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Foreword

Standard financial problems of pricing, portfolio selection and hedging often arise in inte-
grated modeling of socio-economic and environmental processes. For example, long-term
investments in mitigations of potential disasters can be considered with such financial in-
struments as real option, catastrophe bounds, and contingent credits. On such occasions,
the exposed agent should evaluate and price the risks and finally choose to either carry or
sell.

For a rational choice some techniques developed in mathematical finance are helpful.
Such techniques support estimation of price ranges for an insurance policy or a financial
security, by hedging or replicating the resulting contingent claim of assets (contract) has
been traded in the market. Of particular importance are options, real or financial, that
incorporate the corresponding exercise date. A standard mathematical programming rep-
resentation of such models include integer decision variables, therefore such problems are
often difficult to solve.

This paper shows that the reformulation of the standard financial problems as opti-
mization models leads to problems that are often easier to be solved. For example, integer
choice solutions may come automatically from solving a linear programming model with
continuous decision variables. The discussed links between finance and optimization
problems allows explanation, in a unified manner, of such important concepts as arbi-
trage, the fundamental theorem of asset pricing, martingale pricing, key ideas of complete
markets, American-like options. The proposed approach is computationally efficient, di-
rect, and simple. All considered standard financial problems are stated as mathematical
programs, often linear. Therefore the results summarized in this paper offer an efficient
approach for analysis of a class of problems related to integrated risk management.

This report also describes a part of the research done by Sjur D. Flåm when he was a
visiting scholar with the Integrated Modeling Environment Project.
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Abstract

Financial options typically incorporate times of exercise. Alternatively, they embody set-
up costs or indivisibilities. Such features lead to planning problems with integer decision
variables. Provided the sample space be finite, it is shown here that integrality constraints
can often be relaxed. In fact, simple mathematical programming, aimed at arbitrage or
replication, may find optimal exercise, and bound or identify option prices. When the
asset market is incomplete, the bounds system from nonlinear pricing functionals.

Keywords: asset pricing, combinatorial optimization, totally unimodular matrices.
2000 Mathematics Subject Classification: 90C05, 90C15, 90C27
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Option Pricing by Mathematical Programming

Sjur D. Flåm (sjur.flaam@econ.uib.no)* **

1 Introduction
Asset pricing is a chief concern in finance. That concern relates intimately to queries
about possible arbitrage. In fact, much of financial analysis or speculation aims at finding
money for free. When such can be found, and portfolios are unrestricted, asset pricing is
not a well posed task.

But otherwise, while market values remain finite, it’s often a challenge to estimate
them. That challenge is especially pressing in case of options. These might derive from
underlying papers - or, when stemming from other opportunities, they could reside out-
side the marketable space. In the latter case, replicating them via portfolios becomes
impossible and evaluation non-unique.

Additional complexity comes with the fact that many options, notably of American
sort, involve random exercise times [1], [19] , [23], [25], [27]. The latter may be construed
as discrete decision variables. As is well known, presence of such variables renders many
a planning problem combinatorial hence ”intricate” [22], [30].

The difficulties of combinatorics notwithstanding, this paper recommends optimiza-
tion - alias mathematical programming - as a convenient vehicle. In finance its advantages
are since long well known and quite many [8], [24]. For one: pricing and replication often
obtain in a single shot. For others: one may rather easily incorporate taxes, transaction
costs, trade restrictions, portfolio constraints, and bid-ask spreads [6], [19]. Also, prices
may evolve in quite general manner, allowing path dependence.

It appears however, less known among financial analysts that discrete variables of-
ten cause no inconvenience. Indeed, it happens frequently that integer choice, when and
where required, comes automatically - at no extra cost. This has recently been brought out
in finance by Pennanen and King (2004) who dealt with American contingent claims. Fol-
lowing their lead this paper considers assets that incorporate constrained exercise times.
When the corresponding constraints are linear, with a totally unimodular matrix, the inte-
grality restrictions can safely be relaxed [12], [13], [16], [26].

The material below addresses both readers of finance and optimization, emphasizing
strong links between the two fields. On one hand, it deals with standard financial prob-
lems of pricing, portfolio choice, replication, and hedging. On the other hand, presuming
a finite sample space, all those problems are stated as mathematical programs, often linear.

