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IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 135
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The Evolution and Ecology Program at IIASA fosters the devel-
opment of new mathematical and conceptual techniques for un-
derstanding the evolution of complex adaptive systems.
Focusing on these long-term implications of adaptive processes
in systems of limited growth, the Evolution and Ecology Program
brings together scientists and institutions from around the world
with IIASA acting as the central node.
Scientific progress within the network is collected in the IIASA
Studies in Adaptive Dynamics series.
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ABSTRACT

We studied the joint evolution of predator body size and prey-size preference

based on dynamic energy budget theory. The predators’ demography and their

functional response are based on general eco-physiological principles involving

the size of both predator and prey. While our model can account for qualitatively

different predator types by adjusting parameter values, we mainly focused on

‘true’ predators that kill their prey. The resulting model explains various empirical

observations, such as the triangular distribution of predator-prey size combina-

tions, the island rule, and the difference in predator-prey size ratios between filter

feeders and raptorial feeders. The model also reveals key factors for the evolution

of predator-prey size ratios. Capture mechanisms turned out to have a large effect

on this ratio, while prey-size availability and competition for resources only help

explain variation in predator size, not variation in predator-prey size ratio. Preda-

tion among predators is identified as an important factor for deviations from the

optimal predator-prey size ratio.

Subject headings: Body size; Prey-size preference; upper triangularity
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1. Introduction

The range of body sizes encountered in nature is enormous. A bacterium with full phys-

iological machinery has a volume of 0:25 � 10�18 m3, while a blue whale has a volume of

up to 135 m3. These body sizes are associated with the different scales in time and space in

which organisms live, and reflect the differences in physiological processes and life histories.

A wide range is also found in the prey-size preference of predators: consider, for example,

whales feeding on plankton and hyena eating zebra. Like body size, prey-size preference is

an important ecological property, as it determines which trophic links between predators and

prey are established. Together, the body size and the prey-size preference of predators largely

define the structure of a community. While the effects of body size on individuals and pop-

ulations has been investigated from many angles (Peters 1983; Kooijman 1986; Yodzis and

Innes 1992; Brown et al. 1993), general relationships between a predator’s body size and its

prey-size preference are more difficult to find.

Various mechanisms have been proposed that attempt to explain predator-prey size ratios

and prey-size preferences. These include passive selection mechanisms such as prey visibility

(Rincon and Loboncervia 1995; Svensson 1997) or gape limitation (Rincon and Loboncervia

1995; Forsman 1996; Mehner et al. 1998; Karpouzi and Stergiou 2003). Active selection

mechanisms, on the other hand, underlie optimal foraging theory, which assumes that preda-

tors select prey sizes that provide the best energy returns. Several mechanisms based on

active selection are discussed in Ellison and Gibson (1997), Manatunge and Aseada (1998),

Rytkonen et al. (1998) Kristiansen et al. (2000), Tureson et al. (2002) and Husseman et

al. (2003). However, since results vary both within and between predator-prey systems, and

the found relationships are highly species-specific, it is difficult to extract general rules from

them.

In recent years, several models have been developed that focus on general large-scale

patterns of feeding links in food webs. Some of these models, such as the cascade model

(Cohen and Newman 1985) and the niche model (Williams and Martinez 2000), are able to

generate food webs that approximate many features observed in real food webs. However,

these models are often descriptive and predator-prey pairs are assigned at random. Other

models do have a more mechanistic basis and include physiological relations based on body

size, but assume a fixed predator-prey size ratio (Loeuille and Loreau 2005). Aljetlawi et

al. (2004) derived a functional response that accounts for both predator and prey size: the
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derived relation was sufficiently flexible to be adjusted to many different specific predator-

prey systems. This very flexibility, however, limits the scope for deriving general rules.

In this study we combine a process-based eco-physiological model with a functional re-

sponse that depends on the size of both predator and prey. The model is based on dynamic

energy budget (DEB) theory (Kooijman 2000, 2001), a versatile framework for modeling

metabolic processes with physiological rules for uptake and use of material and energy. DEB

theory does not specify all details of the size-dependence of the functional response. One of

our aims here is to make the terms underlying this functional response explicit and, where

necessary, include additional terms, while staying as close to DEB theory as possible.

We do not arbitrarily choose predator-prey size ratios, but instead we allow the preda-

tor size and its prey-size preference to evolve independently. The predators are supplied

with prey that have a range of sizes. To keep the analysis feasible, we assume that the size

distribution of prey is constant and does not evolve. The objective is to study which size com-

binations between predators and preys are feasible and to which predator-prey size ratios the

considered population or community will eventually evolve. More specifically, we study how

patterns of predator size and prey-size preference depend on various factors, given a fixed

prey-size distribution; the examined factors include environmental parameters and ecologi-

cal parameters, with the latter describing predation as well as competition. The model focuses

on a generalized predator with two life stages, and therefore is not intended to replace more

species-specific studies on size-selective prey choice. By retaining a general perspective, we

hope that the results reported below will provide insights into the various factors determining

predator-prey size ratios, and thereby will help understanding of predator-prey size patterns

observed in nature.

2. Model description

2.1. Population dynamics

We consider a predator-prey model in which a population of predators feed on one or

more populations of abiotic prey.

The predators are described by one state variable, their biomass density XA (given by the

total amount of structural biovolume per unit of system volume), and by two adaptive traits,
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their adult length `A and their preference for a prey length `P. These two adaptive traits

remain constant throughout an individual’s life, but may change from parent to offspring

through mutation. Prey populations are described by their biomass density Xi, and consist of

organisms of length `i, with i = 1; : : : ; n where n is the number of prey populations. The prey

populations are not interacting and are assumed to have a fixed size-structure. For example,

we could consider algal populations grown in a first (illuminated) chemostat and fed into a

second (dark) chemostat where they are consumed by rotifers (see Kooi and Kooijman 1999).

Our model for the predator is based on a model of a size-structured rotifer population

(Kooi and Kooijman 1997, 1999), of which we use a simplified version that includes only two

life stages for the predator, embryos and adults. Embryos do not feed, but grow by using

the reserves they got from their mothers when eggs were produced. Adults, in contrast, do

not grow but they do feed; the acquired energy is used for maintenance and egg production.

Separating the functions of growth and feeding simplifies the model by reducing the number

of equations. It also removes intraspecific body size scaling relations, but maintains inter-

specific scaling relations. These include a size-dependent egg-production period aA and a

size-dependent developmental period ab of the embryo. A continuous function for reproduc-

tion then allows the system to be expressed in terms of delay differential equations (DDEs).

The dynamics of the system can then be described as follows,

d

dtXi(t) = (Xr;i �Xi(t))D � Iifi(t)XA(t); (1a)

d

dtXA(t) = R(t� ab) exp (�hab)XA(t� ab)� hXA(t); (1b)

where Xr;i is the incoming density of prey i, fi is the predator’s functional response to preyi (to be further discussed in Section 2.4), Ii is the maximum volume-specific ingestion rate

of prey i (which equals the inverse of the handling time [th;i℄ multiplied by the probability�s that an attack is successful, Ii = �s=[th;i℄, where the square brackets indicate that the

handling time is expressed on a volume-specific basis), D is the dilution rate of prey, and h is

the predator’s mortality rate. The delay in reproduction (t�ab) is due to the predator’s embryo

development time ab, which depends on how fast energy can be mobilized, as described by

the specific energy conductance kE, ab = 3=kE (Kooi and Kooijman 1997). Embryos have the

same mortality rate as adults, and the term exp(�hab) accounts for the mortality of embryos

during their development. The predator’s reproduction rate is given byR(t) = hexp(haA(t)) � 1 ; (2)
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(Kooi and Kooijman 1997), which depends on the mortality rate h. Generally, reproduction

rates do not depend directly on adult mortality, but the expression above accounts for the

death of eggs during the egg-production period caused by the mortality of (egg-producing)

mothers. For small mortality rates, the reproduction rate equals the inverse of the egg-

production period, R(t) = 1=aA(t).
An expression for aA(t) was derived by Kooi and Kooijman (1997). Their expression is

given by the ratio between the amount of energy needed per egg and the rate with which

energy becomes available for reproduction. The latter depends on the scaled energy densitye of the mother (i.e., on the volume-specific amount of energy [E℄ divided by the maximum

energy content [Emax℄) and on the specific energy conductance kE. At equilibrium, the scaled

energy density e of an adult equals its scaled functional response f , so that the amount of

mobilized energy equals kEf . From this mobilized energy, first the costs of maintenance

have to be paid, calculated by multiplying the maintenance rate coefficient kM (ratio of costs

for maintenance per unit of time to costs for growth) with the energy investment ratio g
(the proportion of the total amount of available energy that is used for growth). The scaled

energy density required to produce an egg depends on the costs for the structural biomass of

a newborn individual and the costs for growth and maintenance during the embryonic period,g+ = g + 34gkM=kE (Kooi and Kooijman 1997), as well as on the energy density of a newborn

individual itself, ê. Based on these considerations, the egg-production period is obtained asaA(t) = g+ + ê(t)kEf(t)� kMg ; (3)

(Kooi and Kooijman 1997). For a more detailed explanation of the model, including deriva-

tions of ab, R, aA, and g+, readers may want to consult the original work by Kooi and Kooi-

jman (1997, 1999). All parameters and variables of the model are summarized in Table 1,

with all default parameter values listed in Table 2.

