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Foreword

The situation analyzed in this paper is typical for many applications including emission
trading, pollution negotiations, financial and insurance markets, production planning un-
der uncertainties control. While modeling the corresponding decision problems one often
considers agents that must cope with uncertain demand and supply. Each of such indi-
vidual has a payoff function, and all functions have values in a common unit. A rational
strategy of the agents facing diversified uncertainties (resulting in potentially substantial
volatility of payoff function values) is to agree upon a cooperation aiming at sharing the
risks.

The analysis proposed in this IR is based on directly linking the risk sharing to coop-
erative mutually beneficial contract (core solution). This approach therefore goes beyond
analysis of Pareto-optimality. Moreover, no assumptions are required about the individual
payoff in terms of concavity, differentiability, monotonicity, or non-satiation. Instead of
the standard fixed-point arguments typical for general equilibrium models, this IR pro-
poses a novel approach based on a simple and standard elegant analyses entirely relying
on optimization theory with its powerful computational methods. In particular, it exploits
the duality theory to address pricing of risks similar to the well known so called two-
fund separation that characterizes equilibrium in capital asset pricing models. Therefore
the results summarized in this paper offer an efficient approach to analysis of a class of
problems in integrated risk management.

This report also describes a part of the research done by Sjur D. Fl˚am when he was a
visiting scholar with the Integrated Modeling Environment Project.
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Abstract

Risk exchange is considered here as a cooperative game with transferable utility. The set-
up fits markets for insurance, securities and contingent endowments. When convoluted
payoff is concave at the aggregate endowment, there is a price-supported core solution.
Under variance aversion the latter mirrors the two-fund separation in allocating to each
agent some sure holding plus a fraction of the aggregate.

Keywords: securities, mutual insurance, market or production games, transferable util-
ity, extremal convolution, core solutions, variance or risk aversion, two-fund separation,
CAPM.
JEL Classification: C61, G11, G12, G13;Math. Subject Classification: 90C30, 91A12,
91B28.



– iv –

Acknowledgments

Thanks for support are due Finansmarkedsfondet, IIASA, STINT, and the NFR project
RENERGI.



– v –

About the Authors

Anders Borglin is professor at Department of Economics, Lund University, Sweden. His
main research interest include economic theory and applications in particular, compete-
tive equilibrium, and issues that relate to risk, uncertainty and public economics. He
has previously held a professor position at the Department of Economics, University of
Copenhagen, Denmark.
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Risk Exchange as a Market or Production Game

Anders Borglin (Anders.Borglin@nek.lu.se)*

Sjur D. Flåm (sjur.flaam@econ.uib.no)** ***

1 Introduction

Many economic agents face risky endowments or commitments. Then, to mitigate ups
and downs, it appears prudent to pool risks - often many and material in nature - and
share them thereafter. For its viability the sharing had better be contingent, efficient and
voluntary.

Along such lines, albeit in a purely pecuniary setting, Borch (1962) showed that rein-
surance contracts may mirror a competitive equilibrium of an exchange economy.1 By
the first fundamental welfare theorem, given non-satiated consumers, any equilibrium of
that sort resides in the core. Indicated thus is anindirectconnection between risk/security
markets and cooperative games. Apart from [5], [7], [28], [35], and [39]direct connec-
tions have hardly been emphasized. In fact, even the most tractable instances, featuring
transferable utility (TU), have received almost no attention. Yet such instances could
serve a few good ends.

Accordingly, presuming TU, this paper probes beyond Pareto-optimality [1], [6], [19],
[20], [37], [38] by linking risk exchange directly to cooperative contracts. One bonus
comes by connecting reciprocal treaties closer to asset pricing theory [2], [14]. Another
is to generate not only equilibrating prices but also slopes of the resulting curves. On a
more technical note, no fixed point arguments are needed for existence of a core solution.
Instead it suffices that Lagrangian duality be attained with nogap. This makes for easier
analysis and computation. In addition, concerns about existence of equilibriumprices
become fully divorced from those regarding equilibriumallocations.

To set the stage Section 2 introduces, by way of examples, amarket gamein order to
recall what is meant by a core solution. Section 3 identifies weak conditions under which
such solutions can be found merely in terms of shadow prices on the aggregate endow-
ment/risk. Section 4 elaborates on the nature and existence of shadow prices. Section 5
digresses to supplement the market perspective by regarding cooperation alternatively as
a production game. After so much groundwork, Sections 6&7 address pricing and shar-
ing of risk. Some results align perfectly with the two-fund separation that characterizes
equilibrium in capital asset pricing models. Section 8 considers the resulting price curves
and tolerances for risk. Section 9 concludes with some examples.

* Nationalekonomiska inst., Lund University.
** Corresponding author.

*** Economics Department, Bergen University, Norway.
1For related studies, see [11], [30], [31].
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The paper addresses several types of readers. Included are actuaries, finance analysts
or general economists interested in risk exchange, but not quite knowing how nicely La-
grangian duality produces explicit core outcomes. Also addressed are mathematicians
interested in optimization, but less informed as to how extremal convolution relates to
exchange markets.

2 The Game

Accommodated henceforth is a fixed, finite setI of economic agents. For background
and motivation consider two different settings:

Electricity generation: Planti ∈ I has promised to deliver the energy amountei(s) in
(season, site or) states ∈ S. Since one plant uses hydro-power based on short term pre-
cipitation, its production capacity is highly variable. Because another hydro-based plant
merely draws melting water from under a glacier, it is practically non-operative during
cold winters - but well furnished in hot summers. A third supplier owns a thermal station.
By helping each other these plants may, in each states,more easily satisfy the total com-
mitmenteI(s) :=

∑
i∈I ei(s). How should the overall load then be allocated? And what

payments would induce voluntary cooperation?

Exchange of catch quotas: Fishermani ∈ I is allowed to catch the amounteij(s) of
speciesj ∈ J in state or seasons ∈ S. Since his gear selects merely one specific species,
he wants to exchange his allowances in other species for the one he wants. When trade is
mediated by money, what exchange rates are reasonable?

In short, we think of firms that must cope with uncertain product demand or random
factor supply. Firm or individuali ∈ I owns (production commitment or resource)en-
dowmentei. For the sake of generality - and for simple presentation -ei is construed, until
Section 6, simply as a vector in some real linear spaceX.2

Individual i has payoff functionπi : X→ R∪{−∞}. The extreme value−∞ reports
infinite loss, or total dissatisfaction, or violation of implicit constraints. This device helps
highlighting essential features and saves special mention of theeffective domain

domπi := {xi ∈ X : πi(xi) > −∞}

to which any feasible choicexi must belong. Until further notice, no sort of concavity,
differentiability, monotonicity or non-satiation is required ofπi. Also, we impose no
particular functional form.3 We presume however, that individual payoff be metered in
money or some common unit of account. This feature is crucial for what follows in that
utility must be transferable.4

2WhenJ, S are finite sets, the above example of electricity generation givesei ∈ X: = RS , whereas
the fisheries example hasei ∈X: = RJ×S .

3But clearly, objectives of ordinary or Choquet integral form areaccommodated [13].
4At least two settings justify use of monetary payoff. In a first,i is a producer who obtains pecu-

niary payoffπi(xi) from input bundlexi ∈ X. In another,i is a consumer who enjoys quasi-linear utility
πi(x

a
i , x
−a
i ) = xai +πai (x−ai ) from profilexi = (xai , x

−a
i ), thea-th component of which refers to a common

real-valuedunit of account.
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Now, rather than everybody contending with his own endowment, the parties might
agree upon some reallocation. In fact, the aggregateeI :=

∑
i∈I ei can most likely be

split in ways that better suit the needs of everyone. So, we ask:can the agents write an
efficient, socially stable contract? And if so, what will be its nature?For the argument,
suppose the members of acoalitionC ⊆ I be able to cooperate among themselves. If
endowments are perfectly divisible and freely transferable,5 that coalition could foresee
overall payoff

πC(eC) := sup

{∑
i∈C

πi(xi) :
∑
i∈C

xi =
∑
i∈C

ei =: eC

}
. (1)

Construction (1), called asup-convolution, tacitly presumes that no member ofC misrep-
resents his payoff function or endowment to own advantage. Thus, strategic communi-
cation is precluded. This assumption can be justified if the underlying data are common
knowledge, or readily observed, or honestly reported.Suppose henceforth that the grand
payoff πI(eI) is finite.

