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a b s t r a c t

Standard ecology textbooks typically maintain that nutrients cycle, but energy flows in uni-

directional chains. However, here we use a new metric that allows for the identification

and quantification of cyclic energy pathways. Some of these important pathways occur due

to the contribution of dead organic matter to detrital pools and those organisms that feed

on them, reintroducing some of that energy back into the food web. Recognition of these

cyclic energy pathways profoundly impacts many aspects of ecology such as trophic levels,
etritus

nergy flow

ood webs

etwork analysis

control, and the importance of indirect effects. Network analysis, specifically the maximum

eigenvalue of the connectance matrix, is used to identify both the presence and strength of

these structural cycles.

© 2007 Elsevier B.V. All rights reserved.
rophic dynamics

“Following death, every organism is a potential source of
energy for saprophagous organisms (feeding directly on
dead tissue), which again may act as energy sources for
successive categories of consumers”.

Lindeman (1942, p. 400).

. Introduction

t is clear from both Lindeman’s original diagram and text
hat he envisioned energy flow pathways as cyclical. However,
n 1942, Lindeman did not have the methodological tools to
imultaneously investigate the complex conceptual network
hat he used to represent the energy pathways in the Cedar Bog
ake ecosystem, and therefore, out of practicality, reduced the
nalysis to a series of two parallel trophic chains. As a result,
ood web ecology has developed largely along this paradigm in

hich matter–energy flow transfers mostly sequentially from
asal to intermediate to top species (e.g., Paine, 1980; Cohen
t al., 1990; Pimm, 2002). Some exceptions were evident, espe-
ially in marine ecosystems (e.g., Pomeroy, 1974; Wiegert and

∗ Corresponding author at: Biology Department, Towson University, Tow
E-mail address: bfath@towson.edu (B.D. Fath).

304-3800/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2007.04.020
Owen, 1971; Ulanowicz, 1983; Wetzel, 1995, and notably in a
related series of papers called network trophic dynamics liter-
ature, e.g., Patten, 1985; Burns, 1989; Burns et al., 1991; Higashi
et al., 1988, 1991, 1993a,b; Patten et al., 1990; Whipple and
Patten, 1993; Whipple, 1998, 1999). In flow analysis of food
webs, cycling affects, for instance, residence time and the total
system throughflow (Fath et al., 2004). For example, Patten
(1985) used network flow analysis to show energy is avail-
able and cycling in the Okefenokee Swamp ecosystem (some
“trophic” transfers were over 20 steps in length). Recently,
this detrital pathway has recently garnered renewed atten-
tion within the ecological community (see Moore et al., 2004),
but the data requirements for a flow analysis similar to Patten
(1985) are great which has impeded the application of this
methodology to many systems. In fact, most published food
webs or models have structural data (i.e., connectance), but
son, MD 21252, USA. Tel.: +1 410 704 2535; fax: +1 410 704 2405.

not functional data (flow or interaction strength). Therefore, it
is useful to have a metric that identifies the cyclic pathways
based only on the connectance pattern. This paper adds to
the network trophic dynamics paradigm some novel results

mailto:bfath@towson.edu
dx.doi.org/10.1016/j.ecolmodel.2007.04.020
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Fig. 1 – Examples of structures which exhibit the three
different types of cycling based on eigenvalue analysis. (a)

64

Furthermore, using matrix multiplication, Am gives the num-
ber of pathways between compartments of length m, such that
18 e c o l o g i c a l m o d e l

for structural networks that are under growing discussion in
recent literature.

A structural cycle is the presence of a pathway in the
ecological network in which matter–energy passes through
biotic or abiotic stores returning for availability to the same
or lower trophic levels. Structural cycling is present in food
webs due to intraguild predation, cannibalism, or other pre-
dation events that connect laterally or backwards in the
hierarchy. Many empirical food web descriptions capture these
cycles, and also assembly models such as the Constant Con-
nectance (Martinez, 1992) and Niche model (Williams and
Martinez, 2000) allow for internal structural cycles. Common
to these models and many empirical data sets, is that all
the structural cycling is due to “traditional” predation, and
that they ignore the extra feedback connections caused by
flows to detritus and back to the system through detritus
feeders. Flows to detritus include many pathways such as
death, excrement, or exfoliation. The detritus feedback loop
is a fixed cyclic structure. It assures a certain amount of
cycling, and it is fundamentally different from other cyclic
structures in the system since it allows energy to flow from
any trophic level including top predators to lower trophic
levels.