2.2. Scaling considerations

Because this study considers adult length to be subject to evolution, some body-size

scaling relations had to be included that were not taken into account in the original model

(Kooi and Kooijman 1997, 1999), where body size was fixed. First, the energy investment

ratio g was no longer assumed to be constant, but instead becomes dependent on body volume`3max, following an expression central to DEB theory, g = �=(kM `max) (Kooijman 2000). Note



– 6 –

that the adult body size `A of the predators is a fixed proportion � of their maximum size,`A = � `max. This enables the model to cope with predators that quickly grow to adult size,

without slowing down as would be expected from an asymptotic growth curve.

Second, the specific energy conductance kE is equal to the energy conductance � divided

by the size of the organism, kE = �=`A. The rationale behind this scaling relation is that

energy is mobilized across membranes, which have a surface area proportional to that of the

organism. As a result, the developmental period of the embryo becomes dependent on adult

body size as well, ab = 3`A=�. Third, the mortality rate h was assumed to scale with length,

such that larger organisms have a longer life span, h = D `ref=`A; at the reference length `ref

mortality rate h is equal to dilution rate D. As such, the dilution rate serves as a measure for

the harshness of the environment.

The scaled energy density of the eggs ê is assumed to depend on the scaled energy den-

sity e of the mother. In the original model (Kooi and Kooijman 1997, 1999), a mother would

pass on to her eggs the precise amount of energy such that her offspring, after development

and hatching, would have exactly the same energy density as herself. In this way the mother

proportioned the amount of energy per egg, while ensuring that her offspring would have

sufficient energy at the start of its life (right after hatching), at least as long as the environ-

ment did not change in the meanwhile. Also, it implied that once the system had reached

its equilibrium (with respect to prey, predator, and energy densities), it would remain exactly

at this equilibrium (Alver et al. 2006). Here, however, we study the evolution of prey size-

preference, and the offspring may encounter or prefer different prey sizes than its mother.

We therefore assume here that a mother takes into account these uncertainties. She does so

by providing her offspring not just with the amount of energy to end up after hatching with

the same energy density [E℄ she possesses, but with a larger energy density, [Ê℄, so that her

offspring will always retain sufficient energy density after hatching, irrespective of the size of

its prey. This is ensured by scaling the energy density of eggs, not against the mother’s own

maximum energy density [Emax℄ (which depends on prey-size availability for her), but against

the maximum possible energy density [Emax℄ref. The corresponding scaled energy density ê is

given by ê = [Ê℄[Emax℄ = [Ê℄[Emax℄ref

[Emax℄ref[Emax℄ = [Emax℄ref[Emax℄ e: (4a)
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If we again use e = f , this can be rewritten asê = [Emax℄ref[Emax℄ e = [Emax℄ref[Emax℄ f = [th℄[th℄ref
f; (4b)

where the last step follows from the fact that the maximum energy density is proportional to

the maximum ingestion rate, while the maximum ingestion rate is the inverse of the handling

time, so that [Emax℄ / 1=[th℄, (Kooijman 2000, p. 269).

2.3. Incoming prey densities

The model introduced above can be analyzed for one or more prey populations. In the

latter case, the incoming prey densities Xr;i were assumed to vary gradually across prey pop-

ulations, following a distribution with mean prey size �, (dimensionless) standard deviation�, and maximum density Xr;0,Xr;i = Xr;0 Æ�p2� exp �12 ln(`i=�)2�2 !; (5)

where Æ denotes the distance between the successive lengths of prey. For numerical purposes,

this prey-size distribution was truncated at +3 and at �3 times the standard deviation �,

thus representing 98% of the total distribution. We found that a resolution of n = 50 was

sufficient to ensure that results were essentially unaffected by discretization of the prey-size

distribution.

2.4. Functional responses

The sequence of capturing a prey consists of encounter, attack, and handling. These

interactions between predator and prey are assumed to follow a Holling type-II functional

response, f = nXi=1 fi , with fi = Xi=Ki1 +Pnj=1Xj=Kj and 1=Ki = �a;i bi [th;i℄; (6)

where Ki is the half-saturation constant of the functional response to prey i, bi is the volume-

specific encounter rate of the predator with prey i, �a;i is the attack probability for prey i,
and [th;i℄ is the volume-specific time required for handling prey i. These terms and their
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dependencies on the body sizes of both predator and prey, `A and `i, as well as on the prey-

size preference of the predator, `P, are discussed below. In line with DEB theory, we base these

relationships on general scaling principles involving the lengths `, surface areas `2, or volumes`3 of the considered organisms. As a result, the relations derived here are less detailed than

the relations derived by, e.g., Aljetlawi et al. (2004); our assumption below of fixed scaling

exponents also avoids problems with varying dimensions, and thus interpretations, of scaling

coefficients.

Encounter rate b. The encounter rate bi of a predator with a prey of size `i arises from

encounters within the predator’s search area. This search area is assumed to be proportional

to the predator’s surface area, b / `2A, as is the case, for instance, for sessile filter feeders

that orient their arms perpendicular to the current. For filter feeders that generate their

own current, the encounter rate equals the filter rate. Their flapping or beating frequency is

observed to be independent of their size (Kooijman 2000), such that the generated current

is proportional to the surface area of their extremities, and thus again to their surface area.

Other organisms may lay in ambush and capture prey that come within reach, i.e., within

a distance that is proportional to the length of a leg or jaw or tongue, such that also here

the encounter rate scales with surface area. Mobile organisms generally move with a speed

proportional to their length: if the width of the path searched for food is proportional to

length, this again leads to an encounter rate that scales with surface area. The encounter

rate also scales with the surface area of the prey `2i , as the prey’s visibility or detectability is

assumed to be proportional to the prey cross-sectional area or silhouette. In summary, we

assume bi / `2A`2i . Because the population dynamics above were expressed on a per-volume

basis, bi is divided by the volumes of predator and prey, leading to the following relationship,bi = b0 `2
ref`A`i ; (7)

where the lengths are measured relative to a reference length `ref, so that the encounter

rate coefficient b0, which controls the absolute value of the encounter rate, has the same

dimensions as bi. Without any loss of generality, reference lengths were taken as equal for

predator and prey.

Attack probability �a. The predator prey-size preference `P is assumed to evolve separately

from the predator’s adult body size `A and is not imposed by morphological constraints such
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as limited gape size. Even though such structural limits may exist, we assume here that they

are adjusted to the prey-size preference, rather than vice versa. The probability �a with which

a predator attacks a prey of size `i is assumed to be log-normally distributed and depends on

the prey-size preference `P and (dimensionless) niche width �P,�a;i = exp �12 ln(`i=`P)2�P
2 ! : (8)

On encounter, a prey exactly of the preferred size `P will thus be attacked with certainty.

Handling time th. In general, the time required for handling each prey item comprises the

time needed for capture and ingestion.

Ingestion is the process by which the prey is physically taken up into the body of the

predator, passing through, for instance, its outer membrane or its gut wall. First of all, in-

gestion time tg is assumed to be proportional to the amount of prey biomass that has to be

ingested, and thus, for one prey individual, proportional to the prey volume, tg;i / `3i .
In addition, for intraspecific comparisons, DEB theory assumes the ingestion time to be

inversely proportional to the surface area through which the intake occurs, and this surface

area is assumed to scale with the total surface area `2A of the predator. For small individuals,

which have a favorable ratio between surface area and volume, the ingestion time thus is

small, while for larger individuals, it is large. In this study, however, we assume all adult

individuals of a population to have the same size, `A. For interspecific comparisons, DEB

theory assumes ingestion rates to be proportional to maximum length, `max, which implies

that tg / `�1max. Such a scaling may, for instance, be related to gut capacity (body plan) or diet

composition of the predator.