The potential advantages of enterprise (1) are evident and twofold. First, aggregation
offers the agents increased leeway and better substitution possibilities. Second, depending
on the setting, it may facilitate transfers across time and contingencies. So, a key issue is
whether thegrand coalitionC = I can agree upon ways to share the aggregate endow-
ment. Plainly, formation of that coalition requires that proceeds be distributed in ways not
blocked by any subgroup. Reflecting on this concern, apayoff distributionu = (ui) ∈ RI

is declared acore solutioniff it entails{
Pareto efficiency:

∑
i∈I ui = πI(eI) and

stability:
∑

i∈C ui ≥ πC(eC) for each coalitionC ⊂ I.

Stability is easily achieved. Simply let payments be so wonderfully large that
∑

i∈C ui ≥
πC(eC), ∀C ⊆ I. Thus, the essential difficulty hides in the requirement that total payoff
be efficient and not handed out excessively.

The core as solution concept, although central to cooperative game theory, does not
figure prominently in the finance or insurance literature.6 Construction (1) mimics the
classical Shapley-Shubik (1969) analysis of market or production games. If allπi are
concave, the cooperative incentives become so strong and well distributed that the grand
coalition can safely form. To wit, the game - and every subgame - then has non-empty
core:

Proposition (Concave objectives make the game totally balanced).7 Suppose eachπi
is concave and all valuesπC(eC), C ⊆ I, are finite. Then the TU cooperative game,
featuring characteristic functionC ⊆ I 7→ πC(eC) is totally balanced. That is, each
subgame, restricted to any coalitionC ⊆ I, has non-empty core. �

5Fixed factors are neither pooled nor exchanged.
6Exceptions include [2], [5], [7], [27], [28].
7This result appears well known and is therefore stated without proof.
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3 Price-Generated Core Solutions

The preceding proposition is less than satisfying on two accounts. First, one would like to
push beyond mere existence and seek some specific, computable core element. Second,
one wonders whether less concavity would suffice. For these purposes writex = (xi) ∈
XI for the profilei 7→ xi. Further, letx∗ : X→ R be any linear functional, and associate
the standard Lagrangian

LC(x, x∗) :=
∑
i∈C

πi(xi) + x∗(
∑
i∈C

ei −
∑
i∈C

xi)

to problem (1). To simplify notation we henceforth writex∗x instead ofx∗(x).

Definition (Shadow prices).Any linearλ : X→ R such thatπI(eI) ≥ supx LI(x, λ)
will be named aLagrange multiplieror shadow price. �

The next section discusses existence of shadow prices. Here we note thatλ qualifies
as shadow price iffπI(eI) is a saddle value ofLI in that

πI(eI) = inf
x∗

sup
x
LI(x, x

∗) = sup
x

inf
x∗
LI(x, x

∗).

In fact, these equalities - as well asπI(eI) = supx LI(x, λ) - follow from

πI(eI) ≥ sup
x
LI(x, λ) ≥ inf

x∗
sup

x
LI(x, x

∗) ≥ sup
x

inf
x∗
LI(x, x

∗) ≥ πI(eI).

To better appreciate shadow prices let the convex function

f (∗)(x∗) := sup {f(x)− x∗x : x ∈ X} (2)

denote aconjugateof f : X→ R∪{−∞} .8 The last section provides some examples.
Conjugates are central in the following

Theorem (Shadow prices support core solutions).Let λ be a shadow price. Then the
payoff distribution that offers agenti the amount

ui(λ) := π
(∗)
i (λ) + λei (3)

constitutes a core solution.

Proof. The argument is surprisingly short and simple. It was already given in [16] for
cost sharing but is reproduced here for profit sharing - and for completeness. Note that
given any linear pricex∗ : X→ R and coalitionC ⊆ I it holds

sup
x
LC(x, x∗) =

∑
i∈C

ui(x
∗).

8In terms of theFenchel conjugatef∗(x∗) := supx {x∗x− f(x)} , one hasf(∗)(x∗) = (−f)∗(−x∗);
see [33]. Definition (2) suits here because it reflects price-taking in factor markets and the pursuit of profit.
Specifically, if inputx ∈Xcomes at linear costx∗x, and yields revenuef(x), then the maximal economic
rent isf(∗)(x∗). If Xis locally convex topological, andf is proper, upper semicontinuous, concave, then
f(x) = inf

{
f(∗)(x∗) + x∗x : x∗ continuous linear

}
.
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Thus, social stability obtains for arbitraryx∗ because coalitionC receives∑
i∈C

ui(x
∗) = sup

x
LC(x, x∗) ≥ inf

x∗
sup

x
LC(x, x∗) ≥ sup

x
inf
x∗
LC(x, x∗) = πC(eC).

The very last inequality, which holds without any qualifications, is often referred to as
weak duality.9 In particular,

∑
i∈I ui(λ) ≥ πI(eI). The hypothesis onλ ensures the re-

verse inequality - commonly calledstrong duality. Thereby Pareto efficiency obtains as
well:

∑
i∈I ui(λ) = πI(eI). �

The above result, while adding to [8], [34], [37], can serve as spring-board for several
extensions; see [16] and references therein.

For interpretation, ifλ prices ”input”xi, and agenti acts as price-taker in factor mar-
kets, core solution (3) offers him profitπ(∗)

i (λ) plus paymentλei for his endowment. As
customary, a priceλ should equal marginal payoffs. That feature is explored next.

4 The Nature and Existence of Shadow Prices

Our approach makes room for non-smooth functions, several goods, constrained choice
- and for preferences that need not be of the expected utility format.10 These feature
notwithstanding, we want to regard shadow prices as marginal payoffs - that is, asderiva-
tives, possibly generalized. For the statement, denote by∂ thesuperdifferentialof convex
analysis [33]. That is, given any proper functionf : X→ R∪{−∞} , a linear mapping
x∗ : X→ R is called asupergradientof f atx, and we writex∗ ∈ ∂f(x), iff

f(x̂) ≤ f(x) + x∗(x̂− x) ∀x̂ ∈ X.

Thus,x∗ ∈ ∂f(x) iff the affine functionf(x) + x∗(· − x) globally overestimatesf(·)
but with no discrepancy atx. What comes next is a crucial characterization of shadow
prices. For brevity declarex = (xi) ∈ XI an optimal allocationiff

∑
i∈I [xi, πi(xi)] =

[eI, πI(eI)] .

Theorem (Shadow prices as supergradients).
• λ is ashadow price iffλ ∈ ∂πI(eI). Thus, given the payoff functions, a shadow price
depends only on the aggregate endowmenteI.
• For anyλ ∈ ∂πI(eI) and any optimal allocation(xi) we haveλ ∈ ∂πi(xi) for all i.
Conversely, if someλ belongs to all∂πi(xi) and

∑
i xi = eI, thenλ is a shadow price,

and allocation(xi) is optimal.
• Suppose someπi is monotone at a pointxi with respect to a coneXi ⊆ X in that

9Note thatsupxLC (x, x∗) ≥ πC(eC ) holds forany functionalx∗ : X→ R that satisfiesx∗(0) ≥ 0. If
moreover,x∗ is additive, then

∑
i∈C ui(x

∗) = supxLC (x, x∗). Also, if for some classX∗ of functionals
x∗ : X→ R it holds

inf {x∗x : x∗ ∈ X∗} =

{
0 for x = 0
−∞ otherwise,

thensupx infx∗∈X∗ LC (x, x∗) = πC(eC ).
10For recent studies involving onegood and smooth objectives see [35] and [39].
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π(xi +Xi) ≥ πi(xi) > −∞. ThenλXi ≥ 0 for each shadow priceλ.

