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Summary 
 
The basic notions of Singularity Theory of differentiable mappings and the Bifurcation 
theory of dynamical systems are described. 
 
They form the foundation of Mathematical Catastrophe Theory, which is essentially a 
qualitative analysis of complicated systems depending on parameters, such as life 
supporting systems in real life. 
 
We demonstrate some simple examples of systems wherein the choice of the control 
parameter makes it possible to avoid abrupt (catastrophic) behavior. 
 
The aim of the chapter is to emphasize that the general methodology of these 
mathematical theories are important in investigations of the specific complicated 
systems, even at the stage of creating  adequate models. 
 
1. Introduction 
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In mathematics sudden and abrupt changes in the response of a system to a smooth 
change in external conditions are termed as catastrophes. 
 
The mathematical catastrophe models exhibit certain common traits of the most diverse 
phenomena of jump change in a system behavior.  Mostly catastrophe theory is a 
collection of the applications and general ideas of Singularity Theory and Bifurcation 
Theory of dynamical systems. 
 
The main object studied by these theories is a system which continuously depends on its 
parameters.  Any mathematical model of a real system (for instance, physical ecological 
or economical) determines a set of numerical parameters, whose values reflects 
important features of the system. 
 
In a relatively simple case (which might be called a stationary system) the state of a 
system is described by a point from a certain subset of the space of all possible values of 
parameters. This subset can have a complicated structure and singularities. Here we may 
well rely on the singularity theory of differentiable mapping. 
 
In other cases, for evolution processes, time is one of the parameters and a system is 
modeled by a dynamical system, governed by certain system of differential equations or 
by relations of more complicated nature. 
 
Even the simplest general mathematical conclusions on the properties of such systems 
can often help in investigation of specified complicated modeling problems. 
 
The basic idea of the catastrophe theory according to E.C.Zeeman, is the following: 
 
Assume that the parameters defining the states of the system are separated into two 
groups: internal and external.  It is assumed that there exists dependence among the 
parameters.  However, the values of the internal parameters are not uniquely determined 
by the values of the external ones.  Geometrically the states of the system are described 
by the points in the product of the spaces of internal and external parameters. The 
meaning of the dependence is that this point (the current state of the system) always lies 
in some subset of the product space. In the simplest case one may assume that this 
subset is a smooth submanifold in general position in the product space and its 
dimension is equal to the dimension of the space of external parameters. The projection 
of this submainfold onto the space of external parameters is not generically one-to-one.  
In other words, even in this simplest model the internal parameters do not depend 
smoothly on the external ones:  Under small changes of external parameters our system 
may jump from one visible state (i.e. from a point in the internal parameter space) to 
another one. 

 
Singularity Theory yields information on the critical points and critical values of such 
mappings.  Analytical, geometrical and topological methods often ensure the 
appearance of certain types of critical sets without ambiguity. 
 
Since smooth mappings are found everywhere, their singularities must be everywhere 
also, and since Singularity Theory gives significant information on the singularities of 
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generic mappings, one can try to use this information to study a lot of diverse 
phenomena and processes in all areas of science. 
 
The mathematical description of the world depends on a delicate interplay between 
continuous and discontinuous (discrete) phenomena.  The latters are perceived first. 
“Functions, just like living beings are characterized by their singularities”, as P. Montel 
proclaimed. 
 
The modern singularity theory began in the 1950s by the works of H. Whitney. Also in 
the early 1930s A.A Andropov started the theory of the bifurcations of dynamical 
systems.  However similar ideas and objects go up to classics:  Hamilton, Monge, 
Cayley, Poincaré. Now there exist thousands of publications on the development of their 
results and on various applications.  The singularity theory is now one of the central 
areas of mathematics, where the most abstract parts (differential and algebraic geometry 
and topology, group theory, the theory of complex spaces) come together with the most 
applied ones (stability of motion of dynamical systems, bifurcation of equilibrium 
states, optics, optimal control). 
 
Its methods were applied to various branches of knowledge, for example, to heat beats 
modeling, to geometrical and physical optics, to embryology, linguistics, economics, 
hydrodynamics, geology, computer vision, elasticity theory, stability of ships, etc. 
 
Certain features of catastrophes in natural, technological, social and other processes 
might be understood using methods of Singularity Theory and Bifurcation Theory. 
 
In Section 2 the general methods and simple examples of catastrophe theory are 
outlined. 
 
That is, in Subsection 2.1 we describe the traditional example of Zeeman’s “catastrophe 
mashine”, which exhibits loss of stability and jump–like dynamics in mechanical 
systems with rigid and elastic elements.  Also the bifurcation of steady state positions of 
loaded elastic beam is analyzed.  These two models provide the simplest examples of 
the real catastrophe which may occur in the building and construction technology. 
 
In Subsection 2.2 the simplest resource exploitation model (based on natural law of 
resource growth) is considered.  We show that the catastrophic vanishing of the resource 
due to the intensification of extraction can be avoided by the manipulation of a feedback 
control parameter. In this simplest model of the “control of the ecological catastrophe” 
the average production might be maintained at the optimal level. 
 
In the following sections recent developments in these theories and domains of their 
application are described. 
 
Singularities of functions described in Subsection 3.1 provide mathematical models of 
typical catastrophes in systems with several external parameters.  The knowledge of 
their bifurcation diagrams or discriminant sets (from Subsection 3.2) is necessary to 
control behavior of the system smoothly. 
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The propagation of various catastrophic disturbances (e.g. shock waves, emanations, 
epidemic or a flame) in certain media has many common features modeled by the theory 
of wavefronts and caustics (outlined in Subsection 3.3).  This covers a vaste area of 
applications of singularity theory, including Y. Zeldovich’s model of the catastrophic 
formation of the Universe. 
 
An interesting new approach to the problem of the choice of a good decision is 
described in Subsection 3.4. Political and social sciences provide enough examples 
when the wrong decision leads to real catastrophe. 
 
Different models of shock fronts are described in Subsection 3.5. 
 
The implementation of the control parameters into a system does not lead automatically 
to the perishing of the catastrophes. 
 
To avoid catastrophe in the behavior of a system one has to know the typical 
singularities of the control systems themselves.  This is the subject of Section 4.  Here 
we again meet the simplest models based on the singularities of families of functions 
(conflicts sets) and bifurcations of singular points of vector and direction fields 
(Subsection 4.2). 
 
We have to emphasize that to suggest a detailed and adequate mathematical model for 
real life supporting systems and to prove their consistency is the subject of the specific 
sciences going beyond the aims of the present article. 
 
2. Basic Notions and Examples 
 
2.1. Catastrophe of the “Pleat” 
 
Singularity theory provides the following general methodology for studying the 
qualitative properties of systems depending on parameters. 
 
Assume that the systems under the consideration form a space S endowed with a metric 
or a topology.  This space, generally speaking, may be very complicated (may have 
infinite dimension, may not be a manifold, etc). 
 
Introduce a partition (called equivalence relation) of this space S into a certain 
collection of subsets.  Two systems from one subset will be called equivalent. 
 
Often such a natural partition corresponds to a certain group action on the ambient space 
S. In this case the equivalence classes are the orbits (or collection of orbits) of the 
systems under this action. 
 
A certain property (which is common to all objects from certain equivalence classes) of 
a system is called generic if it holds for any system from an open and dense subset of 
the spaces S. In other words, by small perturbation of an arbitrary system one gets a 
system with this property. If the system is generic then all nearby systems are generic as 
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well.  One says then that this property is structurally stable, and a system with its 
generic (or typical). 
 
The non-generic systems form a thin subset D. 
 
Let us consider a family of systems depending on m auxiliary parameters.  It may 
happen that it fails to be generic for certain values of these additional parameters. 
 
Moreover this effect is inevitable by small modifications of a family within the space of 
all m–parameter families. 
 
For example, let D be a line in a plane.  Almost all points of the plane do not belong to 
D, but generically one can not avoid the intersections of D with one–parameter family 
of points (a curve) in the plane by means of arbitrary small modifications of the curve. 
 
Thus for the generic families of systems for certain specific parameter value a particular 
non- generic system can occur. 
 
The subset of the auxiliary parameters corresponding to degenerate (non-generic) 
systems is called discriminant or bifurcation diagram of the family. 
 
If one can avoid (using small perturbations of arbitrary m-parameter family) the 
appearance of the objects from a certain much thinner subset then   is said 
to have codimension at least m+1 in the ambient space of systems. 

,mD D⊂ mD

 
We can determine the hierarchy of successively degenerate 
systems 1... ...m mD D D D− 1 S=⊂ ⊂ ⊂ ⊂ ⊂  formed by subsets of growing 
codimension. 
 
Such a hierarchy provides a sequence of questions to answer while analyzing the space 
S with respect to a given property. 
 
The first question is the description (classification) of the equivalence classes that are 
generic. In the next step the equivalence classes of the systems with the degenerations 
of codimension1. (i.e. the singularities that occur in generic one-parameter families) 
should be studied, then those of codimension  2, and so on. 
 
This approach was outlined in the pioneering work of H. Whitney (1955), where smooth 
mappings of the plane into another plane were considered. 
 
Whitney observed that generically only two kinds of singularities are encountered. All 
others disintegrate under small movements of the mapping. 
 
The mappings of the smooth surface to the plane can be easily visualized.  The visible 
contours of bodies are the projection of their bounding surfaces onto the retina of the 
eye.  By examining the objects surrounding us we can study the singularities of visible 
contours.  Other singularities become visible when the surface is transparent (for 
example, medical X-rays photos contain plenty of them). 
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The first kind of singularity (called a “fold”) is the singularity arising at equatorial 
points when a sphere is projected onto a plane, parallel to the equator. 
 
In suitable coordinates x , on the surface and suitable coordinates y , on the target 

plane this mapping is locally given by 

x1 2 y1 2
2
1 2and 2= =y x y x1 . 

 
Another singularity was named the pleat (or cusp).  It arises in particular when a surface 

in three –dimensional space Γ ( ){ }, ,a b=3 xR defined by the equation 
 

( ){ }3 0b+ − =Γ= a,b,x | x ax     (1) 

 
is projected onto the horizontal plane ( ),a b  along the vertical direction of  x -axis 
(Figure 1). 
 

 
Figure 1: Pleat 

 
Parameters  can be taken as coordinates on Γ and parameters are the 
coordinates on the target plane. 

(a,x ) )(a,b
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The curve∑ on the horizontal projection plane defined by the equation 4 0=a + b3 227  
is the set of the images of the critical points of the projection of the surface . Γ
 
This curve is called semicubical parabola∑  (with a cusp at the origin). 
 
At these critical points (which form a smooth curve 30, 0a a b+ = + − =x x x23  on the 
surface) the vertical direction is tangent to surface . Γ
 
The curve divides the horizontal plane into two parts: a smaller and a larger one.  The 
points of the smaller part have three inverse images (three points of the surface project 
onto them), a point of the larger part has only one inverse image, and a generic point on 
the curve itself has two. 

∑

 
On approaching the curve from the smaller part (outside the origin), two of the inverse 
images (out of the three) merge together and disappear (here the singularity is a fold), 
and on approaching the origin (the cusp point) all three inverse images coalesce. 
 
Whitney proved that the pleat is stable, i.e. every nearby mapping has a similar 
singularity at an appropriate nearby point.  Here “similar”means that in suitable local 
coordinate systems in a neighborhood of the mentioned point and of its image the 
deformed mapping is described by the same formulas as those describing the original 
projection in the neighborhood of the origin (such two mappings are called right-left 
equivalent). 
 
