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Foreword

The situation analyzed in this paper is typical for many applications including emission
trading, pollution negotiations, financial and insurance markets, production planning un-
der uncertainties control. While modeling the corresponding decision problems one often
considers agents that must cope with uncertain demand and supply. Each of such indi-
vidual has a payoff function, and all functions have values in a common unit. A rational
strategy of the agents facing diversified uncertainties (resulting in potentially substantial
volatility of payoff function values) is to agree upon a cooperation aiming at sharing the
risks.

The analysis proposed in this IR is based on directly linking the risk sharing to coop-
erative mutually beneficial contract (core solution). This approach therefore goes beyond
analysis of Pareto-optimality. Moreover, no assumptions are required about the individual
payoff in terms of concavity, differentiability, monotonicity, or non-satiation. Instead of
the standard fixed-point arguments typical for general equilibrium models, this IR pro-
poses a novel approach based on a simple and standard elegant analyses entirely relying
on optimization theory with its powerful computational methods. In particular, it exploits
the duality theory to address pricing of risks similar to the well known so called two-
fund separation that characterizes equilibrium in capital asset pricing models. Therefore
the results summarized in this paper offer an efficient approach to analysis of a class of
problems in integrated risk management.

This report also describes a part of the research done by Sjuab Wlien he was a
visiting scholar with the Integrated Modeling Environment Project.
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Abstract

Risk exchange is considered here as a cooperative game with transferable utility. The set-
up fits markets for insurance, securities and contingent endowments. When convoluted
payoff is concave at the aggregate endowment, there is a price-supported core solution.
Under variance aversion the latter mirrors the two-fund separation in allocating to each
agent some sure holding plus a fraction of the aggregate.

Keywords securities, mutual insurance, market or production games, transferable util-
ity, extremal convolution, core solutions, variance or risk aversion, two-fund separation,
CAPM.

JEL Classification C61, G11, G12, G13ylath. Subject Classificatior0C30, 91A12,
91B28.
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Risk Exchange as a Market or Production Game

Anders Borglin (Anders.Borglin@nek.lu.se)
Sjur D. Flam (sjur.flaam@econ.uib.noy”

1 Introduction

Many economic agents face risky endowments or commitments. Then, to mitigate ups
and downs, it appears prudent to pool risks - often many and material in nature - and
share them thereafter. For its viability the sharing had better be contingent, efficient and
voluntary.

Along such lines, albeit in a purely pecuniary setting, Borch (1962) showed that rein-
surance contracts may mirror a competitive equilibrium of an exchange ecdnd@ny.
the first fundamental welfare theorem, given non-satiated consumers, any equilibrium of
that sort resides in the core. Indicated thus ignaiirect connection between risk/security
markets and cooperative games. Apart from [5], [7], [28], [35], and {B&ct connec-
tions have hardly been emphasized. In fact, even the most tractable instances, featuring
transferable utility (TU), have received almost no attention. Yet such instances could
serve a few good ends.

Accordingly, presuming TU, this paper probes beyond Pareto-optimality [1], [6], [19],
[20], [37], [38] by linking risk exchange directly to cooperative contracts. One bonus
comes by connecting reciprocal treaties closer to asset pricing theory [2], [14]. Another
is to generate not only equilibrating prices but also slopes of the resulting curves. On a
more technical note, no fixed point arguments are needed for existence of a core solution.
Instead it suffices that Lagrangian duality be attained witlgay This makes for easier
analysis and computation. In addition, concerns about existence of equiliprioes
become fully divorced from those regarding equilibriaffocations

To set the stage Section 2 introduces, by way of examplesriet gameén order to
recall what is meant by a core solution. Section 3 identifies weak conditions under which
such solutions can be found merely in terms of shadow prices on the aggregate endow-
ment/risk. Section 4 elaborates on the nature and existence of shadow prices. Section 5
digresses to supplement the market perspective by regarding cooperation alternatively as
a production game After so much groundwork, Sections 6&7 address pricing and shar-
ing of risk. Some results align perfectly with the two-fund separation that characterizes
equilibrium in capital asset pricing models. Section 8 considers the resulting price curves
and tolerances for risk. Section 9 concludes with some examples.

"Nationalekonomiska inst., Lund University.

™ Corresponding author.

™ Economics Department, Bergen University, Norway.
IFor related studies, see [11], [30], [31].
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The paper addresses several types of readers. Included are actuaries, finance analysts
or general economists interested in risk exchange, but not quite knowing how nicely La-
grangian duality produces explicit core outcomes. Also addressed are mathematicians
interested in optimization, but less informed as to how extremal convolution relates to
exchange markets.

2 The Game

Accommodated henceforth is a fixed, finite $edf economic agents. For background
and motivation consider two different settings:

Electricity generation Planti € I has promised to deliver the energy amouiytt) in
(season, site or) statec S. Since one plant uses hydro-power based on short term pre-
cipitation, its production capacity is highly variable. Because another hydro-based plant
merely draws melting water from under a glacier, it is practically non-operative during
cold winters - but well furnished in hot summers. A third supplier owns a thermal station.
By helping each other these plants may, in each stateore easily satisfy the total com-
mitmente;(s) := > ., ei(s). How should the overall load then be allocated? And what
payments would induce voluntary cooperation?

Exchange of catch quotassisherman; € I is allowed to catch the amouat;(s) of
specieg € J in state or seasofn € S. Since his gear selects merely one specific species,

he wants to exchange his allowances in other species for the one he wants. When trade is
mediated by money, what exchange rates are reasonable?

In short, we think of firms that must cope with uncertain product demand or random
factor supply. Firm or individual € I owns (production commitment or resoures)-
dowment;. For the sake of generality - and for simple presentatigms-construed, until
Section 6, simply as a vector in some real linear spade

Individuali has payoff functionr; : X — RU{—oc}. The extreme value co reports
infinite loss, or total dissatisfaction, or violation of implicit constraints. This device helps
highlighting essential features and saves special mention effibetive domain

domm; := {x; € X: m;(x;) > —o0}

to which any feasible choice; must belong. Until further notice, no sort of concavity,
differentiability, monotonicity or non-satiation is required of Also, we impose no
particular functional forni. We presume however, that individual payoff be metered in
money or some common unit of account. This feature is crucial for what follows in that
utility must be transferablé.

2When J, S are finite sets, the above example of electricity generation givesX : = R*, whereas
the fisheries example hase X : = R7*5,

3But clearly, objectives of ordinary or Choquet integral formaceommodated [13].