Proof. These assertions are well known when allπi are concave; see e.g. the nice presen-
tation is [25]. Here, however, concavity is not presumed. So, some extra work is needed.
For simplicity define the ”death” penaltyδ(·) onX by δ(x) = +∞ whenx 6= 0 and
δ(0) = 0. Note that this function has Fenchel conjugateδ∗(x∗) := supx {x∗x− δ(x)} ≡
0. Now,λ ∈ ∂πI(eI)

⇔
∑
i∈I

πi(xi)− δ(
∑
i∈I

xi − x) ≤ πI(x) ≤ πI(eI) + λ(x− eI) ∀x ∈ X,∀(xi) ∈ XI

⇔
∑
i∈I

πi(xi) +
∑
i∈I

λ(ei − xi) + λ(
∑
i∈I

xi − x)− δ(
∑
i∈I

xi − x) ≤ πI(eI) ∀x, ∀(xi)

⇔
∑
i∈I
{πi(xi) + λ(ei − xi)}+ δ∗(λ) ≤ πI(eI) ∀(xi) ∈ XI (*)

⇔ sup
x
LI(x, λ) ≤ πI(eI).

This proves the first bullet. For the second let(x̃i) be any optimal allocation. In the above
string of equivalences (*) says

λ ∈ ∂πI(eI)⇔
∑
i∈I

πi(xi) ≤
∑
i

{πi(x̃i) + λ(xi − x̃i)} ∀(xi) ∈ XI

⇔ πi(xi) ≤ πi(x̃i) + λ(xi − x̃i) ∀xi ∈ X,∀i⇔ λ ∈ ∂πi(x̃i) ∀i.

For the last bullet, ifλx̂i < 0 at somêxi ∈ Xi, then

π
(∗)
i (λ) ≥ sup

r>0
{πi(xi + rx̂i)− λ(xi + rx̂i)} = +∞, (4)

which is impossible.�

The instance with allπi concave stands out, makingπI concave. Then, provided some
term πi be strictly concave, the optimalxi, if any, must be unique. Moreover, if that
sameπi is differentiable atxi, the shadow price becomes unique as well. Generally,
for any shadow priceλ and optimal allocation(xi), we getxi ∈ ∂(−π(∗)

i )(λ) andeI ∈
∂(−π(∗)

I )(λ).
We emphasize that concavity ofπi or πI is not essential. What imports is rather to

have global support ofπI from above ateI by some affine function. Such support cannot
come about unless every optimal allocation(xi) entails quite similar support ofπi at xi.
Thus, no agent having strictly convex payoffπi could be admitted here. In fact, ifπi is
supported from above as just described, it could not be globally convex unless affine with
slopeλ. These observations beg questions as to whether and when shadow prices do exist:

Proposition (Existence of shadow prices).Let Xbe a locally convex Hausdorff topo-
logical vector space. Denote bŷπI : X→ R∪{−∞} the smallest concave function that
dominatesπI from above. Suppose

π̂I(·) is finite-valued, bounded below neareI. (5)
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Also suppose that the convoluted preference is convex ateI , meaning that̂πI(eI) =
πI(eI). Then there exists at least one shadow price shadow price. Moreover that price is
continuous.

Proof. Qualification (5) ensures that the concave functionπ̂I(·) is super-differentiable
at eI. That is,∂π̂I(eI) is non-empty, and it can be taken to consists of only continuous
linear functionalsx∗ : X→ R; see [15]. Now,̂πI ≥ πI and π̂I(eI) = πI(eI) implies
∂π̂I(eI) ⊆ ∂πI(eI). The desired conclusion follows straightforwardly by noting that any
supergradientλ ∈ ∂πI(eI) is a shadow price - as pointed out in the preceding theorem.�

Thus arbitrage-free pricing obtains if an affine function supports the convoluted payoff
from above at that the aggregate endowment. Assumption (5) clarifies that individual
payoffs really need not be convex. Rather, it suffices thatπI has appropriate curvature
with respect toeI. Like in [36] aggregative convexity is what counts in preferences - al-
beit here only ateI . This point bears on the qualitative fact that havingmanyandsmall
agents may mitigate adverse effects of non-convex preferences [3], [16], [18]. As in [23]
heterogeneity can also help.11

When will no shadow price exist? Plainly, as brought out in the last theorem, none is
available ifinfx∗ supx LI(x, x

∗) > πI(eI). Then, theduality gap

∆ := inf
x∗

sup
x
LI(x, x

∗)− πI(eI)

equals the smallest overall budgetarydeficit - or the minimal overspending - that could
possibly emerge by paying players according to formula (3). A positive gap might stem
from some payoff function not being concave. Present many small players, each prefer-
ably having a smooth payoff functions, one may show that∆ becomes relatively small;
see [3], [16], [18]. In any case, apart from existence of shadow prices, it is natural to
wonder whether an optimal allocation(xi) is available for the grand coalitionC = I.

Proposition (Existence of optimal allocations).LetXbe a reflexive Banach space. Sup-
pose the upper-level set

U(r) :=

{
x = (xi) ∈ XI :

∑
i∈I

πi(xi) ≥ r,
∑
i∈I

xi = eI

}
is bounded and weakly closed for every realr < πI(eI). Then there exists an optimal
allocation. In particular, if (xi) 7→

∑
i πi(xi) is quasi-concave upper semi-continuous, it

suffices that each setU(r) be bounded.

Proof. The closed convex hull ofU(r) is bounded whence weakly compact forr <
πI(eI). Then, by reflexivity,U(r) itself is weakly compact. It follows that∩r {U(r) : r < πI(eI)}
must be non-empty. Any elementx in that intersection solves problem (1) for the grand
coalition. When(xi) 7→

∑
i∈I πi(xi) is quasi-concave upper semi-continuous,U(r) be-

comes closed convex whence weakly closed.�

Clearly, optimal allocations do not depend on the endowment distribution.
11For instance, letπi be ”concave” but defined on a disconnected domainDi. Specifically, takeI =

{0, 1},D0 = {0} ∪ [1/2, 1] , andD1 = [0, 1/2]∪ {1} . ThenπI is concave on its domain[0, 2] .
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5 Production Games

This section offers a brief - and dispensable - digression, meant to emphasize three fea-
tures:
• first, sharing of production and profit also fits format (1);
• second, (1) might emerge as areducedmodel; and
• third, it is often convenient to keep original data pretty much in original, raw form.

For these purposes regard each agenti ∈ I here as aproducerwho obtains profit
fi(zi) from planzi ∈ Zi providedgi(zi) ≤ ei. The setZi may lack exploitable structure,
andgi : Zi → Xaccounts for technological restrictions or material bounds. The linear
spaceX is now ordered by a convex coneX+ ⊂ X in that x ≤ x′ ⇔ x′ − x ∈ X+.
Corresponding to (1) consider the planning problem

πC(eC) := sup

{∑
i∈C

fi(zi) : zi ∈ Zi and
∑
i∈C

gi(zi) ≤
∑
i∈C

ei

}
(6)

of coalitionC ⊆ I. Its members share not only resources, but technologies as well. Upon
settingπi(xi) := sup {fi(zi) : zi ∈ Zi andgi(zi) ≤ xi} , format (1) comes up again as
a reduced model. There is no need however, to synthesize the characteristic function
C 7→ πC(eC). Computation could merely revolve aroundπI(eI) - with all data kept in
original form. This is seen next.

When zi ∈ Zi, and the linear functionalx∗ : X→ R is non-negative onX+, let
z = (zi), and associate to (6) the Lagrangian

LC(z, x∗) :=
∑
i∈C
{fi(zi) + x∗ [ei − gi(zi)]} .

Write here

ui(x
∗) := sup {fi(zi)− x∗gi(zi) : zi ∈ Zi}+ x∗ei (7)

and note thatsupz LC(z, x∗) =
∑

i∈C ui(x
∗). Arguing verbatim as for the first theorem

we get

Proposition (Shadow prices support core solutions in production games).Let λ be a
shadow price in thatπI(eI) ≥ supz LI(z, λ). Then, paying agenti the amount(7) consti-
tutes a core solution of the TU game that has(6) as characteristic function. �

6 Arbitrage-free, Risk-neutral Pricing

It is time now to specify a more detailed setting and seek some structure in optimal al-
locations. More details are available in two ways. First, the spaceXshould be specified
more closely; second, one might reasonable suppose some separability in the objectives
across stages or states.