Whitney also proved that every singularity of a smooth mapping of a surface onto a 
plane, after an appropriate arbitrary small perturbation, splits into folds and pleats. 
 
This initial result from the singularity theory has various applications. 
 
Let us consider for example a system with two external parameters a and b and with one 
internalx .  Assume that the relation between them is determined by the equation  

 0.=)f(x,a,b
 
The Whitney results imply that for generic relation representing a smooth surface in f

( ), ,a b x space only folds and pleats of its projections to external parameter plane may 

happen.  When ( parameter point passes through the regular part of the curve∑  
(say, from the smaller part of the complement to the ), the internal parameter 

(assuming its value merges with another one) has to jump from the fold branch of the 
critical set to the remaining inverse image of 

),a b
∑

x

( ),a b or disappear . 
 
This simplest (structurally stable and inevitable) catastrophe model occurs in various 
elastic systems. 
 
The following installation (called Zeeman’s “catastrophe machine”) demonstrates this 
phenomenon. 
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The system consists of a wheel, rotating about a fixed axis, and two elastic strings 
attached at a point on the rim of the wheel:  one string has its other end fixed in the 
plane, the second string has its other end attached to the tip of a pencil so that, as the 
pencil moves, it traces a curve on a sheet of paper in the same plane. 
 
As one changes the position of the pencil (defined by two coordinates-two external 
parameters), one can observe, generally speaking, that the wheel rotates, smoothly 
responding to the changes of the parameters; but in some cases the wheel changes its 
position with a jump. Such jumps occur for exceptional (bifurcation) positions of the 
pencil:  on the sheet of paper they form a catastrophe curve with four cusps. If the pencil 
crosses this curve while moving, a catastrophe (jump of the wheel) may or may not 
occur, depending upon the pre-history of the motion. 
 
The state space of this machine is 3-dimensional (an auxiliary internal parameter defines 
the rotation angle of the wheel).  The potential energy of the system is a function of all 
three parameters.  For fixed values of the external parameters the system minimizes 
(locally) its potential energy.  The surface of equilibria is formed by the critical points 
of the potential energy. 
 
As the values of the external parameters approach the catastrophe curve, the critical 
points of the potential energy, considered as a function on a circle, undergo a 
metamorphosis.  Upon intersecting the catastrophe curve at a generic point, two critical 
points of the potential energy merge - a local maximum and a local minimum. The 
system, in a stable equilibrium state at a point where the potential energy has a local 
minimum, remains in this state up to the moment of bifurcation. At that moment the 
critical point becomes unstable, and the system jumps to another (stable) equilibrium 
state.  Thus, whether or not there will be a jump at intersecting the catastrophe curve 
depends on which local minimum of the potential energy of the system lies before the 
intersection. 
 
Similar bifurcations arise in the case of relaxation oscillations. 
 
The ideas more or less equivalent to the catastrophe theory were used in 
thermodynamics from the time of J.C. Maxwell and J. W. Gibbs. 
 
The metamorphosis of the isotherm of the Van der Waal’s equation of state of a real gas 
is a typical example of an application of the pleat singularity. An analysis of the 
asymptotics in the neighborhood of the critical point quickly leads to the understanding 
that this geometry is independent of the exact form of the equation of the state: 
temperature, volume and pressure play the same roles as parameters   in the 
standard model. 

, ,a b x

 
The geometric investigations of singularities of generic multiparameter families might 
be found in the works on chemistry and mineralogy (the last in connection with 
investigations of process of crystallization of magma). 
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In N.N. Semenov’s theory of thermal explosions (1929) the transitions that have jumps 
from one reaction mode to another (“ignition” and “extinction” ) arise under a smooth 
change of a parameter (for example the phase variable, describing the concentration of 
one of the chemical substances). 
 
In elasticity theory the smooth surface of equilibria of a loaded elastic bar provides 
another example of pleat singularity. 
 
Suppose that the bar is bent in the form of arc of a bridge and its ends are fixed. 
 
The dependence of the maximal load that the bar can carry on the magnitude of the shift 
of the application of the load (from the symmetry axis of the bridge) is determined by 
the cusp curve.  This is the first result (due to W.T.Koiter 1945) in the theory of 
sensitivity of elastic models to imperfections.  In terms of catastrophe theory it reduces 
to the investigation of the family of potentials  ( ) 2

0 ε− +4−x F F x+ x  
 
To carry out loading of various structures without dangerous snaps it is necessary to 
know the “catastrophe diagram” and the topology of how the sheets of the equilibrium 
surface are joined over it. 
 
2.2. Introduction to Bifurcations in Dynamical Systems 
 
2.2.1. Bifurcations of Equilibrium States 
 
An evolutionary process is described mathematically by a vector field in a phase space. 
A point of the phase space defines the state of the system. The vector at this point 
indicates the velocity of change of the state. 
 
The equilibrium states correspond to the zeros of velocity (the state of the system which 
does not change with time). 
 
The curves in the phase space traced by the successive states of process are called phase 
curves. In the neighborhood of a non-equilibrium state the partition of the phase space 
into phase curves looks like a partition into parallel lines.  In the neighborhood of an 
equilibrium point the picture is more complicated. 

 
In generic systems only equilibrium points with non-degenerate linear part occur. In the 
phase plane typical phase portraits are (stable or unstable) Focus, (stable or unstable) 
Node and Saddle (Figure.2). 
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Figure 2: Typical equilibrium points 

 
For a generic one-parameter family of vector fields, the equilibrium states for all values 
of the parameter form a smooth curve Γ  in the product of the phase space and of the 
parameter space (in multiparameter case the dimension of the manifold of equilibrium 
states is equal to the number of parameters). 

 
If the parameter space is one-dimensional, then the projection of Γ onto the parameter 
axis has singularities of the fold type only.  (For more parameters the more complex 
singularities of mappings of manifold to a space of the same dimension appear:  in 
generic two-parameter families the projection of the surface of equilibria onto the 
parameter plane can have pleats where three equilibrium states come together.) 

 
Thus, as we change the parameter, we may single out the bifurcation values of the 
parameter (The word bifurcation means forking and is used in a broad sense for 
designating all sorts of qualitative reorganization or metamorphoses of various objects 
resulting from a change of the parameters).  Those are the critical values of the 
projection of  to the parameter space. Γ

 
Away from these values the equilibrium states depend smoothly on the parameters. 
When the parameter approaches a bifurcation value an equilibrium state “dies” by 
combining with another one (or going the opposite way, a pair of equilibrium states is 
born). 
 
Of the two simultaneously appearing (or dying) equilibrium points in one-dimensional 
phase space one is stable and the other–unstable. (Here of course, stability means the 
“Lyapunov stability”. In other words, a trajectory with initial conditions close to the 
equilibrium point rests near it at any time). 

 
At the instant of birth (death) both the equilibrium states move with infinite speed:  
when the parameter value differs from the bifurcations value by ε the distance between 
the two nearby equilibrium states is of order of ε .   
 
It turns out that in general all metamorphoses of equilibrium states can be obtained from 
one dimensional reorganizations by means of appropriate suspensions (separation of 
variables). 
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For example (Figure 3) the collision of a saddle and a stable node in the plane (at the 
instant of fusion a non-generic situation “saddle-node” arises) up to an appropriate 
diffeomorphisms of the plane corresponds to the collision of two equilibrium points of 
the vector field on one coordinate axis while the evolution along the other direction does 
not change at all. 

 
Figure 3:  The saddle–node bifurcation 

 
If a stable equilibrium state describes the established conditions in some real systems (in 
economics, ecology or chemistry) then when it merges with an unstable equilibrium 
state, the system must jump to a completely different state: as the parameter changes 
then the equilibrium condition in the corresponding neighborhood suddenly disappears.  
The equilibrium evolution suffers a catastrophe. 

 
2.2.2. Loss of stability 
 
Loss of stability of an equilibrium state is not necessarily associated with the birth or 
death of the equilibrium state: an equilibrium state can lose stability by itself. 
 
Two versions are possible: 

 
A. On change of the parameter the equilibrium state gives birth to a limit cycle of 
radius of order ,ε where the parameter differs from their bifurcation value byε .  The 
stability of the equilibrium is transferred to the cycle, and the equilibrium point becomes 
unstable.  
 
In other words, after loss of stability of the equilibrium a periodic oscillatory behavior 
is established.  The amplitude of the oscillation is proportional to ε ( ,ε  recall, is the 
difference of the parameters from the critical value). 
 
This form of the loss of the stability is called mild since the oscillating behavior for 
small ε differs a little from the equilibrium state (also it is often wrongly called Hopf 
bifurcation). 
 
B. An unstable limit cycle collapses at the equilibrium state: the domain of attraction of 
the equilibrium state shrinks to nought with the cycle. 
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Before the established state loses the stability, the domain of attraction of the state 
becomes very small and ever–present random perturbations throw the system out of this 
domain even before the domain of attraction has completely disappeared.  This form of 
loss of stability is called hard one. 
 
It was observed by Poincaré and proved by Andronov’s school for two dimensional case 
(and later for multidimensional systems) that no other forms of loss of stability apart 
from the described bifurcations (or their suspensions) are encountered in generic one-
parameter families. 
 
A behavior of motion which establishes itself is called attractor since it attracts 
neighbouring evolutions.  An attractor is an attracting set in phase space. Attractors 
which are not equilibrium states or strictly periodic oscillations are called strange 
attractors and are connected with turbulence.  Even in generic systems strange attractors 
can be very complicated (they can look like Kantor’s set, have non integer dimension 
etc.) 
 
Assume that after the loss of stability of an equilibrium state the mode of the behavior 
of the system is a strange attractor. 
 
The transition of a system to such a behavior means that complicated non-periodic 
oscillations are observed in it.  Their details are very sensitive to small changes of the 
initial conditions. 
 
They look like a turbulent motion.  It appears that the disordered motion of a fluid 
observed on loss of stability of laminar flow with an increase of the Reynolds number 
(Re) (i.e., with a decrease in viscosity)  is described mathematically by just complex 
attractors in the phase space of the fluid.  The dimension of the attractor happens to be 
finite. For two-dimensional fluid motion the dimension grows with a magnitude of order 
at most 4Re . 
 
The transition from a stable equilibrium state to a strange attractor can be realized both 
by means of a jump (hard catastrophic loss of stability) or after a mild loss of stability. 
In the latter case the created stable cycle loses its stability. 
 
The loss of stability of a cycle in a generic one-parameter family of systems can take 
place in number of ways:  a collision with an unstable cycle, doubling, and the birth or 
death of a torus. 
 
The details of these processes depend on the resonances (that is on the rationalitly of the 
ratio) between the frequencies of the motion along the meridian of the torus and along 
its parallels.  
 
The behavior of the phase curves close to cycle can be described approximately with the 
aid of an evolutionary process for which the cycle is represented by an equilibrium 
state. 
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The most difficult case of 1:4 resonance in the theory of two-parameter bifurcations is 
still not investigated completely. 
 
It is impossible to enumerate all the applications of this theory: parameter dependent 
systems in mechanics, physics, chemistry, biology and economics can lose stability. 
 
For example, a stable steady–state mode of behavior (let us say, the working mode of a 
reactor or an ecological or economic system) usually perishes either by colliding with 
an unstable mode (where, as we have seen, at the moment of the collision the speed of 
the convergence is infinitely large), or as a consequence of the (again infinitely rapid) 
growth of self-sustaining oscillations. 
 