4At least two settings justify use of monetary payoff. In a fiists a producer who obtains pecu-
niary payoffr;(z;) from input bundlez; € X. In another; is a consumer who enjoys quasi-linear utility
mi(xd, ;) = xf+7d(x; ) fromprofilex; = (z¢, z; *), thea-th component of which refers to a common

real-valuedunit of account
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Now, rather than everybody contending with his own endowment, the parties might
agree upon some reallocation. In fact, the aggregate= > ,_, e; can most likely be
split in ways that better suit the needs of everyone. So, wecaskthe agents write an
efficient, socially stable contract? And if so, what will be its natufest the argument,
suppose the members ofcaalition C' C I be able to cooperate among themselves. If
endowments are perfectly divisible and freely transferaihat coalition could foresee
overall payoff

mo(ec) = sup {Zm(%) : sz = Zei = 60} . (1)

i€C i€eC i€C

Construction (1), called sup-convolutiontacitly presumes that no member@imisrep-
resents his payoff function or endowment to own advantage. Thus, strategic communi-
cation is precluded. This assumption can be justified if the underlying data are common
knowledge, or readily observed, or honestly reportappose henceforth that the grand
payoff r;(e;) is finite.

The potential advantages of enterprise (1) are evident and twofold. First, aggregation
offers the agents increased leeway and better substitution possibilities. Second, depending
on the setting, it may facilitate transfers across time and contingencies. So, a key issue is
whether theggrand coalitionC = I can agree upon ways to share the aggregate endow-
ment. Plainly, formation of that coalition requires that proceeds be distributed in ways not
blocked by any subgroup. Reflecting on this conceayoff distributionu = (u;) € R’
is declared &ore solutioniff it entails

Pareto efficiency: > .., u; = m(e;) and
stability: Y iccui > we(ec) for each coalitionC' C 1.

Stability is easily achieved. Simply let payments be so wonderfully largethat. u; >
mo(ec),VC C 1. Thus, the essential difficulty hides in the requirement that total payoff
be efficient and not handed out excessively.

The core as solution concept, although central to cooperative game theory, does not
figure prominently in the finance or insurance literatur€onstruction (1) mimics the
classical Shapley-Shubik (1969) analysis of market or production games. 7if ale
concave, the cooperative incentives become so strong and well distributed that the grand
coalition can safely form. To wit, the game - and every subgame - then has non-empty
core:

Proposition (Concave objectives make the game totally balanée&uppose each;

is concave and all valuesc(ec),C C I, are finite Then the TU cooperative game,
featuring characteristic functiod C I — 7wo(ec) is totally balanced That is, each
subgame, restricted to any coaliti@n C I, has non-empty corel]

SFixed factors are neither pooled nor exchanged.
8Exceptions include [2], [5], [7], [27], [28].
"This result appears well known and is therefore stated without proof.
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3 Price-Generated Core Solutions

The preceding proposition is less than satisfying on two accounts. First, one would like to
push beyond mere existence and seek some specific, computable core element. Second,
one wonders whether less concavity would suffice. For these purposeswite:;) €

X1 for the profilei — z;. Further, letz* : X — R be any linear functional, and associate

the standard Lagrangian

Lo(x,27) := Zﬂ-z(xz) + l’*(z € — Zl’z)
i€C i€C i€C
to problem (1). To simplify notation we henceforth writér instead ofr*(z).

Definition (Shadow prices)Any linear A : X — R such thatr;(e;) > sup, Li(x, )
will be named d.agrange multiplieror shadow price O

The next section discusses existence of shadow prices. Here we nofegbalifies
as shadow price iffr;(e;) is a saddle value of; in that

mr(er) = infsup L;(x,2*) = supinf L;(x, z%).

In fact, these equalities - as well age;) = sup,. L;(x, A) - follow from

mr(er) > sup Li(x, A) > inf sup Li(x,z*) > sup in*fLI(x, z*) > my(er).

X

To better appreciate shadow prices let the convex function

fHz*) = sup {f(z) — z*z : z € X} (2)

denote aconjugateof f : X — RU{—o0}.8 The last section provides some examples.
Conjugates are central in the following

Theorem (Shadow prices support core solutionget A be a shadow price. Then the
payoff distribution that offers agenthe amount

wi(A) =7 + Aey 3)

(2

constitutes a core solution

Proof. The argument is surprisingly short and simple. It was already given in [16] for
cost sharing but is reproduced here for profit sharing - and for completeness. Note that
given any linear price* : X — R and coalitionC' C [ it holds

sup Lo (x,z%) = Z w;(z").

x ieC

8In terms of theFenchel conjugatg* (z*) := sup, {z*z — f(z)}, one hasf™*) (z*) = (—f)*(—z*);
see [33]. Definition (2) suits hereebause it reflects price-taking in factor markets and the pursuit of profit.
Specifically, if inputz € X comes at linear cost*z, and yields revenug(z), then the maximal economic
rent is f**) (z*). If X is locally convex topological, angl is proper, upper semicontinuous, concave, then
f(z) =inf {f*)(2*) + z*z : 2* continuous lineay .
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Thus, social stability obtains for arbitragy because coalition’ receives

Zuz(x*) = sup Lo(x,2%) > infsup Le(x, 2%) > supinf Le(x, 2) = 7o (ec).
ieC x vox x 7

The very last inequality, which holds without any qualifications, is often referred to as
weak duality’ In particular,y ", ; ui(\) > 7(er). The hypothesis oi ensures the re-
verse inequality - commonly callestrong duality Thereby Pareto efficiency obtains as
well: Zie[ UZ()\) = 7T[(6[). ]

The above result, while adding to [8], [34], [37], can serve as spring-board for several
extensions; see [16] and references therein.

For interpretation, if\ prices "input”z;, and agent acts as price-taker in factor mar-
kets, core solution (3) offers him proﬁlﬁ*)()\) plus paymentie; for his endowment. As
customary, a price should equal marginal payoffs. That feature is explored next.

4 The Nature and Existence of Shadow Prices

Our approach makes room for non-smooth functions, several goods, constrained choice
- and for preferences that need not be of the expected utility foYinahese feature
notwithstanding, we want to regard shadow prices as marginal payoffs - thatle;\ees-

tives possibly generalized. For the statement, denoi@ the superdifferentiabf convex
analysis [33]. That is, given any proper functipn X — RU{—oc}, a linear mapping

z* : X — Ris called asupergradientf f atz, and we writer* € 0 f(z), iff

f(@) < flzx) +2"(z—x) Vi eX.

Thus,z* € Jf(x) iff the affine functionf(z) + =*(- — z) globally overestimateg(-)

but with no discrepancy at. What comes next is a crucial characterization of shadow
prices. For brevity declare = (z;) € X' an optimal allocationiff Y, _; [z, mi(x;)] =

[6[, 7T[(6[)] .

