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Abstract

Many pathogens exist in phenotypically distinct strains that interact with each other
through competition for hosts. General models that describe such multi-strain systems
are extremely difficult to analyze because their state spaces are enormously large. Re-
duced models have been proposed, but so far all of them necessarily allow for coinfections
and require that immunity be mediated solely by reduced infectivity, a potentially prob-
lematic assumption. Here we suggest a new state-space reduction approach that allows
immunity to be mediated by either reduced infectivity or reduced susceptibility and that
can naturally be used for models with or without coinfections. Our approach utilizes the
general framework of status-based models. The cornerstone of our method is the introduc-
tion of immunity variables, which describe multi-strain systems more naturally than the
traditional tracking of susceptible and infected hosts. Models expressed in this way can
be approximated in a natural way by a truncation method that is akin to moment closure,
allowing us to sharply reduce the size of the state space, and thus to consider models with
many strains in a tractable manner. Applying our method to the phenomenon of antigenic
drift in influenza A, we propose a potentially general mechanism that could constrain viral
evolution to a one-dimensional manifold in a two-dimensional trait space. Our framework
broadens the class of multi-strain systems that can be adequately described by reduced
models. It permits computational, and even analytical, investigation and thus serves as
a useful tool for understanding the evolution and ecology of multi-strain pathogens.

Author summary

Many important human pathogens, including HIV and influenza viruses, consist of many
different “strains”, which elicit distinct immune responses in their hosts. Infection by one
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variant usually triggers partial cross-immunity against several other variants. This process
leads to a complicated and dynamic immunity structure in the host population. Most
existing models of a population with a multi-strain pathogen are either very complex,
or rely on specific simplifying assumptions. Here, the authors suggest a new way of
simplifying such models that allows for greater flexibility in underlying assumptions. This
approach could lead to deeper understanding of the ecology and evolution of multi-strain
pathogens. The authors apply their approach to a simple model of evolution of influenza
A that illustrates one hypothesis about how influenza A evolution may be structured.

Introduction

Microbial pathogens are tremendously diverse. Pathogens that cause one and the same
disease may differ remarkably in both their genotype and their phenotype, like in HIV/AIDS
[1], influenza [2], malaria [3], and meningitis [4]. Phenotypically different variants of the
same pathogen are called strains. If several strains exist in a host population, they interact
with each other in two ways.

The first type of interaction may be referred to as ecological interference [5, 6]. For
many infectious diseases, a host infected with one strain is removed, for the duration of the
disease, from the population of hosts susceptible to the pathogen. This is because (a) the
immune system of the host becomes activated upon infection by the first strain, so that
it is hard for a second strain to enter and/or replicate in this host, and (b) the infected
host may be physically removed from the susceptible population, by dying or staying at
home. Ecological interference takes place even between unrelated pathogens [6].

The second type of interaction, referred to as cross-immunity interference, is specific
to different strains of the same pathogen: these can confer full or partial immunity to
each other. This means that a host infected with one strain becomes substantially less
susceptible to certain other strains of the pathogen for a prolonged period of time after
the initial infection is cleared. Cross-immunity is highest between phenotypically similar
strains. Since phenotypic similarity usually implies recent common ancestry, a pathogen’s
ecology is thus intrinsically entangled with its evolution.

Understanding the dynamics of multi-strain pathogens at a general theoretical level
turns out to be extremely difficult. Numerous models have been proposed during the past
twenty years (e.g., [3,7–9]). Although these models share many similarities, they substan-
tially differ in particulars, often resulting in conflicting model predictions. In consequence,
there is little agreement as to how best to gain insights into the ecology and evolution
of multi-strain pathogens. Models of multi-strain pathogens can be either equation- or
agent-based. Agent- or individual-based models have recently become increasingly elab-
orate and interesting [10–13], largely due to an increase in computational capabilities.
Since these models, however, are not designed for analytical tractability, we do not dwell
on this type of model here.

Virtually all equation-based models of disease dynamics can be traced back to the
compartment model introduced by Kermack and McKendrick in 1927 [14]. These models
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are also known as SIR models, reflecting a host population’s partitioning into susceptible,
infected, and recovered individuals. A problem that arises immediately when attempting
to extend this classical SIR framework to multiple strains is that the number of state
variables, and typically also of parameters, increases exponentially with the number of
strains [8, 9]. This presents not only computational challenges but also draws attention
to a fundamental conceptual difficulty: even for a moderately large number of strains,
the resultant number of state variables quickly surpasses any realistic host population
size. Most compartments in such a model therefore consist of few individuals, if they are
occupied at all: effects of demographic stochasticity must then not be neglected. To avoid
this complication, existing approaches to modeling multi-strain pathogens have attempted
to reduce the number of model compartments. Usually, such reductions are valid only
under certain sets of assumptions that may or may not be adequate depending on the
modeled phenomenon. Thus, it is important to expand the set of assumptions under
which reduced models are applicable. Our work presented here contributes to this goal.

Traditionally, full models have been developed based on the assumption of reduced
susceptibility, which implies that immune hosts are able to block off an infection com-
pletely, with a certain probability [8, 9]. On the other hand, all existing reduced models
rely on the assumption of reduced infectivity that implies that all hosts, immune or not,
get infected with the same probability, but those that possess immunity become less in-
fectious than those who do not [3, 15]. The reality, most likely, lies somewhere between
these two abstractions. Nevertheless, as we discuss in the Model section, the reduced
susceptibility assumption seems more plausible. In this study, we develop a state-space
reduction approach that can be applied under either of these assumptions, in models with
or without coinfections. Our approach differs from the existing ones in that it produces
a collection of models that approximate the full models with the desired degree of accu-
racy. The number of variables needed for the resulting approximations grows algebraically
with the number n of strains, rather than exponentially: when n is large, the difference
between, e.g., n2 and 2n is enormous, with the former growing much more slowly than
the latter. If coinfections and reduced infectivity are assumed, our approach produces a
model equivalent to that of Gog and Grenfell [15].

To illustrate the utility of our approach, and that of reduced models in general, we
demonstrate its application to the phenomenon of drift in influenza A. Using reduced
models we are able to simulate up to 400 strains. Influenza A is a multi-strain pathogen
whose epidemiology and evolution display an intricate interaction pattern. Because the
human immune system can produce protective antibodies against influenza’s surface gly-
coprotein hemagglutinin, individuals gain lifelong immunity against each strain of the
virus with which they have been infected [2, 16]. This results in a complex partition-
ing of the human host population according to the immunity of individuals to different
influenza strains. The ensuing frequency-dependent selection is thought to drive the evo-
lution of influenza A, giving rise to a process known as antigenic drift [17]. Lapedes
and Farber [18] have shown that the antigenic space of influenza is approximately five-
dimensional. Subsequently, Smith et al. [19] argued that the first two principal dimensions
are most important. Moreover, as follows from results by Smith et al., the temporal evo-
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lution of influenza’s H3N2 subtype proceeds along a single line in the antigenic space,
i.e., antigenic clusters corresponding to different years are well separated along the first
principal dimension. This agrees with the observation that the phylogenetic tree of sub-
type H3N2 possesses a single trunk [20] (but see an alternative hypothesis by Recker et
al. [21]). In other words, even though the H3N2 subtype experiences substantial genetic
diversity during each epidemic season, only one progeny strain survives in the longer run.
Accordingly, the number of coexisting H3N2 strains does not grow from year to year.

A few recent studies have attempted to model, and thereby explain, the phenomenon
of antigenic drift in influenza A. Apart from individual-based models, most of these studies
consider a one-dimensional strain space in which some sort of traveling-wave behavior is
observed [15, 22–25]. In order to constrain the evolution of a virus to one dimension in a
two-dimensional strain space, it has been necessary to require that the strain space was
essentially unviable except for a relatively thin region along one axis [15].

In a recent study Koelle et al. [26] took a different approach and succeeded in con-
straining the diversity of a virus living in a high-dimensional sequence space. The authors
explicitly mapped viral genotypes to phenotypes and showed that the single-trunk phy-
logeny of influenza A may be a consequence of the neutral network structure of the
influenza genotype space. However, it is an open question which properties of the pheno-
type space are sufficient to constrain viral diversity in the course of its evolution. Recker
et al. [21] suggest one explanation. They argue that the succession of antigenically dis-
tinct variants may be an intrinsic feature of the dynamics of a limited set of antigenic
types that are always present in the host population and, thus, is decoupled from the
genetic evolution of the virus. Here we suggest an alternative conceptual scenario that
follows the more traditional view that antigenic drift and genetic evolution are tightly
connected. However, we deliberately avoid the problem of mapping genotypes to phe-
notypes and, instead, assume a relatively simple structure of the phenotype space – a
rectangular lattice. Our model offers a straightforward explanation of what could be hap-
pening in such a phenotype space in order for the diversity of a virus to be constrained
in the long run. Our work is, thus, complementary to that of Koelle et al. [26]. In our
two-dimensional phenotype space each coordinate captures changes in the conformations
of an epitope – local region on the surface of the hemagglutinin molecule that interacts
with the immune system [27–29]. We then investigate a scenario in which the immune
response of hosts depends on two epitopes and full immune protection is gained against
all strains sharing an epitopic conformation with a previous infection. In this respect our
model is closely related to models studied by Gupta and colleagues [3, 21, 30]. We show
that the evolutionary trajectory of the influenza A virus in our model follows a line, even
though the model’s strain space is two-dimensional. This finding agrees with the observed
single-trunk phylogeny of influenza’s H3N2 subtype [20].
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Model

Types of equation-based multi-strain SIR models

As mentioned above, SIR models are based on partitioning a host population into sus-
ceptible, infected, and recovered classes. Abundances in the resultant compartments are
then tracked through time by means of ordinary differential equations. There are three
major dichotomies according to which multi-strain SIR models can be classified. The first
dichotomy refers to the treatment of individuals with respect to cross-immunity: there
are history-based and status-based approaches.