This explains why it is so hard to fight a catastrophe once its symptoms have already 
become noticeable: the speed of the catastrophe approach grows unboundedly in 
proportion to the rate of a parameter change. 
 
A catastrophic loss of stability may be the result of optimization and intensification. 
 
Let us consider, for example, the simplest model of exploitation of certain resource (say, 
an agricultural product) taking into account the stabilization in the growth of the 
resource caused by natural limitations: 
 

( )1 21 .C= − −
dX

K X K X
dt

 (2)             

 
Here is the current amount of the resource, C is a constant quota rate of exploitation 
while the term

X

1 2(1 )−K K X  is the rate of the natural growth per unit of the resource. By 
an appropriate scaling of X and t one can normalize the coefficients and get the 
normalized equation  

1,K K2

 
2 .d c

dt
= − −

x
x x   (3)               

 
The maximization of the quota rate 1

4c =  leads to instability of the steady state 
behavior of the model and to catastrophe – the annihilation of the resource by small 
random disturbances. 
 
Stability will not be lost if we introduce feedback: for the rigid quantity C one 
substitutes a quantity proportional to the actually existing resource. 
 
In this model with feedback 
 

2d k
dt

= − −
x

x x x   (4)               
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the optimal value for the coefficient k is 1/2. With this choice a many–years’ average 
result of 1

0 4k =x will be established by itself. 
 
This is the same exploitation result as the maximal rigid quota (a greater productivity is 
impossible in this system). 
 
But while at the maximal rigid plan the system loses stability and destroys itself; small 
changes of the coefficient k (or other fortuities) lead only to a small decrease in 
productivity, but by no means to a catastrophe.  The improved dynamical system is 
structurally stable. 
 
Control without feedback always leads to catastrophes:  it is important that persons and 
organizations making responsible decisions should personally and materially take the 
consequences of these decisions into account. 
 
The following simple qualitative laws of the functioning nonlinear dynamical systems 
can be useful for those who are undertaking the crucial change in a complicated system. 
 
Suppose that the actual state of the system corresponds to a local minimum of its 
potential, then: 
 
1. Gradual motion in the direction of a better state (another local minimum with lower 
value of the potential) at once leads to deterioration. The speed of deterioration under 
uniform motion toward the better state is increasing. 
 
2. As one moves from the worse state to the better one, the resistance of the system to 
change of its state grows. 
 
3. The maximum of resistance is attained sooner than the worst state through which it is 
necessary to pass in order to reach the better state.  After passing the maximum of the 
resistance the state continues to become worse. 
 
4. As one approaches the worst state the resistance from a certain instant onwards 
begins to decrease, and as soon the worst state has passed, not only does the resistance 
completely vanish, but the system starts to be attracted towards the better state. 
 
5. The magnitude of the deterioration necessary for a transition to the better state is 
comparable to the final improvement and increase in proportion to the perfection of the 
system.  A weakly developed system can go over to the better state almost without a 
prior deterioration, whereas a well-developed system, by virtue of its stability, is not 
capable of such a gradual continuous improvement. 
 
6. If one manages to move the system out of the bad state at once, by jump and not 
continuously, near enough to the good state, then, subsequently, the system will evolve 
towards the good state by itself. 
 
In Section 4 singularities in control systems are discussed.  In particular, we show that, 
aiming to steer a given state of a system to another “desired” state, one has to choose the 
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control in an appropriate way.  For arbitrary (even generic) choice of control system the 
attainability domain of the initial state can be far from the state, which one wishes to 
achieve. 

 
3. Singularity Theory. 
 
3.1. Classification of Functions 
 
In all the examples described above we actually deal with a family of functions F of one 
variable x depending on the parameters a and b 
 
Local changes of variablex  (diffeomorphisms of the  axis) and shifts by a constant in 
the target space constitute the group action, which splits the space of functions F (x ) 
(defined in a certain neighborhood of a distinguished point) into a series of equivalence 
classes: 

x

 
0 1 2 3...A A A A← ← ←     (5)                    

  
 The class   contains all functions which are equivalent to the function at the 
origin (if k is even then the signs 

kA 1k+±x
± correspond to one class). The arrows between 

classes mean that the class belongs to the closure of the class in the space of 
functions.  In the space of the Taylor series of the functions at the origin, the class 

forms a smooth subspace of codimension k. 

1kA + kA

kA
 
Starting from  these functions have critical points at the origin with different 
orders of degeneracy. 

=k 1

 
This is the first simple example of the classification problem in singularity theory. 
 
At a first glance the most natural classification principle is classifying by codimension.  
To classify the objects “up to codimension k≤ ”means to represent the entire space of 
the objects as a finite union of submanifolds of codimensions not greater than k (classes) 
and the remainder of codimension  so that within each class the object’s 
properties that are of interest to us do not change.  Then all objects in typical, no more 
than k –parameter families, belong to our classes:  the remaining ones may be avoided 
by a small perturbation of the family (according to Sard or Thom transversality 
theorems). 

1k≥ +

 
Let us consider now smooth functions in several variables. We are interested in the local 
properties of function near its critical point, say, the origin.  Introduce the space of 
germs of functions at the origin: two functions determine the same germ if they coincide 
in some small neighborhood of the origin.   
 
Assume also that the function has critical point at the origin 0 and its critical value 
equals 0. The classification up to codimension 4 of the space of such germs is formed 
by the classes of Thom’s seven “catastrophes” 
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2 3 2
4 5, 1...5, : , :iA i D D= ±x y y x y y4±

k

        (6)                
 
Here the germs are classified according to stable equivalence. Any germ of a function 

by an appropriate change of variables can be 
reduced to the form

( ), ,nf ∈x x R ( , ), ,k n−∈ ∈x y z y zR R

( ) ( ),f Q z+y  where Q is a non-degenerate quadratic form in z and 
all the first and second derivatives of f vanish at the origin.  Such a separation of 
variables follows from the Morse Lemma.  In particular, if the second differential of a 
function at the origin in not degenerate then the function is equivalent to its quadratic 
part. (Analogous results for functionals in infinite number of variables are the key point 
of various branches of non-linear analysis). 
 
Two germs ,f g of functions (may be of different number of variables) are called stably 
equivalent if their corresponding functions germs ,f g are equivalent (in particular, if 
the corresponding dimensions of y - space should be equal). 
 
Classification up to the codimension differs, generally speaking, from the classification 
by codimension of orbits of the diffeomorphisms group.  
 
This is so because the orbits may form continuous families.  In these cases, the 
appearance of objects whose orbits have codimension k may turn out to be unavoidable 
under classification up to some codimension less than k. 
 
For example, in the space of three-jets (that is in the space of the Taylor polynomials of 
degree 3) of function in three variables at the origin the homogenous polynomials of 
degree 3 form a 10- dimensional subspace of codimension 6.  The orbits of these 
polynomials under the group of (jets of) diffeomorphisms are at most 9 dimensional 
(because only linear parts of changes of variables, forming the space of 3×3 matrices, 
act nontrivially on these polynomials).  This 10-dimensional subspace is split into a 1-
dimensional family of orbits and a remainder of codimension 8. 
 
The main measure of the complexity of a singular point of the function  is its 
multiplicity or Milnor number  for complex functions it can be defined as the 
maximal number of critical points into which our singularity can be decomposed by 
small perturbations, and for the singularities of real functions it provides an upper bound 
of the number of such points.  The multiplicity is finite for all function germs except for 
a subset of infinite codimension.  It is equal to 1 only for Morse critical points, whose 
quadratic parts of the Taylor expansions are non-degenerate. 

f
( ) :fμ

 
The codimension of the orbit of f in the space of all germs of 
function ( , with singularity at 0 is always equal to . 0) (→nR R ),0 1−fμ( )
 
It turns out however that the most natural classification is not by codimensions or 
multiplicities of degenerate critical point, but by their modalities. 
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The number of moduli or the modality of an object is the least number m for which 
some neighborhood of the objects can be covered by at most a finite number of at most 
m- parameter families of orbits.  In the given case we are talking about a neighborhood 
of a jet of the function in the space of k –jets. (i.e. of the space of Taylor polynomials of 
degree k) with zero critical value at the origin.  This finite number must remain bounded 
as k . →∞
 
Objects of modality zero are called simple.  The neighborhood of a simple object is 
covered by a finite number of orbits.  The germ of a function at a critical point is simple 
if it can be deformed only in a finite number of ways. 
 
The list (obtained by V.I. Arnold in 1972) of simple critical points of holomorphic 
functions (up to stable equivalence) is formed by two series of classes of singularities 
and three exceptional classes. 
 

1 2

3 4 3 3 3 5
6 7 8

, 1: ; , 4 :

: ; : ; :

A D

E E E

μ μ
μ μ

+ −≥ ≥

+ + +

x x

x y x xy x y

μ μ 1;

.

+y y

)

      (7) 

                       
(In all these formulas the lower index is the multiplicity of the corresponding 
singularity.)This list repeats the list of Weyl groups (the crystallographic groups of 
Coxeter, generated by reflections) without multiple links in their Dynkin diagrams (that 
is, with 90°and 120°angles between the generating mirrors (that is fixed point subspaces 
for reflections, which generate the group). 
 
A connection between functions and reflection groups is the following.  Let us include a 
function with a critical point of multiplicityμ  in a generic ( 1−μ -parameter family as 
the function that corresponds to the zero value of the parameter. 
 
For a typical value of the parameter, sufficiently close to zero, the critical point of the 
function f is splitted into f=μ μ( ) nondegenerate (Morse) critical points with different 
critical values. 
 
These critical values may be considered as a  -valued function of  -1 variables (the 
parameter of the family).The graph of this -valued function lies in μ - dimensional 
complex space and is called the bifurcations diagram of zeros or discriminant of the 
original singularity.  For example, the bifurcation diagram of zeros of the singularity  
is a semicubical parabola, and that of 

μ μ
μ

2A

3A  is a swallowtail (see the left picture in Figure 
4 below). 
 
The investigation of the geometry of discriminants, their cross-sections and projections 
forms in a technical respect the most important part of the catastrophe theory. 
 
It turns out that the discriminants (bifurcation diagrams of zeros) of the simplest 
singularities are diffeomorphic to the varieties of non-regular orbits of the 
corresponding reflection groups. 
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These diagrams provide examples of rather general important features of many 
classification problems in singularity theory (with a relatively good equivalence notion). 
 
A family F of objects (e.g. Functions ) depending on parameterλ  is said to be induced 
from another family  depending on  parameter ε , if there exists a smooth mapping G

:I ελ  such that the objects is equivalent to the objects (provided that this 

equivalence depends smoothly on parameter). 
( )IG λ Fλ

 
In many reasonable problems (including the case of classification of smooth functions 
or mappings) any singularity, whose orbit has finite codimension k, possesses a (uni) 
versal deformation (i.e. a family containing this singularity for zero value of 
parameters): any deformation of this singularity is induced from this (uni) versal one. 
 
The method to construct versal deformation comes from finite dimensional case (the 
action of the finite dimensional Lie group on the finite dimensional manifold). A 
mapping :g M N→  is said to be transversal to a submanifold   at the point 
g ( , if the tangent vectors to S at this point and the image under the derivative of g of 
tangent vectors to 

S N⊂
)x

M  at this point M∈x  span the tangent space to the total ambient 
manifold  .N
 
A deformation of an object might be regarded as a mapping of the parameter space to 
the space of the objects. 
 