Theorem (Shadow prices as supergradients).

e )\ is ashadow price iffA € dr;(er). Thus, given the payoff functions, a shadow price
depends only on the aggregate endownagnt

e For any A € Om(er) and any optimal allocatioriz;) we havex € om;(z;) for all 1.
Conversely, if soma belongs to alom;(x;) and ) . x; = ez, then\ is a shadow price,
and allocation(z;) is optimal.

e Suppose some; iS monotone at a point; with respect to a con&; C X in that

9Note thatsup, L¢ (%, z*) > mo(ec) holds foranyfunctionalz* : X — R that satisfiesr*(0) > 0. If
moreoverz* is additive, therd - u;(z*) = sup, Lc(x,z*). Also, if for some class{* of functionals
z*: X — Ritholds

. v s w1 0 forz=0
inf{z’e ;2" € X7} = { —oo  otherwise,
thensup, inf«cx+ Lo (x,2*) = mo(ec).
1%For recent studies involving orgmod and smooth objectives see [35] and [39].
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m(x; + X;) > m(z;) > —oo. ThenAX; > 0 for each shadow prica.

Proof. These assertions are well known whenmalére concave; see e.g. the nice presen-
tation is [25]. Here, however, concavity is not presumed. So, some extra work is needed.
For simplicity define the "death” penaliy(-) on X by 6(z) = +oco whenz # 0 and

d(0) = 0. Note that this function has Fenchel conjugéiter*) := sup, {z*z — §(z)} =

0. Now, \ € 87’(’[(61)

&> mz) =60 xi—z) < mi(z) < mler) + Mz — er) Vo € X, V(z;) € X!

icl iel
& Zm(mz) + Z Ae; — x;) + )\(Z T —x) — 5(2 z; —x) < mr(er) Vo, V(x;)
iel iel iel iel

& Z {mi(z:) + Mei — z:)} + 6*(N) < m(er) V(z:) € X (%)
& s&ipLI(X, A) < mr(er).

This proves the first bullet. For the second(l&f) be any optimal allocation. In the above
string of equivalences (*) says

A€ om(er) & Y mi(x) <> {mi(E:) + Mai — )} V(z:) € X'
el i

For the last bullet, ifz; < 0 at somez; € X;, then

Fz(*)()\) > sup {mi(x; + r2;) — XNx; +12;)} = +00, (4)

r>0

which is impossible.r

The instance with alir; concave stands out, making concave. Then, provided some
term 7; be strictly concave, the optimal;, if any, must be unique. Moreover, if that
samer; is differentiable atr;, the shadow price becomes unique as well. Generally,
for any shadow price and optimal allocatioriz;), we getz; € 8(—7r§*))()\) ande; €
A=) ().

We emphasize that concavity of or 7; is not essential. What imports is rather to
have global support of; from above at; by some affine function. Such support cannot
come about unless every optimal allocat{af) entails quite similar support of; at x;.

Thus, no agent having strictly convex payeffcould be admitted here. In fact, f is
supported from above as just described, it could not be globally convex unless affine with
slope). These observations beg questions as to whether and when shadow prices do exist:

Proposition (Existence of shadow prices).et X be a locally convex Hausdorff topo-
logical vector space. Denote by : X — RU{—oc} the smallest concave function that
dominatesr; from above. Suppose

77(+) is finite-valued, bounded below near (5)
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Also suppose that the convoluted preference is convex,aneaning thatr;(e;) =
mr(er). Then there exists at least one shadow price shadow price. Moreover that price is
continuous.

Proof. Qualification (5) ensures that the concave functioft) is super-differentiable
ate;. That is,07(er) is non-empty, and it can be taken to consists of only continuous
linear functionalsz* : X — R; see [15]. Now; > 7y and7r(e;) = mr(er) implies
O7r(er) C Omr(er). The desired conclusion follows straightforwardly by noting that any
supergradient € or;(e;) is a shadow price - as pointed out in the preceding theofém.

Thus arbitrage-free pricing obtains if an affine function supports the convoluted payoff
from above at that the aggregate endowment. Assumption (5) clarifies that individual
payoffs really need not be convex. Rather, it suffices thabas appropriate curvature
with respect tee;. Like in [36] aggregative convexity is what counts in preferences - al-
beit here only at;. This point bears on the qualitative fact that havingnyandsmall
agents may mitigate adverse effects of non-convex preferences [3], [16], [18]. As in [23]
heterogeneity can also hélp.

When will no shadow price exist? Plainly, as brought out in the last theorem, none is
available ifinf,- sup, L;(x,z*) > m;(er). Then, theduality gap

A :=infsup L;(x,2") — m;(er)

equals the smallest overall budgetalsficit - or the minimal overspending - that could
possibly emerge by paying players according to formula (3). A positive gap might stem
from some payoff function not being concave. Present many small players, each prefer-
ably having a smooth payoff functions, one may show thdiecomes relatively small;

see [3], [16], [18]. In any case, apart from existence of shadow prices, it is natural to
wonder whether an optimal allocatidn;) is available for the grand coalitiafl = 1.

Proposition (Existence of optimal allocationd)et X be a reflexive Banach space. Sup-
pose the upper-level set

U(r) = {x = (z;) € X1 Zm(mz) > T,in = el}
el el
is bounded and weakly closed for every reak m;(e;). Then there exists an optimal
allocation. In particular, if (x;) — . m(x;) is quasi-concave upper semi-continuous, it
suffices that each sét(r) be bounded.

Proof. The closed convex hull of/(r) is bounded whence weakly compact for<
wr(er). Then, by reflexivity[/ (r) itself is weakly compact. It follows that, {U(r) : r < 7r(er)}
must be non-empty. Any elemextin that intersection solves problem (1) for the grand
coalition When(z;) — >, mi(z;) is quasi-concave upper semi-continuoligy) be-
comes closed convex whence weakly closed.

Clearly, optimal allocations do not depend on the endowment distribution.

LFor instance, leir; be "concave” but defined on a disconnected doniajn Specifically, takel =
{0,1}, Dy = {0} U [1/2,1],andD; = [0,1/2] U {1}. Thenn; is concave on its domai, 2] .



5 Production Games

This section offers a brief - and dispensable - digression, meant to emphasize three fea-
tures:
e first, sharing of production and profit also fits format (1);
e second, (1) might emerge aselucedmodel; and
e third, it is often convenient to keep original data pretty much in original, raw form.

For these purposes regard each ageat I here as groducerwho obtains profit
fi(z:) from planz; € Z; providedg;(z;) < e;. The setZ; may lack exploitable structure,
andg; : Z; — X accounts for technological restrictions or material bounds. The linear
spaceX is now ordered by a convex coe, C Xinthatz < 2/ & 2/ —x € X,
Corresponding to (1) consider the planning problem

mc(ec) == sup {Z fi(z)  z; € Z; and Zgi(zi) < Zei} (6)

icC icC icC

of coalitionC' C I. Its members share not only resources, but technologies as well. Upon
setting;(z;) := sup{fi(z): 2z € Z; andg;(z;) < z;}, format (1) comes up again as
a reduced model. There is no need however, to synthesize the characteristic function
C — 7c(ec). Computation could merely revolve around(e;) - with all data kept in
original form. This is seen next.

