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Summary 

1. Species distribution modelling is an important and well-established tool for conservation 

planning and resource management. Modelling techniques based on central estimates of 

species responses to environmental factors do not always provide ecologically meaningful 

estimates of species-environment relationships and are increasingly being questioned.  

2. Regression quantiles (RQ) can be used to model the upper bounds of species-environment 

relationships and thus estimate how the environment is limiting the distribution of a species. 

The resulting models tend to describe potential rather than actual patterns of species 

distributions.  

3. Model selection based on null hypothesis testing and backward elimination, followed by 

validation procedures, are proposed here as a general approach for constructing RQ limiting 

effect models for multiple species.  

4. This approach was successfully applied to 16 of the most abundant marine fish and 

cephalopods in the Eastern English Channel. Most models were successfully validated and 

null hypothesis testing for model selection proved effective for RQ modelling. 

5. Synthesis and applications. Modelling the upper bounds of species-habitat relationships 

enables the detection of the effects of limiting factors on species’ responses. Maps showing 

potential species distributions are also less likely to underestimate species responses’ to the 

environment, and therefore have subsequent benefits for precautionary management. 

 

Key-words: habitat, marine fish, distribution models, limiting factors, Geographical 

Information Systems 
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Introduction 

Species distribution modelling is becoming an important tool for conservation 

planning, resource management, and understanding the effects of changing environmental 

conditions on biogeographical patterns (Guisan & Thuiller 2005; Austin 2007). Models are 

constructed from estimates of species’ responses to one or more environmental attributes 

(Austin 2002; Oksanen & Minchin 2002). These typically comprise of habitat factors that 

affect the species either directly (e.g. temperature, dissolved oxygen), or indirectly (e.g. 

topography, latitude) (Austin 2002).   

Ecologists are faced with a growing number of species distribution modelling 

techniques: for recent reviews see Guisan & Zimmerman (2000), Boyce et al. (2002), Guisan, 

Edwards & Hastie (2002), Guisan & Thuiller (2005), Redfern et al. (2006) and Austin (2007). 

In parallel to discussions over the suitability of different modelling techniques, there is 

ongoing debate surrounding approaches to model selection, as the past few years have seen a 

gradual shift from the more traditional use of null-hypothesis testing to information-theoretic 

approaches (Pearce & Ferrier 2000; Rushton, Ormerod & Kerby 2004;  Stephens et al. 2005). 

Model validation is also an important issue, with strong pleas for the use of robust methods 

for model validation to ensure outputs maps are attributed with a measure of confidence 

(Guisan & Zimmerman 2000; Olden, Jackson & Peres-Neto 2002; Vaughan & Ormerod 

2005). 

Besides these issues, attention is also needed on the concepts underlying model design 

and the ecological interpretation of the different modelling approaches (Austin 2002; Austin 

2007). The majority of species distribution modelling approaches in current use (e.g. GLM, 

GAM) are based on estimation of mean or median (central tendency) species responses to 

environmental factors (Oksanen & Minchin 2002). Although they provided very valuable 

insights, these widely used techniques, do not address some ecological aspects of species-

habitat relationships (Huston 2002; Cade & Noon 2003; Eastwood & Meaden 2004; Austin 
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2007). One important limitation of central tendency modelling is that it does not properly 

estimate the limiting effects of the environment. Estimates near the upper bounds of species-

habitat relationships relate to one of the central tenets of ecology theory, the law of limiting 

factors, which predicts that the growth rate of a species is determined by the most limiting 

resource (Hiddink & Kaiser 2005). When plotted, the relationship between the abundance of 

an organism to an environmental factor often takes the form of a bounding polygon. The 

upper boundary describes how abundance is limited by this factor, while the variation below 

the upper boundary reflects the limiting effect on the abundance of environmental attributes 

other than the factor of interest (Cade et al. 1999). In the context of habitat conservation 

required by ecosystem-based management, a precautionary approach would consist in 

considering the maximum abundance of a species that environmental factors can bring about, 

thus modelling potential (maximum) species abundance distribution instead of realised 

(mean) abundance. 

While a number of techniques have been used to estimate the effects of limiting 

factors on species’ responses (e.g. expert knowledge of species environmental tolerance 

limits, species-environment response curves, habitat suitability indices), only one, quantile 

regression (or regression quantiles (RQ)), is based on well-established statistical theory 

(Koenker & Bassett 1978; Koenker 2005). The statistical concepts behind RQ have been well 

described (for a recent review see Yu, Lu & Stander 2003), as have their general utility for 

estimating limiting effects (Cade, Terrell & Schroeder 1999; Cade & Noon 2003). Predictions 

from upper RQ models overestimate species density and distribution to illustrate the species 

maximum abundance given ideal environmental conditions. As such, they tend to describe 

potential patterns of species distribution. In recent years, RQ have increased in popularity 

among ecological modellers as a way of estimating a more complete range of species’ 

responses to environmental gradients (Terrell et al. 1996; Cade, Terrell & Schroeder 1999; 

Eastwood, Meaden & Grioche 2001; Dunham, Cade & Terrell 2002; Eastwood et al. 2003). 
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Modelling species distributions with RQ is more complex compared to central response  

modelling as a much greater range of quantile models can be estimated (1-99th). Therefore, 

model selection needs to be based on a range of quantiles. However, for this technique to be 

transferred to the field of habitat modelling and species distribution prediction in an 

operational way, after the selection phase, some objective criteria have to be proposed to 

choose a single quantile for the model’s application as opposed to having to explore several 

RQ models on an interval of quantiles for the same species. In this context, a generic 

methodology for RQ-based species distribution model selection and application is needed, 

similar to those developed for other modelling techniques (e.g. Lehmann, Overton & 

Leathwick 2003). 