We begin withX. Fix hereafter a non-emptystate spaceS, equipped with a complete
sigma-fieldF and a finite non-negative measureµ.12 From here on eachx ∈ Xis at least

12When computation is a main concern, one would typically chooseS finite, letσ contain all subsets of
S, and haveµ(s) > 0 ∀s. Some convenience or flexibility comes with not insisting onµ(S) = 1.
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aF -measurable mapping fromS into a finite-dimensional Euclidean spaceE . The latter
is endowed with inner producte · e′, associated norm|·|, and the Borel sigma-field inE is
generated by the open sets.13 Fix some numberp ∈ [1,+∞) and suppose

‖x‖ :=

(∫
|x(s)|p µ(ds)

)1/p

< +∞

for all x ∈ X. ThusX is contained in the spaceLp of all F -measurable,p-integrable
x : S → E. Risk or security markets are chief cases - and often incomplete.Xmay
therefore be a strict, but presumably closed subset ofLp.

Define the conjugate exponentp∗ ∈ [1,+∞] implicitly by 1
p

+ 1
p∗ = 1. A theorem of

Riez says that any continuous linear functionalx∗ onXadmits arepresentation

x 7→ x∗x :=

∫
x∗(s) · x(s)µ(ds) (8)

for an (almost surely) uniquex∗ ∈ X∗ ⊇ Lp
∗
. It is convenient to identify any such

functionalx∗ with its Riez representation. The instancep = 2 stands out withp∗ = 2
becauseX= X∗ becomes Hilbert with inner product (8).14

The present setting may naturally be construed as reflecting uncertainty about the true
states ∈ S, known ex ante only up to a probability measureµ on F . Any x ∈ X is
then a random vectorx(·) ∈ E and accordingly referred to as arisk.15 As said,Xshould
contain the already given endowmentsei, i ∈ I, and might - as a minimal requirement -
even be spanned by these. Whilst insurance theory often assumes independent or weakly
associated risks, no such assumption is made here.16

Recall that a shadow priceλ is a linear functional fromX intoR. While endogenous
to the game, it helps players to evaluate various risks and securities. Clearly, unlessλ
blocks arbitrage it can’t apply as price regime. That issue is briefly explored next.

For the statement, a coneXi(xi) ⊂ X is said to comprise thepreferable directions of
agenti at xi ∈ Xif πi(xi +Xi(xi)) ≥ πi(xi) > −∞. As usual, a linear pricex∗ : X→ R
is declaredarbitrage-freeiff no agenti has a preferable directiondi ∈ Xi(xi) at any
xi ∈ domπi such thatx∗di < 0. Arguing as around (4) we may state forthwith:

Proposition (Shadow prices are arbitrage-free).Given conesXi(xi), i ∈ I, of prefer-
able directions, each shadow priceλ must satisfy

λ(∪i∈I ∪xi∈domπi Xi(xi)) ≥ 0.

In particular, if domπi itself is a coneXi, andπi(xi +Xi) ≥ πi(xi) at eachxi ∈ Xi, then
λ(∪i∈IXi) ≥ 0. �

13More generally,E could be a separable Hilbert space.
14In particular, the conjugate pair(p, p∗) = (1,+∞) is possible,‖x‖ then being theessential supremum

of s 7→ |x(s)| . However, unlessσ is finite, the ”reciprocal” pair(p, p∗) = (+∞, 1) needs special care, and
is not discussed here; see [17].

15Risks - alias random variables - are chief objects here. Our results extend however, to other contingent
items.

16Consequently, we shall invoke no law of large numbers or central limit theorem. In fact, our analysis
is applicable for major events, say catastrophes, inflicting severe and highly correlated losses.
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Arbitrage is a utility-free, more primitive concept than economic equilibrium. Typically,
it is described in terms of a common family of financial instruments, monotone prefer-
ences, andonepunctuated convex coneX+� {0} ⊂ X, composed offree lunches. A
theorem of alternatives then decides whether arbitrage is possible or not. Given a shadow
price that decision is straightforward:

Proposition (Shadow prices preclude free lunches).Let xi ∈ X iff xi = ei + Wzi for
some ”portfolio” zi in a real vector spaceZ, withW : Z→ X linear. Suppose at least
one agenti has differentiable and strictly monotone preferences:

x̂i − xi ∈ X+� {0} ⇒ πi(x̂i) > πi(xi).

Then, existence of a shadow priceλ, together with an optimalxi, ensures thatλ [X+� {0}] >
0, λW = 0, and there is noz ∈Zsuch thatWz ∈ X+� {0} with limr>0 πi(ei+ rWz) =
+∞.

Proof. Let xi = ei + Wzi be optimal for the agent who has strictly monotone, smooth
preferences. Sinceλ is a shadow price, the chain rule gives

0 =
∂

∂zi
πi(ei +Wzi) = λW.

Further, suppose a ticketz ∈Zis variable for a free lunchWz ∈ X+� {0}, during which
agenti is never satiated:limr>0 πi(ei + rWz) = +∞. This implies the contradiction

π
(∗)
i (λ) ≥ sup

r>0
{πi(ei +Wz)− λ(ei +Wz)} = +∞. �

Example: A two-stage security market. Let W =

[
−z∗
D

]
where the price vector

z∗ = (z∗j ) ∈ RJ accounts for the up-front purchase cost of various papersj ∈ J , and the
S×J matrixD = [Dj(s)] reports future dividends. WithZ= RJ , equationλW = 0 and
λ > 0 amount to the price rule

z∗j = δ

∫
Dj(s)p(ds) ∀j, (9)

featuring a deflatorδ > 0 alongside a risk-neutral probability measurep overF ; see [29]
for S finite. The nature of rule (9) is best appreciated when uncertainty resolves over
several stages. We turn to such instances next.�

Quite often, identification of the true states isn’t immediate. At timet ∈ {0, 1, .., T}
agenti can only ascertain for each event in a sigma-fieldFt ⊆ F whether it has hap-
pened or not. His decisionxit, made then, must therefore beFt-measurable. In that
caseX= X0 × · · · ×XT whereXt is a space ofFt-measurable mappings fromS into a
Euclidean spaceE t . Typically, the inclusions

{∅, S} = F0 ⊆ F1 ⊆ · · · ⊆ FT = F (10)

hold; they represent progressive acquisition of knowledge.
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Example: A multi-stage security market. SupposeS is finite, and let each fieldFt
be generated by apartition Pt of S. Thenxt : S → E t is Ft-measurable iff constant on
each partPt ∈ Pt. PositP0 = {S} andPT = {{s} : s ∈ S}. RegardPt ∈ Pt as anode
nt ∈ Nt (at heightt) in a tree, and draw adirected branchfrom nt to its child nodent+1

iff nt = Pt ⊆ Pt+1 = nt+1. Write nt ∈ A(nt+1) andnt+1 ∈ C(nt) to signal that the first
node is anancestorand the latter achild. Noden0 is named theroot, and each terminal
node - having maximal heightT - is called aleaf; see figure below.

rootn0 =

 s
s′

s′′

 ↗
↘

[
s
s′

]
[s′′]

↗
→
→

[s]
[s′]
[s′′]

 leafs

Legend: A tree with 3 partitions/stages/states/scenarios and 6 nodes.

Denote byzjn ∈ R the number of shares an investor holds in paperj ∈ J upon leaving
noden. Suppose he buys (outgoing)portfolio zn := (zjn) ∈ RJ at noden 6= n0 and
liquidates there the (incoming) portfoliozA(n) bought at the ancestor node. Absent trans-
action costs, those operations bring him nominal, currentgainGn(z) := z∗n ·

[
zA(n) − zn

]
.