It turns out that often the following statement holds even for infinite dimensional 
spaces: 
 
The deformations, which are transversal to the orbit of the given object, are versal. 
 
Roughly speaking, to obtain a versal deformation it is sufficient to perturb the 
singularity in k independent directions transversal to the orbit of the singularity provided 
that the codimension of orbit equals . k
 
The rigorous theory of versal deformations is based on B. Malgrange preparation 
theorem and results of J. Mather and J.C. Tougeron (we recommend also recent papers 
of J. Damon). The main theorem of this theory claims that any function germ of finite 
multiplicityμ  admits versal deformations depending onμ  parameters. 
 
The versal deformations (if they do exist) are very useful: the bifurcation diagram of 
any particular family may be regarded as a transformation (or a section) of the unique 
bifurcation diagram of the versal deformations, whose numbers of parameters is equal 
to the codimension of the orbit. 
 
More general setting when the relations between external and internal parameters are 
determined not by a hyper surface (of zeros of functions) but by a subset C of common 
zeros of several functions is related to the singularities of mappings  with  

The natural equivalence here is the group of a complete intersection .The 
: mg M N→ n

1.n ≥
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transformations form this group send the equations, determining S to their linear 
combinations (with variable coefficients) and change the coordinates. 
 
The corresponding bifurcation diagrams also arise in applied problems (singularities of 
diffraction on boundaries, projections of surface and so on). 
 
However, if the corank (i.e. the codimension of the image of the derivative of the 
mappings g) equals to 1, the singularity is equivalent to a deformation of a single 
function singularity. 
 
Generically the singularities of corank  of mappings g arise in the case  only if 

 
1> m n≥

4.m ≥
 
3.2. Geometry and Topology of Discriminant Sets 
 
In this subsection we study the geometrical properties of different discriminant sets in 
the space of functions, especially the properties of bifurcation sets of zero (or simply 
discriminants), i.e.  the sets of functions with singular zeros level, and bifurcation sets of 
functions, i.e. spaces of non-Morse functions. 
 
3.2.1. Discriminants 
 
A family of functions  depending on m parameters can be considered as a 
function . For any , the restriction of F onto the 

subspace  will be denoted by

n →R R

:F(x, )λ ( )n m× →R R R ∈ mRλ ( , )F ⋅ λ
n ×{ }λR fλ  its discriminant set  is the set of all 

values  such that 0 is a critical value of

m∑ ⊂R
mλ ∈R fλ . 

 
For the family (of functions in one variable x depending on parameters ) 
this set already has been considered in Section 2.1: it is the semicubical parabola 

The next complicated singularity, admits the versal deformation of 
the form 

+ +x ax b3 ,a b

227 0.b+ =4a3 3A

 
4 2 .c+ + +x ax bx  (8)                

 
Its discriminant set is called the swallowtail; it is shown in the left picture of Figure 4.  
Its consecutive sections by planes { const}a = are shown in Figure 5:  for  the 
section is a  smooth  parabola –like curve, for it has two singular points (at any of 
which it is locally diffeomorphic to a semicubical parabola) and one self-intersection, 
and in the plane a=0 it coincides with the curve 

0a>
0a<

4
4( ) ( )b c= 3

3 having a singular point at 
the origin. (The sense of the thin line in Figure 5 will be explained later.) 
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Figure 4:  Generic caustics 
 

 
Figure 5: Sections of a swallowtail  

 
The upper (in Figure 4 left ) component of the complement of consists of all 
polynomials (8) having exactly two real roots, the lower one of the polynomial without 
real roots and the intermediate small pyramid consists of polynomials  with 4 roots.  
Generic points of the discriminant surface are the functions with exactly one double 
root.  The semicubical cuspidal edge consists of all functions with one root of 
multiplicity 3, and the selfintersection consists of polynomials with two double roots. 

∑

 
Similar strata arise on bifurcations varieties or arbitrary generic families of functions 

 Namely, such a variety is always a hypresurface in the space of parameters: it 
is only strata of codimension 1 that are cuspidal edges and transverse self- intersections 
and strata of codimension 2 are triple self–intersections, transverse intersections of  
cuspidal edge and a smooth piece of , and strata at which ∑ looks like the direct 

product of the swallowtail and of   

→nR R

∑ 3A

.m 3-R
 
Similar objects and facts hold for holomorphic complex functions and their complex 
families. 
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In the local singularity theory, one usually considers the families of functions which 
are the deformations (even versal deformations see Section 3.1) of some function 
singularities : ( , .In this case the local discriminant variety is defined 
as the set of such  that 

fλ

f ) ( ,0→nR R R )
λ f λ  has a critical point with zero value close to the 

origin . Such a discriminant set has nice geometrical properties: it is irreducible 
and is swept out by smooth manifolds diffeomorphic to affine planes of low 
codimension.  For example, the swallowtail is swept out by the one-parametric family 
of straight lines.  Indeed, these discriminant sets look the same for stably equivalent 
functions; therefore we can assume that the Taylor expansion of f has zero quadratic 
part.  Then for any point the condition “

0∈ nR

∈ nx R f λ  has a critical point with zero value 

atx ”distinguishes an affine plane of the codimension 1n +  in the space of 
parametersλ  of the deformation. All such planes over all form a smooth 

submanifold in the product ; it is diffeomorpohic to 

mR
∈ nx R

×nR Rm 1−× ≡n m-n- m1R R R and, 
after the obvious projection to , provides a parametization of the discriminant∑ . nR
 
In particular we can go from any point of∑ to any other inside , only crossing finitely 
many times the transverse self-intersections and cuspidal edges.  In the similar complex 
situation, the set of regular points of  is path –connected. 

∑

∑
 
E. Looijenga has proved that all the components of the complement of discriminant of 
the versal deformation of any simple real function singularity are contractible (i.e. 
homeomorphic to an open ball in ); he also presented an algebraic description of all 
such components.  For any function of type (i.e. essentially the function of the 
one variable) there are exactly[(

Rμ

kA 1k+x
1) / 2] 1k + + such components: they are classified by the 

number of roots of corresponding polynomials. 
 
3.2.2. Bifurcation Sets of Functions. 
 
Given a smooth family of functions its bifurcations set of functions 

is the set of all  such that the function

{ }, ,F f≡ ∈ mRλ λ

( )FΔ ∈ mR ∈ mRλ fλ  is not strictly Morse. By 
the definition of the last notion, this set consists of two components: the caustic, i.e. the 
set of the function having a non-Morse singular point (at which it is not equivalent to a 
non degenerate quadratic form), and the Maxwell set, i.e. the closure of the set of 
functions having several critical points with the same critical value.  If our family is a 
deformation of a function singularity, then these sets are closely related with the 
discriminant set.  Indeed, we always can choose the -parametric versal deformation 
of

μ
, ,f f=μ μ( ) in such a way that it contains along with any function fλ  also all 

function of the form .f const+λ  Adding constant functions preserves the bifurcations 
set.  Therefore studying this set we can factorize trough such additions, or, which is the 
same, consider the reduced deformation consisting of functions fλ , where λ  runs over a 

hyperplane in μR transversal to lines of the form{ . This factorization , }f t t+ ∈ 1Rλ
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projects the discriminant set on the set of parameters of the reduced deformation.  
The caustic of this deformation is exactly the projection of the closure of the cuspidal 
edge of ∑ and the Maxwell set is the projection of the self intersection set.  The shape 
of these bifurcation sets for such a reduced deformation is universal:  for any generic 
deformation of the same (or stably equivalent) singularity depending on  
parameters, the corresponding bifurcation set of functions will be diffeomorphic to the 
product of this universal set and the space

∑

( ) 1m f≥ −μ

μm-R . 
 
The caustic of any function of type is diffeomorphic to the discriminant set of a 
function of type 

kΑ

1 :kA − this diffeomorphism is provided by taking the derivative along 
and some scaling of coefficients. 1x

 
So, the caustic of the singularity is diffeomorphic to the semicubical parabola, and 
that of is the swallowtail.  The caustics of two more singularities of codimension 3, 

and  are shown in central and right–hand parts of Figure 4 and are called 
respectively pyramid and purse.  In the case of functions of two variables, the large 
component of the complement of the pyramid consists of functions 

3A

4A

4D−
4D+

fλ having exactly 
two saddlepoints and no other real critical points. In two other components fλ has one 
additional saddle point and an extremum (minimum or maximum depending on the 
component).  The lower (in Figure 4) component of the complement to the purse 
consists of functions fλ having no real critical points, the upper one of points with one 
maximum, one minimum and two saddles. In two intermediate symmetric components 
the corresponding functions have one saddle point and either minimum or maximum, 
depending on the component. 
 
The Maxwell set of the singularity is presented by the bissectral hemiline of the 
semicubical parabola (in the lower part of Figure 1 it is distinguished by 
conditions ); the complementary semiaxis 

3A

0, 0b a= < { }0, 0b a= < corresponds to 
polynomials with two complex conjugate critical points with equal critical values. In 
general, the Maxwell set is a variety with boundary, and this boundary coincides with 
the stratum of the caustic. 3{ }A
 
It is easy to see that the Maxwell set of the deformation 5 3a b c+ + +x x x2 x of the 

function  (representing the class ) lies in the set of polynomials having at least 
three real roots of the derivative, i.e.  in the closure of the small pyramid of the 
swallowtail.  It is easy to see also that it is invariant under the action of the one-
parametric group of scalings, sending any point to . 
Thus this set is completely described by its intersection with the very left plane section 
of the swallowtail in Figure 5, this intersection is depicted there by the thin line. 

5x 4A

+
1R ( , , )a b c 2 3 4( , , ),t a t b t c t ∈ +

1R
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For the singularity (see the right hand picture of Figure 4) the Maxwell set belongs 
to the “upper” component of the complement of the purse, is homeomorphic to the 
hemiplane and splits up this component into two symmetric parts.  For singularity 

the Maxwell set consists of three irreducible components homeomorphic to 
hemiplanes; these three components intersect one another along the axial line of the 
“pyramid”. This line consists of functions with three coinciding critical values. 

4D+

4D−

 
The complete set of strata of the bifurcation sets of functions for all simple singularities 
was obtained by O. Lyashko in 1976, similar results for real singularities are due to 
Yu.Chislenko. 
 
3.3 Caustics, Wavefronts, and Symplectic Geometry. 
 
We describe below one more important feature of the discriminants and bifurcation 
diagrams of functions.  They can be visualized and recognized in many physical 
models. 
 
Suppose that a disturbance (e.g. a shock wave, light, an epidemic or a flame) is being 
propagated in some medium.  For simplicity let us start with the plane case.  Suppose 
that at the initial instant the disturbance is on the initial curve and the speed of its 
propagation is constant at any point and in any direction. 
 
To find out where the disturbance will be at time t (according to Huygens principle) we 
must lay out a segment of length t along every normal to the curve.  The resulting curve 
is called equidistant or the wave front (Figure 6 left above). 
 

 
Figure 6:  Equidistant of an ellipse and envelopes of systems of rays. 
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Even if the initial wavefront has no singularities, after some time singularties will 
appear. For instance, upon propagation of the disturbance inside an ellipse the 
singularities arise when the time passes the value equal to the minimal radius of 
curvature of the ellipse. Immediately afterwards the wavefront contains four cusp points 
and two points of selfintersection. 
 