We constructed distribution models for 16 of the most abundant fish and cephalopods in the 

Eastern English Channel, an area of increasing human activity and resource exploitation 

(Carpentier et al. 2005). We propose a methodology that could form part of an operational 

approach to RQ modelling, when the aim is to produce distribution models for several 

species. The aim of our model selection procedure was to select an upper quantile model able 

to best define limiting factors and delineate potential habitat given the environmental data 

available for model construction. Our intention was to construct models that could be used to 

provide reliable and precautionary estimates of species’ responses to their environment. We 

did not aim to develop or describe a generic RQ analysis of species response rates permitting 

the detailed study of the strength and direction of species relationship to the environment at 

different quantiles of the data distribution.  

 

Materials and methods 

FISH DISTRIBUTION AND ENVIRONMENTAL DATA 

Marine fish and cephalopods in the Eastern English Channel are sampled annually for 

the purposes of developing indices of abundance for the principal commercial stocks. The UK 
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Centre for Environment, Fisheries and Aquaculture Science (Cefas) undertakes an annual 

beam trawl survey (BTS) in August at a series of depth-stratified, fixed survey stations 

(Figure 1a). Samples are collected using 30 minute tows of a 4 m beam trawl fitted with an 80 

mm diamond mesh cod-end net and a 20 mm square mesh liner. Water column depth, 

temperature, and salinity are recorded using sensors attached to the beam trawl, although data 

are not comprehensively available for all stations and years. 

The Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) 

undertakes an annual bottom trawl survey (Channel GroundFish Survey - CGFS) in October. 

One or two randomly placed 30 minute hauls are taken within rectangles measuring 15' 

latitude and 15' longitude (Figure 1b). Sampling is with a high opening bottom trawl fitted 

with a 10 mm mesh size. Water column depth is recorded using sensors onboard the vessel. 

Since 1997, temperature and salinity (surface and bottom) have also been measured using a 

sensor attached to the head rope of the trawl. 

For both surveys, fish counts at each trawl station were converted to catch densities 

based on the area swept by the gear, and expressed as numbers of fish per km2. Data were 

available from 1989 (BTS) and 1988 (CGFS) to 2004. Of the total number of trawls available 

over this time period, only a limited number could be used for model development due to the 

large number of stations where environmental data were missing (Table 1). 

Both surveys are designed to target different components of the fish fauna and do not 

catch all species with equal efficiency. Also, they operate in different seasons, thus catch 

densities for some species will vary as a result of ontogenic shifts in geographic distribution 

patterns. For species found to be well represented in both surveys and marked by different 

seasonal patterns, two separate models were constructed, one using BTS data and one using 

CGFS data (Table 2), hence a total of 25 models. 

Three environmental variables - temperature, salinity, and depth - were collected 

during the surveys at each trawl station and were subsequently available for model 
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construction. To increase the chance of detecting a relationship between species distributions 

and benthic environments, two further environmental predictors were attributed to the catch 

data: seabed sediment type and bed shear stress, an estimate of the pressure exerted across the 

seabed from tidal forcing (M2 constituent) known for its strong relationship with patterns of 

species distribution (Freeman and Rogers 2003). Estimates of shear stress (in N/m2) came 

from an 8 km resolution hydrodynamic model originally developed for the Irish Sea (Aldridge 

& Davies 1993) but extended to cover the north-west European shelf. Seabed sediment types 

were extracted from a digital version of the sediment map of the English Channel originally 

developed by Larsonneur et al. (1982). The original 29 sediment classes were aggregated into 

5 broader classes considered to have ecological relevance to the 16 selected species, namely 

mud, fine sand, coarse sand, gravels, and pebbles. Sediment type was coded as dummy 

variables where ‘mud’ was the default category, i.e. the constant in the regression model, and 

the remaining sediment categories were 4 regression variables, coded 0 or 1 to indicate the 

absence or presence of the associated sediment type 

 

REGRESSION QUANTILES 

Regression quantiles are the linear model equivalent of one sample quantiles in that 

they allow a data distribution to be split into quantile classes, such as the 25th, 50th, 75th, 

90th etc. One sample quantiles are extended to regression modelling through the use of an 

optimisation function that minimises the sum of weighted absolute deviations, where the 

weights are given by the specified quantile, τ, on a scale of 0 to 1 (e.g. 0.5 = 50th regression 

quantile). To estimate regression quantile parameters, we used the freely available 

BLOSSOM statistical software programme1 (Cade & Richards 2005).  