Capture time is assumed to depend on the relative sizes of predator and prey. Larger

prey require a longer capture time because they may be better protected, resist more strongly,

or have to be cut into chunks before being ingested. Specifically, we assume that the capture

time increases faster with prey size than does the corresponding yield, which implies that

it is proportional to size with an exponent larger than 3; as a default, here, we assume an

exponent of 4, tc / (`i=`A)4.
The total handling time th equals the mean length of the handling process, consisting of
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capture and ingestion, th;i = tc;i + �stg;i= tc;0 ( `i`A
)4 + �s

tg;0`max

`3i`2A ; (9)

where tg;0 and tc;0 are the ingestion and capture coefficients, and �s is the fraction of attacked

prey that is actually captured; only this fraction has to be ingested. As a default, all attacks

are assumed to be successful, �s = 1; the effects of reduced capture efficiencies are studied in

Section 5.5.

Because adult size increases with maximum size, and since all adult organisms are as-

sumed to possess adult size, `max can be substituted with `A=�. The time th;i that a predator

needs for handling an individual of prey i can be converted into the volume-specific han-

dling time [th;i℄, which measures the time that a volume-unit of predator needs for handling

a volume-unit of prey i, through multiplication with (`A=`i)3,[th;i℄ = [tc;0℄ `i`A
+ �s�[tg;0℄: (10)

The total handling time [th℄ given the actual prey-size availability is the sum of prey-size

specific handling times [th;i℄ weighted with the fraction �i of all attacks that are directed at

prey i, [th℄ = nXi=1 �i[th;i℄; with �i = �a;ibiXiPnj=1 �a;jbjXj : (11)

Finally, [th℄ref in Equation (4b) is the absolute minimum, or reference, handling time, which

equals [th;i℄ at infinitely small prey-sizes, [th℄ref = [th;i℄��`i=0 = �s�tg;0, and thus only depends

on predator size.

2.5. Choice of units

The model presented above was scaled by maintenance rate kM, energy conductance v,

and incoming prey density coefficient Xr;0. Scaling renders the outcomes independent of

these parameters. The unit of time, T , is chosen as k�1M , the unit of predator and prey length,L, is chosen as v=kM, and the unit of reactor length, l, is chosen as 3pXr;0 kM=v; the latter

unit, however, only features in the dimensions of biomass-volume densities, L3l�3, which are

made dimensionless simply through division by Xr;0.
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The remaining variables and parameters, which then become dimensionless, are denoted

by a tilde: for instance, the predator size `A (dim: L) was divided by v (dim: LT�1) and

multiplied by kM (dim: T�1) so that the scaled length ~̀
A is dimensionless. The scaled predator

and prey densities are indicated by x instead of X, e.g., xA = XA=Xr;0, and the scaled timet is indicated by � . The default values of the scaled parameters are shown in Table 2. The

scaled model can thus be written as follows,

dxi
d� = (xr;i � xi) ~D � ~IifixA(�); (12a)

dxA

d� = ~R(� � ~ab) exp(�~h~ab)xA(� � ~ab)� ~hxA(�): (12b)

The scaled reproduction rate ~R is given by~R(�) = ~hexp(~h(g+ + ê(�))(f(�)=~̀A � g)�1)� 1 ; (13)

where f is the functional response, as given in Equation (6) , and ê is the scaled energy density

of an egg, as given in Equations (4). Furthermore, ~D is the scaled dilution rate, ~h = ~D ~̀
ref=~̀A

is the mortality rate, ~ab = 3 ~̀
A is the scaled egg development rate, g is the energy investment

ratio, g = �= ~̀A, and g+ = g + 34� is the difference in reserve density between the beginning

and end of egg development. Note that f , g, and ê already were dimensionless variables

before, and are therefore not affected by any choice of units.

3. Methods

3.1. Ecological analysis

The coexistence set is the region in the trait space of the predator’s body size ~̀
A and its

prey-size preference ~̀
P in which the predator and prey populations can coexist, i.e., wherex�i > 0 for i = 1; : : : ; n and x�A > 0. Here and below, a superscripted asterisk indicates a

population equilibrium, e.g., the scaled reproduction rate at equilibrium is denoted by ~R�. At

each point of this trait space there also exists a boundary equilibrium, x�A = 0 and x�i = xr;i,
which is unstable for trait combinations within the coexistence set and stable for those out-

side. In other words, the boundary of the coexistence set is formed by trait combinations for

which the boundary equilibrium changes stability. Consequently, only within the coexistence

set there is a positive equilibrium of the prey-predator system. The resulting figure (Figure 1)

showing the coexistence set is explained in more detail in Section 4.1.
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We restrict the discussion of the coexistence set to the case in which a single prey popu-

lation is supplied to the system. This enables us to check whether a predator can coexist with

prey of a specific size, without this being influenced by the precise choice of niche width or

prey-size distribution. Accordingly, we assume that the prey-size preference of the predator

matches exactly the one available prey size, ~̀P = ~̀1. This cuts short the evolution of prey-size

preference, which will evolve to the size of the available prey anyway (as this is the only one

available). The resulting coexistence set will thus show which predators can live on which

prey. More precisely, the set shows whether a predator of certain size can coexist with a prey

of a certain size when these prey are of the predator’s preferred size.

An equilibrium point on the boundary of the coexistence set is given by (~̀A; ~̀P = ~̀1) for

which x�1 = xr;1, x�A = 0, and ~R� exp(�~h~ab) = ~h, where ~R� is the equilibrium value of ~R
in Equation (13). The remaining points (~̀A; ~̀P = ~̀1) on the boundary of the coexistence set

were then determined by numerically continuating this condition using standard continuation

software.

3.2. Adaptive dynamics theory

For the evolutionary analysis of our model we utilized adaptive dynamics theory, a gen-

eral framework that helps investigate phenotypic evolution under frequency-dependent selec-

tion (Dieckmann and Law 1996; Metz et al. 1996; Dieckmann 1997; Geritz et al. 1997). This

approach assumes a time scale separation between the ecological and evolutionary dynamics,

so that mutations in adaptive traits occur sufficiently rarely for the considered resident popu-

lation always to be close to its population dynamical equilibrium when probed by a mutant.

Mutants with a positive invasion fitness may replace the resident population. A series of such

replacements leads to phenotypic change of the population. The directions and endpoints

of phenotypic change depend on the selection gradient and are calculated by means of the

so-called canonical equation of adaptive dynamics (Dieckmann and Law 1996). Below we

specify, in turn, these general notions for the model analyzed in this study.

Invasion fitness. The invasion fitness of a mutant is defined by its long-term per capita

growth rate r( ~̀m; Er( ~̀r)) while being rare in the environment Er set by the resident pop-

ulation at its ecological equilibrium. Here, ~̀ is the vector of the predator’s adaptive traits
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tively. To calculate the invasion fitness of the mutant we extend Equations (12) by including

the dynamics of the mutant predator,

dxA,m

d� = ~Rm(� � ~ab;m) exp(�~hm ~ab;m)xA,m(� � ~ab)� ~hm xA,m(�): (14)

Introducing a mutant in the system also requires a feeding term to be added to Equation

(12a), as shown in Equation (21a).

As explained in detail in the appendix (Equation 31), the invasion fitness of the mutant

is thus given by s( ~̀m; ~̀r) = ~R�
m exp(�~hm ~ab,m)� ~hm; (15)

where ~R�
m is the mutant’s reproduction rate at the system’s equilibrium,~R�

m = ~hmexp(~hm(g+m + êm)=(fm=~̀A,m � gm))� 1 : (16)

Here the functional response fm of the mutant depends on the adaptive traits of both mutant

and resident, because the resident predator sets the environment Er and thus determines the

equilibrium prey density in the system.