In the history-based approach introduced by Castillo-Chavez et al. [31] and generalized
by Andreasen et al. [8] the hosts are grouped into classes by their disease histories, which
are defined in terms of all strains with which an individual has ever been infected. Disease
histories determine the rates at which these compartments are populated and depopulated
when hosts acquire infections with new strains.

In the status-based approach introduced by Gog and Swinton [9] the individuals are
grouped together by their immune status, which is defined in terms of all strains against
which an individual is immune. This set is at least as large as the set of all strains with
which an individual has been infected, provided one assumes that infection results in
complete and persistent protection. By definition, an individual is fully susceptible to
all strains not included in its immune status. The immune status determines the rate at
which the compartment is populated and depopulated when individuals acquire immunity
against new strains. In particular, after an infection with a new strain, individuals move
to new immune status classes with rates that are determined by the probabilities of
acquiring cross-immunity against other strains. Thus, after an infection with a particular
strain, different individuals with the same immune status change their immune status in
different ways. This approach to capturing the probabilistic aspect of cross-immunity is
called polarized immunity.

The second dichotomy is the permission or prohibition of coinfections. Coinfection
is an event through which an individual, while already being infected with one strain,
gets simultaneously infected with a second strain. Unrestricted permission or complete
prohibition of coinfections are, of course, mathematical abstractions. One or the other
may be more plausible for any particular pathogen.

The third dichotomy refers to the way protective immunity works. As mentioned
above, either the chance for an immune host to get infected or the infectivity of an im-
mune host during a secondary infection are reduced. Within the history-based approach,
models constructed under both assumptions were shown to behave qualitatively similar, at
least in simple systems [32,33]. A mathematical formulation of a status-based multi-strain
model usually forces the modeler to make a choice between the reduced-susceptibility as-
sumption and the reduced-infectivity assumption. The latter is more convenient from the
mathematical standpoint, as such models easily yield themselves to state-space reduction.
This is because the rate at which hosts acquire infection and, hence, immunity is assumed
to be independent of the immune status (or disease history, in history-based models).
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However, within the status-based framework this assumption is somewhat problematic
from the biological standpoint.

In general, infection of a host with a virus results in two effects: (a) the host becomes
sick and transmits the virus, and (b) the immune system of the host develops protective
antibodies against the infecting variant. If the host is already partially immune to the
infecting strain, that is, protective antibodies had been developed prior to the infection,
then (a) the severity and the duration of infection are reduced, and (b) the production of
new types of antibodies is slowed down. In the limit case, when the host has full immune
protection against the infecting strain, it is capable of completely fending off the infection
with the existing arsenal of antibodies, resulting in no infectiousness and no production of
new types of antibodies. In the simplest version of status-based models, individuals are ei-
ther fully susceptible to a strain or fully immune against it, so this limit case should apply.
The assumption of reduced infectivity within this framework correctly captures the first
effect but neglects the second effect. In other words, hosts that are fully immune against
a particular variant do not transmit it but, paradoxically, still increase their repertoire of
antibodies in exactly the same way as do susceptible individuals, upon an infection with
this variant (see supplementary information text for mathematical implications of this as-
sumption). Evidently, this results in an over-immunization of the host population. In this
light, the assumption of reduced susceptibility seems more plausible, at least within the
status-based framework. In the remainder of this study we will therefore work under this
assumption, even though our approach is applicable to models with reduced infectivity as
well.

Full history-based or status-based multi-strain SIR models are cumbersome in terms of
their analytical treatment [33,34] and numerical analysis [35], mainly due to the enormous
size of their state spaces. Therefore, reduced models are necessary and have been proposed
in the past. However, as mentioned above, only models that allow for coinfections and
work under the reduced-infectivity assumption yielded themselves so far to reduction
[15, 30, 32], whereas models that prohibit coinfections and those that work under the
assumption of reduced susceptibility remained intractable. With a view towards filling
this gap within the status-based framework, we propose a new state-space reduction
approach that is based on two key observations:

1. When attempting to infect a potential host, an infecting strain does not in any
way “perceive” the host’s entire immune status or disease history. What it does
perceive is simply whether or not this potential host possesses any immunity against
the focal strain. This consideration suggests a natural set of state variables: it is
helpful to keep track of the proportions of a population that are immune to each
strain, or combinations thereof. It turns out to be possible to reformulate any full
status-based model in terms of such new immunity variables. Below we refer to this
transformation as an “expansion in immunity variables”.

2. The utility of this transformation becomes clear when we recognize that, at any
moment in time and for most diseases, many hosts will be immune to only a few of
the strains currently circulating, while only a few hosts will be immune to many of
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these strains. Consequently, the immunity variables that describe the latter small
proportions of the host population need not be tracked exactly and independently
but can instead be approximated, without much disturbing the overall disease dy-
namics. Higher-order immunity variables can thus be approximated by functions of
lower-order immunity variables. Below we refer to this approximation as truncating
or “closing” the disease dynamics at a desired order.

The approach presented in this article introduces a general representation of status-
based multi-strain models in terms of immunity variables. This representation is useful
because it produces a hierarchical structure of equations describing the dynamics of a
multi-strain system. The equations at any given order ℓ of this hierarchy are decoupled
from equations at all orders above ℓ + 1, under the assumption of reduced susceptibility,
or even above ℓ, under the assumption of reduced infectivity. Thus, this hierarchy can
easily be truncated at any order, either by approximating higher-order immunity variables
with functions of lower-order variables under the former assumption, or by simply ignor-
ing higher-order variables under the latter assumption. The resultant truncated models
provide either approximate or exact reduced descriptions of the original system.

Model description

We now proceed to the mathematical formulation of our framework. For the sake of clarity,
we develop our reasoning for the model with coinfections; the model in which coinfections
are prohibited is outlined in the supporting information text. The following notations are
used throughout (see Table 1 for a full summary): K is the set of all n strains; individual
strains from this set are referred to by their index i; SA is the proportion of individuals in
the host population that possess immune status A ⊂ K and that, therefore, are currently
fully susceptible to all strains in the subset K\A (we refer to these individuals as being
in state A); S∅ thus denotes the class of naive individuals, i.e., individuals that have no
immunity whatsoever; and Ii is the proportion of individuals in the host population that
are currently infectious with strain i. Since all host individuals naturally fall in exactly
one of the SA classes, we have

∑

A⊂K SA = 1. Here, the summation is taken over all
subsets of the set of strains, including the empty set.

Based on this notational framework, we can specify the disease dynamics of a multi-
strain pathogen in three steps, (a) to (c) below, by considering the three processes that
cause host individuals to enter and exit classes defined by their immune status.

(a) Births and deaths. We assume that hosts are born at per capita rate µ, being
uninfected and susceptible to all strains. Accordingly, all newly born hosts enter the
population through class S∅. The birth rate into class SA is thus given by µδA,∅, where

δA,∅ =

{

1 if A = ∅,
0 otherwise.

We further assume that infections do not alter the death rate of hosts and that the host
population is at its demographic equilibrium. This implies a constant per capita death
rate µ for all classes.
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(b) Acquisition of immunity. The crucial ingredient in this type of model is to specify
how an infection changes the immune status of the infected host. We assume that hosts
recover from an infection at per capita rate ν. The proportion of hosts that recover to
a state B ⊂ K, having been in state A ⊂ K when they were infected by strain i ∈ K,
is denoted by C(A, i, B). Following Gog and Swinton [9], we assume that C(A, i, B) is
allowed to take non-zero values only if:

1. i ∈ B, which means that each strain confers total immunity to itself;

2. A ⊆ B, which means that immunity is only gained;

3. i 6∈ A, which means that, to get infected, hosts must be susceptible to the infecting
strain.

Any chosen set of functions C also has to fulfill the consistency condition
∑

B⊂K

C(A, i, B) = 1 for i 6∈ A,

since there are no deaths from infection. Note that point 3 above is the mathematical
formulation of the reduced-susceptibility assumption (compare the three assumptions to
those of Gog and Grenfell [15] provided in the supporting information).

(c) Acquisition of infections. The force of infection for strain i, describing the per
capita rate at which host individuals susceptible to stain i get infected by strain i, is

Λi = βiIi,

where βi is the transmission coefficient for strain i. Note that mutations between strains
can be easily incorporated into this dynamics, by adjusting the force of infection,

Λi = βi



(1 − m)Ii +
∑

j∈Mi

m

|Mj|
Ij



 ,

where Mi ⊂ K is the mutational neighborhood of strain i, i.e., the set of all strains that
can mutate into i. Depending on the chosen description of the pathogen, Mi can be,
for example, the set of all point-mutation neighbors or a set of neighbors in a phenotype
space. |Mi| denotes the number of strains in this neighborhood. We assume that all
neighborhoods are mutual, i.e., i ∈ Mj if and only if j ∈ Mi for any i, j ∈ K. We assume
that mutations can occur with probability m during the infection period.

Based on (a) to (c), we obtain the following system of equations [9],

ṠA = µ(δA,∅ − SA) +
∑

k∈K

∑

B⊂K\{k}

SBΛkC(B, k,A) −
∑

k∈K\A

ΛkSA for all A ⊂ K, (1)

İi = Λi

∑

B:i∈K\B

SB − (ν + µ)Ii for all i ∈ K. (2)

where dots denote derivatives with respect to time. Altogether, this system contains
2n + n − 1 equations, where n is the number of strains.
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To complete the definition of our multi-strain model, we further specify the process
of immunity acquisition. We introduce the probability C∗

i1i2···iℓ
(A, k), ℓ = 1, 2, . . . , n of

acquiring immunity against strains i1, i2, . . . , iℓ (all different) after an infection with strain
k for a host that had immune status A prior to the infection,

C∗
i1i2···iℓ

(A, k) =
∑

B⊂K:

i1,i2,...,iℓ∈B

C(A, k,B).