 

                                                 

1 www.fort.usgs.gov/products/software/Blossom/Blossom.asp 
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MODEL SELECTION AND QUANTILE CHOICE 

Species catch densities were first log10(yi + 1)) transformed to reduce 

heteroscedasticity in the data and limit the effect of heterogeneous error distribution models 

on the rank-score test statistic (Cade & Richard 2005), which was used to select significant 

variables. An initial exploratory analysis was performed to assess the form of the relationship 

between transformed species catch densities and environmental variables. This revealed that 

second order polynomials of continuous variables were at times necessary to describe the 

form of the relationships. Polynomials of higher order were not considered as they were more 

likely to estimate extreme catch densities at the upper and lower limits of the environmental 

ranges. All possible regression quantiles were estimated for a series of single variable models 

(e.g. catch density vs. water column depth). This helped to develop an understanding of the 

form of the estimated response before running more complex models containing a larger 

number of environmental variables.  

Based on these preliminary results, we proceeded with the actual model selection by 

initially fitting a full, response surface model, i.e. a model including second order 

polynomials (main effects and their quadratics) and first order interactions between 

continuous environmental parameters. Sediment type was present in the full model as a 

categorical factor, both as a main effect and in first order interactions with the continuous 

environmental variables. Starting from the initial full model, we removed terms by backward 

elimination based on average P-values across a range of quantiles, until arriving at a model 

where all terms remained significant (P < 0.05) for at least one quantile: 

1. Regression quantiles were estimated at 5 quantile intervals from the 75th to 95th. 

Significance tests of all polynomials and interactions were performed and the variable 

associated with the largest average P-value across the 5 quantiles, contingent on being 

greater than 0.05, was removed from the model. 
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2. Having removed one variable, reduced models were re-run across all 5 quantiles and 

significance tests again performed to eliminate additional variables according to the 

same rule. Main effects were tested only when associated interactions and polynomials 

had been eliminated. 

3. Backwards elimination stopped when all remaining variables were significant (P < 

0.05) at least for one quantiles. In case the resulting model was found to have all 

variables significant over more than one quantile, the highest of these quantiles was 

chosen to best represent the upper bounds of species catch density imposed by the 

environmental variables. 

 

Levels of significance were evaluated within BLOSSOM using a rank-score test 

statistic which is appropriate for models associated with a heterogeneous error distribution 

(Cade, Terrell & Schroeder 1999). Weighted quantile regression may be more appropriate for 

non-homogenous data (Cade et al., 2005, Cade et al. 2006) but is computationally difficult to 

implement. Instead we used data transformation to reduce the heteroscedasticity in our data. 

Moreover, in doing so, we assumed that the effect of the variables are multiplicative instead 

of additive. In the conceptual frame of limiting factors, a multiplicative model is more 

relevant than an additive model. Indeed, if one factor is truly limiting a species’ abundance, a 

multiplicative model insures the predicted abundance is low whatever the other factors’ 

values, whereas in additive model, the predicted abundance might still be high depending on 

the other factors. 

 

SELECTED MODEL EVALUATION   

Stepwise variable selection has been challenged by several authors because of 

potential drawbacks regarding spurious variable selection (e.g. Whittingham et al. 2006). 

Quantile regression models are of course not immune to these potential problems. Moreover, 
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the selection procedure, stopping as soon as a fully significant model is found for at least one 

quantile, may result in overfitting the model. 

To assess whether the selection procedure resulted in an appropriate model, we 

compared the Akaike’s Information Criterion (AIC) (Akaike 1974) values of our final models 

to a number of alternative models of varying complexity levels at the same quantile. The AIC 

for RQ models was calculated as 

 

 AIC = n x ln(SAF(τ)/n) + 2p 

 

where n is the number of observations and SAF(τ) is the weighted sum of absolute deviations 

minimised when estimating the τ th regression quantile with p parameters. AIC balances the 

degree of fit of a model with the number of parameters, so as to find the most parsimonious 

model based on these two properties. Absolute differences (dAIC) between AIC values of the 

least informative model (constant model used as base comparison) and the selected models 

were computed. Positive dAIC values indicated that the tested model was associated with a 

better (i.e. lower) AIC (Table 3). Largest dAIC values indicated which models achieved the 

best compromise between fit and complexity. 

 

PREDICTING SPECIES SPATIAL DISTRIBUTIONS 

Digital (raster) maps of the five environmental parameters, created in ArcGIS 8 (® 

ESRI), were used to predict species’ spatial distributions by recoding the environmental maps 

using the predicted species catch densities obtained from the final RQ models (Figure 2). 

 

MODEL VALIDATION 

Model validation was based on direct comparisons of observed vs. predicted catch 

densities. The first validation dataset, VALL, comprised of groundfish survey data from 
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stations where environmental data were missing and which could therefore not be used for 

model development (Table 1). For CGFS’ data, there was a marked temporal difference 

between the data used for model estimation and validation, but by using all available data we 

increased the chances of developing representative models. By comparison, BTS data used for 

model estimation and validation had a greater degree of temporal overlap. As no 

environmental data were available for VALL, predicted catch densities could not be generated 

by the models. These were instead extracted directly from the predicted species distribution 

maps at the VALL dataset trawl stations. The second validation dataset, V2004 (catch 

densities and complete set of environmental data), comprised of CGFS and BTS data from 

2004. Predicted densities for V2004 were obtained by using the environmental data collected 

in 2004 as input to the relevant RQ models. 