(The dot denotes the standard inner product.) At the root noden0 naturally letGn0(z) :=
−z∗n0

· zn0 . This stylized market allowsarbitrageiff the system

Gn(z) ≥ 0 for all n and z∗n · zn ≥ 0 for each leaf, (11)

admits a solutionz = (zn) with at least one strict inequality. Suppose some paper (say a
bond)b ∈ J commands strictly positive pricez∗nb at each noden. In terms of that paper
define discount factorsδn := z∗n0b

/z∗nb. LetN := ∪tNt denote the node set.

Proposition (Shadow prices and risk-neutral probabilities).The described market, fea-
turing many stages, is arbitrage-free iff there exists a strictly positive probability measure
p across the leafs such that the transition probabilities, induced byp on the entire node
set, satisfy the martingale condition

δnz
∗
n = Eµ [δcz

∗
c |n] =

∑
c∈C(n)

δcz
∗
cp(c |n) for all non-terminaln. (12)

Under the hypotheses of the preceding proposition any shadow price ensures absence of
arbitrage.

Proof. The first part is well known but proven for completeness. Fixanynon-degenerate
probability measurem > 0 across the leafs, and use the induced probabilitiesmn at
non-terminal nodesn. Consider the homogeneous linear program

max
z

∑
n

δnmnGn(z) +
∑
n∈NT

δnmnz
∗
n · zn s.t. (11). (13)

Clearly, the market is arbitrage-free iff the optimal value of (13) is0. Associate multiplier
δnyn ≥ 0 to inequalityGn(z) ≥ 0, andδnYn ≥ 0 to leaf constraintz∗n·zn ≥ 0.Maximizing
the resulting Lagrangian∑

n

δn(mn + yn)Gn(z) +
∑
n∈NT

δn(mn + Yn)z∗n · zn =
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∑
n/∈NT

 ∑
c∈C(n)

δc(mc + yc)z
∗
c − δn(mn + yn)z∗n

 · zn +
∑
n∈NT

δn(Yn − yn)z∗n · zn (14)

with respect to the free variablez we see that the dual of (13) amounts to solve

δn(mn + yn)z∗n =
∑
c∈C(n)

δc(mc + yc)z
∗
c for all n /∈ NT with y ≥ 0.

Suppose the latter system is indeed solvable. In that case, by LP duality, problem (13) has
0 as optimal value, and there are no arbitrage opportunities. Then consider componentb

of the last equation to getmn + yn =
∑

c∈C(n)(mc + yc). Thereforem(c |n) := (mc +

yc)/(mn + yn) defines strictly positive transition probabilities that satisfy (12).
Conversely, suppose some strictly positive measurem onNT suits (12). In (14) let

m = p and eachyn, Yn = 0 to get

∑
n

δnGn(z)pn +
∑
n∈NT

δnz
∗
n · znpn =

∑
n/∈NT

 ∑
c∈C(n)

δcpcz
∗
c − δnpnz∗n

 · zn = 0

for all z. Thus arbitrage is impossible.
For the final assertion, letX= RN×RNT with the customary non-negative orthant

X+. PositZ:= RJ×N , and define the linear operatorW : Z→ Xby

Wz =
[
[Gn(z)]n∈N , [z

∗
nzn]n∈NT

]
.

Absence of arbitrage means that noz ∈ZyieldsWz ∈ X+�0. By the preceding proposi-
tion there exists a positiveλ such thatλW = 0. Chooseyn ≥ 0 to haveλn = δn(µn + yn)
for n ∈ N and positYn = yn at leafn. Consequently, (14) becomes feasible.�

Example: Two-stage risk-neutral pricing. If available up front, how much is the risk-
free asset worth that offers guaranteed future dividend1? As seen nextλ complies with
the well known risk-neutral, arbitrage-free evaluation:

Suppose there are merely two stages with{∅, S} = F0 ⊂ F1 = F and only one
commodity(E = R). Given a shadow priceλ 	 0 a.s., suppose the system

b := (b0, b1) = (−δ, 1) andλb = 0,

is solvable for some riskless bondb ∈ X together with a unique discount factorδ > 0.
Then,δ =

∫
S
λ(s)µ(ds)/λ(0), and the measure

p(A) :=

∫
A

λ(s)µ(ds)/

∫
S

λ(s)µ(ds)

defines a risk-neutral probabilityp overF that satisfies−x(0) = δ
∫
S
x(s)p(ds) for each

x ∈ Xsuch thatλx = 0.
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7 Risk Sharing

We stress that states can sometimes be seen not as ”events”but alternatively as ”stages”
or decision epochs.17 The measureµ then discounts the future. More generally, the
description of any specific state refers to the circumstances that defines its appearance.
This more broad perspective justifies speaking of anyx ∈ Xas acontingent commodity
bundlein E.

In either set-up sharing, as captured by (1), takes the form of acontract, specifying
agenti’s partxi(s) of eI(s), and his payment, in states. A natural question is whether and
when the concerned parties think the writing of such contracts worth their while. Instead
of committing to a promise or policy right away, why not just wait and see?

Clearly, what explains and justifies the existence of insurance institutions is the tempo-
ral resolution of uncertainty - and the time windows that affect some decisions. Intuitively,
if the restrictionx ∈ Xdoes not preclude thatx(s) be fully adapted to the realized state
s ex post - and moreover, agents agree on probabilities - then contracts seem superfluous.
This exceptional setting is briefly explored next.

Following [33] declareXdecomposableiff for eachx ∈ Xthe modified mapping

1Bβ + 1S�Bx :=

{
β if s ∈ B
x otherwise

belongs toXwhenever the boundedβ : S → E is measurable, andB ∈ F . Further,
call an integrandΠ : S × E → R∪{−∞} normal if the point-to-set correspondence
s 7→ {(e, r) ∈ E ×R : Π(s, e) ≥ r} is measurable [33].

Decomposability is demanding. For instance, whenS is finite, andF contains all
singletons, a decomposableXmust generate acomplete market space.That is, seen as
space of marketable assets, a decomposableX contains all elementary Arrow-Debreu
securities. Also, ifFt ( F for somet < T in (10), choose a boundedF -measurable
βt : S → E t which isnotFt-measurable. Positβτ ≡ 0 for τ 6= t, andB = S to have
1Bβ + 1S�Bx = β /∈ X.

In short, decomposability doesn’t fit settings where information unfolds gradually.
Despite their lack of realism, the extreme properties of decomposable instances shed some
light on insurance:

Proposition (Sharing ex post, on the spot).SupposeX is decomposable. For eachi ∈ I,
let

πi(xi) =

∫
Πi(s, xi(s))µ(ds), (15)

featuring a normal integrandΠi : S × E → R∪{−∞} and a common measureµ. If
λ is a shadow price for the overall game, then almost surely so isλ(s) for the ex post,
contingent game that emerges in states, with characteristic function

C 7→ ΠC(s, eC(s)) := sup

{∑
i∈C

Πi(s, xi(s)) :
∑
i∈C

xi(s) = eC(s)

}
.

17Examples include exchange of time-dependent property rights, say fish quotas or pollution permits.
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Invoking the contingent conjugateΠ(∗)
i (s, ·), that ex post game admits a payoff distribution

i 7→ Ui(s, λ(s)) := Π
(∗)
i (s, λ(s)) + λ(s) · ei(s)

which belongs to its core. Further,

i 7→ ui(λ) =

∫
Ui(s, λ(s))µ(ds) =

∫ {
Π

(∗)
i (s, λ(s)) + λ(s) · ei(s)

}
µ(ds).

belongs to the ex ante core.