When z; € Z;, and the linear functionat* : X — R is non-negative orX,, let
z = (z;), and associate to (6) the Lagrangian

Lo(za") =Y {filz) + " [ei — gilz)]}-

iceC
Write here
wi(z") :=sup{fi(z:) — x%gi(z) : zi € Z;} + x"e; @)

and note thasup, Lc(z,2*) = >, ui(x*). Arguing verbatim as for the first theorem
we get

Proposition (Shadow prices support core solutions in production gamesj.\ be a
shadow price in thatr;(e;) > sup, £;(z, A). Then, paying ageritthe amoun{7) consti-
tutes a core solution of the TU game that l{&kas characteristic function™

6 Arbitrage-free, Risk-neutral Pricing

It is time now to specify a more detailed setting and seek some structure in optimal al-
locations. More details are available in two ways. First, the spaskould be specified
more closely; second, one might reasonable suppose some separability in the objectives
across stages or states.

We begin withX. Fix hereafter a non-empstate space, equipped with a complete
sigma-fieldF and a finite non-negative measuré? From here on each € X is at least

2When computation is a main concern, one would typically chabfrite, leto contain all subsets of
S, and haveu(s) > 0 Vs. Some convenience or flexibility comes with not insistingdi$) = 1.
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a F-measurable mapping frosinto a finite-dimensional Euclidean spate The latter
is endowed with inner produet ¢, associated norrm|, and the Borel sigma-field iB is
generated by the open sétsFix some numbep € [1, +00) and suppose

jol = ( [ |x<s>|pu<ds>)l/p < +oo

for all z € X. ThusX is contained in the spade’ of all F-measurablep-integrable
x : S — [E. Risk or security markets are chief cases - and often incompl&teay
therefore be a strict, but presumably closed subskr of

Define the conjugate exponepit € [1, +oo] implicitly by © + - = 1. A theorem of
Riez says that any continuous linear functiopabn X admits arepresentation

T rtr = /:L'*(s) -z (s)u(ds) (8)

for an (almost surely) unique* € X* D L. It is convenient to identify any such
functional z* with its Riez representation. The instanece= 2 stands out withp* = 2
becaus& = X* becomes Hilbert with inner product (8).

The present setting may naturally be construed as reflecting uncertainty about the true
states € S, known ex ante only up to a probability measuyren 7. Any z € X is
then a random vectar(-) € E and accordingly referred to agiak.'® As said,X should
contain the already given endowmeaisi € I, and might - as a minimal requirement -
even be spanned by these. Whilst insurance theory often assumes independent or weakly
associated risks, no such assumption is made'fiere.

Recall that a shadow priceis a linear functional fronX into R. While endogenous
to the game, it helps players to evaluate various risks and securities. Clearly, Mnless
blocks arbitrage it can't apply as price regime. That issue is briefly explored next.

For the statement, a codg(z;) C X is said to comprise thpreferable directions of
agent: atz; € Xif m;(x; + Xy(x;)) > m(x;) > —oo. As usual, a linear price* : X — R
is declaredarbitrage-freeiff no agenti has a preferable directiofy € X;(z;) at any
x; € domm; such thate*d; < 0. Arguing as around (4) we may state forthwith:

Proposition (Shadow prices are arbitrage-freepiven conesX;(x;),i € I, of prefer-
able directions, each shadow prigemust satisfy

)\(Uiel ULEiEdOmﬂ'i X’L(xz)) Z 0

In particular, if dom; itself is a coneX;, andm;(x; + X;) > 7,(x;) at eachz; € X, then
)\(Uiejxi) Z 0. O

BMore generallyE could be a separable Hilbert space.

YIn particular, the conjugate pdip, p*) = (1, +oo) is possible]|z|| then being the@ssential supremum
of s — |z(s)| . However, unless is finite, the "reciprocal” pai(p, p*) = (+o0, 1) needs special care, and
is not discussed here; see [17].

15Risks - alias random variables - are chief objects here. Our results extend however, to other contingent
items.

16Consequently, we shall invoke no law of large numbers or central limit theorem. In fact, our analysis
is applicable for major events, say catastrophes, inflicting severe and highly correlated losses.
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Arbitrage is a utility-free, more primitive concept than economic equilibrium. Typically,

it is described in terms of a common family of financial instruments, monotone prefer-
ences, anane punctuated convex corg\ {0} C X, composed ofree lunches A
theorem of alternatives then decides whether arbitrage is possible or not. Given a shadow
price that decision is straightforward:

Proposition (Shadow prices preclude free lunchdspt z; € X iff x; = e; + Wz; for
some "portfolio” z; in a real vector spacé., with W : Z — X linear. Suppose at least
one ageni has differentiable and strictly monotone preferences:

T; —x; € X+\ {0} = Fz(i'z) > Fz(l'z)

Then, existence of a shadow pricgogether with an optimat;, ensures thah [X \ {0}] >
0, \W = 0, and there is na € Z such thatV z € X\ {0} with lim,~o m;(e; + 7Wz2) =
+00.

Proof. Let x; = e; + Wz; be optimal for the agent who has strictly monotone, smooth
preferences. Sinckis a shadow price, the chain rule gives

0=

0

8Zi7'('i(6i + W,Zz) = \W.

Further, suppose a tickete Z is variable for a free lunch/ z € X\ {0}, during which
agent; is never satiatedim,~ 7;(e; + rWz) = 4+o00. This implies the contradiction

wﬁ*)()\) > sup {m;(e; + Wz) — Ae; + Wz)} = 400. O

r>0

*

_5 } where the price vector

z" = (zj) € R accounts for the up-front purchase cost of various papers/, and the
S x J matrix D = [D;(s)] reports future dividends. With = R’ equation\I¥ = 0 and
A > 0 amount to the price rule

Example: A two-stage security market. Let W = [

5 =3 [ Ditslptas) i ©)

featuring a deflatof > 0 alongside a risk-neutral probability measprever F; see [29]
for S finite. The nature of rule (9) is best appreciated when uncertainty resolves over
several stages. We turn to such instances nekxt.

Quite often, identification of the true statésn’t immediate. At timet € {0,1,..,7'}
agent: can only ascertain for each event in a sigma-fig}JdC F whether it has hap-
pened or not. His decision;;, made then, must therefore ¥§-measurable. In that
caseX = X, x --- x X7 whereX, is a space off;-measurable mappings frominto a
Euclidean spack;. Typically, the inclusions

{0,S}=FCFHRC---CFr=F (10)

hold; they represent progressive acquisition of knowledge.
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Example: A multi-stage security market SupposeS is finite, and let each fieldF;
be generated by partition P, of S. Thenz, : S — E; is F;-measurable iff constant on
each partP; € P,. PositPy = {S} andPr = {{s} : s € S}. RegardP; € P, as anode
n: € N; (at heightt) in atreg, and draw alirected brancHrom n, to its child noden, 4
iff ng = P, C Py1 = nyyq. Write ny € A(ngy1) andngyy € C(ny) to signal that the first
node is arancestorand the latter @hild. Noden, is named theoot, and each terminal
node - having maximal heigfit - is called aleaf; see figure below.

s s
rootny = | ¢ s | — [¢] ; leafs
S// \ [S”] N [S”]

Legend: A tree with 3 partitions/stages/states/scenarios and 6 nodes.