These singularities are stable, not removable by all small perturbations of the initial 
wave front (and even of the speed of the propagation).  All other singularities which can 
occur for non-generic initial curves decompose on a small perturbation of it into several 
singularities of standard type. Moreover, all the same facts hold for the wave 
propagation in the nonhomogenous media, where rays of propagation are not straight 
lines forcefully.  For instance, if there is some domain where the wave propagation is 
comparatively slow, then the envelope of waves (where the shock is concentrated) will 
appear beyond it, and the edge of the envelope will be approximately directed into the 
core of his domain, see figure 6 left below.  This picture should arise in the  
tomographical investigations (for example, of mines).  
 
In three–space only cusp ridges and singularities of swallowtail type can appear, see the 
left picture of Figure 4. 
 
Let us examine the intersections of the swallowtail with a system of parallel planes in 
generic position.  These intersections are plane curves (Figure 5).  As the plane is 
translated these curves change their form at the moment the plane passes through the 
vertex of the tail.  The transformation here is exactly the same as the metamorphosis of 
a wave front on the plane (two cusp points and one self- intersection point appear of 
disappear). 
 
We can describe the metamorphoses of wavefronts as follows.  Consider the space-time 
which is the direct product of the initial space and of the time axis. 
 
The wavefront being propagated in the plane sweeps out a surface in the space-time.  It 
turns out that this surface can itself be regarded as a wave front in the space-time (“big-
front”). In the generic case, the singularities of the big front will be swallowtails, cusp 
ridges and self–intersections, situated in the space–time in a generic way relative to the 
isochrones (which are made up of “simultaneous” points in the space-time). Now it is 
easy to understand which metamorphoses can be experienced by the momentary wave 
fronts on the plane in generic case: they are the changes in the form of the isochronic 
cross-sections of the big front. 
 
The study of the metamorphoses of a wave front during its propagation in three-
dimensional space leads in the same way to an investigation of the cross–sections of the 
big (three–dimensional ) wave front in four-dimensional space-time by the three–
dimensional isochrones. 
 
Along with wave fronts, ray systems can be used to describe the propagation of 
disturbances.  For example the propagation of a disturbance inside an ellipse can be 
described using the family of internal normals to the ellipse.  This family has an 
envelope. The envelope of the family or rays is called caustic (i.e. “burning”), since 
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lights concentrate at it.  A caustic is clearly visible on the inner surface of a cup when 
the sun shines on it.  A rainbow in the sky is also due to a caustic of a system of rays 
that have passed through a drop of water with complete internal reflection.  (The use of 
the same word "caustic" for singularities of systems of rays and for component of 
bifurcation diagrams of function singularities, introduced above, is of course not 
occasional). 
 
The caustic of an elliptic front has four cusps (see Figure 6). These singularities are 
stable:  a nearby front has a caustic with the same singularities.  All singularities of 
caustics resolve under a small perturbation into the standard ones: cusps and self–
intersection points. 
 
Recently V.I.Arnold (see “Uspekhi Phyicheskix Nauk”, 1999, n 12) observed that the 
collection of the normals to an ellipse determines an anti-circle on the dual plane that is 
a curve given by the equation. 
 
     (9)             1− − =x +y2 2

 
in appropriate affine coordinates.  In particular, the anti–circle is projective dual to an 
astroid. 
 
The system of normals to a surface in three-dimensional space also has a caustic.  This 
caustic can be obtained by marking off on each normal the radius of principal curvature 
(a surface, in general, has two different radii of curvature at each point so that the 
normal has two distinct caustic points). 
 
It is not easy to imagine the caustics (called also the “focal surface”) of even the 
simplest surfaces, a triaxial ellipsoid for instance. 
 
Generic caustics in three-dimensional space have only standard singularities. Besides 
regular surfaces, cuspidal ridges and their generic (transversal) intersections these 
singularities are: the swallow-tail, the “pyramid” (or “elliptic umbilic”) and the “purse” 
(or “hyperbolic umbilic”), see Figure 4.  Those are the strata of the corresponding 
bifurcation diagrams of the functions to types 4 4 4, ,A D D ,− +  respectively. 
 
The pyramid has three cuspidal ridges meeting tangentially at the vertex.  The purse has 
one cuspidal ridge and consists of two symmetric boat bows intersecting in two lines. 
 
These singularities are stable. All more complicated singularities of caustics in three 
dimensional space resolve into these standard elements on small perturbations. 
 
Consider now for a given initial wavefront (for instance an ellipse in the plane), both its 
caustics and the fronts of the propagated disturbance. It is not difficult to see that the 
singularities of the propagating wave front slide along the caustic and fill it out. 
 
The cuspidal ridge of the wave front moving in three-dimensional space sweeps out the 
surface of the caustic.  Consider the case, when this surface is a swallowtail.  This 
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partition of the caustic into curves is not the same partitioning of the swallowtail surface 
into plane curves being its plane sections.  The cusp ridge of the moving front does not 
have self intersections.  The cusp ridge of the moving front passes twice through each 
point of the self-intersection line of the caustic.  The time interval between these passing 
is very small (of order of 

5
2ε where ε is the distance from the vertex of the tail). 

 
If the original front depends on a parameter, then its caustic also varies and during this 
movement it can undergo metamorphosis. The metamorphoses of a moving caustic can 
be studied by considering cross- sections of a big caustic in the space-time. 
 
The cusp ridges of caustics moving in three-space sweep out the surface of a bicaustic. 
The generic singularities of bicaustics contain new stable classes of singularities. 
 
In the examples considered above the disturbance from a point is propagated in all 
directions. 
 
In other models the indicatrix of the disturbance rates can be shifted out of the origin.  
For example, the propagating front of the flame in a forest in windy weather moves at 
each point only in directions, which belong to certain sector at the tangent plane of all 
the velocities at this point. 
 
Such families of fronts can have a non empty envelope.  The generic singularities (apart 
from the A and D caustics, described above) of the union of caustics and the envelope in 
two and three spaces happen to correspond to bifurcation diagrams of functions of so-
called boundary singularities  3 3 4 4 4, , , , .B C B C F  The discriminant and the bifurcation 
diagram of the singularities  are shown in Figure 7. 3C
 

 
 

Figure 7:  Bifurcation diagrams for the boundary singularity  3C

©Encyclopedia of Life Support Systems (EOLSS) 



MATHEMATICAL MODELS OF LIFE SUPPORT SYSTEMS – Mathematical Models of  Catastrophes. Control of Catastrohic 
Processes - V.I. Arnold, A.A. Davydov, V.A. Vassiliev and  V.M. Zakalyukin 

 
Let us consider a pair of functions ( ), (0) 0f f =x  and defined in the 

neighborhood of the origin of . Suppose the zero level hypersurface (called boundary 
hypersuface) of the function  is regular (in particular it is smooth). 

( ), (0) 0g g =x
nR

g
 
The boundary singularities are the classes are the classes of such pairs with respect to 
the action of the group of diffeomorphisms of x -space, preserving the origin. 
 
The simple boundary singularities naturally correspond to Coxeter groups of types 

, , ,A D E  and also 4, ,B C F  generated by reflections. 
 
As is well known, rays describe the propagation of waves (say, light ) only as a first 
approximation ; for a more precise description of a wave one has to introduce a new 
essential parameter, the wavelength (the ray description is satisfactory only when the 
wavelength is small in comparison with the characteristic geometric dimension of the 
system). 
 
The intensity of light is greater near a caustic and still greater near its singularities.  The 
coefficient of intensity amplification is proportional to ,−αλ where is the wavelength 
and the index  is a rational number depending on a nature of the singularity. 

λ
α

 
For the simplest singularities the values of α are as follows: 
 
Smooth caustic cuspidal ridge    swallowtail      pyramid         purse 
    1/6                          1/4                    3/10               1/3                 1/3 
 
Thus the brightest–shinning are the point singularities of pyramid and purse type. In the 
case of a moving caustic, at isolated moments of time even brighter singularities 5A and 

5D can appear. 
 
If the light is so intense that it can destroy the medium, then the destruction will start at 
the points of greatest brightness.  So the index α determines how the intensity for 
destruction to occur depends on the frequency of the light.   
 
The predictions by the theory of singularities of the geometry of caustics, wave fronts 
and their metamorphoses have been completely confirmed in experiments and it seems 
strange now that this theory was not constructed long ago.  However, the fact is that the 
mathematical apparatus needed is not trivial and is connected with such diverse areas of 
mathematics as the classification of simple Lie algebras and of Coxeter’s 
crystallographic groups, the theory of braids, the theory of integrals depending on 
parameter’s etc. 
 
It turns out that the singularities of caustics and wavefronts are the loci of critical values 
of very special non-generic mappings of the manifolds of equal dimensions or of the 
mapping form n-dimensional manifold to ( )1n + -dimensional one. 
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The mappings of the same type arise in many other applied problems. 
 
For example, the gradient mapping (associating to each point the gradient of a certain 
function at that point), and the Gauss mappings (associating to each point of a 
hypersurface in Euclidean space the unitary vector, which is normal to the hypersurface 
at this point) yield the same generic singularities as caustics. 
 
According to Ya. B. Zeldovich(1970), these singularities are responsible for the origin 
of large scale inhomogeneities in the distribution of matter in the Universe from initial 
small and smooth fluctuations of density and the initial velocity field of the potential 
flow of non-interacting particles of the “pro-matter”. 
 
Moreover, many issues in singularity theory (for instance the classification of the 
singularities of caustics and wave fronts and also the investigation of the various 
singularities in optimization and variational calculus problems as well as the 
singularities of the special mappings mentioned above) become understandable only 
within the framework of the geometry of symplectic and contact manifolds. 
 
Symplectic geometry is the geometry of the phase space (the space of positions and 
momenta of classical mechanics).  It represents the result of the long development of 
mechanics, the variational calculus, etc. 
 
The definition of a symplectic structure in a vector space is analogous to the definition 
of Euclidean structure: it is a skew-symmetric (while a Euclidean structure is 
symmetric) function of a pair of vectors, linear in each argument, which is non-
degenerate (no non-zero vector is skew–orthogonal to every vector). Odd-dimensional 
spaces do not admit symplectic structures. 
 
All symplectic vector spaces of the same dimension are isomorphic.  It is easy to 
construct a symplectic structure in an even-dimensional space by representing the space 
as a sum of two-dimensional planes:  the skew–scalar product is splitted into a sum of 
the areas of the projections onto these planes. 
 
In sympletic space the skew-orthognal complement of a vector subspace consists of all 
vectors, whose skew–scalar products with all vector of the subspace are zero.  The 
dimension of the skew- orthogonal complement (similarly to the Euclidean case) is 
equal to the codimension of the original subspace. 
 
A vector subspace, which is its own skew-orthogonal complement, is called a 
Lagrangian subspace.  Its dimension equals one-half of the dimension of the original 
symplectic space. 
 
A symplectic structure on a manifold is given by the choice of a symplectic structure on 
each tangent space.  However there is additional condition connecting the symplectic 
structures in different spaces:  the “area” of the whole boundary of any three-
dimensional figure should be equal to zero. 
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Unlike Riemannian manifolds, all symplectic manifolds of a given dimension are 
locally isomorphic (a neighborhood of any point can be mapped onto another one with 
preservation of symplectic “area”).  Thus, each symplecitc manifold is locally 
isomorphic to a standard symplectic vector space.  In such a space one may introduce 
coordinates such that the skew–scalar product equals the sum of the 
oriented areas of the projections onto the planes  

,..., , 1,...,( np p q q1 )n

1 1 ,( ),..., ( ).n np q p q
 
A submanifold of a symplectic space is called a Lagrangian submanifold if its tangent 
space at each point is Lagrangian. 
 