We assume that (a) the chance of obtaining immunity against strain i after the infection
with strain k does not depend on the previous immune status of the individual, and
(b) if strain k can potentially confer cross-immunity to strains i and j, then obtaining
immunity against i and obtaining immunity against j are independent. According to
(b), the chance that a host becomes immune to strains i and j after being infected with
strain k is simply σkiσkj. Mathematically, these assumptions determine the shape of the
C∗-functions defined above. All functions C∗

i1i2···iℓ
(A, k) vanish if k ∈ A and, if k 6∈ A we

have
C∗

i1i2···iℓ
(A, k) =

∏

j=1,2,...,ℓ:
ij 6∈A

σkij ,

where, by definition,
∏

j∈∅ σkj = 1. Based on these assumptions, cross-immunity is entirely
characterized by the matrix of pairwise cross-immunity coefficients, σ = (σij) , i, j ∈ K [9].
The elements of σ are all probabilities, so that σij ∈ [0, 1] and σii = 1.

Expansion in immunity variables

To derive the approximations of model (1)–(2), we rewrite that system in terms of the
immunity variables,

ξi =
∑

A⊂K:

i∈A

SA, ξij =
∑

A⊂K:

i,j∈A

SA, . . . .

Each immunity variable has a clear intuitive interpretation: ξi1i2···iℓ describes the propor-
tion of hosts that currently have immunity against strains i1, i2, . . . , iℓ ∈ K. We will refer
to immunity variables ξi1i2···iℓ as being of order ℓ. Evidently, all immunity variables are
symmetric with respect to the permutation of their indices. Immunity variables with du-
plicate indices i remain unchanged when the duplicate index is removed, ξ···i···i··· = ξ···i······.
By definition, the immunity variables satisfy monotonicity conditions,

1 ≥ ξi1 ≥ ξi1i2 ≥ . . .

for all pairwise different i1, i2, . . . ∈ K.
Recalling that

∑

A⊂K SA = 1, we easily obtain the new equations for İi,

İi = Λi(1 − ξi) − (ν + µ)Ii for all i ∈ K. (3)

Derivation of the equations for ξ̇i, ξ̇ij, etc. is more technical. Here we restrict ourselves
to an explicit derivation of the equation for ξ̇i. For this purpose, we apply the time
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derivative to the definition of ξi and use (1), to obtain

ξ̇i = µ
∑

A⊂K:

i∈A

(δA,∅ − SA) +
∑

A⊂K:

i∈A

∑

k∈K

∑

B⊂K\{k}

SBΛkC(B, k,A) −
∑

A⊂K:

i∈A

∑

k∈K\A

ΛkSA. (4)

The first term in (4) accounts for the depletion, due to deaths, of healthy host individuals
that are immune to strain i,

µ
∑

A⊂K:

i∈A

(δA,∅ − SA) = −µξi.

The second term in (4) can be simplified as follows,

∑

A⊂K:

i∈A

∑

k∈K

∑

B⊂K\{k}

SBΛkC(B, k,A) =
∑

k∈K

∑

B⊂K\{k}

SBΛkC
∗
i (B, k)

=
∑

k∈K

∑

B⊂K\{k}:
i∈B

SBΛkC
∗
i (B, k) +

∑

k∈K

∑

B⊂K\{k,i}

SBΛkC
∗
i (B, k)

=
∑

k∈K

∑

B⊂K\{k}:
i∈B

SBΛk +
∑

k∈K

∑

B⊂K\{i,k}

SBΛkσki

=
∑

k∈K

Λk(ξi − ξik) +
∑

k∈K

Λkσki(1 − ξi − ξk + ξik).

The last equality is satisfied due to the inclusion-exclusion principle [36]. Finally, the
third term in (4) can be rewritten as

∑

A⊂K:

i∈A

∑

k∈K\A

ΛkSA =
∑

k∈K\{i}

∑

A⊂K\{k}:
i∈A

ΛkSA =
∑

k∈K

Λk(ξi − ξik).

Collecting the three results above, we obtain the equation for ξ̇i expressed in terms of the
new variables,

ξ̇i =
∑

k∈K

Λkσki(1 − ξi − ξk + ξik) − µξi for all i ∈ K. (5)

The equations for ξ̇ij are obtained analogously,

ξ̇ij =
∑

k∈K

{

Λkσkj (ξi − ξik − ξij + ξijk) + Λkσki (ξj − ξjk − ξij + ξijk) +

+ Λkσkiσkj(1 − ξi − ξj − ξk + ξij + ξik + ξjk − ξijk)
}

− µξij (6)

for all i, j ∈ K, i 6= j.

Fortunately, it is not necessary to rewrite the full system of equations (1) and (2) in terms
of immunity variables, since our goal is to reduce it. The equations for the immunity
variables of order ℓ depend on the immunity variables of order ℓ and ℓ+1, but not on any
immunity variables of higher orders. To truncate this hierarchy of equations at order ℓ, we
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thus need to approximate the ξ-variables of order ℓ+1 by a function of immunity variables
of lower orders. This procedure is similar to moment-closure techniques widely used in,
e.g., spatial ecology and epidemiology [37, 38]. To distinguish the true ξ-variables from
their approximations, we add a hat to the latter ones, as, e.g., in ξ̂ij. Each approximation
must satisfy three conditions that directly follow from the definition of the ξ-variables:

1. Symmetry condition:

ξ̂ij = ξ̂ji for all i, j ∈ K,

ξ̂ijk = ξ̂ikj = ξ̂jik = ξ̂jki = ξ̂kij = ξ̂kji for all i, j, k ∈ K,

· · ·

2. Monotonicity condition:

ξ̂ij ≤ min(ξi, ξj) for all i, j ∈ K,

ξ̂ijk ≤ min(ξij, ξik, ξkj) for all i, j, k ∈ K,

· · ·

3. Redundancy condition: the approximate immunity variables with duplicate indices
must be equal to the corresponding immunity variables of the previous order when
the duplicate index is removed, ξ̂···i···i··· = ξ···i···.

Below we introduce and discuss two simple closures of order 1 and one simple closure
of order 2.

(a) Order-1 independence closure:

ξ̂ij =

{

ξiξj if i 6= j,
ξi if i = j,

for all i, j ∈ K. (7)

The symmetry and redundancy conditions are evidently met, and the monotonicity con-
dition is satisfied because, by definition, ξk ≤ 1 for all k ∈ K. The motivation underlying
this closure is the following. If the cross-immunity interference between strains is small,
and if the time that hosts spend in the infectious state is small compared with the time
they spend in the healthy state, then hosts immune to each strain will be almost indepen-
dently distributed among all hosts. We expect this closure to underestimate the level of
immunity in the host population especially for high values of cross-immunity when correla-
tions in the population immunity structure are high. However, even when cross-immunity
between strains is absent altogether, the independence closure is not exact because of
host aging (this can easily be checked for a simple system with two strains). It would be
interesting to know whether there exists an exact closure in this special case.

(b) Order-1 interpolation closure:

ξ̂ij = ξiξj

(

1 − σij + σji

2

)

+
σij + σji

2
min(ξi, ξj) for all i, j ∈ K. (8)
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Again, the symmetry and redundancy conditions are evidently met, and the monotonicity
condition is satisfied because

ξ̂ij ≤ max {ξiξj, min(ξi, ξj)} ,

and 0 ≤ (σij + σji)/2 ≤ 1 for all i, j ∈ K. If we rewrite this approximation for the case of
a symmetric cross-immunity matrix σ,

ξ̂ij = ξiξj (1 − σij) + σij min(ξi, ξj),

it is easy to see the motivation underlying this closure. It results from the linear interpo-
lation between two extreme cases: absent cross-immunity and full cross-immunity. If, in
the one extreme, σij = 0, the order-1 interpolation closure will coincide with the order-1
independence closure. If, in the other extreme, σij = 1, all hosts who have been infected
with strain i (strain j) will be immune also to strain j (strain i). We approximate the
fraction of hosts that have been infected with strain i (strain j) by ξi (ξj), which motivates
the minimum term. This approximation is crude because we neglect cases in which immu-
nity to strain i is mediated through a third strain k that may not provide cross-immunity
to strain j.

(c) Order-2 independence closure:

ξ̂ijk =



















1

3
(ξijξk + ξikξj + ξjkξi) if i 6= j 6= k 6= i

ξij if i = k or j = k
ξik if i = j

. (9)

The motivation underlying this closure is analogous to that of the order-1 independence
closure. All conditions are fulfilled.

Models truncated at first order have 2n remaining variables, while models truncated
at second order have n(n+3)/2 variables. Thus, our approximation has enabled a switch
from an exponential to an algebraic scaling of the number of state variables with the
number n of strains.

It is interesting to compare the obtained first-order equations under, say, the indepen-
dence closure, with the reduced model proposed by Gog and Grenfell [15]. The latter is an
exact reduced representation of the full status-based model with coinfections and reduced
infectivity (we demonstrate this in the supporting information text), and, as such, can be
used as an approximation for the full model with coinfections and reduced susceptibility.
Gog and Grenfell’s equations are [15]

İi = ΛiSi − (ν + µ)Ii, (10)

Ṡi = µ − SiΛi − Si

∑

k∈K\{i}

σkiΛk − µSi. (11)

Now, we define the fraction of susceptibles to strain i as Si = 1− ξi and rewrite equations
(3), (5),

İi = ΛiSi − (ν + µ)Ii,

Ṡi = µ − SiΛi − Si

∑

k∈K\{i}

σkiΛkSk − µSi.
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These equations are very similar to (10)–(11) with the only difference occurring in the
summation term in the equation for Ṡi. As expected from the initial assumptions, immu-
nization of the host population happens at a faster rate in Gog and Grenfell’s model.

We have thus demonstrated how our framework of approximation – based on transfor-
mation to, and expansion in, immunity variables – provides simplified disease dynamics
of multi-strain pathogens, in particular under the assumption of reduced susceptibility.
In the next section we will compare, for a pathogen with four strains, the dynamics of the
full system with that of the proposed approximations and Gog and Grenfell’s model.

Implementation details

All numerical analyses were carried out using the MATLAB computing environment (The
Mathworks, Natick, Massachusetts, USA) with numerical accuracy 10−7. Code is available
upon request.

Results

Comparison of closures for a pathogen with four strains

We consider a simple system of four strains along a line. The strain space is given by
K = {1, 2, 3, 4}, and strains adjacent on the line constitute the mutational neighborhood,

M1 = {2}, M2 = {1, 3}, M3 = {2, 4}, M4 = {3}.