Denote byz;, € R the number of shares an investor holds in paper.J upon leaving
noden. Suppose he buys (outgoingdrtfolio z, := (z2;,) € R’ at noden # n, and
liguidates there the (incoming) portfolig,,,) bought at the ancestor node. Absent trans-
action costs, those operations bring him nominal, cugemaG,(z) := z7- [zA(n) — zn} .
(The dot denotes the standard inner product.) At the root ngaaturally letG,, (z) :=

—z* - zn,. This stylized market allowarbitrageiff the system

no

Gn(z) > 0forallnand z; - z, > 0 for each leaf (11)

admits a solutionr = (z,,) with at least one strict inequality. Suppose some paper (say a
bond)b € J commands strictly positive pricg, at each node. In terms of that paper
define discount factors, := 27, ,/z;,. Let N := U, denote the node set.

Proposition (Shadow prices and risk-neutral probabilitieEhe described market, fea-
turing many stages, is arbitrage-free iff there exists a strictly positive probability measure
p across the leafs such that the transition probabilities, inducegd by the entire node

set, satisfy the martingale condition

0nzy = Eu[6e25|n] = Y Sezip(cin) for all non-terminaln. (12)
ceC(n)

Under the hypotheses of the preceding proposition any shadow price ensures absence of
arbitrage

Proof. The first part is well known but proven for completeness. &iynon-degenerate
probability measuren > 0 across the leafs, and use the induced probabilitigsat
non-terminal nodes. Consider the homogeneous linear program

max Z(SnmnGn(z) + Z dpmnzy - zn S.t. (11). (23)
? n neNr

Clearly, the market is arbitrage-free iff the optimal value of (13). i8ssociate multiplier
dnyn > 0toinequalityG,,(z) > 0,ands,Y,, > 0to leaf constraint; -z, > 0. Maximizing
the resulting Lagrangian

Z In(my, + yn)Gn(2) + Z n(my, + Y52k - 2, =

nENT
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S belme+ye)zr — Sulmn +yn)zs | 20+ Y ou(Y, cze (14)

ngNr | ceC(n) neNr

with respect to the free variablewe see that the dual of (13) amounts to solve

On(Mn +yn)zh = Y Oe(me +ye)z; forall n ¢ Npwithy > 0.
ceC(n)

Suppose the latter system is indeed solvable. In that case, by LP duality, problem (13) has
0 as optimal value, and there are no arbitrage opportunities. Then consider comiponent
of the last equation to get,, + vy, = Zcec(n) (me. + y.). Thereforem(c|n) := (m. +
ye)/(m, + yn) defines strictly positive transition probabilities that satisfy (12).

Conversely, suppose some strictly positive measur@n N7 suits (12). In (14) let
m = p and eachy,, Y;, = 0 to get

Z 6nGn(2)pn + Z 6nz:; * ZnPn = Z Z 6cpc - npnz:; *Zn = 0

neNT ngéNr | ceC(n)

for all z. Thus arbitrage is impossible.
For the final assertion, 16€ = RV xRN7 with the customary non-negative orthant
X . PositZ := R7*V | and define the linear operatidf : Z — X by

Wz = [[Gn('z)]ne/\f? [Z;Zn]nENT} :

Absence of arbitrage means thatne Z yieldsWz € X\ 0. By the preceding proposi-
tion there exists a positive such that\l¥ = 0. Choosey,, > 0 to have\,, = §,,(in + yn)
for n € N and positY,, = ¥, at leafn. Consequently, (14) becomes feasible.

Example: Two-stage risk-neutral pricing. If available up front, how much is the risk-
free asset worth that offers guaranteed future dividghd\s seen nexk complies with
the well known risk-neutral, arbitrage-free evaluation:

Suppose there are merely two stages WithS} = F, < F, = F and only one
commodity(E = R). Given a shadow pricg = 0 a.s., suppose the system

b .= (b(),bl) = (—5, 1) and\b =0,

is solvable for some riskless bomdc X together with a unique discount factdr> 0.
Then,d = [, A(s)u(ds)/A(0), and the measure

p(4) := / A(s)u(ds),/ / A(s)ulds

defines a risk-neutral probabiligyover F that satisfies-z(0) = § [ = s x(s)p(ds) for each
x € Xsuch that\x = 0.
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7 Risk Sharing

We stress that states can sometimes be seen netvast”but alternatively asstages

or decision epoch¥. The measure: then discounts the future. More generally, the
description of any specific state refers to the circumstances that defines its appearance.
This more broad perspective justifies speaking of any X as acontingent commaodity
bundlein E.

In either set-up sharing, as captured by (1), takes the formcoh&act specifying
agent’s partz;(s) of e;(s), and his payment, in state A natural question is whether and
when the concerned parties think the writing of such contracts worth their while. Instead
of committing to a promise or policy right away, why not just wait and see?

Clearly, what explains and justifies the existence of insurance institutions is the tempo-
ral resolution of uncertainty - and the time windows that affect some decisions. Intuitively,
if the restrictionz € X does not preclude thafs) be fully adapted to the realized state
s ex post - and moreover, agents agree on probabilities - then contracts seem superfluous.
This exceptional setting is briefly explored next.

Following [33] declareX decomposabléf for eachz € X the modified mapping

8 ifseB

150 + 15\ 5z :_{ r otherwise

belongs toX whenever the bounded : S — E is measurable, an® € F. Further,
call an integrandI : S x E — RU{—oc0} normalif the point-to-set correspondence
s+ {(e,r) € E xR :II(s,e) > r}is measurable [33].

Decomposability is demanding. For instance, witeis finite, andF contains all
singletons, a decomposalifemust generate eomplete market spacdhat is, seen as
space of marketable assets, a decomposihtentains all elementary Arrow-Debreu
securities. Also, itF, C F for somet < T in (10), choose a bounded-measurable
G : S — E, which isnot F;-measurable. Posit, = 0 for 7 # ¢, and B = S to have
156+ 1s\pr =B ¢ X.

In short, decomposability doesn't fit settings where information unfolds gradually.
Despite their lack of realism, the extreme properties of decomposable instances shed some
light on insurance:

Proposition (Sharing ex post, on the spo§upposeX is decomposable. For eache 1,
let

m() = [ Mo, (5))u(ds) (15)
featuring a normal integrandl; : S x E — RU{—o0} and a common measuye |If

A is a shadow price for the overall game, then almost surely sq4$ for the ex post,
contingent game that emerges in statgvith characteristic function

C = Ilo(s,ec(s)) == sup {Z IL; (s, @i(s)) : Z%(S) = 60(3)} :

i€C i€eC

"Examples include exchange of time-dependent property rights, say fish quotas or pollution permits.
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Invoking the contingent conjugalfé ), that ex post game admits a payoff distribution
i Uils, A(s)) = Hé”(s? A(s)) + A(s) - ei(s)
which belongs to its core. Further,
i) = [ Ul MsDatds) = [ {10(67) +25) - ei(s)} ()
belongs to the ex ante core.

