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Abstract

We suggest and analyze a model of global technological growth under a prescribed con�
straint on the annual emission of greenhouse gases �GHG�� The model assumes that in�
dustrial GHG emission is positively related to the world�s production output driven by the
development of the �production� technology stock� �Cleaning� technology is developed
in parallel to keep the annual GHG emission within a �safety� zone� The ratio between
annual investment in �cleaning� technology and annual investment in �production� tech�
nology acts as a time�variable control parameter in the model� Under a set of natural
assumptions we 	nd an optimal control which maximizes an integral utility characterizing
the rate of economic growth over a given time period� In substantial terms
 the optimal
control strategy suggests that �production� technology is developed at a maximum rate
until a critical point is reached
 at which the annual emission hits the prescribed upper
bound� In the subsequent period investment in �production� and �cleaning� technology
is planned so that the annual emission �tracks� the prescribed upper bound� One should
note that the proposed control strategy optimal with respect to the chosen utility
 is the
most risky one since it assumes a minimum distance to the boundary of the �safety� zone�
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A Model of Technological Growth Under

Emission Constraints

Elena Rovenskaya

� Introduction

The issue of the reduction of emission of greenhouse gases �GHG� is to a considerable extent
associated with climate change� Some works �see
 e�g�
 ��
 ��� relate the increase in GHG
emission driven by global economic growth to the raise of the average temperature in the
world� Even a small temperature increase is believed to produce a strong negative impact
on the environment� Accordingly
 it is believed that a reduction of GHG emission should
reduce this negative impact� The reduction of industrial GHG emission implies investment
in development of �cleaning� mechanisms or�and new technology producing less GHG
emissions� However
 an excessive investment in development of �cleaning� mechanisms
may lead to a recession in technological growth
 which may in turn restrict possibilities of
investment in �cleaning� in the future� As a result
 the atmospheric GHG concentration
may
 in a time perspective
 become high in spite of today�s e�orts to decreasing it� in
the same time humanity may face a shortage of resources for developing both �cleaning�
technology and �production� technology�

A principal goal of environmental economics is therefore to 	nd an optimal balance in
development of �production� technology and �cleaning� technology so that the e�ective�
ness of economic growth is maximized under the constraint that a �safe� level of negative
environmental e�ects is not exceeded� While planning an optimal policy
 it should be
taken into account that the average life time of CO� in the atmosphere is estimated as ��
years
 from which it follows that the greenhouse e�ect would not be reduced immediately
even if the production process was stopped� Preventive measures are being worked out

based on various data assessment
 measurement and modeling methods�

A common way to identify key parameters of these measures is simulation of economic
growth scenarios and their impact on climate change ���
 ���� Usually such approach
requires extremely complex modeling
 involving a variety of uncertain parameters and a
number of components and links
 some of which are yet not well understood� Our study
follows the aggregated modeling approach suggested by endogenous economic growth the�
ory ��� Based on the simpli	ed model of economic growth under an emission constraint

constructed in ��
 we extend it in three aspects� we introduce a time�varying upper con�
straint for annual GHG emission� we represent the utility �ow as an arbitrary convex
function of the production output� and we take into account the depreciation of the tech�
nology stock� The model assumes that industrial GHG emission is positively related to
the world�s production output driven by the development of the �production� technology
stock� �Cleaning� technology is developed in parallel to keep the annual GHG emission
within a �safety� zone� The ratio between annual investment in �cleaning� technology and
annual investment in �production� technology acts as a time�variable control parameter
in the model�

�



The substantial part of this research
 including a model calibration
 an uncertainty
analysis and economic interpretations is presented in ��� In this paper we provide a
rigorous mathematical justi	cation for the methodology used in ��� Under a set of natural
assumptions we 	nd an optimal control which maximizes an integral utility characterizing
the rate of economic growth over a given time period� In substantial terms
 the optimal
control strategy suggests that �production� technology is developed at a maximum rate
until a critical point is reached
 at which the annual emission hits the prescribed upper
bound� In the subsequent period investment in �production� and �cleaning� technology
is planned so that the annual emission �tracks� the prescribed upper bound� A rigorous
proof of this statement whose mathematical formulation is Theorem ��� is the principal
technical goal of this paper� One should note that the proposed control strategy optimal
with respect to the chosen utility
 is the most risky one since it assumes a minimum
distance to the boundary of the �safety� zone�

� Model

Let Y �t� stand for the total annual production output
 T �t� stand for the �production�
technology stock used for production
 and C�t� stand for the stock of �cleaning� technology
used to reduce GHG emissions� Let � � � be a 	xed time horizon� Here and in what
follows
 t is time varying from � to �� Using a simplest form of the standard Cobb�Douglas
production function
 we assume

Y �t� � aT �t� �����

where a � �� Let u� � ��� �� be the total fraction of the production output
 annually
allocated for developing both �production� and �cleaning� technology stocks
 and

u�t� � ��� u� �����

be the fraction of the production output Y �t�� allocated for developing the �production�
technology stock T �t�� The complementary fraction
 u� � u�t�� of the production output
Y �t� is allocated for developing the �cleaning� technology stock C�t�� Based on this
 using
����� and introducing the depreciation of technology
 we set

�T �t� � u�t�aT �t�� �T �t��
�C�t� � �u� � u�t��aT �t�� �C�t��

�����

where � � � is a discount factor� We also denote

T ��� � T�� C��� � C�� �����

Besides
 for system ����� we introduce the utility index

J �

Z �

�
e��tf�Y �t��dt� �����

commonly used to assess the e�ectiveness of an economy ��
 ��� Here f��� � ����� ��
����� is a continuous increasing function
 and � � � is a discount rate�

We model the annual GHG emission as

E�t� � 	�
Y �t�

C�t�
� 	�a

T �t�

C�t�
� 	

T �t�

C�t�
�

where 	� � �� 	 � 	�a� and impose the constraint

E�t� � E��t�� �����

�



where E��t� � � is a 	xed function describing a time�varying admissible level of emission�
We assume that at the initial time t � � constraint ����� is satis	ed�

E� 
 E�� � where E� � E��� � 	
T�
C�

� E�� � E����� �����

In our analysis u�t� acts as a control variable� The set of all admissible controls
 denoted
by U� is the collection of all measurable functions u��� on ��� � which satisfy ������

Thus we consider an optimal control problem which can be represented in the following
standard form ���

maximize J� �
Z �

�
e��tf�Y �t��dt�

Y �t� � aT �t��
�T �t� � u�t�aT �t�� �T �t��

�C�t� � �u� � u�t��aT �t�� �T �t�� �����

T ��� � T�� C��� � C��

u��� � U�

	
T �t�

C�t�
� E��t��

t � ��� ��

An admissible control process in ����� is a triple �T ���� C���� u���� satisfying the di�erential
equations �����
 initial condition ����� and the state constraint ������ We assume that the
set of all admissible control processes is nonempty�

We assume that
�A�� E���� is monotonically decreasing on ��� ��
�A�� the rate of the decrease ofE���� is small enough
 more accurately
 for each t � ��� �

� 
 j �E��t�j 

au�

	
E���t��

� Equivalent problem formulation

In our analysis we use an equivalent formulation of problem ������ From ����� and �����
we get that for each t � ��� �

T �t� � T�e
ap�t���t where p�t� �

Z t

�
u�s�ds� �����

and

C�t� � e��t
�
C� � au�T�

Z t

�
eap�s�ds� T��e

ap�t�� ��

�
�

Now constraint ����� takes the form

v�t� � �� �����

where

v�t� � � �
C�

T�
� au�

Z t

�
eap�s�ds�

�
� �

	

E��t�

�
eap�t�� �����

�



Note that

�v�t� � au�eap�t� � au�t�eap�t�
�
� �

	

E��t�

�
�
	 �E��t�

E���t�
eap�t� �����

and

v��� � v� �
C�

T�
�

	

E��
� �����

Constraint ����� is satis	ed for t � � by �����
 therefore

v� � ��

Consider the utility index ������ Taking into account ����� and �����
 we get

J �
Z �

�
e��tf�aT�e

ap�t��dt �
Z �

�
e��t��p�t��dt �����

where ���� � ����� �� ����� � p �� ��p� � f�aT�e
ap� is a continuous increasing function�

Summarizing
 we represent the original optimization problem ����� in the following
equivalent form�

maximize J�u� �

Z �

�
e��t��p�t��dt�

p�t� �

Z t

�
u�s�ds�

�v�t� � au�eap�t� � au�t�eap�t�
�
� �

	

E��t�

�
�
	 �E��t�

E���t�
eap�t��

v��� � v� � �� �����

v�t� � ��

u�t� � ��� u��

t � ��� ��

As usual
 a solution to problem ����� is said to be an optimal control in this problem�

Remark ��� Further on
 we use a more informative notation for variables ����� and ������
p�t� � p�t� u�� v�t� � v�t� u�
 thus stressing their dependence on a control u � u����

We denote the optimal value in problem ����� as J�� and the set of all optimal controls
in problem ����� as U��

� Discrete approximation

In this section we introduce a discrete approximation to problem ������ Take a uniform
time grid

t�i � i� �i � �� �� � � � � m�� t�m � �

and introduce approximate piece�wise constant controls

u��t� � u�i � f�� u
�g �t � �t�i � t

�
i���� i � �� �� � � � � m� ��

identi	ed with the vectors

u� � �u��� u
�
�� � � � � u

�
m��� � f�� u

�gm�

�



For each approximate control u���� we de	ne the following piece�wise approximation
p���� u�� to p��� � p��� u� ������

p��t� u�� � p���u
�� � � �t � �t��� t

�
����

p��t� u�� � p�i �u
�� � �

i��X
j��

u�j �t � �t�i � t
�
i���� i � �� � � � � m� ���

identi	ed with the vector

p��t� u�� � �p���u
��� p���u

��� � � � � p�m���u
��� �t � ��� ���

Remark ��� Note that the proposed approximation allows us to choose such an approx�
imate control u���� that for each t � ��� �

jp�t� u�� p�t� u��j � u��

and
jp�t� u��� p��t� u��j � u���

This leads to
jp�t� u�� p��t� u��j � �u��� �����

We de	ne an approximation v���� u�� to v��� � v��� u� ����� by

�v��t� u�� � au�eap
��t�u�� � au��t�eap

��t�u��
�
� �

	

E��t�

�
�
	 �E��t�

E���t�
eap

��t�u�� �t � ��� ��

or

�v��t� u�� � au�eap
�
i �u

�� � au�i e
ap�i �u

��
�
� �

	

E��t�

�
�
	 �E��t�

E���t�
eap

�
i �u

�� �����

�t � �t�i � t
�
i���� i � �� �� � � � � m� ���

Following �����
 we set
v���� u�� � v��

Finally
 for each approximate control u���� we de	ne an approximate utility value by

I�u�� �

Z �

�
e��t��p��t� u���dt �

m��X
i��

h�i��p
�
i �u

���

where

h�i �
Z t�i��

t�
i

e��tdt �i � �� �� � � � � m� ���

Introduce a parameter � � � and an approximate constraint

v��t�i � u
�� � �� �i � �� �� � � � � m� ���

The approximate optimization problem �further called the ��� �� �problem� can be repre�
sented as follows

maximize I�u�� �
m��X
i��

h�i��p
�
i �u

����

u� � �u��� � � � � u
�
m��� � f�� u

�gm �����

v��t�i � u
�� � ��� �i � �� �� � � � � m� ���

We assume that the set of all admissible controls in ����� is nonempty� Denote the
optimal value by I��� and the set of all optimal controls by U ���

�



Lemma ��� Let �k � � �k � �� �� � � ��� �k � � �k � ��� Then there exist �k � �
�k � �� �� � � ��� �k � � �k���� such that

�i� Ik� � I��
�ii� uk� � U� weakly in L���� �

where uk� � u�k���� � U �k� 	 U and Ik� � I�k� are
 respectively
 an optimal control and
the optimal value in the ��k� �k��problem�

Proof�

�� We use simpli	ed notations�

u�k��� � uk��� � uk �

p�k��� u�k� � pk��� uk��

v�k��� u�k� � vk��� uk��

Put
�k � sup

u�U

���vk��� uk�� v��� u�
���
C

�k � �� �� � � ��� �����

We will show that sequence ��k� satis	es the conditions of the lemma� Suppose the
contrary� there exist a subsequence �kj� and an � � � such that �kj � � for each j �
�� �� � � � � Without loss of generality we set �k � � for each k � �� �� � � � � Consider elements
�uk � U that provide the supremum in ����� at least with accuracy ��� i�e�

sup
u�U

���vk��� uk�� v��� u�
���
C
�
���vk��� �ukk�� v��� �uk�

���
C
�

�

�
�k � �� �� � � ���

where �ukk is the approximation to �uk on the �k�grid�
Hence
 ���vk��� �ukk�� v��� �uk�

���
C
� � �k � �� �� � � ��� �����

We will complete the 	rst part of the proof by arriving at a contradiction to the latter
inequality�

�� As �uk��� � U and U is a weak compact in L���� �� there exist subsequence of ��uk����
weakly converging to some control �u��� � U� Without loss of generality we set

�uk���� �u��� weakly in L���� ��

From ����� we have
jp�t� �uk�� pk�t� �ukk�j � �u��k�

and while �k � � ����
Z t

�
�uk�s�ds�

Z t

�
�ukk�s�ds

����� ��

The latter fact together with the weak convergence of ��uk���� to �u��� yields that

�ukk���� �u��� weakly in L���� ��

�� Using �����
 we obtain

v�t� �uk� � v� �

Z t

�
aeap�s��uk�

�
u� � �uk�s�

�
� �

	

E��s�

�
�

	 �E��s�

aE���s�

�
ds�

From the approximation condition ����� we have

eap����uk� � eap����u� in L���� ��

�



From the weak convergence of ��uk���� to �u��� we have

u� � �uk���

�
� �

	

E����

�
�

	 �E����

aE�����
�

u� � �u���

�
� �

	

E����

�
�

	 �E����

aE�����
weakly in L���� ��

Consequently

v�t� �uk�� v� �
Z t

�
aeap�s��u�

�
u� � �u�s�

�
� �

	

E��s�

�
�

	 �E��s�

aE���s�

�
ds� �����

Similarly we 	nd that

vk�t� �ukk�� v� �

Z t

�
aeap�s��u�

�
u� � �u�s�

�
� �

	

E��s�

�
�

	 �E��s�

aE���s�

�
ds� �����

Thus
 ����� and ����� lead to ���vk��� �ukk�� v��� �uk�
���
C
� ��

which contradicts ������ We proved that �k � ��
�� Consider a control u���� � U� 	 U optimal in problem ������ For each �k�grid we

consider its approximation on each u�k���� According to ��� control u�k��� is admissible in
problem ����� with � � �k� � � �k � Let

�k � jJ� � I�u�k�j�

Obviously


�k � jJ� � I�u�k�j

�

�����
Z �

�
e��t��p�t� u���dt�

m��X
i��

hi��p
k
i �u

�k��

�����
�

�����
m��X
i��

Z tk
i��

tk
i

e��t��p�t� u���dt�
m��X
i��

Z tk
i��

tk
i

e��tdt ��pki �u
�k��

�����
�

m��X
i��

Z tki��

tk
i

e��t
�����p�t� u���� ��pki �u

�k��
���dt�

Since ���� is continuous and ����� holds we 	nd that �k � �� Then for each k � �� �� � � �

Ik� � J� � �k�

Letting k ��
 we get
lim
k��

Ik� � J�� �����

Now we consider controls uk���� � U optimal in problems ����� with � � �k� � � �k�
Since U is a weak compact in L���� � there exist a subsequence of �uk������ which converges
to some �u��� � U weakly in L���� �� Without loss of generality we set

uk����� �u��� weakly in L���� ��

�



Reasoning as in ��� we 	nd that control �u��� is admissible in problem ������ Hence


J��u� � J��

Similarly to a previous reasoning we get

Ik� � J��u��

Therefore
lim
k��

Ik� � J�� ��� �

We see that ����� and ��� � prove �i�� Statement �ii� follows from the weak compactness
of U in L���� ��

� Solution of ��� �� �problem

In this section we 	nd a solution to the ��� �� �problem ������ Let u����� be an arbitrary
control optimal in ������ By ����� we have

�v��t� u��� �

�
���t�eap

�
i
�u��� if u��i � �

���t�eap
�
i �u

��� if u��i � u��
�t � �t�i � t

�
i���� i � �� �� � � � � m� ��� �����

where due to assumptions �A�� and �A��

���t� � au� �
	 �E��t�

E���t�
� �� �����

���t� � �
	au�

E��t�
�
	 �E��t�

E���t�

 �� �����

Note that from ����� and �����
 ����� we have

v��t�i��� u
��� � v��t�i � u

��� �

�
���i eap

�
i �u

��� if u��i � �

���i eap
�
i
�u��� if u��i � u��

�i � �� �� � � � � m� �� �����

where

���i �
Z t�i��

t�
i

���t�dt� �����

���i �

Z t�
i��

t�
i

���t�dt� �����

As u����� is admissible in �����
 we have

v��t�i � u
��� � �� �i � �� �� � � � � m�� �����

We call a point t�j 
 t�m critical if the replacement of u��j with u� leads to the violation

of constraint ����� at point t�j��� i�e�

v��t�j��� u
��� 
 �� �j � �� �� � � � � m� ��

or

v��t�j � u
��� � eap

�
j�u

���
Z t�j��

t�
j

�
�
	au�

E��t�
�
	 �E��t�

E���t�

	
dt 
 �� �j � �� �� � � � � m� ���

Each point t�j 
 t�m that is not critical is called regular�

�



Remark ��� Let t�j 
 t�m be a critical point� Then u��j � ��

Lemma ��� Let t�j 
 t�m�� be a regular point� Then u��j � u��

Proof� Suppose the contrary�
u��j � ��

Consider an admissible control �u� � ��u��� � � � � �u
�
m��� � f�� u�gm and complete the proof

by arriving at a contradiction with the optimality of u�� in problem �����
 namely we will
prove that

I��u�� � I�u����

�� First we suppose
u��i � � �i � j � �� � � � � m� ��� �����

We de	ne control �u� by

�u�i � u��i �i � �� � � � � j � ���

�u�j � u�� ��� �

�u�i � u��i �i � j � �� � � � � m� ���

Then
p����u

�� � � � p���u
����

p�i ��u
�� � �

j��X
l��

�u�l � �
j��X
l��

u��l � p�i �u
��� �i � �� � � � � j��

p�j����u
�� � �

j��X
l��

�u�l � �u� � �
j��X
l��

u��l � p�j���u
����

p�i ��u
�� � �

j��X
l��

�u�l��u
���

m��X
l�j��

�u�l � �
j��X
l��

u��l ��
m��X
l�j��

u��l � p�i �u
��� �i � j��� � � � � m����

Thus 	nally we have

p�i ��u
�� � p�i �u

��� �i � �� � � � � j � ��� ������

p�i ��u
�� � p�i �u

��� �i � j � �� � � � � m� ��� ������

Now consider v���� �u��� From ��� �
 ����� we have

v��t�i � �u
�� � v��t�i � u

��� � �� �i � �� � � � � j��

Furthermore

v��t�j��� �u
�� � v��t�j � �u

�� � ���j eap
�
j
��u�� � v��t�j � u

��� � ���j eap
�
j
�u����

By assumption t�j is regular� Hence


v��t�j � u
��� � ���j eap

�
j�u

��� � ���

from which it follows that
v��t�j��� �u

�� � ���

 



Since
�v��t� �u�� � ���t�eap

�
i
��u�� � � �t � �t�i � t

�
i���� i � j � �� � � � � m� ���

function t �� v��t� �u�� is monotonically increasing on �t�j��� t
�
m��� Therefore

v��t�i � �u
�� � v��t�j��� �u

�� � ��� �i � j � �� � � � � m� ���

Summarizing
 we have

v��t�i � �u
�� � �� �i � �� � � � � m� ���

In other words
 �u� is an admissible control in ������
For the corresponding value of the utility index we get