Selection gradient. The expected direction of phenotypic change is proportional to the

selection gradient, i.e., to the derivative of invasion fitness with respect to the adaptive traits

of the mutant, evaluated at the trait values of the resident. For a monomorphic resident

population, this selection gradient is denoted byrm s( ~̀m; ~̀r) =  �� ~̀
A,m

s( ~̀m; ~̀r); �� ~̀
P;m s( ~̀m; ~̀r)!����� ~̀

m=~̀
r

: (17)

Canonical equation. A deterministic approximation of the stochastic evolutionary trajecto-

ries of body size and prey-size preference, jointly driven by mutation and selection, is pro-

vided by the canonical equation of adaptive dynamics (Dieckmann and Law 1996), which for

our system is given by d ~̀
rdt = �( ~̀r)x�A,r~̀3

A,r

rm s( ~̀m; ~̀r): (18)

Here � is a compound parameter consisting of the product of the 2 � 2 variance-covariance

matrix of the multivariate mutation distribution (Dieckmann and Law 1996), the factor 1/2,



– 14 –

the mutation probability, and the coefficient of variation of clutch sizes. As mutations in the

two predator traits are assumed to be independent, the variance-covariance matrix of the

mutation distribution is a diagonal matrix. The value of � is irrelevant for this study as we

are only interested in evolutionary equilibria, and not in the timing of the trajectories leading

towards them.

Evolutionary outcomes. Eventually, the population will reach a combination of trait values~̀
r at which the selection gradient vanishes,rm s( ~̀m; ~̀r) = 0: (19)

Such an evolutionary equilibrium may be either stable or unstable according to Equation (18).

An evolutionary equilibrium may also be situated at a fitness maximum, a fitness minimum,

or a fitness saddle according to Equation (15). In the latter two cases, the evolutionary equi-

librium is not locally evolutionarily stable, so that the resident population may split up and

evolve into two or more subpopulations through a process known as evolutionary branching

(Metz et al. 1992, 1996; Geritz et al. 1997, 1998).

3.3. Evolutionary analysis

Single-trait evolution. As a preparatory step in the evolutionary analysis of our model, we

focus on the evolution of the predator’s body size. For this purpose we assumed, like in the

ecological analysis, that only a single prey population exists and that the predator’s prey-size

preference always matches this prey size, ~̀P = ~̀1. In this case, the evolutionary dynamics are

reduced to the single trait ~̀
A. The evolutionary outcome of ~̀

A represents the body size to-

wards which a predator will evolve when feeding on prey of a certain size. This evolutionary

body size was found numerically by integrating the dynamics of ~̀A according to the canonical

equation of adaptive dynamics, Equation (18), while keeping ~̀
P and ~̀1 fixed, until an evolu-

tionary equilibrium was reached. This evolutionary equilibrium was then determined for a

range of prey sizes (and thus prey-size preferences) within the coexistence set.

Two-trait evolution. The full evolutionary dynamics were studied by allowing the two

adaptive traits of the predator to evolve jointly. In this case, a range of prey sizes was assumed
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to be available to the predator according to Equation (5). The evolutionary equilibrium was

again found numerically, by integrating Equation (18).

Evolutionary branching. To study the evolutionary process after an evolutionary equilib-

rium had been reached, an extended numerical analysis was carried out. This analysis con-

sisted of first integrating Equation (18) until reaching an evolutionary equilibrium. If this

equilibrium was evolutionarily unstable, i.e., if it corresponded to a fitness minimum or fit-

ness saddle, the original predator population was equally split into two predator populations

and the two corresponding canonical equations were considered further. The trait values of

the two predator populations were chosen to deviate slightly from that of their ancestor in the

two (opposite) directions of highest fitness increase around the ancestral combination of trait

values. The two canonical equations were integrated, and new predator populations were

added analogously if applicable, until a locally evolutionarily stable evolutionary equilibrium

was reached, corresponding to a fitness maximum in all predator populations. Due to the de-

terministic nature of the adaptive dynamics, more than one predator population may branch

at the same time.

Mutual predation. Finally, to explore the effects of predation among predators, the func-

tional response f was calculated as the sum of partial functional responses fi, where i
now consisted of all prey populations (i = 1; : : : ; n) as well as of all predator populations

(i = n+ 1; : : : ; p), f = n+pXi=1 fi: (20)

Stochastic evolution. As a further robustness test, we used a stochastic simulation process

instead of the deterministic dynamics in Equation (18). Underlying equations were adjusted

for multiple prey populations as discussed at the end of the appendix. We repeatedly inte-

grated the ecological dynamics of the system for 104 time steps, followed by the addition of

a new mutant predator population to the system. The trait values of the mutant were drawn

at random from a normal distribution around the trait values of its ancestor with a standard

deviation of 10�3. The initial biomass of the mutant population was set to a very small value,xA,m = 10�20. This value was also used as the cutoff biomass density below which a pop-

ulation was assumed to go extinct. In the case of extinction, the affected population was
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removed from the system.

4. Results

4.1. Ecological analysis

We start by studying which predator-prey size combinations can coexist. As explained

above, we restrict the analysis of the coexistence set to the case in which a single prey popu-

lation is supplied to the system. For this analysis, the predator’s prey-size preference equals

the single available prey size assumed to be available, ~̀P = ~̀1. The resultant coexistence set

is shown in Figure 1. This figure can be interpreted in two ways: vertically, as the feasible

range of predator body sizes for a given prey size (illustrated by arrow 1), and horizontally,

as the feasible range of prey-size preferences for a given predator body size (illustrated by

arrow 2).

We separately determined the coexistence set for two different functional responses.

First, only the basic handling processes of encountering and ingesting prey were assumed

to play a role in the functional response of the predator ([~tc;0℄ = 0, for other parameter values

see Table 2). In this case, Figure 1 shows that the maximum feasible predator body size is

inversely related to the maximum feasible prey size (dashed line). Second, the model was

extended by including a capture time that depends on the predator-prey size ratio. Now,

large predator-prey size ratios are no longer feasible, and the boundary of the coexistence set

becomes curvilinear (continuous curve).

Figure 2 shows a set of empirically observed combinations of predator-prey sizes that

were presented by Cohen et al. (1993), together with the coexistence set of our model based

on a size-ratio-dependent capture time (continuous curve). The empirical data set consists

of 478 size combinations from 30 food webs. In the doubly logarithmic plot, these are dis-

tributed over a triangular area that is bounded above by a maximum predator size, bounded

below by the equality of predator and prey sizes, and bounded on the left by the minimum

prey size. The coexistence sets in Figures 1 and 2 (continuous curves) are identical, but for

Figure 2 the length variables are translated back from dimensionless variables into lengths

expressed in centimeters. For the two relevant scaling parameters, kM and v, reasonable val-

ues were chosen that lie well within the range of empirically observed values (kM = 1:44 d�1,v = 0:3 cm d�1; Kooijman 2000); the dilution rate was adjusted ( ~D = 0:05) so as to obtain a
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slightly better fit for the upper boundary of the coexistence set.

4.2. Evolutionary analysis

After having established which combinations of a predator’s body size and its prey-size

preference are ecologically feasible, we also studied the evolutionary dynamics of these adap-

tive traits. Figure 3 again shows the coexistence set (continuous curve) and the diagonal

along which predator size and prey-size preference are equal (dotted line). The dashed line

shows the body size to which the predator will evolve when feeding on a prey of a given size.

In other words, it shows how the evolutionary equilibrium depends on prey size. This line

results from single-trait evolution in `A, and applies when only one prey size is available and~̀
P = ~̀1. The figure shows that the evolved predator size is positively correlated with prey

size, and that the slope of the correlation line is equal to unity.

When, instead of one prey size, a range of prey sizes is available simultaneously to the

predator, as described in Section 2.3, and both traits are allowed to evolve jointly, the predator

population evolves to an evolutionary equilibrium within the coexistence set, which in Figure

3 is denoted by an asterisk.

However, after this evolutionary equilibrium is reached, evolution continues. Since the

evolutionary equilibrium does not correspond to an evolutionarily stable fitness maximum,

the originally monomorphic predator population splits up into two populations and thus be-

comes dimorphic. This process of evolutionary branching is repeated several times, such

that the predator population cascades into a range of populations with different trait com-

binations, until a locally evolutionarily stable predator community is eventually reached. In

Figure 3 the trait combinations realized in this evolved community are shown by filled circles.

Inclusion of predation among predators also leads to sequential evolutionary branching.

The trait combinations resulting under stochastic evolution after 5000 mutations are shown

in as open circles in Figure 3; at this point in time the system is close to a locally evolutionarily

stable equilibrium. The slightly irregular spacing of the realized trait combinations reflects

the stochastic nature of the evolutionary process.