Proof. Since objectives are separable across states, foxanyx;) € Ef andy* € E
coalitionC has ex post Lagrangian

Lo(s, X, x7) = Y Thi(s, xi) + X"

i€eC i€eC i€C

PIEIOEDS Xi]

in states. Ex ante it holdsL¢(z,z*) = [ Lea(s, z(s), z*(s))u(ds). Now, by decomposi-
tion,

mr(er) =sup Li(x,\) <= IIi(s,er(s)) =supLs(s, z(s), A(s)) almost surely;
x z(s)

see [33]; Theorem 11.40. Thusis a shadow price iff almost surely;(s, e;(s)) equals
sup, () Liz(s, z(s), A(s)). Hence it equals the saddle valuelgf(s, -, -). From here on the
argument goes as beforél

Granted a decomposable spa€eand normal format (15), sharing may almost surely
be done ex post. If moreover, the integrands are state-independent of thH fofiin—
R U {—o0}, the states shadow price\(s) depends only on the realized aggregaie).

As said, the preceding proposition should not lure one into thinking that ex ante con-
tracts are superfluous. Casual observation indicates the opposite. So, decomposability is
a rare property. Most often some component ainust be decided before uncertainty re-
solves - and stays non-maleable ex post. A simple example is fire insurance: The premium
paid up front cannot be altered after the evént.

It may happen of course, that there is oolye stage. Such a setting allows us to
consider instances where players perceive uncertainty diversely. Often probability as-
sessments differ across agents - and typically much on exceptionally important states,
occurring with very low frequencies. Nonetheless, there are prospects for risk sharing -
implemented by contracts signed ex ante. Arguing as in the preceding proposition we get:

Corollary (Diverse probability assessmentBpr eachi € I, supposer;(z;) = [IL;(s, z;(s)) i (ds)
wherell; is a normal integrandy.; is absolutely continuous with respect ipand X is
decomposable. Let; = ﬁui be the corresponding density. Thenis shadow price iff

8along the same line, if knowledge is asymmetric, players may, for the sake of verifiability and ex post
implementation, have to contend with contracts that differ in measurability; see [24].
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almost surely

sup {ZH 8, Xi)pi(s ZXz = er(s )} > ZUi(S> A(s)) (16)

) ier iel iel

where

Ui(s,A(s)) == goi(s)Hg*)(s, )+ A(s) - ei(s)andu;(N) = /Ui(s, A(s))p(ds).

vi(s)

In case allocation(z;) is optimal,A(-) is a shadow price iff, for each

A(s) € IL; (s, zi(s))pi(s) a.s. O (17)

OXi
(17) dates back to [8], [37]. The Corollary shows that players who hold different (but
absolutely continuous) beliefs cannot implement the overall contract ex post unless their
realized payoffs be scaled by respective densities. If someone believes a particular state
more likely, its realization should benefit him ex post. The rarity or non-practicality of
decomposable spaces, indicates that one hardly have a realistic theory of syndicates unless
members commit themselves up front.

In general, shadow prices depend on all underlying data. Also, by belongifygatoy
shadow price is a mappinge S — A(s) € E. This raises the question whethaaffects
A(s) merely viae;(s)? If so, \(-) should be measurable with respect to the sigma-field
F(er) generated by;.1° In that case, for simplicity, declateadapted At this juncture
the implicit function theorem immediately yields:

Proposition (Dependence on the aggregate endowmehé (z;) be an optimal allo-
cation for some aggregate endowmeéntSuppose each; is twice continuously differen-
tiable nearz; with 7, (#;) non-singular. Then, in some neighborhoodgfthe system

mi(z) =X forall ie I and Y ;= e;

el

admits continuous solutiorts — x;(er) € X,i€ I,ande; — A(ey) € X. In particular,
if mi(z;) = [IL(xi(s))u(ds) with II; twice continuously differentiable neds(s) and

"

I, (#;(s)) non-singular, then, in some neighborhoodég(s), the system
I (z;) = X\ forall ;eI and sz =e;(s)
el
admits continuous solutiong(s) — z;(er(s)) € E,i € I, ande;(s) — A(es(s)) € E
becomes adapted.]

Since individual payoffs need not be concave, parts of the analysis proceeds without as-
suming risk aversion. To illustrate, we emphasize next one advantage and consequence of

¥ (er) is the smallest sigma-field with respect to whighis measurable.
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having adapted shadow prices. Wheris a probability measure, write for the expecta-
tion operator.

Proposition. (Mean-preserving shifts are undesirabliegt ;. here be a probability mea-
sure. Suppose shadow prigés adapted and allocatiofz;) is optimal.

o lf Aer € X, Satisfying€ [A6[| 6[] = 0, is added toey, thenm(e[ + Ael) < 7T[(6[).

° Slmllarly, if Azx; € X with & [sz| 6[] = 0 be added ta;, thenﬂ'i(ﬂfi + Al‘z) < Fz(l'z)

Proof. The subgradient inequality yields (e; + Aey) < mr(er) + AAe;. However,
since\ depends merely o#y,

)\A@[ = 6()\ . Ael) = 6(6 [)\ . Ael |6[]) = 6()\ - [Ael |6[]) =0.
The second assertion is proven in the same mariner.

The last two bullets required no risk aversion, only the availability of an adapted shadow
price. Also note that, so far, no properties were required;ofWe still want to avoid
separability, be it over time or everffsOn that account, witlX Hilbert, it turns out that

a generalized form of variance aversion is expedient.