A fibration of symplectic space into submanifolds is called Lagrangian fibration if all 
the fibers are Lagrangian submanifolds. 
 
Any Lagrangian fibration is locally isomorphic to the standard fibration of the phase 
space over the configuration space ( , )p q q→ (the fiber are the space of momenta). The 
base -space of this fibration is called the configuration space. q
 
Suppose now that in the space of a Lagrangian fibration we are given yet another 
Lagrangian manifold.  Then we get a smooth mapping of this Lagrangian submanifolds 
to the base space of the Lagrangian fibration. 
 
This mapping between manifolds of the same dimension n is called a Lagrange 
mapping and its singularities are called Lagrangian singularities. 
 
These singularities form a special class of singularities of smooth mappings between 
manifolds of the same dimensions.  Starting from 3n = they are not generic singularities 
of general mappings. 
 
It turns out that the theory of Lagrange mappings (with respect to the Lagrangian 
equivalence, which is a group of diffeomorphisms respecting the structure of fibrations 
and symplectic structure) corresponds to the theory of families of functions depending 
on the parameters (with respect to changes of variables depending on parameters and 
addings smooth functions on parameters). 
 
It can be shown that the gradient, normal and Gausssian singularities are Lagrangian. 
 
The caustics of ray systems are the critical values loci of Lagrangian projections. 
 
The solution set of any variational problem (or, in general, the solution set of 
Hamiltonian equation, with a fixed value of Hamiltonian) forms a symplectic manifold, 
which is very useful for investigating the properties of these solutions. 
 
In symplectic geometry (in contrast to Euclidean and Riemannain ones) the intrinsic 
geometry (the restriction of the symplectic structure to the set of tangent vectors to the 
submanifold) determines the local external geometry.  In other words, submanifolds 
with the same intrinsic geometry can be locally transformed into one another by a 
diffeomorphism of the ambient space, which preserves the sympletic structure. 
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The situation becomes quite different if we embed not a submanifold but a variety, 
which itself has singular points.  At these singular points certain information on the 
embedding into the ambient symplectic structure is conserved. Recent investigations 
(V.I. Arnold, 1999) of non-equivalent embeddings of curves (with singularities) into 
symplectic space show in particular that there are several (but finitely many) different 
embeddings of cusps. 
 
R. Melrose in his papers on diffraction noted the importance of investigation of 
singularities of the disposition of submanifolds in a symplectic space. 
 
M.Zhitomirski and R. Montgomery (1999) related a Lagrangian singular curve to so 
called Goursat non-holonomic distributions, which determines, for example, the motion 
of a chained trolleys (say, of the airport luggage trains). 
 
Singular Lagrangian varieties are generic singularities in families of geodesics on a 
Riemannian manifold with a boundary (this setting is often called the problem of 
bypassing an obstacle or variational problem with one–sided constrains). The low 
dimensional classification of their projections provides once again a relation with the 
complete list of Coxeter groups. 
 
A contact structure in an odd-dimensional space is a field of hyperplanes which is 
generic near each point. 
 
For example the manifold of all line elements in the plane is a contact (three-
dimensional) manifold. 
 
The role of the Lagrangian manifolds passes over in the contact case to Legendre 
manifolds (that is integral submanifolds of the hyperplane field, which have the greatest 
possible dimension: it equals to in a contact manifold of dimension ). m 2 1m +
 
The singularities of wavefronts, of Legendre transformation (useful in particular in 
thermodynamics), of surfaces dual to the smooth ones are Legendre singularities.  The 
entire symplectic theory has contact counterpart which is extremely useful for the 
investigations of singularities in variational problems. 
 
For example, in mathematical economics the contact geometry helps to solve the market 
disaggregation problem formulated by I.  Ekeland. 
 
3.4 Bifurcations and the Problem of choice  
 
Our life is full of decision problems.  Usually we solve them by analogy: there is an 
appropriate solution for a tentative problem, then if its initial data change slightly then 
we expect to find a solution of the new problem as a small perturbation of the previous 
one.  However, if our problems (moving in the space of all problems of their class) 
come too close to a discriminant variety, then this strategy can fail because the problem 
of choice becomes nontrivial. 
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A model example of such situations is as follows.  For the space of problems we take 
that of all complex polynomials   
 

( ) 1
1 1... ;d d

a n nf a a−
−≡ + + + +x x x x a  (10)           

 
it is to find (up to a sufficiently small constant ) one root of any such polynomial 
given by its coefficients.  The above analogy method (in applied mathematics, it is 
called the “path–following method”) acts as follows.  There are polynomials 
(say, ) whose roots are well–known.  Let us join such a model polynomial with 
one to be solved in the space of all polynomials (10) by a path (say, by a line 
segment).  Then we move along this path in small steps.  By the inductive conjecture, 
before any step we know a root of the corresponding polynomial .Then we consider this 
root as initial data for the Newton iterative method for the polynomial obtained after this 
step. (This method produces the sequence of points 

0ε >

1d −x
dC

, 0,1...,i i =z  where is some 
initial point and 

0z

1i+z is the solution of the equation 1( ) ( ) ( ),i i i if f+ ′− =z z z z i.e., it 
replaces the function f  by the linear function, having the same value and first derivative 
at the point and defines as the root of this linear function). However, the Newton 
method with starting point surely converges only if the absolute value of  is 

sufficiently small and that of is comparatively large. When we approach the 
discriminant set (i.e., the set of polynomials with multiple roots), this condition can fail, 
and the Newton method can send us far away from the neighborhood of any root.  In 
fact, this inconvenience has a topological origin and cannot be removed by replacing the 
Newton method by any other.  Indeed, when we approach the discriminant variety, 
some other root becomes very close to the one we follow.  Therefore, at the next step 
we obtain a problem of choosing one of two roots of the corresponding polynomial: 
solving it takes a lot of time. 

iz 1i+z

0z 0( )f z
'

0( )f z

 
S. Smale (1987) has related this problem with algebraic topology, namely with the 
notion of the genus of A. S. Shvartz and cohomology of braid groups. (The starting 
model observation here consists in the fact that equation 2 a=x  has no sufficiently 
good solutions depending continuously on all complex ). Smale proved that the worst 
number of choices in this problem grows to infinity when d does. Later V. Vassiliev has 
improved his lower estimate and found also an upper one, in particular he proved that 
this number grow asymptotically as d. 

a

 
In fact, almost all difficulties in solving problems by analogy (by “path–following 
method” developed in particular in the works of M. Shub and S. Smale) follow from the 
presence of discriminants: it forces us to go by very small steps, or to go simultaneously 
along many paths, or to watch on any step whether we are too close to the discriminant. 
 
For more complicated (and thus more realistic) problems these difficulties are even 
stronger than for the problem of solving (10).  E.g., if we consider the problem of 
finding approximate roots of systems of  polynomial equations of degree d in 

complex variables, then the degree of the discriminant set grows exponentially with n.  
For large  this set looks like a deep forest, and we need to pay a lot of power and time 

n
n

n
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to go through it from the model system to the system to be solved.  This forest is 
especially dense close to the subspace of real polynomials or systems (which, in fact are 
to be solved in a majority of applied problems). 
 
The “path-following” method often is used to solve problems of even more complicated 
nature, say nonlinear differential equations. Of course, in these cases the harmful 
influence of the discriminant set becomes still worse. 
 
However, the principal (of small codimensions) singular strata of such discriminant sets 
usually are standard, i.e. belong to a finite list of model degenerations.  Only such strata 
have good chance to appear close to a generic path in the space of problems, thus the 
study and tabulation of the behavior of our problems in such model situations should 
help solve our problems in general. 
 
3.5. Monodromy  of Complex Singularities and Shock Fronts 
 
3.5.1. Integral Representations and Complex Fiber Bundles 
 
The most important special functions of mathematical physics are given by integral 
representatations:  they include the fundamental solutions of all principal classes of 
partial differential equations. Newton–Coulomb potentials, Fourier integrals, Feynman 
integrals, generalizations of Gauss hypergeometric functions, and many others. 
 
The general construction of such functions is as follows.  We have a differentiable fiber 
bundle :p E → B , a differential form on its total space ω E and a family of singular 

cycles in fibers  of this bundle, depending continuously on the corresponding 
base point .  Then the integrals of the form ω  along these cycles define a function 

on the base

( )1p b−

b
( )bΙ B .   

  
The principal qualitative and analytical properties of this function  can be 
formulated in terms of its asymptotic behavior as b  tends to irregular limit points in 
some closure  

bΙ( )

B  of the domain B , over which the bundle p fails to be locally trivial. 
 
Even if our applied problem and the integral function ( )bΙ are completely real, their 
qualitative properties can be well understood only if we enter into the complex domain 
(as it generally happens in the mathematics). In fact, usually it is possible to extend our 
fiber bundle to its “complexification” :p E B→C C C ; where and EC BC  are complex 
manifolds whose real parts are E  and B . Then the irregular points of CΒ  will form a 
subvariety  of complex codimension 1,  i.e. of real codimension 2, and instead of 
approaching it we can go around it in the space

∑

CB of regular complex values of b . The 
family of integration cycles also can be included into a similar family depending 
continuously on the points of BC .  However this family is usually multivlaued: if we go 
around a piece of ∑  at its point  we can deform the initial cycle in the fiber to some 
different cycle, so that the value of the integral also can change. But this new value is 

β
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nothing other than the analytical continuation of the initial function ( )bΙ . In particular, 
if the value of the integral actually changes, we can be sure that this function is irregular 
at this point  even in the real domain. β
 
The type of the “ramification” of integral cycles (and hence also the analytical 
properties of the function ( )bΙ at its suspicious points) is controlled by the monodromy 
theory or Picard –Lefschetz theory. 
 
The importance of complex discriminants ( )F=∑ ∑ studied in the previous 
subsections consists in the fact that they provide a wide class of model ramification sets.  
Indeed, over the space of parameters λof a family of holomorphic functions mC fλ the 

Milnor bundle is defined:  its fiber over a point λ is the hypersurface  The 
discriminant set is exactly the set of parameters λ  over which this bundle fails to be 
locally trivial, and hence going round its pieces defines generally a nontrivial 
ramification of cycles in the fibers.  The ramification of integration cycles, arising in 
many natural problems of mathematical physics and tomography, can be related to this 
model situation, and hence the ramification of corresponding integrals is controlled by 
the local Picard –Lefschetz theory of function singularities.  However, there are more 
complicated problems, in which more degenerated situations arise; they are investigated 
in generalized Picard –Lefschetz theories, due in particular to F. Pham. 