Figure 4 shows how the predator’s body size and prey-size preference at the initial evo-

lutionary equilibrium (i.e., before the first evolutionary branching) are affected by the avail-
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ability of prey sizes. Specifically, the three panels show how the predator’s adaptive traits

vary with three features of the prey: the mean ~� and standard deviation � of the prey-size

distribution, and the prey’s dilution rate ~D. Analogously, Figure 5 shows the variation of

the predator’s adaptive traits with two features of the predator: its niche width �P and its

probability �s of successfully capturing an attacked prey.

5. Discussion

In the first two subsections below we discuss the results of our ecological analysis, fol-

lowed by three subsections of discussion on the results of our evolutionary analysis.

5.1. True predators versus parasitic predators

When taking into account only the basic handling processes of encountering and ingest-

ing of prey, small predator-prey size ratios are feasible (Figure 1, dashed line). Clearly, this

does not agree with the distribution of empirically observed predator-prey sizes shown in

Figure 2. However, small size ratios are typically found in parasite-host systems (Memmott

et al. 2000), which were not included in the empirical dataset of Cohen et al. (1993). Para-

sites are organisms that obtain their nutrients from one or very few host individuals, causing

harm but no (immediate) death. True predators, in contrast, continuously require new prey

individuals, which are killed at attack or quickly thereafter. Because parasites do not have

to overpower their prey, capture times may be neglected. Under these circumstances, our

model predicts that small predator-prey size ratios are feasible, in qualitative agreement with

empirical data.

The transition between parasites and true predators, however, is gradual. This is illus-

trated by the typical classification of a bird-egg eating snake as a predator, while the sea-

cucumber-egg eating pearlfish is classified as a parasite. Examples from the wide range of

parasitic relationships are discussed by Combes (2001). Whatever classification rules are de-

fined, many exceptions can be found, pointing to the fact that these boundaries are essentially

artificial. DEB theory assumes that predators and parasites are basically of the same kind, and

only differ physiologically. The resulting differences in their parameter values, however, may

lead to considerable, even qualitative, differences in the feasibility of predator-prey size com-
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binations. In the results of our model, this is reflected by the qualitative change in the shape

of the coexistence set when capture times are considered (Figure 1, continuous curve). In

this case, the coexistence set is shrunk and it is no longer feasible for small predators to feed

on large prey.

Hence, by adjusting capture times in our model (e.g., by varying the capture time coef-

ficient), we can account for both parasites and true predators. Similarly, by adjusting other

parameter values, our model may also be expected to account for other types of predators,

such as grazers or parasitoids. As a default, however, we considered a capture time coefficient

that is relatively large, implying that the model mainly corresponds to true predators.

5.2. Imperfect upper triangularity

When including in our model a capture time that depends on the predator-prey size ra-

tio, the feasible set becomes triangularly shaped (Figure 1, continuous curve), which matches

the empirical distribution of observed predator-prey size combinations presented by Cohen

et al. (1993) (Figure 2). This so-called ‘upper triangularity’ is often found in real food webs

(Warren and Lawton 1987; Cohen et al. 1993, 2003). The term stems from considering a

food web’s matrix of trophic interaction coefficients, in which species are arranged in hierar-

chical order, such that all of the non-zero matrix elements lie above the main diagonal. In

the present study, the emergence of upper triangularity implies that larger predators can feed

on a wider range of prey sizes and that for smaller prey sizes, the feasible range of predator

sizes is wider. It also implies that a given species essentially does not eat other species that

are larger than itself, which suggests a body-size-based hierarchy. Body size has been sug-

gested previously to provide a mechanistic interpretation for the hierarchy assumption in the

cascade model (Cohen and Newman 1985), both by Warren and Lawton (1987) and by Co-

hen (1989). However, in our analysis we did not postulate a size hierarchy as such: instead,

this hierarchy naturally emerges from the scaling relations and size-dependent functional

response suggested by DEB theory, and in particular from the considered proportionality of

capture time to predator-prey size ratio.

The value of the capture time coefficient [~tc;0℄ considerably affects the shape of the co-

existence set. Yet, when plotted on a doubly logarithmic scale, different values of [~tc;0℄ all

result in a lower boundary of the coexistence set given by a straight line with slope one, cor-
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responding to a fixed predator-prey size ratio. Although these lines have different intercepts,

they lie rather close to each other and to the main diagonal for a relatively large range of val-

ues for [~tc;0℄, especially when large predator and prey size ranges are considered. This finding

would explain why, across many natural systems, the distribution of body size combinations

involved in predator-prey links seems to be essentially the same.

Although the predicted boundaries of the coexistence set fit the empirical data reason-

ably, the fit is not perfect. For example, part of the predicted curvilinear upper boundary of

the coexistence set, corresponding to combinations of small prey sizes with large predator

sizes, is not observed in the considered empirical dataset. Instead, the upper boundary in

the empirical dataset may be described simply by the body size of predators maxing out at

about 150 cm to 200 cm. In the model, this curvilinear upper boundary is mainly determined

by the encounter rate between predator and prey being proportional to the prey’s surface

area. Apparently, in natural systems, this is not realistic for large predators in combination

with small prey. Probably, at these size ratios, the prey is not detected by vision, and the

detectability may not be proportional to a prey’s silhouette. This implies that the model’s fit

in this range of size combinations could be improved by including additional mechanisms.

However, we chose to keep our model simple and to stay in line with DEB theory by including

as few additional assumptions as possible.

An interesting property of the model is that the predicted lower boundary of the predicted

coexistence set (Figure 2, continuous curve) does not coincide with the diagonal along which

predator and prey sizes are equal (dotted line), but instead lies below it (as discussed above,

the exact location of this lower boundary depends on parameter values, and especially on the

capture time coefficient [~tc;0℄). The coexistence set thus extends to predators feeding on prey

individuals that are larger than themselves.

Cohen et al. (1993) found that, in their dataset, approximately 10% of all predators

fed on larger prey. Empirical studies have demonstrated this effect also for other natural

food webs. Because of these consistent observations, the simple cascade model (Cohen and

Newman 1985) has been extended, resulting in the more general niche model (Williams

and Martinez 2000), which is viewed as providing better matches with empirical food web

data (Warren and Lawton 1987; Neubert et al. 2000; Cohen et al. 2003). The proposed

explanations are all based on the assumption that a certain hierarchy exists, but that the

measures or variables used to characterize it may be imperfect. In contrast, the size-ratio-
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dependent capture time assumed in our model provides a mechanism that naturally explains a

body-size-based hierarchy while also allowing for ‘exceptional’ predator-prey links. This result

suggests that not the measures or the variables, but rather the hierarchy itself is imperfect.

5.3. Predator evolution under increased levels of ecological realism

Our approach allows us to study and disentangle the evolutionary effects caused by the

successive incorporation into our model of

increased levels of ecological realism. Five such steps have been taken. First, we started

out from a system in which a single predator adapts to a single prey. Second, we investigated

the joint evolution of the body size and prey-size preference of a single predator confronted

with a range of prey sizes. Third, we considered the adaptive radiation of predator types

caused by resource competition. Fourth, we included trophic interactions among predators to

examine their effects on the outcomes of predator radiation. Fifth, we included evolutionary

stochasticity in our model, to corroborate the robustness of our deterministic predictions.

Figure 3 shows that when a single predator adapts to a single prey, predator body size

is positively correlated with prey body size, with a slope equal to 1. This implies that the

predators evolve to a fixed predator-prey size ratio that is constant across predator sizes. A

positive correlation between body sizes of predator and prey is indeed found in vertebrates

(Gittleman 1985; Vezina 1985) and invertebrates (Warren and Lawton 1987), as well as in

planktonic predators (Hansen et al. 1994). Even though these studies underscore that a

general and fixed size ratio does not exist, they do find a constant size ratio within each

trophic or taxonomic group.

When, instead of one prey size, a range of prey sizes is available simultaneously to the

predator, and the body size and prey-size preference of a single predator evolve jointly, the

size ratio at the resultant evolutionary equilibrium (asterisk in Figure 3) is slightly different

from that resulting from single-trait evolution (dashed line in Figure 3). This is because now

a range of prey sizes is available, so that the predator’s niche width comes to play a role. The

effects of varying this niche width are discussed in detail in Section 5.5.

