �=j}

)
∂S

tj
ιjκ

=
σ

rι

(
C

tj+1,{tk �=j}
ι

)σ−1 ∂C
tj+1,{tk �=j}
ι

∂A
tj+1,{tk �=j}
ι︸ ︷︷ ︸

hι/P
tj+1,{tk �=j}

∂A
tj+1,{tk �=j}
ι

∂s
tj+1
ιjκ︸ ︷︷ ︸
=1

∂s
tj+1
ιjκ

∂i
tj
ιjκ︸ ︷︷ ︸

=π

∂i
tj
ιjκ

∂S
tj
ιjκ

=
Πσhι

(
C

tj+1,{tk �=j}
ι

)σ−1

rιP tj+1,{tk �=j}
∂i

tj
ιjκ

∂S
tj
ιjκ

=
Πhισ

(
C

tj+1,{tk �=j}
ι

)σ−1

rιw{tk}P tj+1,{tk �=j}l{tk}jκ

for j /∈ Θ, (39)

∂Ω
(
πiιj1, πiιj2, {sι(k �=j)υ}, {tk}

)
∂S

tj
ιj0

=
σ

rι

(
C{tk}

ι

)σ−1 ∂C
{tk}
ι

∂A
{tk}
ι︸ ︷︷ ︸

=hι/P {tk}

∂A
{tk}
ι

s
tj
ιj0︸ ︷︷ ︸
=1

s
tj
ιj0

∂itιj0︸ ︷︷ ︸
=π

∂itιj0
∂St

ιj0

=
πσhι

rιP {tk}
(
C{tk}

ι

)σ−1 ∂itιj0
∂St

ιj0

=
πhισ

(
C

{tk}
ι

)σ−1

rιw{tk}P {tk}l{tk}j0

for j ∈ Θ. (40)

I focus on a stationary equilibrium where the growth rate g and the

allocation of labor, (ljκ, x), are invariant across technologies. Given (2),

(10), (13) and (16), this implies

l
{tk}
jκ = ljκ, x{tk} = x = N − l, w{tk} = w = x/ϕ,

P {tk}

P tj+1,{tk �=j} =
C

tj+1,{tk �=j}
ι

C
{tk}
ι

=
A

tj+1,{tk �=j}
ι

A
{tk}
ι

=
ytj+1,{tk �=j}

y{tk} =
Btj+1,{tk �=j}

B{tk} = μ.

(41)

Inserting (14), (33), (36), (37), (41) and g
.
=

∫
j /∈Θ

ljdj into (32) yields

0 =
[
ρ +

∫
j /∈Θ

(Λj1 + Λj2)dj +

∫
j∈Θ

Γjdj
]
Ω

({sιkυ}, {tk}
) − (

C{tk}
ι

)σ

−
∫

j /∈Θ

∑
κ=1,2

ΛjκΩ
(
Πiιjκ, 0, {sι(k �=j)υ}, tj + 1, {tk �=j}

)
dj
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−
∫

j∈Θ

ΓjΩ
(
πiιj1, πiιj2, {sι(k �=j)υ}, {tk}

)
dj

=
[
ρ +

∫
j /∈Θ

(Λj1 + Λj2)dj
](

C
{tk}
ι

)σ

rι

− (
C{tk}

ι

)σ

−
∫

j /∈Θ

∑
κ=1,2

Λjκ

rι

(
C

{tj+1},{tk �=j}
ι

)σ
dj

=
[
ρ +

∫
j /∈Θ

(Λj1 + Λj2)dj
](

C
{tk}
ι

)σ

rι

− (
C{tk}

ι

)σ −
∫

j /∈Θ

∑
κ=1,2

Λjκ
μσ

rι

(
C{tk}

ι

)σ
dj

=
1

rι

(
C{tk}

ι

)σ
[
ρ + (1 − μσ)

∫
j /∈Θ

(Λj1 + Λj2)dj − rι

]

=
1

rι

(
C{tk}

ι

)σ
[
ρ − rι +

1 − μσ

log μ
g
]
.

This equation is equivalent to

rι = ρ +
1 − μσ

log μ
g. (42)

Because there is symmetry throughout all households ι, their propensity

to consume is equal, hι = h. This, (17), (19), (21), (23) and (36) yield

wl = w

∫
j∈Θ

lj0dj + w

∫
j /∈Θ

(lj1 + lj2)dj = w

∫
j∈Θ

lj0dj +

∫
j /∈Θ

(lj1 + lj2)dj

=
N∑

ι=1

[∫
j∈Θ

Sιj0dj +

∫
j /∈Θ

(Sιj1 + Sιj2)dj

]
=

N∑
ι=1

(Aι − PCι)

= (1 − h)
N∑

ι=1

Aι = (1 − h)(1 + wl).