1(0).f −λ
∑

 
3.5.2. An Example : Shock Fronts  
 
An important application of these methods is in the theory of shock waves of hyperbolic 
partial differential equations (in particular of the wave equation 
 

2 2
2

2 2
1

,
n

i i

u uc
t =

∂ ∂
=

∂ ∂
∑

x
  (11)          

 
describing the propagation of waves with velocity c). A fundamental solution, i.e. an 
elementary wave arising from a point instantaneous perturbation, has singularities on 
the cone defined by the condition 2 2 2

1 , 0n
iic t t= .= ≥∑ x The asymptotic behavior of the 

wave, for the argument tending to this cone, depends on the parity of the number of 
variables.  In our four-dimensional space-time (and more generally for any odd ) 
the signal is noted only instantly, when passes a fixed observer.  On the contrary, in the 
odd-dimensional case the signal continues to sound the whole time after the instant of 
the first meeting.  The first circumstance allows us to communicate via the sound, while 
as the consequence of the second, the “acoustical layer” in the ocean, being an excellent 
conductor of individual signals, is badly suited for fast transmission of any complicated 
information.  Both variants of the phenomenon of sound waves have analogues for 
arbitrary hyperbolic equations:  in the language of the general theory we say that in the 
case of an odd n the interior component of the complement to the cone of the 
singularities  (= wave front)  is a lacuna  (and the front is sharp from the side of this 
component) and in the case of even n there is diffusion of waves from the side of this 

( , )t x
1n>
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component ; the exterior component is a lacuna for any dimensions (and arbitrary 
processes described by hyperbolic equations). 
 
This phenomenon was investigated by J. Hadamard, and then by G. Herglotz and I.G. 
Petrovskii, who in particular have found an essential integral representation for the 
fundamental solutions of hyperbolic equations.  In particular, Petrovskii related the 
sharpness with the triviality of the corresponding integration cycles.  Further important 
investigations are due to M. Atiyah, R. Bott and L. Gårding, who have studied the local 
sharpness at particular points of wave fronts(of more complicated equations, where the 
front can be non-smooth, and looks like the real discriminant set studied in the 
Subsection 3.3). In particular, Gårding has found all domains of sharpness at the 
singularities of types 2A and 3A (where the wave front can be reduced to the 
semicubical parabola and the swallowtail respectively). Similar results exist also for all 
simple singularities. 
 
4. Singularities in Optimization Problems. 
 
4.1. Conflict Sets and Maxwell Strata 
 
Problems in optimization, control theory and decision theory provide singularities, 
bifurcation diagrams, and conflict (or Maxwell) sets due to certain counterpart of the 
problem of choice. 
 
Let us consider for example a swimmer in a still lake who would like to reach the shore 
as soon as possible.  Denote by y  his current position in the lake, denote by x a point of 
the shore and by ( )f x,y the distance between these points. 
 
The problem is to find x  providing the minimum of the function  for giveny.  
For a generic point y  such point x  is defined uniquely, but for some states the 
minimum is achieved in several points of the shore.  For example, if the lake is a line 
segment then such state is the center of this segment.  Inside the lake the distance to the 
shore is a smooth function everywhere except this central point, at which it is equal to 

(where 2a is the length of the lake, and the origin on the y -axis is taken at this 
central point), and thus has a singularity. This point is a conflict set where the swimmer 
has a not unique optimal solution (but two in this example). 

(f x,y )

a− y| |

 
For two-dimensional lakes the conflict set can have a more complicated structure. It is 
clear that singularities of conflict sets are related to the singularities of wave fronts (see 
section 3). The level curves of the function 
 
( ) ( ),min f=F y x y

x
 (12) 

            
coincide with the leading fronts of the disturbance extending from the shore with the 
same velocity in any direction. 
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In a generic situation (for a lake of “general position”) the function F  can have only 
standard singularities.  Near any statey  by appropriate choice of coordinates in they -
space and adding a smooth function of y to  the last function can be reduced to zero or 
to one of the following normal forms near the origin: 

F

 
in the case of one parameter: 
 
 - |      (13) y |
  
 in the case of two parameters:     
 
either  - |  or   or else  y |1 ( )2 1 2min , , + y y y y1 ( )4 2

1 2 .min + +
x

x y x y x  (14)           

 
Here the conflict set is the set of points where the function F  is not differentiable due 
to the existence of at least two optimal solutions.  Note, that for the case of many 
variables x   the list of generic singularities of F is the same.  For the last singularity of 
this list the graph of the functionF is the part of swallowtail surface obtained by the 
cutting of its pyramid. 
 
For the case of 3, 4, 5, and 6 parameters such a list contains 5, 8, 12 and 17 singularities.  
Starting from the seven parameters the number of nonequivalent singularities is infinite, 
and the corresponding normal forms include the functions of the parameters. But even 
in these cases the function F  is equivalent to a smooth one up to continuous 
deformation of the parameter space, provided that the system is in general position (V.I. 
Matov, 1981).  
 
 In the nature the water level in the lake depends usually on the season, and so the shore 
does, too. Thus, if each concrete time instant one has to solve the problem (12), then, in 
general, one needs to study an extremal problem with 
constraints ( , ) min{ ( , ) ( ) }h f L h= =⏐F y x y x where  is the level of the lake surface over 
the sea and 

h
L  is the respective level function on the earth surface, and now  is two- 

dimensional. 
x

 
In a more general situation the constraint map L  depends on bothx  andy , and there are 
several “level” parameters .  So, the problem takes the form h
 

( ) min{ ( ) ( ) }F h f L h= =⏐X X ,   (15)      
 
where ( )=X x,y . Here the solution F is called the relative minimum. The list of generic 
singularities of the realative minimum is wider. Certainly, it includes all singularities of 
the case (12) but also many others. For some of them the function F  is even 
discontinuous. 
 
The generic relative minimum singularity is equivalent (up to more wide equivalence 
than considered above, namely, up to diffeomorphisms of the graph space of functionF  
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preserving the natural fibration over the h –space) to zero or toone of the following 
singularities near the origin: 
 
for one parameter, one of the following three singularities: 

{ }, , min ,h h h− − −| | 1 ,     (16)     

and for two parameters one of the following twelve: 
  
− h 1     (17)    
      

{ }min 01 2+ + =w w wh h3|  (18)      

 

{ }2
1 2min + +

w
w w h wh4  (19)                           

 

1 2− h h   (20)       

      

{ }1 2min ,1− h h      (21)                                

 
1− h| |       (22)       

 

{ }1 2 1 2min , , +h h h h    (23)                               

 

{ }1min ,1− h       (24)           

 

{ }21min 1 ,− −h h| |    (25)                                

 

{ }1 2min 1 ,− h h    (26) 

          

{ }1 2min 2,1 ,− −h h  (27)       

 

{ }1 2min ,− h h        (28)                                

                                                                                                                                                                         
When the number of parameters in the problem (15) is equal to three there are 34 
generic singularities.  Starting from 4 parameters here we have the same picture as 
starting from seven parameters above: the number of nonequivalent singularities is 
infinite, and their normal forms include an arbitrary function of certain parameter. 
 
The relative minimum singularities can be separated into two parts. One part includes 
the point singularities defined by the behavior of the objective (or minimized) function f 

©Encyclopedia of Life Support Systems (EOLSS) 



MATHEMATICAL MODELS OF LIFE SUPPORT SYSTEMS – Mathematical Models of  Catastrophes. Control of Catastrohic 
Processes - V.I. Arnold, A.A. Davydov, V.A. Vassiliev and  V.M. Zakalyukin 

and the constraint L  near a point of -space.  Another part is formed by all generic 
superpositions of the point singularities.  In the latter the first four lines represent point 
singularities, and all others are their superpoisitions. 

X

 
In the case of a lake with variation of its level during the time we have four variables 
(point  of the earth and the point of y  of the lake surface) and three parameters (the 
levelh and again the pointy ). For such numbers of variables and parameters there are 
only six generic point singularities of the relative mimimum.  Up to appropriate choice 
of smooth coordinate system and up to adding smooth functions of the 
parameter

x

( ),Λ = h y , any such a singularity is either one of the first three singularities of 
the previous list or one of the following three singularities defined near the origin by 
functions. 
 

{ }4 2
1 2 3min 0 ,+ + + =w w w w| λ λ λ   (29)                 

, or     (30)        ( ) ( )2 2 2min 1 3
,

v v
v

⎧ ⎫
− −⎨ ⎬

⎩ ⎭
w - | w

w

2
+ 2λ λ = λ

⎫
= ⎬λ( ) ( )2 2 22min 1 3

,
v v

v

⎧
− +⎨

⎩ ⎭
w - | w

w

2
+ 2λ λ      (31)                               

 
The last two singularities have a simple geometrical illustration. The function of (30)  is 
equal to the square of the minimum distance from the point  of the plane to the 

hyperbola shore   .Here the distance to the shore is calculated both from 
the surface of the lake and from the earth surface, too.  The conflict set of the hyperbola 
consists of the axis of its symmetry separating its branches and of two infinite rays 
emanating from the points 

1 2( , )λ λ
2 2

3.v − =w λ

32±( λ ) on another axis of symmetry of this hyperbola.  

When level varies, the conflict set sweeps two orthogonal planes in the space of 
parameters with some “cuts”. The relative minimum loses its smoothness exactly on this 
set.  The singularity of this type is observed on an isthmus at the moment of its birth in 
the withering lake if the minimized function is the square of the distance to the shore. 

3λ

 
Analogously, the function of the singularity (31) gives the square of the minimum 
distance to the ellipse . Here, for negative value of , the relative 
minimum is not defined at all, and for the positive one this minimum loses the 
smoothness on the segment connecting the points 

2 2
32v + =w λ 3λ

3 / 2,0)±( λ . When the “profundity 
of the water”  varies from 0 to  this segment sweeps the convex hull of the 

parabola . Here the set of non–smoothness of the relative minimum 
consists of this hull and the plane

3λ ∞,+
2

2 30, 42= =λ λ 1λ

3 0=λ . 
 
4.2. Singularities of Controllability 
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Implementation of control parameter into an evolving system helps sometimes to avoid 
its catastrophic behavior (see the example of feedback system in Subsection 2.2 above). 
 
A control system is defined by vector fields with a control.  At a point of the phase 
space all values of the control define the indicatrix of admissible velocities for the 
evolution of this state. 
 
Taking every time admissible velocity we define an admissible control of the system.  It 
implies an admissible evolution of the system. 
 
A state of the system is attainable from another one (in time T) if there exists 
admissible evolution of the system steering out of the second state to the first one (in 
time T, respectively). 
 
All states attainable from a given one form the attainable set of this state, and the set of 
states from any of which the given state is attainable is called the control set of this 
state. 
 
In our model of exploitation with feedback the attainable set of any initial positive 
volume of population is the union of the interval (0, 1) and the interval , and 
its control set is the interval  if and it is the interval (0  if . 

0x ( 0x0, )
0( , )+∞x 0 1≥x , )+∞ 0 1x <

 
A maximal domain of phase space coinciding with the intersection of the control set and 
the attainable set of any its point is called a transitivity set.  The control system 
describing the evolution of population has one transitivity set.  This set is the interval (0, 
1). 
 
Inside the transitivity set any two points can be carried out one to another in finite time 
by appropriate choice of admissible evolution of the system.  So, until the system is 
inside such a set, its possible future state can be arbitrary from this set, and in that the 
sense we need not be afraid of the possibility of destroying it.  So, in some sense a 
transitivity set plays the same role as an attractor of a vector field.  But sometimes the 
transitivity sets have no stationary states of the system as well as the cyclic motion of a 
dynamical system discussed above.  Leaving such a set the system has no possibility to 
come back under any of its admissible evolution. After that the system can pass to some 
other stationary regime (=transitivity set) or it can attain such states when the system 
will be destroyed. 
 