Adjacent strains also confer cross-immunity to each other, resulting in a tridiagonal cross-
immunity matrix,

σ =











1 s 0 0
s 1 s 0
0 s 1 s
0 0 s 1











.

The functions C(A, i, B), describing the probability that a host’s immune status changes
from A to B owing to infection with strain i, are determined according to Gog and
Swinton [9],

C(A, i, B) =

{

∏

j∈B\A σij
∏

j 6∈B(1 − σij) if i 6∈ A and A ⊂ B,
0 otherwise.

With such a small number of strains, the behavior of the full SIR model is tractable and
can be used as a baseline reference. We can also examine how Gog and Grenfell’s reduced
infectivity model performs if we consider it as an approximation to the full model with
reduced susceptibility. We numerically solve the following equations for the time interval
[0, T ] and for a range of parameters:

1. The full SIR system: equations (1)–(2).

13



2. The Gog and Grenfell model: equations (10)–(11).

3. The approximation based on the order-1 independence closure: equations (3) and
(5), where the ξij are substituted according to (7).

4. The approximation based on the order-1 interpolation closure: equations (3) and
(5), where the ξij are substituted according to (8).

5. The approximation based on the order-2 independence closure: equations (3), (5),
and (6), where the ξijk are substituted according to (9).

The following parameters are kept fixed: ν = 1, µ = 0 and T = 40. We choose βi = R0 for
all i. We vary the transmission coefficient R0, the cross-immunity coefficient s, and the
mutation probability m in the following ranges: R0 ∈ {2, 3, 4, 5}, s ∈ {0, 0.1, 0.2, . . . , 1},
and m ∈ {10−8, 10−6, 10−4}. Initially, 99% of the host population is fully susceptible to
all strains, while 1% is infected with strain 1, is immune against it and fully susceptible
to all other strains.

In order to assess how well the reduced models approximate the full model, we intro-
duce one qualitative and one quantitative accuracy measure. We consider an epidemic
detection threshold ε = 10−4, describing the smallest proportion of infected hosts at which
the disease can still be detected in the population. The results presented below are not
particularly sensitive to the exact value of this parameter within three orders of magni-
tude (results not shown). We denote by fi(t) the fraction of individuals infected with
strain i as predicted by the full model, and by gi(t) the same fraction as predicted by one
of the reduced models. We consider four situations:

1. Neither fi(t) nor gi(t) exceed the epidemic detection threshold within the considered
time interval. In this case we say that the approximation correctly captures the
dynamics of the real system, both qualitatively and quantitatively.

2. Only fi(t) exceeds the epidemic detection threshold within the considered time in-
terval, while gi(t) always stays below it. In this case, there is a qualitative difference
in predictions, because the full model predicts an epidemic, while the reduced model
does not. Then, if Yi ⊂ [0, T ] is the set of moments in time at which fi(t) > ε, we
define the qualitative accuracy measure as ρi = L(Yi)/T , where L(Yi) is the sum of
the lengths of time intervals during which such qualitative difference is observed for
the ith strain; in other words, L(Yi) is the Lebesgue measure of the set Yi.

3. Only gi(t) exceeds the epidemic detection threshold within the considered time
interval, while fi(t) always stays below it. In this case, again, there is a qualitative
difference in predictions, because the reduced model predicts an epidemic, while
the full model does not. Then, if Yi ⊂ [0, T ] is the set of moments in time at
which gi(t) > ε, we define the qualitative measure analogously to the second case,
ρi = L(Yi)/T .
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4. Both fi(t) and gi(t) exceed the epidemic detection threshold within the considered
time interval. In this case we say that there is no qualitative difference in the model
predictions, but there still could be a quantitative difference between them. We
quantify the latter by the absolute error of gi(t) with respect to fi(t),

∆i =

T
∫

0

|fi(t) − gi(t)| dt.

To obtain the overall qualitative error, ρ, we average ρi over all strains, ρ = 1/4
∑4

i=1 ρi.
This accuracy measure is suitable when we care most about determining which strains will
cause epidemics and which will not, while ignoring quantitative differences in epidemic
size and timing.

To obtain the overall quantitative accuracy measure, ∆, in a way that we could com-
pare across models with different parameter values, we normalize ∆i by the total size
of all epidemics, Z =

∑4
i=1

∫ T
0 fi(t)dt, and sum over all strains, ∆ =

∑4
i=1 ∆i/Z. This

accuracy measure is suitable when we care most about correctly capturing the shape and
timing of major epidemics, while ignoring possible mistakes in minor epidemics.

The results of this comparison are shown in Figures 1 through 3. As could have been
expected, the order-1 interpolation closure performs better than the order-1 indepen-
dence closure, both qualitatively and quantitatively. The order-1 independence closure
is quite accurate for small cross-immunity coefficients, but is problematic for medium
and large cross-immunity coefficients. The order-1 interpolation closure, in turn, is most
problematic for intermediate cross-immunity coefficients, which is again consistent with
expectations. Indeed, owing to the nature of the interpolation that we used to determine
ξ̂ij, we expect this closure to be more accurate for extreme values of cross-immunity and
less accurate for intermediate values. As expected, the order-2 approximation performs
substantially better than both order-1 approximations and Gog and Grenfell’s model,
making no qualitative errors at all and incurring quantitative errors on the order of a few
percent. Gog and Grenfell’s model is problematic for small and intermediate values of
the cross-immunity coefficient but, quite surprisingly, its error converges to zero for high
values of cross-immunity where it becomes superior to the order-1 independence closure.
This may have to do with the fact that the independence closure underestimates the level
of cross-immunity of the population, especially for large values of cross-immunity.

We have conducted the same type of analysis for a circular four-strain system and for
a two six-strain systems (see the supporting information text) – the results turn out to
be qualitatively similar to those presented here. Based on these numerical investigations,
we conclude that the approximate model resulting from the order-1 interpolation clo-
sure offers a good compromise between accuracy and computational effort. The proposed
order-2 approximation can be used if higher accuracy is required. Although Gog and
Grenfell’s model can also be used to approximate the dynamics of systems developed un-
der the reduced-susceptibility assumption, if the degree of cross-protection between strains
is high, we find that models developed under different assumptions lead, in general, to
qualitatively different dynamics (see also the supporting information text). Despite the
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robustness of our conclusions on the quality of proposed closures with respect to key
parameters within a sensible parameter region, further research is necessary to establish
rigorous error bounds throughout the parameter space. In particular, we have not inves-
tigated the dependence of closure quality on the birth/mortality rate µ – performance
may worsen for large µ. A more difficult, but equally important, question is how the
topology of the strain space and of the cross-immunity structure alter the dynamics and
the resultant performance of approximations in comparison with the full model.

Application to antigenic drift in influenza A

The application presented in this section illustrates how one could capture some aspects of
the phenomenon of antigenic drift in influenza A’s subtype H3N2 using models capable of
tracing hundreds of variables. This is an attempt to extend the work by Gog and Grenfell
[15] to the case of a two-dimensional viral phenotype space: those authors had shown
that the dominant phenotype of the virus would move along a one-dimensional line in a
two-dimensional strain space if it was assumed that viable phenotypes are concentrated in
a narrow region along one of the axes. The structure of the influenza A phenotype space
is not known, and it would be very surprising if all viable phenotypes were located only
along a one-dimensional manifold. It is more likely that immuno-selection reduces the
relative fitness of certain phenotypes at certain points in time [17]. Here, we construct an
immunity-based mechanism that restricts the virus from exploring the whole phenotype
space even if this space is mostly viable. We did not attempt to fit any parameters to
real data, so that a quantitative correspondence, or even a close qualitative match, are
not intended here.

We assume that the strain space of the considered influenza-like virus is a two-
dimensional rectangular lattice, i.e., each variant of the virus is characterized by a pair
of integers (i, j) ∈ Z2 and the phenotypic mutational neighborhood is given by the next-
neighbor relation on the lattice, M(i,j) = {(i − 1, j), (i + 1, j), (i, j − 1), (i, j + 1)}. While
it is clear that the true strain space spanned by all viable conformations of the hemag-
glutinin protein does not resemble anything as simple as a two-dimensional rectangular
lattice, by considering this example we still hope to shed some light on the mechanisms
that govern the complicated evolutionary process of antigenic drift. This hope is not
entirely unfounded. Plotkin et al. [39] have observed that changes in the influenza A
hemagglutinin occur “along a different epitopic axis every 2-5 years”. Earlier, Wilson
and Cox [29] have noticed that amino acid substitutions in two epitopes were on aver-
age necessary to produce a new antigenic type. In addition to that, Smith et al. [19]
have argued that the antigenic space of influenza A’s subtype H3N2 is principally two-
dimensional. Bringing these ideas together, we investigate influenza A evolution in an
abstract two-dimensional phenotype space. We associate the movement along each di-
mension of this space with changes in states of a viral “effective epitope” (referred to as
A and B below). The effective epitopes may not correspond to actual epitopes on the sur-
face of the influenza A hemagglutinin protein (of which five are currently known) because
not all epitopes may be immunogenic at all times. Below we drop the word “effective”,
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but it is always implied in the context of our model. In our interpretation, each pair of
indices (i, j) ∈ Z2 characterizing a particular strain implies that epitope A is in its ith
conformation while epitope B is in its jth conformation.