Solving for the propensity to consume, one obtains

hι = h = (1 + wl)−1. (43)

Given (10) and (16), one obtains the wage

w = ϕ/x = ϕ(α, π)/(N − l). (44)

I define the rate of return to imitative R&D by z
.
= πΓj/(wlj0). Inserting
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this, (9), (11), (12), (38), (39) and (40) into (34) and (35), one obtains

Πhσμσ
(
C

{tk}
ι

)σ−1
λ(

ρ + 1−μσ

log μ
g
)
wP {tk}

=
σΠhιμ

σΛjκ

(
C

{tk}
ι

)σ−1

rιwljκP {tk}

=
σΠhιΛjκ

(
C

tj+1,{tk �=j}
ι

)σ−1

rιwljκP
ttj+1,{tk �=j} = Λjκ

d

dSιjκ

Ω
(
Πiιj, {sι(k �=j)}, tj + 1, {tk �=j}

)

=
σ

P {tk}
(
C{tk}

ι

)σ−1
for j /∈ Θ and κ ∈ {1, 2}, (45)

πhσ
(
C

{tk}
ι

)σ−1
γl−ς

j0 �ς
β(

ρ + 1−μσ

log μ
g
)
wP {tk}

=
σh

(
C

{tk}
ι

)σ−1
z

rιwlj0P {tk} =
σπhιΓj

(
C

{tk}
ι

)σ−1

rιwlj0P {tk}

= Γj
d

dSιj0

Ω
({πiιj1, πiιj2, {sιm(k �=j)}, {tk}

)
=

σ

P {tk}
(
C{tk}

ι

)σ−1
for j ∈ Θ.

(46)

Given equations (45) and (46) and (9), one obtains

ljκ = �β for j /∈ Θ,
lj0 = �α for j ∈ Θ,

�α

�β

= ψ(π)
.
=

[
πγ/2

Πλμσ

]1/ς

,

ψ′ > 0. (47)

Equations (2), (8), (11), (14), (15), (43), (44), (46) and (47) yield

l =

∫
j /∈Θ

(lj1 + lj2)dj +

∫
j∈Θ

ljdj = �β

∫
j /∈Θ

dj + �α

∫
j∈Θ

dj

= α�α + 2(1 − α)�β = [αψ + 2(1 − α)]�β,

�β = [αψ + 2(1 − α)]−1l, �α = [αψ + 2(1 − α)]−1ψl,

Λjκ = λ�β = λ[αψ + 2(1 − α)]−1l for j /∈ Θ and κ ∈ {1, 2},
g = (log μ)

∫
j /∈Θ

(Λj1 + Λj2)dj = (2 log μ)(1 − α)Λjκ

=
(2λ log μ)(1 − α)l

αψ + 2(1 − α)
=

(2λ log μ)l

αψ/(1 − α) + 2
, (48)

ρ +
1 − μσ

log μ
g =

hμσΠΛjκ

wljκ
=

λhμσΠ

w
=

λμσΠ

w(1 + wl)
=

λμσΠ

w + w2l

=
λμσΠ(N − l)

ϕ(α, π) + ϕ(α, π)2l/(N − l)
. (49)

Equations (44), (47), (48) and (49) define (24)-(25).
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B. Results (31)

The equation (26) defines the function l
(
g, ϕ(α, π)

)
with the properties

∂l

∂g
=

1 − μσ

log μ︸ ︷︷ ︸
−

/
∂Δ

∂l︸︷︷︸
−

> 0,
∂l

∂ϕ
= − ∂Δ

∂ϕ︸︷︷︸
−

/
∂Δ

∂l︸︷︷︸
−

< 0. (50)

Inserting this into the differential equation (30) yields

dg/dν = Υ
(
g, π, ϕ(α, π)

) .
= δ

(
ε(π)l

(
g, ϕ(α, π)

) − g
)

with δ′ > 0, (51)

where the stability requires ∂Υ/∂g < 0. Noting (29), (50) and (51), one

obtains
∂Υ

∂π
= δ′ε′l < 0,

∂Υ

∂ϕ
= δ′

∂l

∂ϕ
< 0.

Thus, in equilibrium with dg/dν = 0 in (51), one can define the function

g
(
π, ϕ(α, π)

)
,

∂g

∂π
= −∂Υ

∂π

/
∂Υ

∂g
< 0,

∂g

∂ϕ
= −∂Υ

∂ϕ

/
∂Υ

∂g
< 0. (52)

The equation (28) defines the proportion of one-leader industries, α, as a

decreasing function of the profit in the two-leader industries, π:

α(π), α′ = α(1 − α)(1 − 1/ς)/π < 0, lim
π→0

α = 1. (53)

Finally, given (10), (24) and (53), one obtains that wage expenditure in

production, wx = ϕ, depends on the profit π as follows:

dϕ

dπ
=

∂ϕ

∂α
α′ +

∂ϕ

∂π
= (2π − Π)α′ + 2(α − 1)

= (1 − α)
[
(1/ς − 1)(Π − 2π)α(π) − 2π

]
/π.

This implies

dϕ

dπ
< 0 for π > π0,

dϕ

dπ
> 0 for π < π0, lim

π→Π/2

dϕ

dπ
= α − 1 < 0,

lim
π→0

dϕ

dπ
=

1 − α

π
lim

π→0, α→1

[(1

ς
− 1

)
(Π − 2π

)
α − 2π

]
=

1 − α

π

(1

ς
− 1

)
Π > 0,

(54)

where the constant π0 ∈ (1, μ) is defined by the equation

(1/ς − 1)(Π/π0 − 2)α(π0) = 2.

Inserting (54) into (52) yields (31).
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