Control sets, attainable sets and transitivity sets are very important characteristics of any 
control system.  On the line these sets have very simple structure, namely, all of them 
are intervals for a generic system with field of velocity indicatrix which is independent 
of time. In our model of exploitation with feedback all these sets have small variations 
under a small perturbation of the vector field of evolution 2−x x , and for any 
sufficiently close vector field they can be carried out to the respective sets of the initial 
field by a small deformation of the phase space. 
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On the plane (or a surface) the structure of control sets, attainable sets and transitivity 
sets is more complicated.  But in generic cases they have some important properties of 
stability. 
 
For example, for a generic system on the usual two-dimensional sphere the attainable 
set of a typical initial state (or typical initial start curve) is an attractor.  That means that 
at any admissible evolution the distance between the current state of the system and this 
set tends to zero for any initial state sufficiently close to the attainable set.  The same is 
true for the control set if we change the time direction. 
 
For a generic two-dimensional control system the boundary of the attainable (control) 
set is some smooth curve with isolated singularities from a finite list. If the indicatrix of 
admissible velocities is a smooth closed curve (like a deformed circle) then there are 
only four generic singularities of this boundary. 
 
Three of them are very simple; they can be expressed by the formulas 
 
1)         2) ;=y x| | ;=y x x| |        3)      (32)              2=y x x| |

near the origin ( )0, 0= =x y  after an appropriate choice of smooth coordinates. 
 
The fourth singularity is more complicated. It is related to an implicit differential 
equation of the first order.  Such an equation is defined by its surface in the three-
dimensional space of directions on the plane.  In a generic situation near any point of 
this surface such an equation takes the form ( ) 0,F =x,y,p  where  and is 
some sufficiently “good” function.  The saddles, nodes and foci of usual vector fields 
take form of folded ones for the implicit differential equations.  In a generic case near 
such a folded singular point such an equation is reduced to the equation. 

=p dy/dx F

 

( )2 =p kx y+          (33)    
 
near the origin ( )0= = =x y p  after an appropriate smooth choice of coordinates x and 

. The fourth singularity is defined near the origin by two typical integral curves of the 
last equation entering the origin from the opposite directions. 
y

 
All the four described singularities have stable realizations.  The first three of them can 
be observed on the boundary of attainability of the control system defined on the 

–plane by two fields of admissible velocities (x,y ) 1 ( 1,0)v = −  and and 
by the start set equal to the unit circle centered at the point (2, 2). 

2
2 (1, )v = −x y

 
The fourth singularity is observed in the model “swimmer in the water” in which the 
stream of water has the velocity field ( ),y 2,− −x, >β β and the swimmer himself/herself 
can move in standing water in any direction with a velocity not exceeding 1.  The 
admissible velocities of the swimmer are defined by the 
inequality 2 2( ) ( ) 1.+ + ≤x x y y+ β  Here the attainable set from the origin includes the 
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set  and coincides with the transitivity set of the system.  The boundary of 
this set has singularities of fourth type at points

2 2 2 1+x y <β
(0, )± 1β . 

 
Note, that in the last model the transitivity set is a global attractor: the distance between 
it and the current state of the system tends to zero in time for any initial state of the 
system.  But generally the transitivity set can have no such property. This depends on 
the system and its concrete transitivity set. 
 
Besides, on any closed orientable surface (like a sphere or a torus) all control sets and 
attainable sets of points (orbits of states under admissible evolutions of the system back 
and forth), transitivity sets of typical control system are stable under small perturbation 
of this system, and so the system is structurally stable (as well as a generic vector field 
on such a surface). 
 
This means that for any control system sufficiently close to that typical one, the orbits of 
points and transitivity sets of one of these systems can be carried out to the respective 
sets of the another one by some small continuous deformation of the surface. 
 
Sometimes the last statement is trivial.  For example, the admissible velocities of the 
simple motion are the union of unit velocities in all directions.  Therefore the transitivity 
set of the simple motion on a connected phase space coincides with this space, and so 
the attainable (control) set of any point does too.  So, the respective small deformation 
of the phase space is just identity. 
 
But in some cases a structurally stable control system has more complicated set of 
orbits.  Consider an object on a sphere admitting motions with two structurally stable 
vector fields.  One field has a stable node at the south pole and unstable node at the 
north pole.  The remaining phase curves of this field go from the north pole to the south 
and coincide with the meridians outside a sufficiently small neighborhood of the poles. 
 
Another field of admissible velocities has two cycles that are parallels and that are 
located near the equator somewhere to the north and to the south of it.  The northern 
cycle is unstable.  The phase curve unwinding from it either winds around the southern 
cycle or enters a nondegenerate stable focus near the north pole. The southern cycle is 
stable.  The phase curve winding around it either unwinds from the northern cycle or 
outgoes from an unstable focus near the south pole (See Figure 8). 
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Figure 8:  Structurally stable system on sphere 

 
This control system has two transitivity sets, the northern and southern. They lie above 
and below the northern and southern cycles, respectively. Between them there is an 
equatorial annulus where the phase curves of one of the fields of admissible velocities 
are meridians and the phase curves of another field unwind from the northern cycles of 
this field and wind around the southern cycle. 
 
 For a point in northern (southern) transitivity set, the control (attainable) set coincides 
with this set whereas the attainable (control) set coincides with the entire sphere.  For a 
point of the boundary of this transitivity set, one of the orbits is the closure of the set 
and another is the closure of this set complement. 
 
For a point of equatorial annulus let us consider phase curves of our fields passing 
rough the point and taking two sections of the positive and negative semi-trajectories for 
each of them.  These sections lie between the considered point and two nearest (along 
the trajectories) intersection points of these curves.  The positive (negative) orbit of the 
considered point lies below (above) the union of two of these four sections belonging to 
the positive (negative) semi-trajectories. 
 
It is clear that the considered system is structurally stable.  Really, the structure of the 
point orbits for the considered control system remains the same after a small 
perturbation of the system, and therefore there exists a small deformation of the sphere 
carrying out the point orbits of perturbed system in the point orbits of the initial system. 
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In the multidimensional case the attainable sets, control sets and transitivity sets have 
been investigated weakly.  But in a generic case the boundary of the attainable (control) 
set is a hypersurface in the phase space. 
 
5. Conclusions 
 
The models of real process which are important for the life of our civilization involve 
many parameters. 
 
Even the creation of an adequate model is a great problem.  Sometimes even the 
determination of the spaces of internal and external parameters, the existence and 
smoothness of the corresponding relation or properties of dynamical systems are 
completely unclear. 
 
The qualitative analysis based on the simplest models might be useful.  As soon as a 
mathematical description of the system is found the Bifurcation and Singularity 
Theories furnish quantitative models, but the qualitative deductions seem to be more 
important and at the same time more trustworthy:  they do not depend on the details of 
the functioning system, whose mechanism and numerical parameters may be 
insufficiently known. 
 
Napolean criticized Laplace for his “attempt to introduce the spirit of infinitesimals in 
government”.  The mathematical theory of singularities is this part of the contemporary 
infinitesimal analysis, without which a conscious management of complicated and 
poorly known nonlinear systems is practically impossible. 
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Glossary 

 
Attainable set: consists of all the states of a control system which can appear 

during an admissible evolution. 
Attractor: is a set of the states of a dynamical system which attracts all the 

nearby states: a trajectory issuing from any initial state from a 
certain vicinity of the attractor passes arbitrary close to each point 
of the attractor at certain moments of time.  Strange one is an 
attractor which is not equilibrium state or strictly periodic evolution 
of a system. 

Bifurcation 
diagram: 

is a geometrical characteristic of a collection of objects depending 
on parameters. It consists of parameter values, which correspond to 
degenerate (in an appropriate sense) objects. Often it is a 
hypersurface with singularities dividing the parameter space into 
domains corresponding to non degenerate objects with different 
properties. 

Caustic: of a system of optical rays is the collection of points where the 
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intensity of the light energy is much higher than usual.  A caustic is 
also a critical value set of a Lagrangian projection.  A set of 
parameters for which the parameter depending function has a non-
Morse (= degenerate) singular point is also a caustic. 

Codimension: of a subspace is the difference between the dimension of the 
ambient space and the dimension of the subspace.  Often the 
singularities are classified by their codimensions.  According to 
transversality theorem the objects from a subset of large 
codimension can be eliminated by small perturbations of a given 
family of objects depending on lower number of parameters. 

Control system: is a dynamical system whose evolution (velocity) depends not only 
on its current state but also on the choice of a certain parameter 
Control parameter.  The time dependent choice of this parameter 
gives an admissible control of the system and its admissible 
evolution 

Cusp: is a small piece near the origin of a plane curve given by the 
equation 2 3 0− =x y (semicubical parabola). Cusp-like singularity 
arises in almost all classification problems. 

Diffeomorphism: is a differentiable invertible map such that its inverse is also 
differentiable. 

Discriminant: see bifurcation diagram. 
Equivalence 
relation: 

is a partition of the space of objects into certain collection of 
subsets (= equivalence classes).  Often these subsets are the orbits 
of a certain group action. 

Equivalence left-
right: 

is a partition of space of maps into the orbits of the action of the 
diffeomorphisms of the sourse and the target spaces. 

Generic: see typical. 
Lacuna: is a set in a phase space in which a solution of wave-type equation 

has no prolongation to.  The complement of a wave front 
singularity splits into lacuna domains and the domains where the 
solution exist.          

Lagrangian 
submainfold: 

is a submanifold of maximal possible dimension of a symplectic 
space such that the symplectic form vanishes when restricted to any 
tangent space of this submanifold.  Lagrangian submanifolds are 
encountered in various settings of mathematical physics, analysis 
and geometry. 

Legendre 
submainfold: 

is a submainfold of a maximal possible dimension of a contact 
space such that the restriction of the contact form to any tangent 
space to this submainfold vanishes. 

Loss of stability: of an equilibrium state is called a hard one if the trajectories of the 
system go far away of the equilibrium as soon as the parameter 
passes the bifurcation value.  The loss of stability is called mild if 
the nearby trajectories still remain in a certain neighborhood 
(depending on a parameter) of an equilibrium state while the 
parameter has already passed the bifurcation value. 

Milnor Number: of an isolated critical point of a complex function is a number of 
Morse critical points into which the singularity splits under small 
generic perturbations. 
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Milnor bundle: of an isolated critical point of a complex function consists of the 
restrictions of the generic level sets of the function to a certain ball 
centered at this critical point.  Milnor bundle inherits important 
topological information of the initial singularity.  Milnor bundle 
can be defined in various more general settings. 

Modality: of a singularity is the smallest number m such that a certain 
neighborhood of the singularity splits into a finite number of at 
most m-parameter families of equivalency classes (orbits). 

Pleat: is one of the two stable singularities of the mappings from plane to 
plane.  Its critical value locus is a cusp. 

Maxwell Set: is a closure of set of parameters for which the parameter dependent 
function has several critical points with the same critical value. 

Structural 
stability: 

is a property of objects to be equivalent to all nearby ones. 

Swallowtail: is a singular surface in three-space being a stable singularity of 
wavefronts.  It is isomorphic to the discriminant of the family of 
functions 4 2a b c+ + +x x x in one (real) variable x with (real) 
parameters  , , .a b c

Symplectic 
structure: 

is a closed nondegenerate external two-form on an even 
dimensional manifold. 

Typical: object is an object from certain open and dense subset in the space 
of all objects (equipped with an appropriate topology). 

Wave front: is the image of a projection to the base of a Legendre submanifold 
of a projectivized cotangent bundle.  Another definition: a wave 
front is the collection of points in phase space reached at a certain 
instant by a propagating disturbance issuing from certain initial 
subset. 
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