The bootstrap procedure allows obtaining standard errors and confidence intervals for 

a wide variety of statistics and this approach was used to produce a more robust validation of 

the models. For each validation dataset of observed and predicted densities, bootstrap datasets 

were generated each comprising n values (equal to n in the original dataset) by resampling 

with replacement within the range of observed and predicted densities. A preliminary study 

showed that 600 bootstrap datasets were necessary to obtain stable values for the tests means 

and confidence intervals. Two separate validation tests were carried out: correct classification 

test and rank correlation test (Eastwood et al. 2003).  

Correct classification for a regression quantile model aimed at estimating limiting 

effects is defined by the proportion of observed values in the validation dataset that fall below 

those predicted. For example, if a species distribution model was developed from a 90th 

regression quantile, correct classification would require at least 90% of all observed values to 

fall below and at most 10% above those predicted. The bootstrap samples were used to 

provide estimates of the mean and confidence limits for the correct classification statistic for 

each final model. We considered a model to be successfully validated if the quantile was less 
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than the upper confidence limit of the bootstrapped mean correct classification statistic. To 

assess the degree of correct classification, the difference (dCC) between the upper confidence 

limit of the bootstrapped correct classification statistic and the selected model quantile was 

calculated: increasing positive values of dCC relate to an improvement in validation success. 

Because the values predicted by an upper quantile regression model are, by 

construction, higher than most of the observed values, Spearman's Rank Correlation 

Coefficient (rs) was preferred as it does not assume a linear relationship between the 

variables. This correlation test was computed for all bootstrap datasets along with mean and 

95% confidence intervals for rs and associated P-values. For the test to be successful, a 

positive and significant correlation between observed and predicted catch densities would be 

expected. 

In summary, Correct Classification tests were meant to assess the exactness of 

quantitative predictions of species abundance and Spearman Rank Correlations to assess the 

correctness of relative changes in predicted abundance, thus testing the spatial component of 

predictions. 

 

Results 

INITIAL EXPLORATORY ANALYSIS 

Results of the initial exploratory analysis are presented for two species with contrasting life 

histories: lesser spotted dogfish Scyliorhinus canicula L. and flounder Platichthys flesus L. 

(CGFS survey). These species were chosen because their contrasting life histories resulted in 

markedly different models. Lesser spotted dogfish is a bentho-demersal species known to 

occupy both shallow and deep waters and a range of seabed types, whereas flounder is a 

benthic flatfish living on sandy and muddy bottoms and inhabiting coastal waters and 

estuaries. Figures 3 and 4 illustrate the environmental preferences observed for both species 

respectively as well as the typically zero inflated and polygonal-shaped form of the 



  13 

relationship between species abundance and the environmental variables. To illustrate linear 

quantile regression relationships, three regression lines were fitted at the 75th, 85th and 95th 

quantiles respectively. It is clear that central response modelling would have missed the effect 

of these environmental limiting factors. Triangle-like shape relationships (Figures. 3c, 4a, and 

4d) suggested that a linear quantile model could be used to estimate responses near the upper 

bounds of the data distribution, whereas more complex relationships (Figures 3a and 4b) may 

require the use of second order polynomial regression. The slopes of the regressions lines at 

the three given quantiles (Figures 3 and 4) reflect the value of the regression coefficients at 

the same quantiles (Figures 5 and 6). For lesser spotted dogfish, regression coefficients were 

generally found to be non-zero at quantiles > 50th (Figure 5), whereas for flounder quantiles 

in the range 50 - 80th were in a number of cases found to be zero (Figure 6). Univariate RQ 

models for lesser spotted dogfish estimated catch densities to increase with depth (Figures 3a 

and 5a), temperature (Figures 3b and 5b), salinity (Figures 3c and 5c) and bed shear stress 

(Figures 3d and 5d) and over coarse sand and gravelly sediments (Figures 3e and 5e), while 

flounder catch densities showed the opposite pattern (Figures 4 and 6). This initial analysis of 

univariate responses highlighted how the value of the regression estimates may vary over the 

range of upper quantiles (Figures 5a-d and 6a-d) and may also switch between positive to 

negative throughout the range of possible quantiles (Figures 5e and 6e). 

 

MODEL SELECTION 

Most final models (17 out of 25) included all 5 environmental predictors (Table 3). 

Seabed sediment type was found to be a significant predictor for all the species considered. 

Depth was significant in all but two models, water temperature in all but three models, whilst 

bed shear stress and salinity were significant in all but four models. Of the 25 models, 21 

included at least one significant quadratic term, depth being the most common environmental 
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factor represented as a polynomial. Of the 10 possible first order interactions tested, the 

number of significant interactions ranged from 0 to 7. 