In this paper we investigate 26 empirically derived eco-
logical food webs with and without detrital interconnections
ranging in size from 6 to 220 compartments to demonstrate
the importance of the detritus feedback loop and we compare
the results to the structural cycling generated by five different
community assembly rules.

2. Structural cycling

Common network analysis properties include network size
(n) and connectance (C). Connectance is defined as C = L/n2,
where L is the number of links and n2 is the possible number
of connections in the network. Furthermore, nC = L/n, which
is the property known as linkage density. A newly devel-
oped and important property is network structural cycling
(Fath, 1998; Jain and Krishna, 2003). This measures the pres-
ence and strength of cyclic pathways in a strongly connected
component (SCC) of a network. There has not been much
application of SCC to ecosystems, but Allesina et al. (2005a)
recently demonstrated how one could decompose food webs
into SCC to determine possible compartments. For an irre-
ducible matrix, �max is bounded by n. For a reducable matrix
(several SCCs), �max is bounded by the number of nodes in
the largest subcomponent, and is the dominant eigenvalue
for the subcomponent with the strongest degree of struc-
tural cycling. All food webs studied here with the detrital
loop were irreducible (# of SCC = 1). The eigenvalue does not
measure the quantity of flow; and therefore, differs from
the Finn (1976) cycling index, which is a measure of cycled
flow.
The strength of structural cycling or cyclicity is given by the
magnitude of the largest eigenvalue (also called the spectral
radius), �max of the structural adjacency matrix. A structural
connectance matrix, or adjacency matrix, A, is a binary rep-
resentation of the connections such that aij = 1 if there is
No cycling: �max = 0, (b) weak cycling: �max = 1, and (c) strong
cycling: �max > 1.

a connection from j to i, and a zero otherwise.1There are
three possibilities for the spectral radius: �max = 0, �max = 1,
and �max > 1, respectively (Fig. 1) (Fath, 1998; Jain and Krishna,
2003). When �max = 0, then all eigenvalues equal zero and
there is no structural cycling and no indirect pathways greater
in length than n − 1; weak structural cycling occurs when
�max = 1, indicating the presence of cycles, but the number
of pathways between nodes does not increase geometrically;
lastly, when �max > 1, strong structural cycling occurs, in which
case the number of pathways between two compartments
increases without bound at a constant rate equal to �max as
the path length between those two compartments increases.
For example, Lindeman’s Cedar Bog Lake food web (which he
called a food-cycle) has eight compartments, including two
primary producers: (1) phytoplankton and (2) pond weeds; two
grazers: (3) zooplankton and (4) browsers; three predators: (5)
plankton predators, (6) benthic predators and (7) swimming
predators, all of which are connected to a central exchange
compartment labeled (8) ooze and bacteria, which clearly rep-
resents detritus and detrital feeders. In the corresponding
adjacency matrix, a83 = 1 indicates there is one direct path
from zooplankton (j = 3) to ooze (i = 8).

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1

1 0 1 0 0 0 0 1

0 1 0 1 0 0 0 1

1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

n = 8, C = 23 = 0.359, nC = 2.87, �max = 2.58
1 Note the orientation of flow from j to i is used because that
makes the direction of ecological relation from i to j. For example,
if i preys on j, the flow of energy is from j to i.



n g

A
t
p
a
g

N
l
a
(
C
c
i
f
b

3

I
2
a
w
e
l
e
a
t
w
i
n
t

w

r
a

e c o l o g i c a l m o d e l l i

2 shows there are two pathways of length 2 from zooplankton
o ooze (zooplankton → plankton predators → ooze and zoo-
lankton → swimming predators → ooze), and A3 that there
re five pathways of length 3, etc., which for this system are
iven as:

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 0

2 1 1 1 1 1 1 1

1 2 1 1 1 1 1 1

2 2 1 1 0 0 0 4

3 3 2 2 1 1 0 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

;

A3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3 3 2 2 1 1 0 4

3 3 2 2 1 1 0 4

4 4 3 3 2 2 1 4

4 4 3 3 2 2 1 4

5 5 4 4 4 4 4 2

7 7 5 5 4 4 4 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

ote, not only do the number of pathways increase as path
ength increases, but also in the limit as m → ∞, they increase
t a rate equal to the spectral radius: a

(m+1)
ij

/a
(m)
ij

→ �max

Seneta, 1973; Fath, 1998; Hill, personal communication). For
edar Bog Lake, �max = 2.58, so there is strong structural
ycling. Cycling is a key feature of the web. It indicates an
ncreasing number of pathways for material and energy trans-
er and this feedback provides a tightly coupled dependence
etween species.

. Data sources

n a well-studied set of 17 food webs (Dunne et al., 2002,
004), 10 of the webs explicitly include detritus compartments
s source compartments (out-degree greater than zero), but
ith no input (in-degree equal to zero)2; the other seven webs

xcluded detritus entirely. This gives the image of two paral-
el food chains, one starting from primary producers – whose
nergy source is solar radiation – and the other beginning with
detrital pool, which has neither internal nor external input,

hereby acting as an infinite energy source. A more realistic
eb (e.g., Wiegert and Owen, 1971) has the detritus receiving

nput from the other within system compartments or exter-

al input, thereby ensuring detritus has an in-degree of greater
han one and maintaining mass balance.

In this paper we examine the 10 empirically derived food
ebs from Dunne et al. (2002) (Polis, 1991; Goldwasser and

2 In-degree and out-degree are standard structural network met-
ics that give the number of arcs terminating or emanating from
particular node, respectively.
2 0 8 ( 2 0 0 7 ) 17–24 19

Roughgarden, 1993; Waide and Reagan, 1996; Warren, 1989;
Havens, 1992; Townsend et al., 1998; Christian and Luczkovich,
1999; Opitz, 1996; Link, 2002) that include detritus in the data
sets but with no input into that compartment (set E1), and 16
empirically derived food webs (Lindeman, 1942; Heymans et
al., 2002; Sandberg et al., 2000; Dame and Patten, 1981; Patten,
1988; Leguerrier et al., 2003; Patricio et al., 2004) that have the
detritus feedback loop explicitly included (set E2). We com-
pare the values of �max in these two datasets as well as in the
first dataset modified to include detrital links. Lastly, we com-
pare these empirical datasets with the results produced by five
community assembly models with or without detritus.

4. Community assembly rules

Due to the difficulty in acquiring the requisite data for fully
developed empirical food webs, researchers have developed
community assembly rules that recreate, as best as possible,
the perceived structural characteristics of food webs. These
provided null-models to investigate fundamental questions
of community structure and organization, attempting to link
the ecological observed process to underlying pattern. Here we
consider five such models, Constant Connectance (Martinez,
1992), Cascade (Cohen and Newman, 1985), Niche (Williams
and Martinez, 2000), Modified Niche (Halnes et al., 2007), and
Cyber-Ecosystem (Fath, 2004a). In the Cascade model, the n
species are ranked from 1 to n and all species predate on a ran-
dom number of the species with lower rank than themselves,
thus establishing a strict series of food chains. In the Constant
Connectance model or random model, all the n species are
connected randomly among each other, with each connection
having the same probability of occurring. A criticism of the
random model is that it has no biological or ecological con-
straints incorporated in the structural principles. The Niche
model allows for a limited amount of cycling but only within
a small range around each species, called the niche-interval. It
does not explicitly include flows to or from detritus. The Modi-
fied Niche model follows the basic rules of the Niche model but
adds an additional detritus compartment, and includes out-
flow from each compartment to detritus, and flow back into
the system through the probability of feeding on detritus. This
fixes the mass balance error of the original Niche model and
adds an extra structure that is fundamentally different from
other structures since it includes transfers from top preda-
tors to lower trophic levels. The Cyber-Ecosystem model uses
a meta-structure of six functional groups: primary produc-
ers, herbivores, carnivores, omnivores, detritus and detrital
feeders, within which random connections within functional
groups link species based on these definitional constraints.