I��u�� �
m��X
i��

h�i p
�
i ��u

�� �
m��X
i��

h�i p
�
i �u

��� � I�u���

�see ������
 �������� Thus we obtained a contradiction proving the statement of the lemma
in case ������

�� Now let ����� do not hold
 i�e� u��i � u� �i � j � �� � � � � m� ��� Set

u��i � � �i � j � �� � � � � k� ��� u��k � u��

We put

�u�i � u��i �i � �� � � � � m� �� i 
� j� k��

�u�j � u�� ������

�u�k � ��

Then
p����u

�� � � � p���u
��� �i � �� � � � � j��

p�i ��u
�� � �

j��X
l��

�u�l � �
j��X
l��

u��l � p�i �u
����

p�j����u
�� � �

j��X
l��

�u�l � �u� � �
j��X
l��

u��l � p�j���u
��� �i � j � �� � � � � k��

p�i ��u
�� � �

j��X
l��

�u�l � �u� � �
kX

l�j��

�u�l � �
j��X
l��

u��l � �
kX

l�j��

u��l � p�i �u
���

�i � k � �� � � � � m� ���

p�i ��u
�� � �

j��X
l��

�u�l��u
���

k��X
l�j��

�u�l��
m��X
l�k��

�u�l � �
j��X
l��

u��l ��
k��X
l�j��

u��l ��u���
m��X
l�k��

u��l � p�i �u
����

Thus 	nally we have

p�i ��u
�� � p�i �u

��� �i � �� � � � � j and k � �� � � � � m� ��� ������

p�i ��u
�� � p�i �u

��� �i � j � �� � � � � k�� ������

��



Now consider v���� �u��� From ��� �
 ����� we have

v��t�i � �u
�� � v��t�i � u

��� � �� �i � �� � � � � j��

Furthermore


v��t�j��� �u
�� � v��t�j � �u

�� � ���j eap
�
j
��u�� � v��t�j � u

��� � ���j eap
�
j
�u����

Due to the regularity of t�j we get

v��t�j � u
��� � ���j eap

�
j�u

��� � ���

from which it follows that
v��t�j��� �u

�� � ���

For i � j � �� � � � � k

�v��t�i � �u
��� �v��t�i � u

��� � ���ti��e
ap�i ��u

�� � eap
�
i �u

�����

Using ������ and the admissibility of u�� in problem ����� we get

�v��t�i � �u
�� � �v��t�i � u

��� � �� �i � j � �� � � � � k��

Consider a t � �t�k� t
�
k��� �

�v��t� �u��� �v��t� u��� � ���t�eap
�
k
��u�� � ���t�eap

�
k
�u���

� ����t�� ���t��eap
�
k
�u����

here we used ������� Notice that

v��t�j � �u
�� � v��t�j � u

����

�v��t�i � �u
�� � �v��t�i � u

��� �i � j � �� � � � � k��

which together with ������ leads to

v��t�k� �u
��� v��t�k� u

��� � v��t�j��� �u
��� v��t�j��� u

���

� ���j eap
�
j
��u�� � ���j eap

�
j
�u���

� ����j � ���j �eap
�
j�u

����

Taking into account ����� we have

v�t�k��� �u
��� v�t�k��� u

��� � v��t�k� �u
��� v��t�k� u

��� � ����k � ���k �eap
�
k
�u���

� ����k � ���k �eap
�
k
�u����� ����j � ���j �eap

�
j�u

���

� ����k � ���k � ���j � ���j �eapj�u
����

Consider the round brackets in the latter inequality� Obviously we have�

���k � ���j �
Z t�

k��

t�
k

�
au� � 	

�E��t�

E���t�

	
dt�

Z t�j��

t�
j

�
au� � 	

�E��t�

E���t�

	
dt

� au�� � 	

Z tk��

tk

dE��t�

E���t�
� au�� � 	

Z tj��

tj

dE��t�

E���t�

� 	



� �

E��t�

����t�k��t�
k

�
�

E��t�

����t
�
j��

t�
j

�
A �

��



���k � ���j �
Z t�

k��

t�
k

�
�
	au�

E��t�
� 	

�E��t�

E���t�

	
dt�

Z t�j��

t�
j

�
�
	au�

E��t�
� 	

�E��t�

E���t�

	
dt

� �	au�
�Z t�

k��

t�
k

dt

E��t�
�

Z t�
j��

t�
j

dt

E��t�

	
� 	



� �

E��t�

����t�k��

t�
k

�
�

E��t�

����t
�
j��

t�
j

�
A

� �	au�
�Z t�

k��

t�
k

dt

E��t�
�

Z t�
j��

t�
j

dt

E��t�

	
� 	



� �

E��t�

����t�k��

t�
k

�
�

E��t�

����t
�
j��

t�
j

�
A �

Combining these estimates
 we 	nally get

���k � ���k � ���j � ���j � 	au�
�Z t�

k��

t�
k

dt

E��t�
�

Z t�j��

t�j

dt

E��t�

	
� ������

Assumption �A�� guarantees that

Z t�
k��

t�
k

dt

E��t�
�

Z t�j��

t�
j

dt

E��t�
�

Thus we have
v��t�k��� �u

�� � v��t�k��� u
��� � ���

Furthermore
 we have

�v��t�i � �u
�� � v��t�i � u

��� �i � k � �� � � � � m� ���

implying
v��t�i � �u

�� � v��t�i � u
��� �i � k � �� � � � � m� ���

Summarizing
 we have

v��t�i � �u
�� � �� �i � �� � � � � m� ��� ������

In other words
 �u���� is admissible in problem ������
For the utility index we have

I��u�� �
m��X
i��

h�i p
�
i ��u

�� �
m��X
i��

h�i p
�
i �u

��� � I�u��� ������

�see ������
 �������� We arrived at a contradiction which proves the statement of the
lemma in case ������� The proof is completed�

Introduce the extreme control

U � �u�� � � � � u��

and set
L � fi � �� � � � � m� � � v��t�i � U� 
 ��g�

If L 
� !� put
i� � min

L
i�

Fix a constant K � � such that

j �v��t� u�j 
 K �t � ��� �� u � f�� u�gm�� ������

��



Remark ��� Note that from �����
 ����� for each u � f�� u�gm we have

� 
 ���i 
 Ke�ap
�
i �u���

�Ke�ap
�
i
�u�� 
 ���i 
 ��

Lemma ��� Let L � !� Then u��i � u� �i � �� � � � � m� ���

Proof� Suppose the contrary� Let u��i � � for some i � f�� � � � � m� �g� Without loss of
generality we assume that u��� � � � � � u��i�� � u�� Since u�� is admissible in problem �����

we have

v��t�i � u
��� � v��t�i � U� � ��� ���� �

By assumption i � � 
� L� combining with ���� �
 we see that t�i is a regular point� By
Lemma ��� u��i � u�� A contradiction with the initial assumption proves the lemma�

Lemma ��� Let L 
� !� Then
�i� u��i � u� �i � �� � � � � i� � ���
�ii� �� � v��t� u��� � �� � �K� t � �t�i� � t

�
m���

Proof� Prove �i�� Suppose the contrary� u��i � � for some i � f�� � � � � i� � �g� Without
loss of generality we assume u��� � � � � � u��i�� � u�� Since u�� is an admissible control in
����� we have

v��t�i � u
��� � v��t�i � U� � ��� ������

Since i� � 
 i� � � 
 i�� we get that i � � 
� L� Combining with ������
 we 	nd that t�i
is a regular point� By Lemma ��� u��i � u�� A contradiction with the initial assumption
proves �i��

Let us prove �ii�� From statement �i� we have v��t�i���� u
��� � v��t�i���� U�� which