 

SELECTED MODEL EVALUATION 

When comparing the difference in AIC values, the selected model (i) often constituted 

a good compromise between model fit and complexity (Table 3). When comparing selected 

models with  initial full models (ii), the later yielded higher dAIC only four times out of 25. 

When comparing selected models with less complex alternatives (without interactions and/or 

polynomials, (iii to v)), selected models seemed to have as high and often much higher dAIC 

values. These results suggest that the chosen backward selection procedure often produces 

appropriate parameter selection and model selection. 

 

PREDICTED SPECIES RESPONSE AND SPATIAL DISTRIBUTIONS 

To better interpret regression coefficients in the presence of interactions and 

polynomial terms, we plotted predicted catch densities against each of the environmental 

variables, while holding all other environmental variables constant at their mean values 

(Figures 7 and 8). The relationships described by the model largely mirrored those estimated 

by the univariate models during the exploratory phase (Figure 3), namely higher catch 

densities in deeper waters and over coarser sediments for lesser spotted dogfish. As a result of 

interactions between sediment type and the three other explanatory variables, the form of the 

relationship between these three and the predicted catch density differed for each sediment 

category. The map of predicted catch densities for lesser spotted dogfish described a relatively 

broad distribution across the central region of the central Eastern English Channel, 

corresponding to the increased depth and coarser sediment types that are characteristic of this 

area (Figure 9a). 
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The model for flounder predicted catch densities in October (CGFS data) as a function 

of all 5 environmental variables (Table 3). The model predicted linear relationships with the 4 

continuous environmental factors and zero catch densities over gravel and pebble sediments 

(Figure 8). A strongly negative affinity for depth was estimated over muds and fine sands, 

which switched to weakly positive over coarse sands. A similar pattern was observed for the 

relationship with bed shear stress, temperature and also salinity, although for the latter two the 

response switched direction for different sediment types. The model predictions emphasize 

the preference shown by flounder for finer sediment types (muds and sands) in shallow waters 

with little tidal currents and low salinity, which generally corresponds to coastal areas and 

estuarine conditions. Highest catch densities for flounder (Figure 9b) were predicted in 

inshore areas in close proximity to the bays and estuaries found along both the English and 

French coasts. Both maps agreed with known distribution patterns at this time of the year 

(Carpentier et al. 2005). 

 

MODEL VALIDATION 

Based on the VALL dataset, 15 of the 25 models successfully passed the correct 

classification test and all models passed the Spearman correlation test (Table 4). Species 

whose models performed the least well in the correct classification test, i.e. largely negative 

dCC, were herring Clupea harengus in October and flounder, both in August and October.  

When using the V2004 dataset, 17 models successfully passed the correct 

classification test and all but one model passed the Spearman correlation test (Table 4). 

Out of the 25 models, 8 passed all four tests (i.e. 2 methods x 2 validation datasets), 14 passed 

three tests, and 3 passed two tests, with no model passing fewer than two tests. 
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Discussion 

The model selection procedure successfully arrived at models that estimated the 

limiting effect of the environment on fish catch densities as shown by the predicted species 

distribution maps. Aside from RQ modelling, Pearce & Ferrier (2000) found that the use of 

strict 5% significance level criteria for parameter selection arrived at models with the highest 

predictive power when based on generalized linear (GLM) and generalized additive 

modelling (GAM). We successfully extended this approach to RQ modelling and used it to 

select a model from a range of candidates across a number of quantiles using backward 

selection procedure and then choose a quantile for its application. Although stepwise selection 

may have some potential disadvantages (Whittingham et al. 2006), our 25 habitat models 

suggest that it could safely be used to reduce model complexity. 

AIC approaches to model selection can potentially offer more flexibility than null-

hypothesis testing (Stephens et al. 2005). In contrast to Cade et al. (2005) who successfully 

used dAICc to select appropriate variables for models at the same quantile, we computed AIC 

post hoc to compare our final models with alternative ones at the same quantile. Values of 

dAIC for the selected models were generally higher or very close to that of the equivalent RQ 

model containing all possible predictors . This suggests that while our selection procedure 

may have resulted in a slight loss of fit for some models, the degree of loss was relatively 

small and allowed the construction of parsimonious models. The selected model often 

returned the best fit compared to the alternative models we tested, with further improvements 

made only by increasing model complexity. Such improvements were, however, never 

sufficient to justify increasing the number of parameters. 

For certain species, the selected models were found to differ between the two surveys, 

which broadly reflect conditions in summer (BTS) and autumn (CGFS). The case of lemon 

sole Microstomus kitt L. is striking since environment imposed limits were defined by eleven 

parameters in summer, whilst only three parameters in autumn. Spatially, the predicted 
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distributions were also very different, highlighting how biogeographical patterns in the upper 

limits of catch density may vary seasonally (Carpentier et al. 2005). 

The models performed relatively well under the two validation tests, with 22 models 

passing at least three validation tests. The correct classification test was the most conservative 

as it is based on threshold criteria, whilst Spearman’s rank correlation only provided an 

assessment of general correlative trends. Some species models were not fully validated, 

possibly due to low catchability of certain fish species by the sampling gear. The effects of 

gear efficiency on the predictive power of the models is expected to vary with the species 

considered if the abundance-environment relationship is not adequately sampled. For 

example, the CGFS bottom trawl is not ideally suited to catch common sole Solea solea, 

lemon sole, or flounder, and similarly for the BTS beam trawl with respect to cuttlefish.  