Were the range of prey sizes not bounded, the predators would evolve towards ever

smaller body sizes. This is inherent to their physiology, which favors small sizes over large
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ones: large organisms have relatively more energy reserves, and therefore a relatively longer

egg-production period, which negatively affects their reproduction rate. Also, smaller organ-

isms have a relatively large surface area, which is favorable with respect to the encounter and

ingestion rates which both scale with surface area. Apparently, many physiological mecha-

nisms favor a smaller size. Two factors that, by contrast, may induce evolution towards larger

body sizes are heat loss and environmental variability. The tendency of organisms living at

high latitudes to evolve to large body sizes has become known as Bergmann’s rule (Bergmann

1847; Mayr 1956, 1963), and is often ascribed to the favorable effects of lower surface-area-

to-volume ratios on heat loss. Environmental variability brings about periods of elevated

starvation danger against which a large body size protects, as larger organisms possess larger

energy reserves. These two factors, however, were not considered in the present study.

Figure 3 (filled circles) shows the trait combinations of the predator populations that

will eventually result from deterministic evolution when adaptive radiations are considered.

The mechanism underlying the evolutionary branching events is competition for resources,

which leads to disruptive selection. The evolutionary branching process affects both adaptive

traits: under the force of disruptive selection, some populations evolve towards smaller body

sizes and smaller prey-size preferences, while others evolve to larger body sizes and larger

prey-size preferences. When they are isolated, each of the populations (filled circles) will

again evolve towards the first evolutionary equilibrium (asterisk). The latter may correspond

to evolutionary processes on some islands, where small mammal species have been observed

to evolve to a larger size and larger species to a smaller size. Such a tendency has become

known as the ‘island rule’ (Van Valen 1973), and can thus be understood by the evolutionary

dynamics in our model. Figure 3 also shows that all resulting populations retain the same

predator-prey size ratio. From this it can be concluded that competition for resources may

lead to the differentiation of predator body sizes and prey-size preferences, but not to a

differentiation of predator-prey size ratios.

In determining these evolutionary outcomes, direct interactions among predators, either

through predation or through interference competition, were not taken into account. There-

fore, these outcomes clearly correspond to idealized conditions. Real organisms may only

conform to the resultant predictions in situations in which competition and predation among

predators are naturally absent.

Predation among predators or direct (interference) competition, on the other hand, may
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give an additional advantage to large body sizes: larger organisms can be preyed upon by

a smaller range of predators and are thus less vulnerable to predation (as follows from the

triangular distribution of empirical predator-prey combinations), and they may also have an

advantage in the direct competition for food or territory. As such, these processes may be

expected to cause organisms to depart from the predator-prey size ratios predicted above.

Figure 3 (open circles) shows that predation among predators does indeed lead to much

larger predator-prey size ratios than would be expected on the basis of resource competition

alone. Predation among predators may thus indeed be an important factor for explaining

the large variation of predator-prey size ratios found in nature. Direct (interference) compe-

tition is expected to have a similar effect as predation among predators. Both factors help

explain Cope’s rule (Cope 1896; Benton 2002), which states that natural selection will tend

to produce large-bodied species.

Predictions of deterministic and stochastic renderings of the evolutionary dynamics in

our model agree almost completely, even though the stochastic dynamics expectedly induce

a slight amount of jitter in the evolved predator communities (open circles in Figure 3).

5.4. Evolutionary effects of environmental factors

Figures 4a and 4b show how the outcomes of evolution in predator body size and prey-

size preference are affected by the availability of prey sizes. An increase in the mean ~� of

the prey-size distribution causes both traits to increase (Figure 4a), while the response to

variations in the standard deviation � of the prey-size distribution turns out to be hump-

shaped (Figure 4b). Although the evolved values of the scaled predator body size ~̀
A and

prey-size preference ~̀
P change, their ratio remains essentially constant across a large range

of the studied parameter values. Changes in the prey-size distribution, expressed in terms of~� and �, may thus induce shifts in predator body sizes and prey-size preferences, but cannot

explain the variation observed in predator-prey size ratios.

In contrast, an increase in dilution rate does change the evolved size ratio by making it

larger. The evolved body size of predators is affected by the dilution rate through changes

in food abundance: smaller dilution rates reduce both the rate at which new prey enter the

system and the mortality of predators, thus intensifying conspecific competition for resources.

The resulting decrease in evolved predator body size may correspond to the tendency to
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dwarfism on islands, which also has been related to limited food resources (Case 1978).

5.5. Evolutionary effects of feeding modes

Ecological factors, such as the predator’s feeding mode, may also affect the evolutionary

outcomes of predator body size and prey-size preference. In particular, a difference between

the predator-prey size ratio of filter feeders and raptorial feeders is seen across taxonomic

groups. Hansen et al. (1994) found that the optimal size ratio of filter feeders is larger than

that of raptorial feeders. They also found that filter feeders generally feed on a larger range

of prey sizes than raptorial feeders. To examine whether the wider prey range can explain

the differences in size ratios, we studied the evolutionary effects of varying the niche width�P of the predator. Figure 5a shows that the predator-prey size ratio first increases with niche

width and then stabilizes. As the niche width goes to zero, the predator evolves towards a

preference for the smallest prey size that is still available. In this case, the predator-prey size

ratio becomes equal to the size ratio that was predicted from single-trait evolution; this is

expected, as in that analysis the predator was assumed to feed on one prey size only, which

corresponds to vanishing niche width.

Although raptorial feeders may be more size-selective, it is conceivable that they are

also more efficient predators, with a larger fraction of their attacks being successful. There-

fore, we also studied the evolutionary effects of varying the capture efficiency �s. Figure 5b

shows that when a predator is less successful, its body size will become larger, while its prey-

size preference will become smaller. Successful predators will thus evolve towards smaller

predator-prey size ratios. Combining a large niche width with a small capture efficiency will

lead to an even stronger increase in predator-prey size ratio, which may explain the large size

ratio often encountered in filter feeders. These mechanisms might also provide an explana-

tion for the tendency of the predator-prey size ratio to decrease with trophic level (Cohen

et al. 2003), as predators at higher trophic levels may more often be raptorial feeders than

filter feeders.
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6. Conclusions

A size-dependent functional response was developed and combined with body-size scal-

ing relationships from DEB theory to establish a physiologically motivated eco-evolutionary

model of adaptations in the body sizes and prey-size preferences of predators. To obtain

a realistic coexistence set for feasible predator-prey size combinations, we included capture

times that depend on predator-prey size ratios. The resulting model exhibits many features,

both ecological and evolutionary, that match empirical observations, such as the triangular

distribution of predator-prey size combinations, the island rule, dwarfing, and the difference

in predator-prey size ratio between filter feeders and raptorial feeders.

The coexistence set predicted by our model accommodates a wide range of predator-prey

size ratios. By contrast, the evolutionary outcomes in the simplest versions of our model, in

which a single predator adapts either to a single prey or to a range of prey, imply a fixed

predator-prey size ratio. Even though such a fixed size ratio often exists within trophic and

taxonomic groups, it certainly does not apply across these groups. We therefore introduced

and examined various factors that may help explain variation in predator-prey size ratios.

These factors can be organized into three different classes (Figure 6).

First, some factors may change the size ratio predicted for single-predator adaptation

(Figure 6a). Therefore, these factors can have a large impact on observed patterns of predator-

prey size combinations. Examples include changes in physiology and feeding mode, but also

changes in food abundance. Within taxonomic or trophic groups, organisms often possess a

relatively similar physiology, which may therefore explain the constant size-ratio that is ob-

served within such groups. It should be noted that factors in this class, in contrast to those

listed further below, may also affect the boundaries of the coexistence set. Yet, on the loga-

rithmic scale used in Figures 1 to 3, the resultant lower boundaries of the coexistence set lie

close to each other for a relatively large range of parameter values.

Second, there are other factors that cause predators to change their body size and prey-

size preference without changing their predator-prey size ratio (Figure 6b). These include, for

example, changes in the range of available prey sizes. Also, the patterns of size combinations

resulting from resource competition conform to a fixed predator-prey size ratio. In addition,

our analysis has demonstrated that competition for resources induces differentiation, rather

than mere shifts, in predator body sizes and prey-size preferences. Changes in the available

range of prey sizes and resource competition may thus explain the range of predator body
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sizes and prey-size preferences observed in nature, but cannot explain the large variation in

predator-prey size ratios.

Third, some factors may systematically induce organisms to depart from the predator-

prey size ratio predicted for single-prey-single-predator adaptation (Figure 6c). We have

found that predation among predators, as well as interference competition, can cause this

effect, by giving an additional advantage to large body sizes. As such, these processes may

provide an explanation for the tendency of natural selection to produce large-bodied species

(Cope’s rule). Factors from this third class also help us understand the diversity of predator-

prey size ratios encountered in nature.