Proof. Since objectives are separable across states, for anyχ = (χi) ∈ E I andχ∗ ∈ E
coalitionC has ex post Lagrangian

LC(s, χ, χ∗) :=
∑
i∈C

Πi(s, χi) + χ∗ ·
[∑
i∈C

ei(s)−
∑
i∈C

χi

]

in states. Ex ante it holdsLC(x, x∗) =
∫

LC(s, x(s), x∗(s))µ(ds). Now, by decomposi-
tion,

πI(eI) = sup
x
LI(x, λ) ⇐⇒ ΠI(s, eI(s)) = sup

x(s)

LI(s, x(s), λ(s)) almost surely;

see [33]; Theorem 11.40. Thusλ is a shadow price iff almost surelyΠI(s, eI(s)) equals
supx(s) LI(s, x(s), λ(s)). Hence it equals the saddle value ofLI(s, ·, ·). From here on the
argument goes as before.�

Granted a decomposable spaceX and normal format (15), sharing may almost surely
be done ex post. If moreover, the integrands are state-independent of the formΠi : E →
R∪ {−∞}, the state-s shadow priceλ(s) depends only on the realized aggregateeI(s).

As said, the preceding proposition should not lure one into thinking that ex ante con-
tracts are superfluous. Casual observation indicates the opposite. So, decomposability is
a rare property. Most often some component ofxi must be decided before uncertainty re-
solves - and stays non-maleable ex post. A simple example is fire insurance: The premium
paid up front cannot be altered after the event.18

It may happen of course, that there is onlyonestage. Such a setting allows us to
consider instances where players perceive uncertainty diversely. Often probability as-
sessments differ across agents - and typically much on exceptionally important states,
occurring with very low frequencies. Nonetheless, there are prospects for risk sharing -
implemented by contracts signed ex ante. Arguing as in the preceding proposition we get:

Corollary (Diverse probability assessments).For eachi ∈ I, supposeπi(xi) =
∫

Πi(s, xi(s))µi(ds)
whereΠi is a normal integrand,µi is absolutely continuous with respect toµ, andX is
decomposable. Letϕi = d

dµ
µi be the corresponding density. Then,λ is shadow price iff

18Along the same line, if knowledge is asymmetric, players may, for the sake of verifiability and ex post
implementation, have to contend with contracts that differ in measurability; see [24].
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almost surely

sup
(χi)

{∑
i∈I

Πi(s, χi)ϕi(s) :
∑
i∈I

χi = eI(s)

}
≥
∑
i∈I

Ui(s, λ(s)) (16)

where

Ui(s, λ(s)) := ϕi(s)Π
(∗)
i (s,

λ(s)

ϕi(s)
) + λ(s) · ei(s)andui(λ) =

∫
Ui(s, λ(s))µ(ds).

In case allocation(xi) is optimal,λ(·) is a shadow price iff, for eachi,

λ(s) ∈ ∂

∂χi
Πi(s, xi(s))ϕi(s) a.s. � (17)

(17) dates back to [8], [37]. The Corollary shows that players who hold different (but
absolutely continuous) beliefs cannot implement the overall contract ex post unless their
realized payoffs be scaled by respective densities. If someone believes a particular state
more likely, its realization should benefit him ex post. The rarity or non-practicality of
decomposable spaces, indicates that one hardly have a realistic theory of syndicates unless
members commit themselves up front.

In general, shadow prices depend on all underlying data. Also, by belonging toX, any
shadow price is a mappings ∈ S 7−→ λ(s) ∈ E . This raises the question whethers affects
λ(s) merely viaeI(s)? If so, λ(·) should be measurable with respect to the sigma-field
F(eI) generated byeI .19 In that case, for simplicity, declareλ adapted. At this juncture
the implicit function theorem immediately yields:

Proposition (Dependence on the aggregate endowment).Let (x̂i) be an optimal allo-
cation for some aggregate endowmentêI. Suppose eachπi is twice continuously differen-
tiable nearx̂i with π

′′
i (x̂i) non-singular. Then, in some neighborhood ofêI , the system

π′i(xi) = λ for all i ∈ I and
∑
i∈I

xi = eI

admits continuous solutionseI 7→ xi(eI) ∈ X, i ∈ I, andeI 7→ λ(eI) ∈ X. In particular,
if πi(xi) =

∫
Πi(xi(s))µ(ds) with Πi twice continuously differentiable near̂xi(s) and

Π
′′
i (x̂i(s)) non-singular, then, in some neighborhood ofêI(s), the system

Π′i(xi) = λ for all i ∈ I and
∑
i∈I

xi = eI(s)

admits continuous solutionseI(s) 7→ xi(eI(s)) ∈ E, i ∈ I, and eI(s) 7→ λ(eI(s)) ∈ E
becomes adapted.�

Since individual payoffs need not be concave, parts of the analysis proceeds without as-
suming risk aversion. To illustrate, we emphasize next one advantage and consequence of

19σ(eI ) is the smallest sigma-field with respect to whicheI is measurable.
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having adapted shadow prices. Whenµ is a probability measure, writeE for the expecta-
tion operator.

Proposition. (Mean-preserving shifts are undesirable).Letµ here be a probability mea-
sure. Suppose shadow priceλ is adapted and allocation(xi) is optimal.
• If ∆eI ∈ X, satisfyingE [∆eI| eI ] = 0, is added toeI , thenπI(eI + ∆eI) ≤ πI(eI).
• Similarly, if ∆xi ∈ Xwith E [∆xi| eI ] = 0 be added toxi, thenπi(xi + ∆xi) ≤ πi(xi).

Proof. The subgradient inequality yieldsπI(eI + ∆eI) ≤ πI(eI) + λ∆eI . However,
sinceλ depends merely oneI,

λ∆eI = E(λ ·∆eI) = E(E [λ ·∆eI |eI ]) = E(λ · E [∆eI |eI ]) = 0.

The second assertion is proven in the same manner.�

The last two bullets required no risk aversion, only the availability of an adapted shadow
price. Also note that, so far, no properties were required ofπi. We still want to avoid
separability, be it over time or events.20 On that account, withXHilbert, it turns out that
a generalized form of variance aversion is expedient.

Lemma (Generalized variance aversion).Consider any inner productxx′ on a Hilbert
spaceXwith associated norm‖·‖ . Suppose a functionf : X→ R∪{−∞} and a subset
X∗ ⊂ Xare such that

x∗x̃ = x∗x ∀x∗ ∈ X∗and ‖x̃‖ < ‖x‖ implies f(x+ r(x̃− x)) > f(x) for some realr.

Then, any solutionx to (2) belongs to the closed linear subspace ofXspanned byλ and
X∗.

Proof. Let x̃ denote the orthogonal projection ofx onto the said subspace. Thusx∗x̃ =
x∗x for all x∗ ∈ X∗. Supposẽx 6= x. Then, becausẽx(x− x̃) = 0 and‖x− x̃‖2 > 0,

‖x‖2 = ‖x̃+ x− x̃‖2 = ‖x̃‖2 + 2x̃(x− x̃) + ‖x− x̃‖2 > ‖x̃‖2 ;

that is,‖x̃‖ < ‖x‖ and therebyf(x̂) > f(x) with x̂ := x + r(x̃ − x) for some realr.
However, becauseλx̂ = λx, it holds

f(x̂)− λx̂ > f(x)− 〈λ, x〉 ,

an inequality which contradicts the maximality ofx in (2). The upshot is that̃x = x, and
the conclusion follows.�

20The finance/insurance literature mostly considers additive, concave, state-independent, smooth payoff
functions of the customary von Neumann-Morgenstern sort. That optic - apart from smoothness - appears
reasonable for low-consequence, conventional risks such as minor damage on cars or theft of bicycles. It
need not, however, fit major events like severe illness or catastrophes. Admittedly, the use of expected pay-
offs is best justified under repeated realizations, these allowing probabilities to be estimated from observed
data. Nothing precludes though, that mutual insurance company be set up to protect its members against
rare events the ”statistics” of which merely reflect expert judgements.
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Proposition (Variance aversion).Let the commodity spaceE beRG for a finite setG
of economic goods. Suppose each vector1g ∈ RG, g ∈ G, having1 in componentg and
0 elsewhere, belongs toX⊆ L2. Also suppose a functionf : X→ R∪{−∞} is such that

Ex̃ = Ex and var(x̃) < var(x) implies f(x+ r(x̃− x)) > f(x) for some realr.

Then, any solutionx to (2) belongs to the linear subspace ofX spanned byλ and
{1g : g ∈ G} .