The RQ models were developed from data collected over several years and thus 

represented average environment imposed limiting effects for a particular season. The 

validation datasets, however, represented either a single year (i.e. 2004), equating to a 

snapshot of the environmental conditions at that time, or an earlier time range (CGFS data 

only, 1988-1996) than that used for model construction (1997-2003). In the case of herring, 

the overall population abundance was lower during the period used for model development 

than during the years covered by the VALL validation dataset (notably a large abundance 

peak observed in 1990). This would explain why the RQ model for herring failed the 

classification test using VALL, in which many observed catch densities exceeded those 

predicted. In contrast, herring population abundance in 2004 was similar to the years used for 

model construction, hence an unsurprising successful validation. Discrepancies in population 

abundance between the periods used for model development (1997-2003) and for VALL 

(1988-1996) were also noted for East Atlantic red gurnard Aspitrigla cuculus L. and veined 

squid Loligo forbesi L. (both CGFS survey), both of which failed the classification test.  
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RQ has several unique advantages for species distribution modelling, which have been 

largely overlooked. Modelling the upper bounds of species-environment relationships enables 

to detect the effects of limiting factors on species’ responses (Terrell et al, 1996, Cade, Terrell 

& Schroeder 1999). RQ models also yield statistical advantages as they can accommodate a 

relatively wide range of data distributions. Also, in contrast to GLM and GAM requiring a 

two step modelling procedure (Barry & Welsh 2002), RQ models prove effective  in dealing 

with zero-inflated count data, which are common in species distribution models of abundance 

data. 

Despite these unique advantages, RQ modelling, like most species distribution 

modelling techniques (e.g. GLM, GAM), does not account for spatial autocorrelation between 

the different environmental predictors (Legendre et al. 2002). Spatial autocorrelation can be 

caused by aggregation behaviour, competitive exclusion, density dependence (Keitt et al. 

2002; Legendre et al. 2002), and species distribution patterns may differ when using spatially 

implicit vs. explicit approaches (Hui et al. 2006). However, species distribution maps 

constructed using geostatistical analyses (spatially explicit modelling) (Carpentier et al. 2005) 

were found to show similar spatial patterns to those constructed using our RQ models, 

suggesting that not accounting for spatial autocorrelation still lead to acceptable results  

Our RQ models successfully estimated the limiting effects of the environment on 

catch densities and highlighted the importance of five environmental descriptors. These 

results agreed with those already reported by Vaz et al. (2007), where fish community 

structure in the Eastern English Channel was strongly shaped by its environment. Seabed 

sediment type, in particular, was included in all models and present in most significant 

interactions, illustrating its strong effect as a structuring and limiting factor.  

Human pressures, such as from fishing or eutrophication, might also be used as 

predictors of fish abundance as these will have varied over time and will likely impact on 

patterns of species distributions. However, Hiddink & Kaiser (2005) pointed out that upper 



  19 

bound modelling is less suited to monitoring temporal variation because limiting factors, in 

general, remain relatively stable over time. Moreover, modelling upper bounds with RQ 

focuses attention on estimating the limiting effects of variables and in doing so partially 

accounts for variation caused by uncontrollable or unknown factors that may have affected 

distributions patterns. The impact and variability of human pressures on species distributions 

is thus implicitly taken into account in RQ upper models. 

 Predictions from RQ models, based on maximum instead of average species’ 

response, especially when constructed from long time-series of occurrence data, also tend to 

describe potential rather than actual patterns of species distribution (Eastwood et al. 2003, 

Carpentier et al. 2005). Potential habitat describes areas where the environmental conditions 

are suitable, as opposed to realised habitat which is the region of the potential habitat where 

the species actually occurs and which depends on biotic parameters such as resource 

availability, intra and inter-specific competition or predation. These descriptions of habitat 

may be generalised to the fundamental and realised niche concepts being, respectively, the 

range of condition where a species could exist in the absence of other species, and that part of 

the fundamental niche to which the species is restricted due to interspecific interactions 

(Schoener 1989, Chase & Leibold 2003). The methodology we proposed here could be 

applied to biotic descriptors, such as primary production and food availability, in order to 

better predict species’ realised niches. Final maps of species distributions are less likely to 

underestimate species responses to the environment, and therefore have subsequent benefits 

for precautionary approach of site-based and regional species habitat management principles, 

the mainstay of many national and international sustainable development initiatives (FAO 

1996; WSSD 2002).  Thus, in addition to closing the gap between ecological theory and 

statistical modelling of species distributions, RQ upper bound models have unique, practical, 

and relevant benefits for species and habitat conservation and management. 
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Tables 