By the same token, it is natural to incorporate another idea, introduced by Gupta and
colleagues [3,30] – the assumption that each individual that has been infected with strain
(i, j) develops immunity against both epitopes, and thus gains full protection against all
strains that possess the same conformation of either epitope. In other words, σ(i,j)(k,ℓ) = 1
if either i = k or j = ℓ, resulting in a cross-shaped cross-immunity structure (Figure
4). The specificity of antibodies determines how fast cross-immunity decays when the
epitopes of the challenging strain differ from the epitopes of the immunogenic strain. We
follow [15] in choosing a Gaussian function for the decay of cross-immunity, with mean
zero and standard deviation a, implying that a is the cumulative number of conformation
changes in one epitope that reduces cross-immunity to e−1/2 = 60.7%,

σ(i,j)(k,ℓ) = exp







−1

2

(

min(|i − k|, |j − ℓ|)
a

)2






. (12)

The cross-immunity matrix σ thus specified is sufficient for generating a one-dimensional
trajectory of strain evolution: variants along the diagonal of strain space cause epidemics,
whereas other variants do not (Figure S16). This conforms with intuition. Indeed, once
a strain causes an epidemic, the host population acquires immunity not only against it
but also against all the strains that share at least one epitope conformation with it, i.e.,
against all strains that have either the same x-coordinate or the same y-coordinate. Thus,
the phenotypically closest mutant that can cause the next epidemic must differ from the
current epidemic strain in both epitopes – so that this mutant can only by its diagonal
neighbor.

In this simple model, strictly one strain dominates the host population at each epi-
demic season. In a slightly more general setting, several strains can coexist within an
epidemic season [19]. To account for this possibility, we introduce some heterogeneity in
the transmission coefficients of strains. This is indeed as expected in reality, since some
strains are likely to be slightly more virulent than others, because the conformation of the
hemagglutinin protein influences how effectively a virus can penetrate target cells [28,29].
The amount of heterogeneity determines how many strains can coexist. In this version
of our model, one to three strains usually coexist during an epidemic, while the principal
component of the evolutionary trajectory remains one-dimensional (Figure 5). However,
we conjecture that, if we considered an infinite rectangular lattice and started from the
same initial condition, we would have observed either two lineages evolving in opposite
directions along one of the two diagonals, or even four lineages evolving along both diag-
onals. We did not investigate this scenario in detail because it presumes that there is no
immunity in the population whatsoever at the initial time point. This may be true for real
influenza right after a reassortment event, but the evolutionary forces active during and
right after reassortment are probably quite different from those governing the subsequent
antigenic drift, and go far beyond the subject of our concern here. Thus, considering only
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the first quadrant of the phenotype space when starting viral evolution at the origin is
equivalent to assuming that antigenic drift has already been going on for some time. The
question thus addressed is how antigenic drift with limited diversity can be sustained.

To show that this result is a consequence of the immunity structure suggested here,
rather than just a peculiarity of the considered equations, we have simulated exactly the
same system for Gog and Grenfell’s equations and for the model with no coinfections. We
thus can show that the results reported above are qualitatively robust to model choice
(see the supporting information text). Moreover, the assumptions of our model can be
relaxed along two directions: (a) we may allow for mutations to more and more distant
neighbors, with decreasing probabilities; and (b) cross-immunity may be allowed to decay
slowly along the epitopic axes. As long as the immunity neighborhood extends further
along the epitopic axes than the mutational neighborhood, our qualitative conclusions
hold (results not shown). On the contrary, if the local cross-immunity structure suggested
in [15] is used instead of the epitope-based one, viral evolution is no longer contained to
a one-dimensional manifold (see the supporting information text).

The real influenza virus, which is likely to live in an approximately two-dimensional
strain space, appears to experience a selection regime that, while allowing for the tempo-
rary coexistence of a small number of variants, constrains the long-term evolution of the
virus to a single branch. Our model suggests a possible mechanism for explaining this
surprising reduction. In particular, we conjecture that two ingredients are responsible for
the associated evolutionary dynamics:

1. The first ingredient is the non-local nature of the immune response after an infection.
This results from the fact that cross-immunity protects hosts not only against strains
that are very similar to the infecting strain, but also against strains that are quite
distant from it in strain space, as long as at least one of their epitope conformations
resembles that of the infecting strain. Non-locality of the immune response prevents
the virus from conquering the entire trait space.

2. The second ingredient, which enables temporary coexistence of several strains, is
the heterogeneity of transmission coefficients in trait space. Paradoxically, this het-
erogeneity occasionally leads to temporary parity among the effective reproduction
ratios of different strains. The effective reproduction ratio of a particular strain is
the quantity that determines whether this strain takes off and causes an epidemic
or dies out without ever reaching the epidemic threshold [40]. In our model, the
effective reproduction ratio R(i,j) of strain (i, j) equals β(i,j)S(i,j)/ν. When all strains
possess the same transmission coefficient, effective reproduction ratios thus depend
only on the fractions of susceptible individuals. Clearly, the pool of susceptibles to
the diagonal strains is larger than the pool of susceptibles to nearby off-diagonal
strains, because past infections have induced low cross-immunity against the former
and high cross-immunity against the latter. Hence, the diagonal strains successively
cause epidemics, while the off-diagonal strains do not – accordingly, no polymor-
phism can emerge, not even in the short term. By contrast, in a trait space that
is heterogeneous with respect to the transmission coefficient, relatively small values
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of S(i,j) for off-diagonal strains may occasionally be compensated by high values
of β(i,j). In this manner, the effective reproduction ratios for off-diagonal strains
may become comparable to those for diagonal strains. If, in addition, strains with
comparable effective reproduction ratios start from comparable initial conditions,
they reach epidemic values around the same time. This leads to short-term poly-
morphisms.

Discussion

The approach introduced here enables systematic reductions in the complexity of status-
based models of multi-strain pathogens. It is applicable to models with or without coin-
fections, with reduced susceptibility or reduced infectivity. If coinfections are allowed
and reduced infectivity is assumed, our approach coincides with that of Gog and Gren-
fell [15]. The key is to depart from the traditional compartment models by adopting
the viewpoint of the pathogen. This allows restating full status-based models in terms
of immunity variables and truncating the hierarchy of resultant equations at the desired
order. Overcoming the exponential explosion of state variables in traditional models of
multi-strain pathogens, we have shown that the complexity of our approximation grows
only algebraically, i.e., proportionally to powers of the number of strains in the system.
Numerically solving the resulting approximate equations, we show that they relatively
well mimic the dynamics of full systems, even when the first-order closures are used.

It would be interesting to perform a rigorous mathematical analysis of the behavior of
our approximations and compare it to the behavior of the full system [9]. In theory, the
behavior of the full model should be mimicked more and more accurately when the chain
of equations for immunity variables is truncated at higher and higher orders. Indeed,
when sufficiently many of them are satisfied exactly, one obtains the original full model
expressed in terms of immunity variables.

In this work we presented a state-space reduction approach that applies only to the
class of status-based models. We focused on this class of models for two reasons. Apart
from easier mathematical treatment, there is an important conceptual difference that
favors status-based models, at least under the reduced susceptibility assumption. Consider
a situation when a host is repeatedly challenged with a strain. In the history-based
approach, the probability for a host to acquire an infection remains the same across
successive challenges. Thus, a host that has successfully used cross-reacting antibodies to
repel one or more challenges from a particular pathogen is just as likely to be infected at
the next challenge as is a host with the same infection history that has never seen this
particular pathogen. To us, the status-based assumption – that, if antibodies fend off the
first challenge, subsequent challenges will fail too – seems more realistic. Nevertheless, it
would be interesting to know whether a state-space reduction approach similar to the one
presented here could also be applied to history-based models.

Using our framework, we have investigated a potentially general mechanism for con-
straining viral evolution to one-dimensional manifolds when the underlying strain space
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is two-dimensional. Based on general knowledge about the antigenic space of the real
influenza virus, we considered a hypothetical influenza-like virus whose phenotype space
was given by a regular lattice with the same dimensionality as the number of principal
components of the virus’ antigenic space. We associate the movement along the axes of
the resultant phenotype space with changes in the conformation of the viral “effective
epitopes”. We based our analysis on two plausible qualitative assumptions: (a) during an
infection, immunity is independently generated against all effective epitopes, and (b) im-
munity against one effective epitope suffice for full protection against viruses with similar
epitopes. The resultant cross-shaped cross-immunity neighborhood drives the evolution of
the virus along the diagonal of the phenotype space. This observation offers a conceptually
simple approach to understanding single-trunk phylogenies of infectious pathogens.

Qualitatively different hypotheses for explaining the single-trunk phylogeny of in-
fluenza were introduced earlier on by Ferguson et al. [10] and, recently, by Koelle et
al. [26]. Ferguson et al.’s hypothesis was later given a theoretical justification by An-
dreasen and Sasaki [24]. Ferguson et al. suggested that a presumed strain-independent
short-lived form of cross-immunity could be the decisive factor for restricting the diversity
of influenza strains. In their model, strains were described by genetic sequences and an ad
hoc rule was considered to translate the genetic distance between strains into an antigenic
distance. In reality, however, this translation must be expected to be (a) highly degen-
erate – the antigenic space has only two principal dimensions – and (b) highly nonlinear
– small genetic changes will sometimes cause large antigenic changes and vice versa [19].
Failure to take into account these two factors results in an inflation in the dimensionality
of the strain space of influenza, which, in turn, may lead to a necessity for introducing ad-
ditional assumptions like the existence of strain-independent short-lived cross-immunity.
Koelle et al.’s recent work [26] is an excellent demonstration of this point. The authors
explicitly modeled the highly nonlinear and highly degenerate mapping from genotypes to
phenotypes and thus were able to obtain single-trunk phylogenies without the assumption
of strain-independent cross-immunity. Their results constitute an important step toward
understanding the evolution of influenza A. However, it still remains to be understood
how exactly the influenza virus moves through the phenotype space in such a way that
its diversity remains restricted. In particular, what are the crucial properties of the phe-
notype space’s topology that allow for such a peculiar evolution? Our work outlines one
possible set of such properties. Namely, if each independent direction of the antigenic
space is associated with an effective epitope, and if the effective epitopes are immunogeni-
cally independent, then a one-dimensional trajectory of antigenic drift naturally emerges
from the epitope-based cross-immunity structure. Our model is, of course, simplistic, and
much more needs to be done to improve our understanding of the phenotype evolution of
influenza. In particular, large-scale immunological experiments, as well as further studies
of the protein folding process, will be necessary to uncover the actual topology of the
influenza virus strain space, its cross-immunity structure, and the types of immunity that
need to be considered.
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Figures

Figure 1. Qualitative accuracy measure ρ (vertical axis) in dependence on the cross-
immunity coefficient s (horizontal axis), the transmission coefficient R0 (rows) and the
mutation probability m (columns). Each panel shows the performance of four models:
Gog and Grenfell’s model (circles), order-1 independence closure (pluses), order-1 interpo-
lation closure (squares), order-2 independence closure (triangles). The highlighted region
indicates the parameter combination m = 10−6, R0 = 5, and s = 0.6, for which the
system’s dynamics are shown in Figure 3.