5. Results

The maximum eigenvalue was calculated using the data for
the empirical food webs without detritus (E1), in which n

ranges from 30 to 220 (Table 1). The data have relatively low
�max (range from 0 to 10.25) and no readily apparent pattern
regarding structural cycling (Fig. 2a). However, as stated above,
although the webs include detritus in the categorical descrip-
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Table 1 – Empirical food webs representing aquatic and terrestrial ecosystems ranging from 6 to 220 components

Ecosystem Habitat n nC
(no detritus)

nC
(with detritus)

�max
(no detritus)

�max
(detritus)

#SCC
(originala)

Reference

Canton Creek Stream 109 6.50 7.50 1.00 7.83 2 Townsend et al. (1998)
Stony Creek Stream 113 7.36 8.36 1.00 7.79 2 Townsend et al. (1998)
St. Marks Estuary Estuary 48 4.60 5.60 1.00 6.83 1 Christian and Luczkovich (1999)
Caribbean Reef small Marine 50 11.12 12.12 8.63 11.96 1 Opitz (1996)
NE US Shelf Marine 81 18.31 19.31 4.87 12.93 1 Link (2002)
Bridge Brook Lake Lake/pond 220 2.51 3.51 4.00 4.00 146 Havens (1992)
Skipworth Pond Lake/pond 37 2.62 3.62 2.00 5.77 3 Warren (1989)
St. Martin Island Terrestrial 44 3.00 4.00 0 5.27 2 Goldwasser and Roughgarden (1993)
Coachella Valley Terrestrial 30 2.13 3.13 1.00 1.62 1 Polis (1991)
El Verde Rainforest Terrestrial 156 9.68 10.68 10.25 12.17 1 Waide and Reagan (1996)

Brouage Estuary 13 2.54 1.79 1 Leguerrier et al. (2003)
Graminoids (wet season) Estuary 66 12.02 11.06 1 Heymans et al. (2002)
Graminoids (dry season) Estuary 66 12.02 11.06 1 Heymans et al. (2002)
Cypress (wet season) Estuary 68 8.01 6.85 1 Heymans et al. (2002)
Cypress (wet season) Estuary 68 8.15 7.06 1 Heymans et al. (2002)
Mangrove (wet season) Estuary 94 14.26 14.16 1 Heymans et al. (2002)
Mangrove (dry season) Estuary 94 14.24 14.17 1 Heymans et al. (2002)
Florida Bay (wet season) Estuary 125 14.50 10.97 1 Heymans et al. (2002)
Florida Bay (dry season) Estuary 125 15.75 11.01 1 Heymans et al. (2002)
Baltic Proper Marine 12 3.00 3.10 1 Sandberg et al. (2000)
Bothnian Sea Marine 12 2.83 2.81 1 Sandberg et al. (2000)
Bothnian Bay Marine 12 2.67 2.68 1 Sandberg et al. (2000)
Oyster Reef Marine 6 2.00 2.15 1 Dame and Patten (1981)
Okefenokee Swamp Lake/pond 24 4.83 5.08 1 Patten et al. (1989)
Zostera meadows Lake/pond 28 6.18 6.98 1 Patricio et al. (2004)
Cedar Bog Lake Lake/pond 8 2.88 2.58 1 Lindeman (1942)

a All food webs with detrital loop had one SCC.
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Fig. 2 – Strength of structural cycling vs. linkage density for (a) 10 empirical food webs that did not consider flows to
detritus, E1 (original); �max ranges from 0 to 10.25; (b) 10 empirical food webs after detritus, which was present but not
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always has a maximum eigenvalue equal to zero, while the
Niche model demonstrates limited strong cycling compo-
nents. Adding the detritus feedback loop (going from the Niche
inked, was connected, E1 (modified); �max ranges from 1.62
n the original model development; �max ranges from 1.79 to

ion, it is only treated as a primary food source in the structure.
y reconnecting the rest of the food web to detritus such that