Lemma (Generalized variance aversioronsider any inner productz’ on a Hilbert
spaceX with associated norm-|| . Suppose a functiofi : X — RU{—oc} and a subset
X* c X are such that

r*T = z*x Va* € X*and ||z|| < ||z|| implies f(z + r(Z — z)) > f(x) for some real-.
Then, any solutiorn to (2) belongs to the closed linear subspaceXo$panned by and
X,

Proof. Let Z denote the orthogonal projection ofonto the said subspace. Thtst =
o*z for all z* € X*. Supposé # z. Then, becausg(z — z) = 0 and ||z — z||* > 0,

2 ~ ~112 ~ 112 ~ ~ ~112 ~112
)™ = {17 + 2 = 2" = |[Z[]° + 22(z — ) + [ — Z[|” > [[z]|";

that is, ||Z|| < ||z| and therebyf(z) > f(x) with & := = + r(Z — ) for some real-.
However, becauskz = Az, it holds

f(@) = A& > f(z) = (A z),

an inequality which contradicts the maximality:ofn (2). The upshot is that = x, and
the conclusion follows.(]

29The finance/insurance literature mostly considers additive, concave, state-independent, smooth payoff
functions of the customary von Neumann-Morgenstern sort. That optic - apart from smoothness - appears
reasonable for low-consequence, conventional risks such as minor damage on cars or theft of bicycles. It
need not, however, fit major events like severe illness or catastrophes. Admittedly, the use of expected pay-
offs is best justified under repeated realizations, these allowing probabilities to be estimated from observed
data. Nothing precludes though, that mutual insurance company be set up to protect its members against
rare events the "statistics” of which merely reflect expert judgements.
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Proposition (Variance aversion)Let the commodity spade be R¢ for a finite setG
of economic goods. Suppose each vettoe R, g € G, havingl in componeny and
0 elsewhere, belongs & C .. Also suppose a functigh: X — RU{—oo} is such that

£z = &x and var(Z) < var(z) implies f(z + r(z — x)) > f(x) for some reak-.

Then, any solutiorr to (2) belongs to the linear subspace & spanned by\ and
{1,: g € G}.

Proof. Use inner product (8). Further, letting* := {1, : g € G} one sees thafiz =
Ex & z*T = x*z Vo* € X*. Clearly, whenfz = &z, it holdsvar(z) < var(z) &
|Z|| < ||z|| . Now invoke the preceding lemma to conclude.

As above, declare € X adaptedif measurable with respect to the sigma-fiétde,)
generated by;.

Proposition (Variance aversion and two-fund separatiddyippose there exists a shadow
price and thate; is not constant. Let the commodity spdéebe R for a finite set

G of economic goods. Suppose edgh € X C L? and that every payoff function
i X — RU{—o00} satisfies

Ex =E&x andwvar(z) < var(z) implies m;(x + r(z — x)) > m;(x) for some real-.
(18)

Then, any optimal allocatiofr;) to game(1) is adapted and of the form
T =T; + gier

with unigue non-random vectors € R¢ and coefficients; that satisfy) .., r; = 0 and

Dier€i = 1.

Proof. Fix any shadow pricé. From the preceding propositian € V := span {R¢, A}
hencee; = 3, z; € V. Because; isn't constantV = span {R® e;} , and the vectors
1,,9 € G, e; form a basis o. The conclusion is now immediate]

Proposition (Risk aversion and contingent two-fund separati@)pposeX C L2, Let
a core allocation(z;) be supported by a shadow price and suppose agkas payoff of
the formr;(x;) = EI1;(z;) with concave integrandd; : E — R U {—oo}. Then we may
assumer; adapted and there exist adaptede X ande; € R such that

z; =r1; + e, 1i(s) - er(s) =0a.s.
If all agents are of the described sol,, ., r; =0,and)_,_,;&; = 1.

Proof. Denote by\ a shadow price that supports core allocatie). Introduce the
conditional expectatiof¥; := £ [z; |e;] to havez; adapted. Since is adapted, we get
Az; = A%;. Finally, Jensen’s inequality yields;(z;) < m;(%;). This takes care of the
first assertion. Further, on any atomJ(e;) projectz; orthogonally ontdRe; to get a
unique componer;e; along that line, and let; be the residual. Sincg’, z; = ey, the
conclusion follows.



—18—

8 Price Curves and Risk Tolerance

The correspondencg — \(e;) from aggregate endowment to shadow price may natu-
rally be seen as price curve As such its should "slope downwards”:

Proposition (The law of demand).Shadow prices comply with tHaw of demandin
that

(A= A)(e—é) <0 (19)
wheneven\ € dr;(e) and A € dmr(&).

Proof. A € Or(e) impliesm;(é) < mr(e) + A(é — e). Similarly, A\ € d;(e) implies
mr(e) < mr(é) + A(e — €). Addition of the last two inequalities gives (19)J

As customary, given a price curve, its slope is of chief importance.

Proposition (The slope of the price curvd)et (z;) be an optimal allocation supported by
a shadow price\. For eachi, supposer; is concave with a second &chet derivative near
x; Which is continuous and non-singular@tThenwl*) is twice Féchet differentiable at
A with

TN == (@) (20)

el

In addition, if for eachi, 7/ is continuous near;, then(wl*))” is continuous nean. If
moreover(r;)” is non-singular at\, the market curve has slope

-1
N(er) =m/"()_wi) = [Z ng(fcz‘)_ll : (21)
il el

Under these conditions individual demangd= xz;(e;) is differentiable and

x} =7} (x;)"'m," (wr) wherez; := > " x; (22)

el

Proof. We use the following result on inversion [121:z* = f'(x) with f concave, twice
Fréchet differentiable near and f”(z) non-singular, it holds

f(*)”(l'*) — —f”(l’)_l

with f*)” continuous neax* whenf” is continuous neat. Here, sincerl*) =3 )

i€l "1
we getr\”" = 3., 7" whenever the last sum is well defined. Thus (20) follows. In-
voking the above inversion result once agaﬂﬁ*,)”()\) = —77(er)~* and (21) obtains.

Finally, (22) is a direct consequence of differentiatirigr;) = 7;(er). O

For a functionr : R — R Pratt [32] describedisk aversionas twice the premium per
unit of infinitesimal variance. Provided be sufficiently smooth at, with 7/(z) # 0,
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the said premiund,(z) := —="(z)/7’(z) is called theabsolute risk aversioatz. The
reciprocal entityl’, (z) := —n"(x)~'x'(x), calledrisk tolerancejs thus half the tolerable
variance per unit of compensating premium [37]. The latter entity is often more amenable
to handle. Here however, payoff functions may be defined on higher-dimensional spaces.
Accordingly, a multi-dimensional version of risk tolerance.

When there is only one god@ = R), differential equation (22) amounts to

;= Ti(x:)/Ti(21) (23)

whereT; := T, andT; := T,. Solutions to (23) have been studied in [9], [10], [26], [38].

Definition (Risk tolerance)For any functionf, mappingE or X into R U {—oc} that
has a non-singular second €chet derivative at, define itgisk toleranceat = as

Ty(z) =~ [f"(@)] " f'(x).

Corollary (Aggregate and individual risk toleranced)nder the conditions of the pre-
ceding proposition,

Ty (Do) = ) Tnw).

el el

Similarly, if for eachi, m;(z;) = [ IL;(z;(s))p(ds) with state-independent integrand
E — RU{—o00} and a measurg > 0,

THI (Z Xi) = Z THi (Xl)

el el

Proof. From (21) follows[r;” (e;)] " = > ier ™ (z;)". Apply the left hand operator on
the antigradient := —7(es) to getT}, (er). Apply the right operator on the same object
a = —}(z;) to conclude.O

9 Examples

This section provides a set of examples. Since conjugate functions are central, we first
sample a few of them, emphasizing for each functfdts effective domairf—!(R), de-
noteddom f. The second part of the section displays some games.