Distinguishing which of these types of processes is causing the variation in specific em-

pirical predator-prey size combinations will not be easy. Several parameters and processes

have similar, or compensatory, effects that are difficult to separate, even in experiments. For

example, in most cases it will be problematic to assess the evolutionary outcome of single-

prey-single-predator adaptation. This is because the organism will usually have adapted evo-

lutionarily to its specific environment, which typically includes predation and competition.

These limitations should be taken into account when trying to explain empirical predator-

prey patterns, or when measuring predator-prey size ratios in experimental setups.
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Appendix: Derivation of invasion fitness

In this appendix we show that for determining the invasion fitness of the DDE system (12)

one can use an ODE formulation without delay. For this purpose, below we derive the invasion

fitness of a mutant predator trying to invade a given resident population of predators. For

determining the coexistence set a formulation without delay can be derived as well, which

we will not demonstrate explicitly, since that derivation is very similar to the one presented

below.

We start from the DDE system (12), consisting of a prey population x1 and a resident

predator population xA,r, and introduce a mutant predator population xA,m according to Equa-

tion (14). For the sake of clarity, we consider only a single prey population and leave out the

tildes that denote scaled parameters in the main text. The derivation of the invasion fitness

for multiple prey requires just a few adjustments, as is explained at the end of this appendix.

The resulting full system is given bydx1(�)d� = �xr;1 � x1(�)�D � I1;rf1;r(�)xA,r(�)� I1;mf1;m(�)xA,m(�) ; (21a)dxA,r(�)d� = Rr(� � ab,r) exp(�hrab,r)xA,r(� � ab,r)� hrxA,r(�) ; (21b)dxA,m(�)d� = Rm(� � ab,m) exp(�hmab,m)xA,m(� � ab,m)� hmxA,m(�) : (21c)

We assume that there is a stable equilibrium of the prey-resident system, Equations (21) forxA,m(�) = 0, at which the resident predator population has positive density. We confirmed this

assumption numerically for the coexistence set shown in Figure 1 using the default parameter

values given in Table 2.

The subsequent analysis can be outlined as follows. In order to derive the mutant’s inva-

sion fitness, we study the stability of the full system after the mutant has been introduced at

the prey-resident equilibrium. The full prey-resident-mutant system above is then linearized

around this equilibrium, and the characteristic equation of the resultant linear system is an-

alyzed. When the real parts of all roots of this equation are negative, the resident is stable

and the mutant cannot invade. By contrast, when the dominant root is positive, the resident

is unstable and the mutant can invade. In particular, we will determine the combinations of

trait values at which this stability changes.

Below, a superscripted asterisk indicates that the considered variable is at equilibrium

under constant environmental conditions. We now introduce new variables that denote dis-
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placements from this equilibrium, �1 = x1 � x�1;�A,r = xA,r � x�A,r;�A,m = xA,m � x�A,m: (22)

The linearized model at equilibrium then readsd�1(�)d� =� �1(�)D � I1;r��1(�)df1;rdx1 (x�1)x�A,r + f1;r(x�1)�A,r(�)�� I1;m��1(�)df1;mdx1 (x�1)x�A,m + f1;m(x�1)�A,m(�)� ; (23a)d�A,r(�)d� =��1(� � ab,r)dRrdx1 (x�1)x�A,r +Rr(x�1)�A,r(� � ab,r)� exp(�hrab,r)� hr�A,r(�) ; (23b)d�A,m(�)d� =��1(� � abm)dRmdx1 (x�1)x�A,m +Rm(x�1)�A,m(� � ab,m)� exp(�hmab,m)� hm�A,m(�) :
(23c)

In the following we use the shorthand notations R�
r = Rr(x�1) and R�

m = Rm(x�1).
Since we are interested in the invasion by a rare mutant population, we take x�A,m = 0.

Then the matrix P, defined by P0BB� �1�A,r�A,m

1CCA = 0BB�0001CCA ; (24)

is obtained by substituting �i in Equations (23) by �i = �i exp(��); i = 1; (A; r); (A;m) and

division by exp(��) > 0, P = 0BBBBB� J1 jj �I1;mf1;m(x�1)0��� + ������0 0 j J2
1CCCCCA : (25)

The 2�2 matrix J1 is given byJ1 = 0B� �(�+ hr)� I1;r dfrdx1 (x�1)x�A,r �I1;rf1;r(x�1)exp(�(�+ hr)ab,r)dRrdx1 (x�1)x�A,r R�
r exp(�(�+ hm)ab,r)� (�+ hm)1CA (26)

and the 1�1 matrix J2 byJ2 = R�
m exp(�(hm + �)ab,m)� (�+ hm) : (27)
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The characteristic equation is obtained by the requirement that the determinant of the

matrix P be equal to zero. Then the �i play the role of eigenvector components and the

complex number � plays the role of eigenvalue, which is now a root of the characteristic

equation.

Since the mutant is assumed to be rare, the determinant of P factorizes, being given

by the product of detJ1 and detJ2 = J2, with these two factors corresponding to the two

decoupled systems: the prey-resident system without the mutant (i.e., x�A,m = 0), described

by J1, and the growth rate of the mutant population, described by J2.
The first factor yields the characteristic equation of the prey-resident system, detJ1 = 0.

This characteristic equation belongs to the eigenvalue problem for the set of one ODE and one

DDE given by Equation (23a), without the last term, and Equation (23b), evaluated at the

equilibrium of the prey-resident system.

The second factor yields the characteristic equation detJ2 = J2 = 0 of the first-order

linear homogeneous DDE (Equation 23c) describing the specific growth rate of the mutant

population. The expression for J2 in Equation (27) is of a form discussed extensively by Diek-

mann et al. (1995, page 312). For this case, the complex roots of the characteristic equation

can be obtained analytically.

The function J2(�) with � 2 R is monotonically decreasing, dJ2=d� < 0. Therefore

there is one unique real root �0. Since J2(0) = R�
m exp(�hmab,m) � hm, the real eigenvalue

equals zero, �0 = 0, if and only if R�
m exp(�hmab,m) = hm. Thus, Equation (27) has exactly

one positive real solution, �0 > 0, when R�
m exp(�hmab,m) > hm and exactly one negative real

solution, �0 < 0, when R�
m exp(�hmab,m) < hm. Further, (Driver 1977, page 321) showed

that equations of this form have infinitely many complex roots. Let �k = �k + i!k; then

substitution of this into the characteristic equation J2 = 0 and separately equating real and

imaginary parts gives�k = exp(��kab,m)R�
m exp(�hmab,m) 
os(ab,m!k)� hm ; (28)!k = � exp(��kab,m)R�

m exp(�hmab,m) sin(ab,m!k) : (29)

Clearly, if Equation (29) holds for !k, it holds also for �!k, so the complex conjugate ��k =�k � i!k is also a root of the characteristic equation. Furthermore, the unique real root �0 is

the dominant eigenvalue, i.e., the real parts of all other roots are smaller than �0. This can

be seen as follows. Comparison of Equation (28) with the characteristic equation for
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os(ab,m!k)�R�
m exp(�hmab,m) : (30)

Suppose that 
os(ab,m!k) = 1, then sin(ab,m!k) = 0, and hence !k = 0, which contradicts the

fact that �k = �k+i!k has non-zero imaginary part. We can thus conclude that 
os(ab,m!k) <1. Now assume that �0 � �k � 0, then, with R�
m > 0 (since R�

m � R�
r > 0 due to small

mutational steps), Equation (30) implies 1 � exp((�0 � �k)ab,m) 
os(ab,m!k), and also this

leads to a contradiction. This shows that Re(�k) < �0, k = 1; 2; : : : , or in other words: the

real eigenvalue �0 is the dominant root of the characteristic equation detJ2 = 0.

We had mentioned above that the prey-resident system has a positive stable equilibrium

for the default parameter values given in Table 2. Under these circumstances, the real parts of

the eigenvalues of J1 are strictly negative. Thus, the dominant eigenvalue �0 of J2 will also

be the dominant eigenvalue of P, if this �0 exceeds the largest real part of the eigenvalues ofJ1. Hence, for detJ2 = 0, that is, for R�
m exp(�hmab,m) = hm, the dominant eigenvalue ofP will equal �0 and thus zero. At trait values for which this holds, the prey-resident-mutant

system changes stability, so that the prey-resident system becomes invadable by the mutant

predator.