Figure 2. Quantitative accuracy measure ∆ for the performance of four models. Details
as in Figure 1.

Figure 3. Dynamics of the full four-strain SIR model (black curves) compared with its
approximations (thick gray curves). Solution of the full model, Gog and Grenfell’s model,
order-1 independence closure model, order-1 interpolation closure model, and order-2
independence closure model are denoted by “F”, “GG”, “O1A”, “O1B”, and “O2”, re-
spectively. Parameter values: m = 10−6, R0 = 5, and s = 0.6.

Figure 4. Cross-immunity structure. Strains to which strain (0, 0) confers full, 37%, 2%
or no cross-immunity are shown in white, light gray, dark gray, and black, respectively.
A. Our model. B. Gog and Grenfell’s model [15].

Figure 5. Approximate dynamics of antigenic drift in influenza A, based on the order-
1 interpolation closure. Parameter values: µ = 0, ν = 1, m = 10−4, and a = 1/

√
2;

the heterogeneous transmission coefficients β(i,j) were drawn from a normal distribution
with mean 3 and standard deviation 0.5. The numerical solution for the time interval
t ∈ [0, 100] was obtained for a strain space given by a 20-by-20 rectangular lattice. The
initial condition was given by all state variables being zero except for I(1,1)(0) = 0.01 and
ξ(1,1)(0) = 0.01, corresponding to a healthy and fully susceptible host population with 1%
of hosts infected with strain (1, 1). A. Strains whose maximum epidemic size exceeded 0.01
are shown. The gray shade indicates the maximum epidemic size; the number above each
shaded square indicates the time when the maximum of the epidemic for that particular
strain was reached. Circles indicate strains whose transmission coefficients are less than
3; crosses indicate strains with transmission coefficients greater than 3. B. The sum of
all proportions of infectious hosts as a function of time.
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Parameters
K Set of all pathogen strains
βi Transmission coefficient of pathogen strain i ∈ K
m Probability of pathogen mutation during infection
Mi Mutational neighborhood of pathogen strain i ∈ K, i.e., the set of

all strains that can mutate into i (and to which i can mutate)
ν Per capita recovery rate of host
µ Per capita birth and death rate of host
C(A, i, B) Fraction of hosts that, when being immune against strains in A ⊂ K

and becoming infected with strain i ∈ K become immune against
strains in B ⊂ K after the infection

σij Probability that hosts obtain immunity against strain j ∈ K after
an infection with strain i ∈ K

Variables
SA Fraction of hosts that are immune against strains in the set A ⊂ K
Ii Fraction of hosts infectious with strain i
Λi Force of infection for strain i
ξi1i2···iℓ Fraction of hosts that are immune against strains i1, i2, . . . , iℓ ∈ K
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This supporting information document contains four sections. The first section pro-
vides a derivation of the expansion in immunity variables of the model with coinfections
and reduced infectivity and demonstates its connection to the reduced model presented in
[S1]. In the second section we elucidate the expansion in immunity variables for a model
without coinfections. In the third section we present an extended analysis of accuracy for
Gog and Grenfell’s model [S1], as well as for order-1 and order-2 closures in models with
and without coinfections. The last section contains an additional analysis of the influenza
A drift model.

State space reduction in a model with coinfections
and reduced infectivity

In this section we derive the expansion in immunity variables for the full status-based
model with coinfections and reduced infectivity and show that the truncation of this
expansion at the first order leads to the model studied by Gog and Grenfell [S1]. Our
approach provides a generalization of that model since immunity variables allow us to
truncate the chain of equations at higher orders if a more detailed description of the
immunity structure of the population is desired.

The general status-based model with coinfection was formulated by Gog and Swinton
[S2]. However, it was constructed under the assumption of reduced susceptibility. The
assumption of reduced infectivity enters in the definition of the function C(A, i, B) that
determines the proportion of the host population that, after an infection with strain i,
changes its immune status from A to B, as well as in the properties of the function C∗

i (A, k)
(see below). The reduced infectivity assumption implies that C(A, i, B) is allowed to take
non-zero values only if:

1. i ∈ B;

2. A ⊆ B.

The difference between this and the assumptions on C made in [S2] is that C(A, i, B)
can take non-zero values if i ∈ A. Biologically, this implies that individuals are allowed
to change their immune status due to a mere exposure to a strain even if this strain
is already included in their immune status (see also the discussion in the main text).
Mathematically, this assumption implies that the equations for the class SA are different
from equations (1) in the main text of our paper in that the second sum is taken over all
subsets of the set of strains and the last sum is taken over all strains. Equations for Ii

remain the same.

ṠA = µ(δA,∅ − SA) +
∑

k∈K

∑

B⊂K

SBΛkC(B, k,A) −
∑

k∈K

ΛkSA, for all A ⊂ K, (S1)

İi = Λi

∑

B:i∈K\B

SB − (ν + µ)Ii, for all i ∈ K. (S2)
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Analogously to the derivation in the main text, we define the probability C∗
i1i2···i!(A, k)

of obtaining immunity against strains i1, i2, . . . , i! (all different) after an infection with
strain k for a host that had immune status A prior to the infection. But now, according
to the assumption of reduced infectivity, we assume that

C∗
i1i2···i!(A, k) =

∏

j=1,2,...,!:
ij !∈A∪{k}

σkij .

This implies that (a) the chance of obtaining immunity against strain i after the infection
with the strain k does not depend on the presence or absence of immunity against other
strains, and (b) if the host is already immune to strain k (i.e., k ∈ A), the chance of getting
immunity to strain i through cross-protection betwen strains k and i, is proportional to
σki. This is a biologically subtle point of the reduced-infectivity assumption (see the
discussion in the main text).

Analogously to the derivation in the main text, to obtain the reduced version of the
model (S1)–(S2), we introduce the immunity variables

ξi =
∑

A:i∈A

SA, ξij =
∑

A⊂K:
i,j∈A

SA, . . . ,

in terms of which we rewrite the system (S1)–(S2). The equation for Ii is transformed
straightforwardly once one recalls that

∑
A⊂K SA = 1.

İi = Λi

(
∑

B⊂K

SB −
∑

B:i∈B

SB

)
− (ν + µ)Ii = Λi (1 − ξi) − (ν + µ)Ii. (S3)

Differentiating the definition of ξi with respect to time and using (S1), we obtain

ξ̇i = µ
∑

A:i∈A

(δA,∅ − SA) +
∑

A:i∈A

∑

k,B

SBΛkC(B, k,A) −
∑

A:i∈A

∑

k∈K

ΛkSA, (S4)

We shall consider the three sums one after another. The first sum yields

∑

A:i∈A

(δA,∅ − SA) = −ξi

since the sum of δA,∅-terms gives zero. The second term can be transformed in the following
way,

∑

A:i∈A

∑

k,B

SBΛkC(B, k,A) =
∑

k

∑

B

SBΛkC
∗
i (B, k)

=
∑

k∈K




∑

B:i∈B

SBΛkC
∗
i (B, k) +

∑

B:i∈K\B

SBΛkC
∗
i (B, k)
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=
∑

k∈K




∑

B:i∈B

SBΛk +
∑

B:i∈K\B

SBΛkσki





=
∑

k∈K

(ξiΛk + (1 − ξi)Λkσki)

The transformation of the last sum in (S4) is also straightforward:

∑

A:i∈A

∑

k∈K

ΛkSA =
∑

k∈K

Λkξi.

Gathering all the terms above, we obtain:

ξ̇i =
∑

k∈K

Λkσki(1 − ξi) − µξi. (S5)

The equation for ξ̇ij is obtained analogously,

ξ̇ij =
∑

k∈K

Λk [σki(ξj − ξij) + σkj(ξi − ξij) + σkiσkj(1 − ξi − ξj + ξij)] −

− µξij for all i, j ∈ K, i &= j. (S6)

Continuing this chain, we would obtain the full system (S1)–(S2) expressed in terms
of immunity variables. Note, however, that equations for immunity variables of any
particular order are uncopuled from equations for immunity variables of higher orders.
Therefore, the chain of equations truncated at a particular order would exactly represent
the dynamics of the immunity variables up to that order. In particular, if we truncate
the chain of equations at order 1, we can express (S3), (S5) in terms of Ii and Si = 1− ξi.
This leads to the model studied by Gog and Grenfell [S1].

Ṡi = µ(1 − Si) −
∑

k∈K

ΛkσkiSi,

İi = ΛiSi − (ν + µ)Ii,

for all i ∈ K.

State space reduction in models with no coinfections

In this section we derive the expansion in immunity variables for a model with no
coinfections under the reduced-susceptibility assumption. At the end of the section we
also provide, without a derivation, the expansion in immunity variables for the model with
no coinfections and reduced infectivity. We start out from a model with no coinfection that
is analogous to the model with coinfections considered by Gog and Swinton [S2]. Here,
we have to slightly change the meaning of our notations. SA represents the proportion of

4



currently non-infected hosts that possess immune status A ⊂ K and that, therefore, are
currently fully susceptible to all strains in the subset K\A (we refer to these individuals
as being in state A); and I i

A is the proportion of individuals in the host population that
are currently infected with strain i and had immune status A ⊂ K before the current
infection (which implies i &∈ A). Since all host individuals naturally fall in exactly one of
these classes, we have ∑

A⊂K

SA +
∑

i∈K

∑

A⊂K\{i}

I i
A = 1. (S7)

The proportion of hosts that recover to state B ⊂ K, having been in state A ⊂ K
when they were infected by strain i ∈ K, is given by C(A, i, B) that has the properties
described in the main text. The following is the full system of equations for the model
with no coinfections.