Conjugate functions: Note thatiff (z) = ¢(co(z—2°))+lx+c1, With o : X — RU{—o0},
alinearl : X — R, a fixed vectorr® € X, and real constantsg # 0, ¢, then

F @) = e (gt (@ = 1) + (I — 29)2° + ¢1.

Thus, one may easily account for the effect of scaling, adding affine functions, or trans-
lating the space.
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Examples of uni-variate conjugate functionsf : R — RU{—oo} : For any number
p > 0 define its conjugate numbgt by% + pi = 1.

function f(x) domf conjugate function f*)(z*) dom f*)
— |z’ /p,p>1 R 7" /p" * R
—lz["/p,p>1 Ry |max{0,—z"}" /p* R
z[” /p,0<p<1 Ry  —(z")P /p" Ry
—V1+ 22 R —/1— (z*)? [—1,1]
logx R++ -1 lOg x* R++
x*logax* —x* whenz* >0
—exp(—z) R { 0 when z* =0 Ry

Associated prices and choices:

payoff m A=r@= 2= 1) =
— |z fpp> 1Lz eR  — |z AP
. \P/P when\ < 0

— |xf? > _|p|P/P :

o e = e 20 o { 0 otherwise
" /p,0 <p<1,z>0 ar/7 —NPT/P X > 0.
—V1+at YN I VN
logz, >0 1/x 1/
—exp(—z), x €R ot g A

Piecewise linear concave functionsAny proper, upper semicontinuous, concave func-
tion f : X — RU{—o0} equals the pointwise infimum of a family of affine functions. In
computation - or for practical purposes - important instances have the said family finite.
So, consider a finite setof linear functionals} : X — R, and constants; € R, and let

flz) :=min{zlz+r;:jeJ}. (24)

Proposition (The conjugate of a piecewise linear concave functid®y)ppose the real-
valued functionf is piece-wise linear on a reflexive Banach spate and given by
formula(24). Then

oy =it Srmers 20, =1, Seieg o),
JjeJ JjeJ JjeJ

with the understanding thamf () = +oo. Thus,f*)(z*) = oo iff 2* ¢ conv {z} : j € J}.
WhenX is finite-dimensional, it suffices to have at maish X +1 coefficientsj > 0.

Proof. Recall that for any finite sdffp; : j € J} C R it holds

min{p, : j € J} —min{Zr;pj Ty > O,Zr; = 1}.

jed jed
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Consequently,
f(*)(x*) = sup sup {mln(:cjx + 7*]) —x x}

p>0 Jlz|<p LI€7

= Sup sup { min Zr:c -z :L'—i—Zr;rj:r;zO, Zr;:l
P20 |lz[|<p ied I, =

X DICEEEUED EVICED SEE
20 el jeJ jeJ jeJ

= sup min rirvy — x| p+ rir.rt >0 r =1
pzlg r { Z P Z 7Ny = Z j

jeJ jeJ jeJ
i€J jeJ jeJ

For example, whed = {1,2} and f(x) := min {zjz + r, 25z + r2} , we get

FO @) =inf {riry +riry sl >0, rF 4y =1, il +rial =o'},
The particular instanck = R and f(z) = — |z| = min {—x, +z} gives f*) (z*) = 0 if
r* € [~1,+1] and f*)(z*) = +oo otherwise.

Linear-quadratic functions: Let X be a Hilbert space with inner produgt-) and posit
f(z) = — (z, Az) /2 with A symmetric and positive semidefinite. Af is non-singular
surjective, then

1
¥ (%) = 5 (z*, A7'z").
More generally, suppose the rangedis closed. Then
£ (@) = 1z, z) Whenxf € rangeA andx ¢ A lx*
+00 otherwise.
Extending to the linear-quadratic cager) = — (z, Az) /2 + (a,x) + «, with range A
closed, we obtain
£ () = 1(z* —a,z) +a whenz € A~ (z* —a)
+oo whenz* — a ¢ rangeA.

Letting AT denote the pseudo-inversefve getf*)(z*) = L (z* — a, AT(z* — a)) +
whenz* — a € RangeA, and f*) (z*) = 400 otherW|se see [4] or [33].

A multi-stage, stochastic, production game Agenti € I must make &;-measurable
decisionz;; € Z;; at timet = 0,...,7. The production plan; = (z;) gives him payoff
fi(z:) subject to
gio(2i0) €io
gi1 (ZiO’ Zil) €i1
gi(2:) =9 . <

giT(ZiO’ ) ZiT) €T
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Heregi:(zio, ..., zit) < ei is shorthand for inequality;; (s, zio(s), ..., zit(s)) < eir(s) € E;
holding almost surely, witly;.(s, zio(s), .., zit(s)) presumedF,-measurable.

In condensed form,faces the problem to maximiz&(z;) s.t. g:(z;) < e;. Thus game
format (6) emerges again. Note that a shadow pkiessumes the forith, ..., Ar), its
time-t component\; being af;-measurable function € S — A.(s) with values in the
non-negative conet ), .

Linear, stochastic production games:Specializing on the stochastic production game
just outlined, lefu be a probability measure and

T
fizi) = z2lz = E(2] - z) =& Zz; - Zit,
=0

zi belonging to the non-negative coug, in some Euclidean spacg;;. The random
evaluation vectot}, € Z; is F;-measurable. Posit

t
git(zi0>--->zit) = E Airezir
T7=0

for F,-measurable matrices;,, of appropriate size. Thep(z;) < e; iff A;z; < e; where
the block matrix

Ao 0 0
Aion Ain O

A
Aioa Atz Az 0

has transposd?. Now (6) amounts to

mo(ec) := max {Z 27z Z A;z; < ec with F,-measurable;, > 0} ) (25)
icC icC

A is a shadow price iff it solves the grand dual problem:
max Aeyr S.t. AT\ > 27 for eachi and\ > 0.

In the corresponding core solution agenéceives payment; = \e; only for his endow-
ment.

Linear-quadratic market games: Positr;(z;) = —1 (z;, Aiz;) + (a;, z;) with a; € X,
and a symmetric, positive definite matu that defines a linear auto-transformation on
X. Thus, withz; strictly concave, ageritis strictly risk averse. Choogsé = I and take
supremum in (1) to have; = A; '(a; — A\). So, summing across the agents,

ZAi_l _ Z{A;lai—ei}

il el

A:
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Consequentlytwo-fund separatioandlinear sharingobtain in that

T, = a; + b; where
-1
. 71 -1 -1
a; := Az {ai — [Z] Aj } Zj Aj aj} and
bi = Az_l [Ziel Az_l} - er

with >°..;a; = 0,) .., b; = e;. If eacha; is constant, then thai; is risk-free whereas
b; equals a share of the aggregate risk; the "larggrthe smalleb,. [
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