Proof. Use inner product (8). Further, lettingX∗ := {1g : g ∈ G} one sees thatEx̃ =
Ex ⇔ x∗x̃ = x∗x ∀x∗ ∈ X∗. Clearly, whenEx̃ = Ex, it holdsvar(x̃) < var(x) ⇔
‖x̃‖ < ‖x‖ . Now invoke the preceding lemma to conclude.�

As above, declarex ∈ Xadaptedif measurable with respect to the sigma-fieldF(eI)
generated byeI.

Proposition (Variance aversion and two-fund separation).Suppose there exists a shadow
price and thateI is not constant. Let the commodity spaceE beRG for a finite set
G of economic goods. Suppose each1g ∈ X⊆ L2 and that every payoff function
πi : X→ R∪{−∞} satisfies

Ex̃ = Ex andvar(x̃) < var(x) implies πi(x+ r(x̃− x)) > πi(x) for some realr.
(18)

Then, any optimal allocation(xi) to game(1) is adapted and of the form

xi = ri + εieI

with unique non-random vectorsri ∈ RG and coefficientsεi that satisfy
∑

i∈I ri = 0 and∑
i∈I εi = 1.

Proof. Fix any shadow priceλ. From the preceding propositionxi ∈ V := span
{
RG, λ

}
henceeI =

∑
i∈I xi ∈ V.BecauseeI isn’t constant,V= span

{
RG, eI

}
, and the vectors

1g, g ∈ G, eI form a basis ofV. The conclusion is now immediate.�

Proposition (Risk aversion and contingent two-fund separation).SupposeX⊆ L2. Let
a core allocation(xi) be supported by a shadow price and suppose agenti has payoff of
the formπi(xi) = EΠi(xi) with concave integrandsΠi : E → R∪ {−∞}. Then we may
assumexi adapted and there exist adaptedri ∈ Xandεi ∈ R such that

xi = ri + εieI, ri(s) · eI(s) = 0 a.s.

If all agents are of the described sort,
∑

i∈I ri = 0, and
∑

i∈I εi = 1.

Proof. Denote byλ a shadow price that supports core allocation(xi). Introduce the
conditional expectatioñxi := E [xi |eI ] to havex̃i adapted. Sinceλ is adapted, we get
λxi = λx̃i. Finally, Jensen’s inequality yieldsπi(xi) ≤ πi(x̃i). This takes care of the
first assertion. Further, on any atom inF(eI) projectxi orthogonally ontoReI to get a
unique componentεieI along that line, and letri be the residual. Since

∑
i xi = eI, the

conclusion follows.�
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8 Price Curves and Risk Tolerance

The correspondenceeI 7→ λ(eI) from aggregate endowment to shadow price may natu-
rally be seen as aprice curve. As such its should ”slope downwards”:

Proposition (The law of demand).Shadow prices comply with thelaw of demandin
that

(λ− λ̂)(e− ê) ≤ 0 (19)

wheneverλ ∈ ∂πI(e) and λ̂ ∈ ∂πI(ê).

Proof. λ ∈ ∂πI(e) impliesπI(ê) ≤ πI(e) + λ(ê − e). Similarly, λ̂ ∈ ∂πI(e) implies
πI(e) ≤ πI(ê) + λ̂(e− ê). Addition of the last two inequalities gives (19).�

As customary, given a price curve, its slope is of chief importance.

Proposition (The slope of the price curve).Let(xi) be an optimal allocation supported by
a shadow priceλ. For eachi, supposeπi is concave with a second Fr´echet derivative near
xi which is continuous and non-singular atxi.Thenπ(∗)

I is twice Fréchet differentiable at
λ with

π
(∗)
I
′′(λ) = −

∑
i∈I

π′′i (xi)
−1. (20)

In addition, if for eachi, π′′i is continuous nearxi, then(π(∗)
I )′′ is continuous nearλ. If

moreover,(π∗I)
′′ is non-singular atλ, the market curve has slope

λ′(eI) = πI
′′(
∑
i∈I

xi) =

[∑
i∈I

π′′i (xi)
−1

]−1

. (21)

Under these conditions individual demandxi = xi(eI) is differentiable and

x′i = π′′i (xi)
−1πI

′′(xI) wherexI :=
∑
i∈I

xi (22)

Proof. We use the following result on inversion [12]:If x∗ = f ′(x) with f concave, twice
Fréchet differentiable nearx andf ′′(x) non-singular, it holds

f (∗)′′(x∗) = −f ′′(x)−1

withf (∗)′′ continuous nearx∗ whenf ′′ is continuous nearx.Here, sinceπ(∗)
I =

∑
i∈I π

(∗)
i ,

we getπ(∗)′′
I =

∑
i∈I π

(∗)′′
i whenever the last sum is well defined. Thus (20) follows. In-

voking the above inversion result once again,π
(∗)
I
′′(λ) = −π′′I (eI)−1 and (21) obtains.

Finally, (22) is a direct consequence of differentiatingπ′i(xi) = π′I(eI). �

For a functionπ : R→ R Pratt [32] describedrisk aversionas twice the premium per
unit of infinitesimal variance. Providedπ be sufficiently smooth atx, with π′(x) 6= 0,
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the said premiumAπ(x) := −π′′(x)/π′(x) is called theabsolute risk aversionat x. The
reciprocal entityTπ(x) := −π′′(x)−1π′(x), calledrisk tolerance,is thus half the tolerable
variance per unit of compensating premium [37]. The latter entity is often more amenable
to handle. Here however, payoff functions may be defined on higher-dimensional spaces.
Accordingly, a multi-dimensional version of risk tolerance.

When there is only one good(E = R), differential equation (22) amounts to

x′i = Ti(xi)/TI(xI) (23)

whereTi := Tπi andTI := TπI . Solutions to (23) have been studied in [9], [10], [26], [38].

Definition (Risk tolerance).For any functionf, mappingE or X into R ∪ {−∞} that
has a non-singular second Fr´echet derivative atx, define itsrisk toleranceat x as

Tf(x) := − [f ′′(x)]−1
f ′(x).

Corollary (Aggregate and individual risk tolerances).Under the conditions of the pre-
ceding proposition,

TπI (
∑
i∈I

xi) =
∑
i∈I

Tπi(xi).

Similarly, if for eachi, πi(xi) =
∫

Πi(xi(s))µ(ds) with state-independent integrandΠi :
E → R∪{−∞} and a measureµ > 0,

TΠI (
∑
i∈I

χi) =
∑
i∈I

TΠi(χi).

Proof. From (21) follows[πI ′′(eI)]
−1 =

∑
i∈I π

′′
i (xi)−1. Apply the left hand operator on

the antigradienta := −π′I(eI) to getTπI (eI). Apply the right operator on the same object
a = −π′i(xi) to conclude.�

9 Examples

This section provides a set of examples. Since conjugate functions are central, we first
sample a few of them, emphasizing for each functionf its effective domainf−1(R), de-
noteddomf. The second part of the section displays some games.

Conjugate functions:Note that iff(x) = ϕ(c0(x−x0))+lx+c1,withϕ : X→ R∪{−∞},
a linearl : X→ R, a fixed vectorx0 ∈ X, and real constantsc0 6= 0, c1, then

f (∗)(x∗) = ϕ(∗)(c−1
0 (x∗ − l)) + (l− x∗)x0 + c1.

Thus, one may easily account for the effect of scaling, adding affine functions, or trans-
lating the space.
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Examples of uni-variate conjugate functionsf : R→ R∪{−∞} : For any number
p > 0 define its conjugate numberp∗ by 1

p
+ 1

p∗ = 1.

function f(x) domf conjugate function f (∗)(x∗) domf (∗)

− |x|p /p, p > 1 R |x∗|p
∗
/p∗ R

− |x|p /p, p > 1 R+ |max {0,−x∗}|p
∗
/p∗ R

|x|p /p, 0 < p < 1 R+ −(x∗)p
∗
/p∗ R++

−
√

1 + x2 R −
√

1− (x∗)2 [−1, 1]
log x R++ −1− log x∗ R++

− exp(−x) R

{
x∗ log x∗ − x∗ when x∗ > 0
0 when x∗ = 0

R+

Associated prices and choices:

payoff π λ = π′(x) = x = −π(∗)′(λ) =

− |x|p /p, p > 1, x ∈ R − |x|p/p
∗

− |λ|p
∗/p

− |x|p /p, p > 1, x ≥ 0 − |x|p/p
∗

{
λp
∗/p whenλ < 0

0 otherwise
|x|p /p, 0 < p < 1, x ≥ 0 xp/p

∗ −λp∗/p, λ > 0.