t becomes a carrier compartment and not just a transmit-
er, we see that this gives a higher structural cycling value
Fig. 2b), ranging from 1.62 to 12.93. The empirical dataset, E2,
hat originally included detritus as a linked part of the food
eb includes 16 webs in which n ranges from 6 to 125 (Table 1).
hese systems have a high cyclicity value (�max ranges from
.79 to 14.17) and exhibit a similar pattern to the modified
ataset above (Fig. 2c). Note that all networks with detritus

ncluded had �max > 1. These results demonstrate the high
evel of cyclicity present in empirically derived ecological food
ebs that appropriately include detrital linkages. The level of

yclicity also shows a clearer trend (�max ∼ nC) for the data sets
hat include the detritus feedback.

Using each community assembly rule, we constructed
food web structure and calculated the maximum eigen-

alue associated with that structure. This was repeated
000 times to create different size (n) and connectance (C)
tructure–eigenvalue combinations for each assembly rule.

pattern emerges for each community assembly rule when
ooking at the maximum eigenvalue versus the linkage den-

ity, nC = L/n (Fig. 3) and for simplicity we fit this pattern to a
inear model. In fact, it has been shown that for large random
etworks �max ≈ nC (Borrett et al., 2007), a result reproduced in
ur simulations. The random micro-scale interactions result
.93; (c) 16 empirical data sets, E2, which included detritus
7.

in the Cyber-Ecosystem model also having a high maximum
eigenvalue. The Cascade model has no structural cycling and
Fig. 3 – Strength of structural cycling vs. linkage density for
400 individual food web structures for each assembly rule
under different size and connectance combinations.



22 e c o l o g i c a l m o d e l l i n g

Fig. 4 – Comparison of empirical data, E1 (modified) and E2,
to regression lines from five community assembly models.
The regression lines were computed using 1000

runs/structure (whereof only 400 are displayed in Fig. 3 to
make the plot more readable).

to the Modified Niche model) increases �max (cyclicity), and
also decreases the variance of �max, resulting in a clearer trend
�max ∼ nC.

When we compare these models to the empirical datasets,
we see that the cycling in the empirical data sets tends to lie
closest to that generated by the Constant Connectance (ran-
dom) and Cyber-Ecosystem models (Fig. 4). We do not contend
that ecosystems are randomly connected – other structural
measures show that there is a pattern of direction and articu-
lation in ecosystems not present in random models – but the
degree of cycling is closer to a Constant Connectance (random)

model than the chain models that have been employed so far.
The Cyber-Ecosystem model captures the high level of cycling
of the Constant Connectance model but in an ecologically con-
strained framework. Table 2 summarizes the statistics for the

Table 2 – Statistics for the maximum eigenvalue (�max) comput
assembly models, and from empirical food webs with and with

Models Slope

Cascade 0.00
Constant Connectance (CC) 1.00
Niche 0.71
Modified Niche 0.76
Cyber-Ecosystem 0.99

Data
Empirics (1) original without detritus 0.39
Empirics (1) with detritus added 0.65
Empirics (2) original with detritus 0.81
Empirics (2) with detritus removed 0.13
Empirics (1 and 2) detritus removed from (E2) 0.23
Empirics (1 and 2) detritus added to (E1) 0.75

Data in italics include detritus either originally or by modification. The slop
a linear relation between �max and the linkage density nC. Variance refers
Var(�max) does not increase with nC.
2 0 8 ( 2 0 0 7 ) 17–24

analysis that led to the regression lines in Fig. 4, and shows
that both the slope of �max (as a function of linkage density nC)
and the variance in �max around the regression line is best fit by
the Modified Niche model. However, the Modified Niche model
underestimates the overall cycling observed in the empirical
data particularly in smaller systems. It should be noted that
some of the empirical systems have included several detritus
compartments, whereas the Modified Niche model has only
one, which might be one of the reasons why it underestimates
�max.