ṠA = µ(δA,∅ − SA) + ν
∑

k∈K

∑

B⊂K\{k}

Ik
BC(B, k,A)

−
∑

k∈K\A

ΛkSA, for all A ⊂ K, (S8)

İ i
A = ΛiSA − (ν + µ)I i

A, for all i ∈ K and A ⊂ K\{i}, (S9)

where

Λi = βi



(1 − m)
∑

A∈K\{i}

I i
A +

∑

j∈Mi

∑

A∈K\{j}

m

|Mj|
Ij
A



 . (S10)

Altogether, this system consists of 2n + n2n−1 − 1 equations, where n is the number of
strains.

We now rewrite this system in terms of the proportions of hosts infected with strain i,

Ii =
∑

A⊂K\{i}

I i
A,

and the immunity variables,

ξi =
∑

A⊂K:
i∈A

SA, ξij =
∑

A⊂K:
i,j∈A

SA, . . . ,

ηk
i =

∑

A⊂K\{k}:
i∈A

Ik
A, ηk

ij =
∑

A⊂K\{k}:
i,j∈A

Ik
A, . . .

where ξi1i2···i! describes the proportion of hosts that are currently not infected and have im-
munity against strains i1, i2, . . . , i! ∈ K; and ηk

i1i2···i! describes the proportion of hosts that
are currently infected with strain k and have immunity against strains i1, i2, . . . , i! ∈ K.
We will refer to immunity variables ξi1i2···i! and ηk

i1i2···i! as being of order '. As in the model
with coinfections, all immunity variables are symmetric with respect to the permutation of
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their subindices. Immunity variables with duplicate subindices i remain unchanged when
the duplicate subindex is removed, ξ···i···i··· = ξ···i······ and ηk

···i···i··· = ηk
···i······. When a strain

index k appears in both an η-variable’s superscript and subscript, the η-variable must be
zero, ηk

···k··· = 0. By definition, the immunity variables satisfy monotonicity conditions,

1 ≥ H ≥ ξi1 ≥ ξi1i2 ≥ . . .

and
1 ≥ Ik ≥ ηk

i1 ≥ ηk
i1i2 ≥ . . .

for all pairwise different k, i1, i2, . . . ∈ K. Here H = 1 −
∑

i∈K Ii is the proportion of
healthy (i.e., not infected) host individuals.

Recalling that
∑

A⊂K SA +
∑

i∈K Ii = 1, we easily obtain the equations for İi, η̇k
i , η̇k

ij

etc.,

İi = ΛiSi − (ν + µ)Ii for all i ∈ K, (S11)

η̇k
i = Λk(ξi − ξik) − (ν + µ)ηk

i for all i, k ∈ K; i &= k, (S12)

η̇k
ij = Λk(ξij − ξijk) − (ν + µ)ηk

ij for all i, j, k ∈ K; i, j, k pairwise different,(S13)

· · ·

where Si = H − ξi is the fraction of individuals that are currently healthy and susceptible
to strain i. The force of infection for strain i, expressed in terms of new variables, is

Λi = βi

(
(1 − m)Ii +

∑

j∈Mi

m

|Mj|
Ij

)
. (S14)

The derivation of the equations for ξ̇i, ξ̇ij etc. is more technical. Here, we restrict ourselves
to an explicit derivation of the equation for ξ̇i. For this purpose, we apply the time
derivative to the definition of ξi and use (S8), to obtain

ξ̇i = µ
∑

A⊂K:
i∈A

(δA,∅ − SA) + ν
∑

A⊂K:
i∈A

∑

k∈K

∑

B⊂K\{k}

Ik
BC(B, k,A) −

∑

A⊂K:
i∈A

∑

k∈K\A

ΛkSA. (S15)

The first term in (S15) accounts for the depletion, due to deaths, of healthy host individ-
uals that are immune to strain i,

µ
∑

A⊂K:
i∈A

(δA,∅ − SA) = −µξi.

The second term in (S15) can be simplified as follows,
∑

A⊂K:
i∈A

∑

k∈K

∑

B⊂K\{k}

Ik
BC(B, k,A) =

∑

k∈K

∑

B⊂K\{k}

Ik
BC∗

i (B, k)

=
∑

k∈K

∑

B⊂K\{k}:
i∈B

Ik
BC∗

i (B, k) +
∑

k∈K

∑

B⊂K\{k,i}

Ik
BC∗

i (B, k)

=
∑

k∈K

∑

B⊂K\{k}:
i∈B

Ik
B +

∑

k∈K

∑

B⊂K\{i,k}

Ik
Bσki =

∑

k∈K

ηk
i +

∑

k∈K

σki(Ik − ηk
i ).
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The last equality is satisfied because

∑

k∈K

∑

B⊂K\{i,k}

Ik
Bσki =

∑

k∈K

σki




∑

B⊂K\{k}

Ik
B −

∑

B⊂K\{k}:
i∈B

Ik
B



 .

Note that the second term in (S15) can be rewritten as
∑

k∈K

ηk
i +

∑

k∈K\{i}

σki(Ik − ηk
i ) + Ii,

showing that it accounts for the replenishment of healthy host individuals that are immune
to strain i due to (a) recovery of hosts that have previously been immune to strain i, but
have been infected with some other strain k; (b) recovery of hosts that, after having been
infected with some strain k, have gained cross-immunity to strain i; and (c) recovery of
hosts that have been infected with strain i. Finally, the third term in (S15) accounts for
the infection of individuals, immune to strain i, with some other strain k, and can be
rewritten as

∑

A⊂K:
i∈A

∑

k∈K\A

ΛkSA =
∑

k∈K\{i}

∑

A⊂K\{k}:
i∈A

ΛkSA =
∑

k∈K

Λk(ξi − ξik).

Collecting the three results above, we obtain the equation for ξ̇i expressed in terms of new
variables,

ξ̇i =
∑

k∈K

[
ν

(
ηk

i + σki(Ik − ηk
i )

)
− Λk(ξi − ξik)

]
− µξi for all i ∈ K. (S16)

The equation for ξ̇ij is obtained analogously,

ξ̇ij =
∑

k∈K

[
ν

(
ηk

ij + σki(η
k
j − ηk

ij) + σkj(η
k
i − ηk

ij) + σkiσkj(Ik − ηk
j − ηk

i + ηk
ij)

)
−

− Λk(ξij − ξijk)
]
− µξij for all i, j ∈ K, i &= j. (S17)

Observe that the equations for the immunity variables of order ' depend on the η-variables
of order ' and on the ξ-variables of order ' + 1, but not on any immunity variables of
higher orders. To truncate this hierarchy of equations at order ', in full analogy to the
model with coinfections, we need to approximate the ξ-variables of order ' + 1 by a
function of immunity variables of lower orders. Each approximation must, again, satisfy
the symmetry, monotonicity and redundancy conditions outlined in the main text.

We suggest the following simple closures:
(a) Order-1 independence closure:

ξ̂ij =

{ ξiξj

H
if i &= j

ξi if i = j
for all i, j ∈ K. (S18)
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(b) Order-1 interpolation closure:

ξ̂ij =
ξiξj

H

(
1 − σij + σji

2

)
+

σij + σji

2
min(ξi, ξj) for all i, j ∈ K. (S19)

(c) Order-2 independence closure:

ξ̂ijk =






1

3H
(ξijξk + ξikξj + ξjkξi) if i &= j &= k &= i

ξij if i = k or j = k
ξik if i = j

for all i, j, k ∈ K. (S20)

Models truncated at first order have n(n + 1) remaining variables, while models trun-
cated at second order have n(n2 + 3)/2 variables.

Finally, we provide, without a derivation, the reduced version of the model with coin-
fections under the assumption of reduced infectivity. First, the full model with this
assumption differs from the model with reduced susceptibility in that the class I i

A, where
i ∈ A, is no longer empty, since we assume that hosts can be infected with a variant
even if it is in their immune status. Such individuals will not, however, contribute to
infectivity with strain i and, therefore, the force of infection is still given by expression
(S10). Equation (S7) is transformed to

∑
A⊂K SA +

∑
i∈K

∑
A⊂K I i

A = 1, and instead of
(S8)–(S9) we have

ṠA = µ(δA,∅ − SA) + ν
∑

k∈K

∑

B⊂K

Ik
BC(B, k,A) −

∑

k∈K

ΛkSA, for all A ⊂ K, (S21)

İ i
A = ΛiSA − (ν + µ)I i

A, for all i ∈ K and A ⊂ K. (S22)

To obtain the reduced version of this model, we rewrite (S21)–(S22) in terms of

Ii =
∑

A⊂K

I i
A,

ξi =
∑

A⊂K:
i∈A

SA, ξij =
∑

A⊂K:
i,j∈A

SA, . . . ,

ηk
i =

∑

A⊂K:
i∈A

Ik
A, ηk

ij =
∑

A⊂K:
i,j∈A

Ik
A, . . . .

It can be shown that system (S21)–(S22) is equivalent to the following system.

İi = ΛiH − (ν + µ)Ii

η̇k
i = Λkξi − (ν + µ)ηk

i ,

η̇k
ij = Λkξij − (ν + µ)ηk

ij,

ξ̇i =
∑

k∈K

[
ν

(
ηk

i + σki(Ik − ηk
i )

)
− Λkξi

]
− µξi
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ξ̇ij =
∑

k∈K

[
ν

(
ηk

ij + σki(η
k
j − ηk

ij) + σkj(η
k
i − ηk

ij) + σkiσkj(Ik − ηk
i − ηk

j + ηk
ij)

)
−

− Λkξij

]
− µξij

...

for all i, j, k ∈ K, i &= j, where H = 1 −
∑

k∈K Ik and Λi is defined by (S14). As it is
common for models with reduced infectivity, the dynamics of the immunity variables of a
particular order does not depend on the immunity variables of higher orders. Therefore,
the truncation at a given order reproduces the true behavior of the immunity variables
up to that order.