Now suppose that the real eigenvalue �0 is positive but small. Then the characteristic

equation of J2 gives�0 =R�
m exp(�(�0 + hm)ab,m)� hm=�1� �0ab,m + 12 �20a2b,m + � � � �R�

m exp(�hmab,m)� hm;
so that, for �0ab,m � 1, we have�0 = R�

m exp(�hmab,m)� hm: (31)

Consequently, the rate �0 is the invasion fitness of the mutant predator at the equilibrium of

the prey-resident system, (x�1 > 0; x�A,r > 0; x�A,m = 0).

We have thus shown that, if �0ab,m � 1, which holds for small mutational steps, the in-

vasion fitness can be determined by a formulation without delay, corroborating our approach

in the main text (Equation 15). The rare mutant (xA,m ! 0) will be able to invade the stable

prey-resident system if and only if R�
m exp(�hmab,m) > hm. The biological interpretation of

this inequality is clear: the mutant’s effective birth rate has to exceed the dilution rate. After



– 31 –

successful invasion, the mutant generally replaces the resident (Geritz et al. 2002); around

evolutionary branching points they can coexist, leading to a dimorphic predator population

(Metz et al. 1992, 1996; Geritz et al. 1997, 1998).

For the (ecological) stability at the boundaries of the coexistence set a formulation with-

out delay can be derived as well. This derivation is very similar to that of the invasion fitness

explained above, but simpler, as no mutants are considered but only the prey and resident

predator populations. The resulting condition fulfilled at the boundaries of the coexistence

set is given by R� exp(�hab) = h.

Considering multiple prey populations instead of a single one will affect system (21) in

two ways. First, the dynamics of each prey population are described by a separate equation,

such that for n prey populations, the full system will consist of n+ 2 equations. Second, the

prey populations will affect the growth rate R (Equation 13) of the predators (both residents

and mutants) through their functional response f (Equation 6). The derivation of the invasion

fitness itself, however, is largely analogous to that shown above. The determinant of the

matrix P is still factorizable, and remains given by the product of detJ1 and detJ2. J2 is

still given by Equation (27), adjusted for multiple prey through f in R. J1 will now be a(n+ 1)� (n+ 1) matrix, which corresponds to the system of the resident predator and the n
prey populations without the mutant predator. Supported by the simulation results, we again

assume that the system without the mutant is stable. It is then easy to see that the invasion

fitness for multiple prey resembles that for a single prey (Equation 31), adjusted through f
in R.
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Table 1: Parameters and state variables of the model.

Symbol Dimension Meaning

Physiological parametersab; aA T Embryo-development time and egg-production time; ab = 3=kEe; ê � Scaled energy density, of adult and of newborn individuals; e = [E℄=[Emax℄ = f[E℄; [Emax℄; [Emax℄ref EL�3 Volume-specific energy density; actual, maximum, and referenceg; g+ – Energy investment ratio for biomass and embryo growth; g+ = g + 34gkM=vh T�1 Mortality ratekE T�1 Specific energy conductance; kE = v=`AkM T�1 Maintenance rate coefficientR T�1 Reproduction rate� – Proportion of the maximum size that is reached; � = `A=`maxv LT�1 Energy conductance

Trophic parametersb; b0 l3L�3T�1 Volume-specific encounter rate and encounter rate coefficientD T�1 Dilution ratef; fi � Functional response; overall, and with respect to prey population iIi T�1 Maximum volume-specific intake rate for prey population i`i; `max; `ref L Length of individuals of prey population i; maximum length of predator; reference lengthtg; tc; th T Ingestion, capture, and handling time[th℄; [th;i℄; [th℄ref T Volume-specific handling time: actual, with respect to prey population i, and minimum.[tg;0℄; [tc;0℄ T Coefficients for volume-specific ingestion and capture timeXr;i; Xr;0 L3l�3 Incoming prey density; function, and scaling coefficientÆ L Distance between the successive lengths of incoming prey-size distribution� L Mean length of incoming prey-size distribution�P; � � Standard deviation; of attack probability (niche width), and of incoming prey-size distribution�a; �s � Attack probability and capture efficiency

Ecological state variablesXA; Xi L3l�3 Structural volume density of (adult) predators and of prey population i
Evolutionary state variables`A L Adult length of predator`P L Prey-size preference of predator

Dims: T , time; L, length of individual; l, length of reactor; E, energy.
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Table 2: Default parameter values.

Parameter Default value~b0 1000~D 0.1~̀
ref 1[~tc;0℄ 3.5[~tg;0℄ 0.77� 0.1�P 0.05� 0.25�s 1~� 0.5

Tildes indicate that parameters are scaled by v, kM and/or Xr;0 to make them dimensionless.
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Fig. 1.— Coexistence set of the investigated predator-prey system. Combinations of scaled predator

body size ~̀
A (vertical) and prey-size preference ~̀

P (horizontal) are shown logarithmically, assuming

that the preferred prey size equals the one available prey size (~̀P = ~̀1). The dashed curve depicts the

boundary of this coexistence set when only ingestion and encounter times are considered, while the

continuous curve shows this boundary when capture times are considered as well. The two arrows

indicate the graph’s two possible interpretations: (1) the feasible range of predator body sizes for a

given prey size, and (2) the feasible range of prey-size preferences for a given predator size.
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Fig. 2.— Comparison of the coexistence set predicted by our model (continuous curve) with empirical

data presented by Cohen et al. (1993). The logarithm of the length of the predator is plotted against

the logarithm of the length of the prey, with both lengths being expressed in centimeters. Along the

dotted line, body sizes of prey and predator are equal. The dimensionless variables ~̀
A and ~̀

P were

translated back into lengths using the two relevant scaling parameters, kM = 1:44 d�1 and v = 0:3 cm

d�1; the dilution rate was set to ~D = 0:05.
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Fig. 3.— Evolutionary outcomes of scaled predator body size ~̀
A and prey-size preference ~̀

P. The con-

tinuous curve depicts the boundary of the coexistence set, while the dotted line depicts the diagonal

along which predator size and prey-size preference are equal. The dashed line shows the outcome of

single-trait predator evolution in ~̀
A, for a single prey size, with ~̀

P = ~̀1. The asterisk indicates the

initial evolutionary equilibrium (and primary evolutionary branching point) of two-trait evolution in

the predator when considering a range of available prey sizes. The filled circles show the composition

of the predator community after evolutionary branching (deterministic evolution), while the open cir-

cles depict this composition when predation among predators was also taken into account (stochastic

evolution).



– 42 –

a log10(~�)
log 10(~ ` A),l
og 10(~ ` P)

21.510.50

1

0.5

0

-0.5

-1

b �
log 10(~ ` A),l
og 10(~ ` P)

0.60.50.40.30.20.10

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

c ~D
log 10(~ ` A),l
og 10(~ ` P)

0.060.050.040.030.020.010

1.5

1

0.5

0

-0.5

Fig. 4.— Effects of environmental parameters on the evolutionary outcomes of scaled predator body

size ~̀
A (continuous curve) and prey-size preference ~̀

P (dashed curve). The three panels show the

evolutionary equilibrium values (a) for a range of means ~� of the available prey-size distribution, (b)

for a range of standard deviations � of this distribution, and (c) for a range of dilution rates ~D.
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Fig. 5.— Effects of ecological parameters on the evolutionary outcomes of scaled predator body size ~̀
A

(continuous curve) and prey-size preference ~̀
P (dashed curve). The two panels show the evolutionary

equilibrium values (a) for a range of niche widths �P and (b) for a range of capture efficiencies �s.
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Fig. 6.— Three different types of change in evolved predator-prey patterns. Continuous curves delin-

eate the boundaries of the coexistence set, dashed lines show the outcomes of single-trait evolution,

and asterisks indicate the evolutionary outcome of two-trait predator evolution when a range of prey

types is present. Arrows depict changes in the predator’s two adaptive traits ~̀
A (vertical) and prey-size

preference ~̀
P (horizontal): (a) the expected outcome of evolution in predator body size and predator-

prey size ratio is changed, together with the coexistence set; (b) predator body size evolves, while the

predator-prey size ratio remains the same; (c) the predator evolves away from the body size and size

ratio predicted by single-trait predator evolution.


	IRfrontA
	front
	IRfrontB
	Evec_def4