together with i� � L leads to a conclusion that t�i� is a critical point� Thus


v��t�i� � u
��� 
 ��

or
v��t�i���� u

��� � ���i���e
ap�

i���
�u��� 
 ���

Using Remark ���
 we have

v��t�i���� u
��� 
 �� �K�� ������

Since u�� is an admissible control
 we have

v��t�i���� u
��� � ��� ������

Besides
 from the de	nition of K ������


jv��t�i� � u
���� v��t�i���� u

���j 
 K�� ������

Summing ������ and ������
 we have

�� � v��t�i���� u
��� � �� �K�� ������

Modifying ������
 we obtain

v��t�i� � u
����K� � v��t�i���� u

��� � v��t�i� � u
��� �K�� ������

��



Finally summing ������ and ������
 we get

�� �K� � v��t�i���� u
��� � �� �K�

or
jv��t�i� � u

��� � �j � �K��

Since u�� is admissible
 v��t�i� � u
��� � ��� Thus


�� � v��t�i���� u
��� � �� � �K��

Let us now prove statement �ii� for each t � �t�i� � t
�
m��� Put

t�k � max t�i � �� � v��t� u��� � �� � �K� �t � �t�i� � t
�
i ��

Note that
�� � v��t�k � u

��� � �� � �K�� ������

If t�k � t�m�� statement �ii� is proved� Let us consider the case where t�k 
 t�m��� Then

v��t�i���� u
��� 
� ������ � �K�

for some t � �t�k� t
�
k��� Since u

� is admissible
 the right inequality in �ii� is violated
 i�e�

v��t� u��� � �� � �K��

By ������
v��t� u���� v��t�k� u

��� 
 K�

or
v��t�k � u

��� � v��t� u����K� � �� �K��

Hence
 t�k is a regular point� Therefore by Lemma ��� u��k � u��
Consider a t � �t�k� t

�
k���� We have

�v��t� u��� � ���t�eap
�
k
�u��� 
 ��

Therefore
v��t�k� u

��� � v��t� u��� � �� � �K�

�here we used �������� Thus we obtained a contradiction� The proof is completed�

Theorem ��� The control

u��t� �

�
�

u�� if t � ��
u�

�� �
E��t�

� �
a

	E��t�

E���t�
�
�� �

E��t�

� � if t � �� ������

where � is the single root of equation

E��t� � E�e
au�t ������

is optimal in problem ������

��



Proof�

�� In accordance with Lemma ��� for each k � �� �� � � � the optimal control in the
corresponding approximate problem ����� satis	es the equality

uk��t� � u� �t � tk��

where tk is de	ned by statement �i� of Lemma ���� Let us prove that tk � � �where �
is de	ned by �������� Consider some k � f�� �� � � �g and suppose that tk � �� From the
construction of tk we obviously have that

vk�tk� u
k�� � ��k� ���� �

The structure of optimal control u���� ������
 ������ leads to

v��� u�� � ��

which together with the de	nition of �k ����� leads to

vk��� u�k� � �k�

Let "k � � be such a quantity that the point tk �"k is the nearest point of the �k�grid
from the right to the point �� i�e� � � tk �"k 
 � � �k� Then

vk�tk �"k� u
�k� � �k� ������

jvk�tk �"k� u
�k�� vk�tk �"k� u

k��j � �k� ������

Thus
 taking into account ���� �
 ������
 ������ we get

jvk�tk �"k� u
k��� vk�tk� u

k��j � jvk�tk �"k� u
k��� vk�tk �"k� u

�k�j

� jvk�tk �"k� u
�k�� vk�tk � u

k��j

� �k � ��k � ��k�

The latter inequality yields

"k �
��k
Q

�

where
Q � inf

t�
����
j���t�j � ��

Hence

� � tk � � �"k �

A similar estimation holds for tk 
 �� Therefore
 tk � ��
�� Due to Lemma ��� uk����� u���� weakly in L���� �� hence


Z t

�
uk��s�ds�

Z t

�
u��s�ds �t � ��� ��� ������

On the other hand
 due to Lemma ��� uk��t� � u� �t � tk�� hence


Z t

�
uk��s�ds �

�
u��� if � � tk �

u�tk �
R �
tk
uk��s�ds� if � � tk �

��



Therefore
 Z t

�
uk��s�ds� u�t �t � ��� ��� ������

Because of the uniqueness of the limit
 ������ and ������ lead to u��t� � u� �t � ���
�� From Lemma ��� and condition ����� it follows that vk��� uk��� v��� u�� uniformly�

Then in accordance with Lemma ��� and statement �ii� of Lemma ��� for t � ��� � we
have v�t� u�� � � and �v�t� u�� � �� which de	nes u��t� on ��� � in accordance with �������
Thus
 we completed the proof of the theorem�
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