−
√

1 + x2 −x/
√

1 + x2 λ/
√

1− λ2

log x, x > 0 1/x 1/λ
− exp(−x), x ∈ R e−x − logλ

Piecewise linear concave functions: Any proper, upper semicontinuous, concave func-
tion f : X→ R∪{−∞} equals the pointwise infimum of a family of affine functions. In
computation - or for practical purposes - important instances have the said family finite.
So, consider a finite setJ of linear functionalsx∗j : X→ R, and constantsrj ∈ R, and let

f(x) := min
{
x∗jx+ rj : j ∈ J

}
. (24)

Proposition (The conjugate of a piecewise linear concave function).Suppose the real-
valued functionf is piece-wise linear on a reflexive Banach spaceX - and given by
formula(24).Then

f (∗)(x∗) = inf

{∑
j∈J

r∗j rj : r∗j ≥ 0,
∑
j∈J

r∗j = 1,
∑
j∈J

r∗jx
∗
j = x∗

}
,

with the understanding thatinf ∅ = +∞. Thus,f (∗)(x∗) = +∞ iff x∗ /∈ conv
{
x∗j : j ∈ J

}
.

WhenX is finite-dimensional, it suffices to have at mostdimX+1 coefficientsr∗j > 0.

Proof. Recall that for any finite set{ρj : j ∈ J} ⊂ R it holds

min {ρj : j ∈ J} = min

{∑
j∈J

r∗jρj : r∗j ≥ 0,
∑
j∈J

r∗j = 1

}
.
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Consequently,

f (∗)(x∗) = sup
ρ≥0

sup
‖x‖≤ρ

{
min
j∈J

(x∗jx+ rj)− x∗x
}

= sup
ρ≥0

sup
‖x‖≤ρ

{
min

{
(
∑
j∈J

r∗jx
∗
j − x∗)x+

∑
j∈J

r∗j rj : r∗j ≥ 0,
∑
j∈J

r∗j = 1

}}

= sup
ρ≥0

min
r∗

sup
‖x‖≤ρ

{
(
∑
j∈J

r∗jx
∗
j − x∗)x+

∑
j∈J

r∗j rj : r∗j ≥ 0,
∑
j∈J

r∗j = 1

}

= sup
ρ≥0

min
r∗

{∥∥∥∥∥∑
j∈J

r∗jx
∗
j − x∗

∥∥∥∥∥ ρ+
∑
j∈J

r∗j rj : r∗j ≥ 0,
∑
j∈J

r∗j = 1

}

= inf

{∑
j∈J

r∗j rj : r∗j ≥ 0,
∑
j∈J

r∗j = 1,
∑
j∈J

r∗jx
∗
j = x∗

}
. �

For example, whenJ = {1, 2} andf(x) := min {x∗1x+ r1, x
∗
2x+ r2} , we get

f (∗)(x∗) = inf {r∗1r1 + r∗2r2 : r∗1, r
∗
2 ≥ 0, r∗1 + r∗2 = 1, r∗1x

∗
1 + r∗2x

∗
2 = x∗} .

The particular instanceX= R andf(x) = − |x| = min{−x,+x} givesf (∗)(x∗) = 0 if
x∗ ∈ [−1,+1] andf (∗)(x∗) = +∞ otherwise.

Linear-quadratic functions: LetXbe a Hilbert space with inner product〈·, ·〉 and posit
f(x) = −〈x,Ax〉/2 with A symmetric and positive semidefinite. IfA is non-singular
surjective, then

f (∗)(x∗) =
1

2

〈
x∗, A−1x∗

〉
.

More generally, suppose the range ofA is closed. Then

f (∗)(x∗) =

{
1
2
〈x∗, x〉 whenx∗ ∈ rangeA andx ∈ A−1x∗

+∞ otherwise.

Extending to the linear-quadratic casef(x) = −〈x,Ax〉 /2 + 〈a, x〉 + α, with rangeA
closed, we obtain

f (∗)(x∗) =

{
1
2
〈x∗ − a, x〉+ α whenx ∈ A−1(x∗ − a)

+∞ whenx∗ − a /∈ rangeA.

LettingA† denote the pseudo-inverse ofA we getf (∗)(x∗) = 1
2

〈
x∗ − a,A†(x∗ − a)

〉
+α

whenx∗ − a ∈ RangeA, andf (∗)(x∗) = +∞ otherwise; see [4] or [33].

A multi-stage, stochastic, production game: Agent i ∈ I must make aFt-measurable
decisionzit ∈ Zit at timet = 0, ..., T . The production planzi = (zit) gives him payoff
fi(zi) subject to

gi(zi) :=


gi0(zi0)
gi1(zi0, zi1)
...
giT (zi0, ..., ziT)

≤


ei0
ei1
...
eiT
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Heregit(zi0, ..., zit) ≤ eit is shorthand for inequalitygit(s, zi0(s), ..., zit(s)) ≤ eit(s) ∈ E t
holding almost surely, withgit(s, zi0(s), ..., zit(s)) presumedFt-measurable.

In condensed form,i faces the problem to maximizefi(zi) s.t. gi(zi) ≤ ei. Thus game
format (6) emerges again. Note that a shadow priceλ assumes the form(λ0, ..., λT ), its
time-t componentλt being aFt-measurable functions ∈ S 7→ λt(s) with values in the
non-negative cone (E t)+.

Linear, stochastic production games:Specializing on the stochastic production game
just outlined, letµ be a probability measure and

fi(zi) := z∗i zi := E(z∗i · zi) = E
T∑
t=0

z∗it · zit,

zit belonging to the non-negative coneZit in some Euclidean spaceZit. The random
evaluation vectorz∗it ∈Zit isFt-measurable. Posit

git(zi0, ..., zit) :=
t∑

τ=0

Aiτ tziτ

for Fτ -measurable matricesAiτ t of appropriate size. Thengi(zi) ≤ ei iff Aizi ≤ ei where
the block matrix

Ai :=


Ai00 0 0 ...
Ai01 Ai11 0 ...

Ai02 Ai12 Ai22 0
... ... ... ...


has transposeA∗i . Now (6) amounts to

πC(eC) := max

{∑
i∈C

z∗i zi :
∑
i∈C

Aizi ≤ eC with Ft-measurablezit ≥ 0

}
. (25)

λ is a shadow price iff it solves the grand dual problem:

max λeI s.t.A∗iλ ≥ z∗i for eachi andλ ≥ 0.

In the corresponding core solution agenti receives paymentui = λei only for his endow-
ment.

Linear-quadratic market games: Positπi(xi) = −1
2
〈xi, Aixi〉 + 〈ai, xi〉 with ai ∈ X,

and a symmetric, positive definite matrixAi that defines a linear auto-transformation on
X. Thus, withπi strictly concave, agenti is strictly risk averse. ChooseC = I and take
supremum in (1) to havexi = A−1

i (ai − λ). So, summing across the agents,

λ =

[∑
i∈I

A−1
i

]−1∑
i∈I

{
A−1
i ai − ei

}
.
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Consequently,two-fund separationandlinear sharingobtain in that

xi = ai + bi where

ai := A−1
i

{
ai −

[∑
j A
−1
j

]−1∑
j A
−1
j aj

}
and

bi := A−1
i

[∑
i∈I A

−1
i

]−1
eI

with
∑

i∈I ai = 0,
∑

i∈I bi = eI . If eachai is constant, then thatai is risk-free whereas
bi equals a share of the aggregate risk; the ”larger”Ai the smallerbi. �
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