6. Discussion

While there are many important links in the ecological net-
works, in this work, we have shown that passive flows to
detritus and from detritus back into the system give an impor-
tant contribution to the total structural cycling in the system,
and increases the trend that cycling increases with the prod-
uct nC, both in models and empirics. Although this web-like
structure was evident in Lindeman’s original trophic dynamic
analysis, it was lost as food webs were constructed according
to a food chain paradigm that excluded the key recycling ele-
ments such as detritus and detrital feeders. The community
assembly models, of course, should reflect empirics, but what
precipitated was a data collection paradigm that reinforced
the model’s correctness. A positive feedback between model
development and data collection ensued, in that researchers
who expected not to find detritus links excluded them a pri-
ori from both their data collection and models, reinforcing the
perception of acyclic food webs. When detritus is included as a
connected compartment in the network, the structural cycling
value is much higher, and this has important implications for
the presence and significance of cycling. This suggests that
there is significantly greater cycling present in ecological food

webs than the traditional models or the uncorrected datasets
reveal.

Many important consequences follow from a strong pres-
ence of structural cycling: (1) Cyclic energy pathways do exist

ed from the food webs resulting from five different
out input to detritus

Intercept Variance �max range

0.00 0.00 0–0
0.00 0.03 0–19.72

−2.00 5.29 0–14.63
−0.66 1.57 0–16.12
−0.13 0.15 0–19.91

0.76 8.68 0–10.25
2.52 2.78 1.62–12.93
0.68 1.51 1.79–14.17
1.12 0.97 0–3.64
0.98 4.53 0–10.25
1.37 2.15 1.62–14.17

e and intersection refer to the regression lines obtained by assuming
to the variance of the data points of �max around the regression line.
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n ecological food webs, and they can be identified quite easily
sing the eigenvalue metric presented herein. The importance
f these cycles for transporting energy, at least until all energy

s dissipated, is determined not only by the existence of struc-
ural cycles, but also by the transfer efficiency along each
issipative pathway, which has been investigated elsewhere

n the previously cited network trophic dynamics literature.
2) While behaviorally there may be top predators, functionally
here is no top as far as energy flow is concerned, only contin-
ous dissipative paths reaching as a limit process beyond the

evel of n-trophic steps (Higashi et al., 1988; Whipple, 1998).
3) Detritus is not a disconnected, infinite-source, basal com-
artment but receives input from the rest of the ecological
ommunity. (4) Higashi and Patten (1989) demonstrated that
ycling was one of six key network features that contributed
ositively indirect effects, thereby greater cycling increases
he importance of indirect effects. The maximum number

f cycles is
∑n

k=1(k − 1)!

(
n

k

)
, which gives rise to extremely

arge numbers of indirect pathways. Even in dissipative flow
odels, where long paths carry small amounts of energy, the

arge number of higher order pathways may give a signifi-
ant contribution to the total energy flow (see Lenzen, 2007
or a quantitative analysis). (5) Allesina et al. (2005b) found
hat network properties are more sensitive to aggregation of
he detrital components than of other components. Therefore,
ne must take extra care to properly represent these com-
onents. (6) Finally, with no tops to food pyramids (and no
ottoms either, in strict network trophic dynamics recogniz-

ng widespread primary producer mixotrophy), the top-down
nd bottom-up debate regarding ecosystem control becomes
ven more ambiguous. As first suggested by Patten (1978), con-
rol within ecosystems is distributed with each component
nfluencing the others (Patten and Auble, 1981; Fath, 2004b;
chramski et al., 2006).

We intend for this research to encourage other empirical
nd theoretical ecologists to consider the important role of
etritus when collecting data and constructing models. We
lso commend to the attention of students of food webs the
wo-decades old network trophic dynamics literature we have
ited, with which our present results are consistent. Network
ow analysis (Patten, 1985) affords a richer picture of the role
nd influence of energy cycles, but often data for such a com-
lete analysis are not available. Therefore, here we introduce
simpler, easier to implement metric to identify the pres-

nce and strength of structural cycles. These structural cycles
ave an impact on network parameters. There is a need in our
roader field to achieve greater correspondence with the orig-

nal ecosystem “food-cycle” concept introduced by Lindeman.
his includes biotic and abiotic resources both, and will make
xplicit the true cyclic nature of ecosystem energy–matter net-
orks. As Lindeman noted, detritus is not just a sink, but also
source for internal flows that creates cyclic energy pathways

n ecosystems.
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