Table 1. Number of observations available for model estimation and validation. BTS = Beam 
Trawl Survey, CGFS = Channel Groundfish Survey,  

 n for model estimation n for model validation
  

 YEAR BTS CGFS BTS CGFS 
 1988    68 
 1989 36  28 61 
 1990 57  11 69 
 1991   86 74 
 1992   79 54 
 1993 66  7 58 
 1994 71  3 80 
 1995   77 81 
 1996   78 64 
 1997  100 70  
 1998 63 76 11  
 1999 66 95 7  
 2000 75 93   
 2001 82 102   
 2002 71 67 3 23 
 2003  90   
 2004   71 86 
 TOTAL 587 623 531 718 
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Table 2. Marine fish species selected for model development. See Table 1 for details. 
Code Latin name Common name Survey 
CHELCUC Aspitrigla (Chelidonichthys) cuculus East Atlantic red gurnard BTS, CGFS 
CLUPHAR Clupea harengus Atlantic herring CGFS 
GADUMOR Gadus morhua Atlantic cod CGFS 
LIMDLIM Limanda limanda dab BTS, CGFS 
LOLIFOR Loligo forbesi veined squid CGFS 
LOLIVUL Loligo vulgaris European squid CGFS 
MERNMER Merlangius merlangus whiting  CGFS 
MICTKIT Microstomus kitt lemon sole BTS, CGFS 
MULLSUR Mullus surmuletus red mullet  CGFS 
PLATFLE Platichthys flesus flounder BTS, CGFS 
PLEUPLA Pleuronectes platessa plaice  BTS, CGFS 
RAJACLA Raja clavata thornback ray BTS, CGFS 
SCYOCAN Scyliorhinus canicula lesser-spotted dogfish BTS, CGFS 
SEPIOFF Sepia officinalis common cuttlefish  BTS, CGFS 
SOLESOL Solea solea common sole  BTS, CGFS 
SPONCAN Spondyliosoma cantharus black seabream  CGFS 
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Table 3. Selected models and AIC compared to alternative models. # : model estimated from 
BTS data, otherwise CGFS data. In 'Fitted parameters', Dep = depth, Str = seabed stress, 
Temp = temperature, Sal = salinity, Sed = sediment type, 2 alongside the  variable indicates 
the use of 2nd order polynomial. dAIC is the absolute difference between the null model and 
selected or alternative model AIC. The models tested were: (i) selected model; (ii) full models 
containing all terms; (iii) selected models minus any quadratic terms; (iv) selected models 
minus any interactions; and (v) selected models with significant main effects only. Highest 
positive values are indicated in bold. 

Species Quantile Fitted parameters No. of         dAIC            
   interactions (i) (ii) (iii) (iv)   (v) 
CHELCUC# 95 Dep2+Str+Temp+Sal+Sed 2 163 140 142 145 119 
CHELCUC 85 Dep+Str+Temp+Sal2+Sed 7 241 234 225 126 121 
CLUPHAR 75 Dep2+Str+Temp+Sal+Sed 4 228 210 230 128 80 
GADUMOR 80 Dep+Str+Temp+Sal+Sed 3 59 41 59 41 41 
LIMDLIM# 75 Dep+Str2+Temp+Sal+Sed 4 333 343 277 270 223 
LIMDLIM 85 Dep2+Str2+Temp2+Sal+Sed 5 230 205 232 228 225 
LOLIFOR 85 Dep+Str+Temp2+Sal+Sed 2 97 84 82 70 54 
LOLIVUL 90 Dep+Temp+Sed 2 40 23 40 25 25 
MERNMER 90 Dep2+Str2+Temp2+Sal+Sed 4 247 242 187 203 167 
MICTKIT# 80 Dep+Str+Temp+Sal2+Sed 5 187 214 96 187 96 
MICTKIT 85 Temp2+Sed 0 196 197 195 134 133 
MULLSUR 90 Dep+Str+Temp+Sal2+Sed 3 93 89 86 66 67 
PLATFLE# 80 Str2+Temp+Sal+Sed 3 236 245 238 172 172 
PLATFLE 90 Dep+Str+Temp+Sal+Sed 5 421 405 421 345 345 
PLEUPLA# 80 Dep2+Str2+Temp+Sal+Sed 4 181 169 167 121 114 
PLEUPLA 90 Dep2+Str+Temp2+Sed 3 282 281 212 248 193 
RAJACLA# 90 Dep2+Sed 1 73 48 69 49 50 
RAJACLA 90 Dep+Str+Sal+Sed 2 41 26 41 16 16 
SCYOCAN# 85 Dep+Str+Temp2+Sal+Sed 3 124 109 110 85 80 
SCYOCAN 80 Dep2+Temp+Sal2+Sed 3 174 164 169 128 130 
SEPIOFF# 80 Dep2+Str+Temp+Sal+Sed 2 43 32 27 29 18 
SEPIOFF 90 Dep+Str+Temp2+Sal2+Sed 7 69 46 64 65 61 
SOLESOL# 75 Dep+Str2+Temp+Sal+Sed 3 233 246 195 200 186 
SOLESOL 85 Dep2+Str2+Sal+Sed 2 188 172 186 158 159 
SPONCAN 90 Dep+Str+Temp2+Sal+Sed 3 67 53 66 15 16 
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Table 4. Spatial distribution model validation results. # : model built using BTS data, 
otherwise CGFS data. dCC is the difference between the upper confidence limit of the 
bootstrapped correct classification rate and the selected model quantile. rs is the Spearman’s 
rank correlation coefficient and associated significance where ns = not significant (P >= 
0.05), ** P <0.01, *** P <0.001. 
    VALL     V2004   Total no. of 
SPECIES Quantile dCC rs  P dCC rs P tests passed 
CHELCUC# 95 1.1 0.72 *** 3.6 0.70 ***  4 
CHELCUC 85 -9.4 0.65 *** 4.5 0.61 ***  3 
CLUPHAR 75 -53.5 0.46 *** 20.4 0.25 **  3 
GADUMOR 80 12.0 0.25 *** 15.4 0.10 ns  3 
LIMDLIM# 75 5.9 0.64 *** -3.2 0.49 ***  3 
LIMDLIM 85 0.7 0.75 *** -0.1 0.75 ***  3 
LOLIFOR 85 -6.1 0.43 *** 10.2 0.60 ***  3 
LOLIVUL 90 8.7 0.28 *** 7.7 0.43 ***  4 
MERNMER 90 2.3 0.66 *** 5.4 0.58 ***  4 
MICTKIT# 80 -0.5 0.37 *** 11.6 0.39 ***  3 
MICTKIT 85 -3.8 0.52 *** -0.1 0.31 **  2 
MULLSUR 90 4.8 0.36 *** -9.8 0.47 ***  3 
PLATFLE# 80 -40.7 0.41 *** 11.6 0.42 ***  3 
PLATFLE 90 -23.3 0.38 *** -0.5 0.44 ***  2 
PLEUPLA# 80 0.1 0.52 ** -3.9 0.55 ***  3 
PLEUPLA 90 1.4 0.70 *** -2.8 0.74 ***  3 
RAJACLA# 90 0.0 0.30 *** 4.4 0.43 ***  3 
RAJACLA 90 -0.6 0.26 *** 6.5 0.36 ***  3 
SCYOCAN# 85 4.7 0.59 *** 0.2 0.46 ***  4 
SCYOCAN 80 7.7 0.59 *** 9.5 0.71 ***  4 
SEPIOFF# 80 -9.4 0.56 *** -18.0 0.61 ***  2 
SEPIOFF 90 6.9 0.33 *** 6.5 0.32 ***  4 
SOLESOL# 75 -0.2 0.63 *** 53 0.70 ***  3 
SOLESOL 85 9.9 0.36 *** 12.7 0.31 **  4 
SPONCAN 90 2.7 0.38 *** 1.9 0.35 ***  4  
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Figures 
 