Extended analysis of accuracy for reduced models

In this section we present the results of the same type of analysis as in the main text,
for additional strain space topologies and for the model with no coinfections. We use the
following topologies:

Topology 1. Linear four-strain system as described in the main text.
Topology 2. Circular four-strain system. The mutational neighborhood and the cross-

immunity matrix are given by

M1 = {2, 4}, M2 = {1, 3}, M3 = {2, 4}, M4 = {3, 1},

σ =





1 s 0 s
s 1 s 0
0 s 1 s
s 0 s 1



 .

Topology 3. Linear six-strain system. The mutational neighborhood and the cross-
immunity matrix are given by

M1 = {2}, M2 = {1, 3}, M3 = {2, 4}, M4 = {3, 5}, M5 = {4, 6}, M6 = {5},

σ =





1 s 0 0 0 0
s 1 s 0 0 0
0 s 1 s 0 0
0 0 s 1 s 0
0 0 0 s 1 s
0 0 0 0 s 1




.

Topology 4. Torus-like six-strain system (Figure S1). The mutational neighborhood
and the cross-immunity matrix are given by

M1 = {2, 3, 4}, M2 = {1, 3}, M3 = {1, 2, 6},
M4 = {1, 5, 6}, M5 = {4, 6}, M6 = {3, 4, 5},

9
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Figure S1: Topology 4.
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Figure S2: Qualitative accuracy mea-
sure ρ for the performance of four models
with coinfections on the Topology 2 sys-
tem: Gog and Grenfell’s model (circles),
order-1 independence closure (pluses),
order-1 interpolation closure (squares),
order-2 independence closure (triangles).
Plots in each row have the value of R0

that is indicated on the left; plots in each
column have the value of m that is indi-
cated at the bottom.

σ =





1 s s s 0 0
s 1 s 0 0 0
s s 1 0 0 s
s 0 0 1 s s
0 0 0 s 1 s
0 0 s s s 1




.

Model with coinfections

According to the procedure outlined in the main text, we numerically find solutions
for topologies 2, 3 and 4. The results are shown in Figures S2 – S7.
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Figure S3: Quantitative accuracy mea-
sure ∆ for the performance of four mod-
els with coinfections on the Topology 2
system. Details as in Figure S2.
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Figure S4: Qualitative accuracy mea-
sure ρ for the performance of four mod-
els with coinfections on the Topology 3
system. Details as in Figure S2.
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Figure S5: Quantitative accuracy mea-
sure ∆ for the performance of four mod-
els with coinfections on the Topology 3
system. Details as in Figure S2.
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Figure S6: Qualitative accuracy mea-
sure ρ for the performance of four mod-
els with coinfections on the Topology 4
system. Details as in Figure S2.
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Figure S7: Quantitative accuracy mea-
sure ∆ for the performance of four mod-
els with coinfections on the Topology 4
system. Details as in Figure S2.

Model with no coinfections

For the model with no coinfections, we numerically solve the following equations for
the time interval [0, T ] and for a range of parameters:

1. The full SIR system: equations (S8) and (S9).

2. The approximation based on the order-1 independence closure: equations (S11),
(S12), and (S16), where the ξij are substituted according to (S18).

3. The approximation based on the order-1 interpolation closure: equations (S11),
(S12), and (S16), where the ξij are substituted according to (S19).

4. The approximation based on the order-2 independence closure: equations (S11),
(S12), (S13), (S16), and (S17), where the ξijk are substituted according to (S20).

Initially, 99% of the host population are healthy and fully susceptible to all strains, while
1% is infected with strain 1. All other parameter values are the same as in the model
with coinfections. The results for topologies 1 – 4 are shown in Figures S8 – S15.

Additional analysis of the influenza A drift model

In this section we present results of additional simulations for our influenza A drift
model.

First, we show that, a model with homogeneous transmission coefficients exhibits a
succession of diagonal variants but no coexistence (Figure S16). Therefore, heterogene-
ity in transmission coefficients is necessary in our model to ensure coexistence of similar
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Figure S8: Qualitative accuracy mea-
sure ρ for the the performance of three
models with no coinfections on the
Topology 1 system: order-1 indepen-
dence closure (pluses), order-1 interpola-
tion closure (squares), order-2 indepen-
dence closure (triangles). Plots in each
row have the value of R0 that is indi-
cated on the left; plots in each column
have the value of m that is indicated at
the bottom.
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Figure S9: Quantitative accuracy mea-
sure∆ for the performance of three mod-
els with no coinfections on the Topology
1 system. Details as in Figure S8.
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Figure S10: Qualitative accuracy mea-
sure ρ for the the performance of three
models with no coinfections on the
Topology 2 system. Details as in Figure
S8.
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Figure S11: Quantitative accuracy mea-
sure∆ for the performance of three mod-
els with no coinfections on the Topology
2 system. Details as in Figure S8.
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Figure S12: Qualitative accuracy mea-
sure ρ for the the performance of three
models with no coinfections on the
Topology 3 system. Details as in Figure
S8.
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Figure S13: Quantitative accuracy mea-
sure∆ for the performance of three mod-
els with no coinfections on the Topology
3 system. Details as in Figure S8.
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Figure S14: Qualitative accuracy mea-
sure ρ for the the performance of three
models with no coinfections on the
Topology 4 system. Details as in Figure
S8.
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Figure S15: Quantitative accuracy mea-
sure∆ for the performance of three mod-
els with no coinfections on the Topology
4 system. Details as in Figure S8.
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variants. It is interesting to notice that in the model by Tria et al. [S3] heterogeneity
in transmission coefficients had an opposite effect – it was necessary to constrain viral
diversity. Although that model is qualitatively different from ours in many respects and
cannot be compared to our model directly, we think that the main reason for this discrep-
ancy is the fact that Tria et al. assume local cross-immunity structure (in their model
the strength of cross-immunity monotonically depends on the Hamming distance between
variant sequences) while we assume highly non-local cross-immunity structure. We con-
jecture that the effect of heterogeneity of transmission coefficients in Gog and Grenfell’s
model [S1] with strain-independent cross-immunity would coincide with that by Tria et
al.

The second simulation differs from the model described in main text only by the
shape of the cross-immunity structure between strains. We demonstrate that, if cross-
immunity structure is local, as shown in Figure 4B in the main text, constrained evolution
is impossible – the virus explores the whole strain space, unless, of course, some part of
it is unviable, i.e., transmission coefficients are equal to or less than unity, as in Gog in
Grenfell’s work [S1]. Here we use essentially the same local cross-immunity structure as
Gog and Grenfell [S1]:

σ(loc)
(i,j)(k,!) = exp

{
−1

2

(
|i − k| + |j − '|

a

)2
}

.

The results of this simulation are shown in Figure S17. Note that the sum of fractions of
infected hosts surpasses 1 and reaches its maximum near 5 before it starts dropping. This
implies that many hosts survive multiple coinfections. Obviously, this does not happen
in a model where coinfections are prohibited, despite an explosion in diversity that is still
captured (results not shown). Also note that the decline in the number of coinfections
in the second half of the simulation is probably due to the fact that the whole 20 by 20
strain space was explored within the simulation time.

The final set of simulations aims at demonstrating that the main qualitative result of
our paper – the one-dimensionality of influenza A drift – does not depend on the details of
the model. We simulate the influenza evolution in a setting with the immunity structure
and the distribution of transmission coefficients as described in the main text using now
Gog and Grenfell’s model (Figure S18) and the approximate model with no coinfections
with the order-1 interpolation closure (Figure S19). As expected, the evolution of the virus
is principally one-dimensional irrespectively of the model. However, it is instructive to
notice some similarities and differences between the simulation results in different models:

1. The sets of strains that cause epidemics coincide for both our models but slightly
differ from the set predicted by Gog and Grenfell’s model (for example, in the latter
model, strains (12,7) or (16,16) do not cause epidemics). In general, strains cause
less severe epidemics in Gog and Grenfell’s model than in either of our models. This
is consistent with the fact that Gog and Grenfell’s model overestimates the level of
immunity in the population.

18



2.7

12.9

20.2

27.2

34.3

41.2

47.8

54.8

61.6

68.3

75.0

81.7

88.4

95.2

100.0

A

B

Time, t

j (
ep

ito
pe

 B
)

i (epitope A)

∑
 I

0 2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60 70 80 90 100

0.2

0.4

i,j
(i,
j)

Figure S16: Approximate dynamics of
antigenic drift in influenza A, based on
the order-1 interpolation closure in a
model with coinfections. All transmis-
sion coefficients β(i,j) are equal to 3.
Other parameter values are the same as
in Figure 5 in the main text.

2. The epidemic peak times in our model with coinfections generally coincide with
those in Gog and Grenfell’s model, while the corresponding epidemics occur later
in the model where coinfections are excluded. This suggests that the evolution of
the virus proceeds slower in a system with no coinfections.

These observations provide additional evidence for the fact that, even though the coarse
qualitative behavior of status-based models based on different assumptions may be quite
similar even in complex settings, substantial quantitative differences in predictions of such
models do exist.
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Figure S17: Approximate dynamics of
antigenic drift in influenza A, based on
the order-1 interpolation closure in a
model with coinfections. σ = σ(loc). All
other parameters, including parameter a
and the landscape of transmission coeffi-
cients are the same as in Figure 5 in the
main text. Four snapshots are taken at
times t = 3 (A), t = 23 (B), t = 46 (C),
and t = 67 (D). E. The sum of all pro-
portions of infectious hosts as a function
of time.
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Figure S18: Approximate dynamics of
antigenic drift in influenza A, based on
Gog and Grenfell’s model. All param-
eters, including the landscape of trans-
mission coefficients are the same as in
Figure 5 in the main text.
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Figure S19: Approximate dynamics of
antigenic drift in influenza A, based on
the order-1 interpolation closure in a
model with no coinfections. The initial
condition was given by all state vari-
ables being zero except for I(1,1)(0) =
0.01, corresponding to a healthy and
fully susceptible host population with
1% of hosts infected with strain (1, 1).
All other parameters including the land-
scape of transmission coefficients are the
same as in Figure 5 in the main text. B.
The total fraction of infected hosts as a
function of time.
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