 

Figure 1. Station positions for the (a) BTS (1989-2004) and (b) CGFS (1988-2004) surveys. 
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Figure 2. Digital environmental layers used to generate spatial predictions of fish catch 

densities from the selected RQ models: (a) seabed sediment types; (b) depth plus mean sea 

level (m); (c) bed shear stress in (N.m-2); (d) mean sea surface temperature (°C, CGFS); (e) 

mean sea surface salinity (BTS). 
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Figure 3. Observed catch densities (CGFS) for lesser spotted dogfish as a function of 
environmental variables: (a) depth, (b) temperature, (c) salinity and (d) seabed shear stress. 
Each plot illustrates the species response along one given environmental gradient along with 
regression lines for quantiles 75, 85, 95th. (e) The species’ response associated to each 
sediment type: mud (M), fine sand (FS), coarse sand (CS), gravel (G), pebbles (P). 
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Figure 4. Observed catch densities (CGFS) for flounder as a function of environmental 
variables. See Figure 3 for details. 
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Figure 5. Regression coefficients (α1) for quantiles (τ ) over the range 0.50 - 0.99 for linear 
univariate models (Log10(yi +1) = αo + α1x + ε) of lesser spotted dogfish catch densities 
(CGFS) according to (a) depth, (b) temperature, (c) salinity, (d) seabed shear stress and (e) 
sediment types: fine sand (FS), coarse sand (CS), gravel (G) and pebbles (P).  
 

 

Figure 6. Regression coefficients (α1) for quantiles (τ ) over the range 0.75 - 0.99 for linear 
univariate models (Log10(yi +1) = αo + α1x + ε) of flounder catch densities (CGFS). See 
Figure 5 for details. 
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Figure 7. Predicted catch densities for lesser spotted dogfish (CGFS) as a function of the 

significant explanatory variables: (a) depth, (b) temperature, and (c) salinity. Each plot 

illustrates the species’ response along one given environmental gradient, all other variables 

remaining constant at their mean value. The effect of each sediment type on the species’ 

response is given by five lines or curves : —— mud,  ▬▬ fine sand, ▬▬ coarse sand,  —

 .gravel, —□— pebbles —׀



  37 

 

 

Figure 8. Predicted catch densities for flounder (CGFS) as a function of the significant 

explanatory variables. See Figure 7 for details. 
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Figure 9. Predicted catch densities (number of fish per km2) for (a) lesser spotted dogfish and 

(b) flounder in October (CGFS). 
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