*Bergen University, Norway
**Dedicated to Professor Hubertus Th. Jongen on his 60th birthday
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The approach is computational, direct, and simple. It differs somewhat from the custom-
ary one of finance by describing decision processes and information flows in manners
most familiar to stochastic programmers and game theorists [3], [9], [10], [17], [21].

The scenario tree unifies various descriptions. It helps Sections 2 to 5 in drawing parts
of finance and optimization technology somewhat closer to one another. Those sections
claim no originality but invite stochastic programmers to financial analysis - and financial
analysts to stochastic programming. Sections 6&7 offer some novelties and arguments
for option pricing by means of continuous optimization.

2 The Scenario Tree and the Assets
This section prepares the ground. It starts by briefly describing three different structures,
each naturally leading to what is commonly called a scenario tree [9]. Prices of primitive
assets will thereafter be posted along that tree. As in [11], time is discrete. That choice
facilitates both analysis and computation.

An information structure: Considered here is an exhaustive, non-empty set S of pos-
sible but mutually exclusive scenarios or states. Information as to which state is rele-
vant arrives gradually, step by step. At time t ∈ {0, ..., T} the investor can ascertain to
which part Pt(s) in a prescribed partition Pt of S the true s belongs. Arrival of novel
information means that any part Pt+1 ∈ Pt+1, t < T, is contained in a unique ancestor
A(Pt+1) = Pt ∈ Pt; see figure below.

Since no conclusive knowledge about s is given ex ante, one naturally posits P0 :=
{S}. Similarly, to avoid redundancy, let PT := {{s} : s ∈ S} . That is, for the sake of
having S small - in fact, minimal - reduce each terminal part PT ∈ PT to a singleton. For
computational reasons, I hesitate not in assuming S finite.

If some concerned party perceives the setting as risky, he predicts that s will happen
with (objective or subjective) probability Pr(s). Then, to maintain S minimal, he should
have Pr(s) > 0 for all s ∈ S. If plagued instead by uncertainty, he might envisage a
closed set of probability measures, each non-degenerate; see [14].

A stochastic process: It’s often natural to construe S as comprising all relevant scenarios
or trajectories s = (s0, ..., sT ) of a stochastic process, with s0 already specified. Compo-
nent st is unveiled at time t. Then, s′ ∈ Pt(s) ⇔ (s′0, ..., s

′
t) = (s0, ..., st). In this setting

it’s convenient to let S be the sample space, still assumed finite. If an agent distributes
probability across S, then reasonably, Pr(s) > 0 for each s - as before.

A decision framework: The said probability measure Pr can be dispensed with. To
see how, suppose a planner merely be concerned with various ”decision nodes.” These
constitute a non-empty finite set N on which is prescribed an antisymmetric, transitive
precedence order ≺. That order should never recombine ”non-aligned” chains, meaning:

(n ≺ n′ & n̄ ≺ n′) ⇒ (n ≺ n̄ or n̄ � n).

Further, the past should always provide common connections:

∀n, n̄ ∈ N ∃n̂ ∈ N such that (n̂ � n & n̂ � n̄).
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Under these assumptions each node n ∈ N , except one, has a unique immediate ancestor
A(n) ∈ N . The exceptional node, called the root, has none. If n is the ancestor of c ∈ N ,
the latter is declared a child, and we write c ∈ C(n). Nodes without children are called
leafs. When a chain of immediate successors n0 ≺ n1 ≺ · · · ≺ nt emanates from the root
n0 to reach node nt, we say the latter is located at height t, and write nt ∈ Nt. With no
loss of generality let all leafs have the same height T > 0.

An investor need not entertain a probabilistic perspective. Instead, he might merely
hold beliefs about the likelihood or occurrence of various nodes. For the minimality ofN
it imports though, that his subjective opinion, say in the form a non-additive measure [5],
assigns positive weight to each leaf.

The scenario tree: The three structures just outlined all fit a common form. Indeed,
identify parts Pt ∈ Pt with nodes nt ∈ Nt such that Pt = A(Pt+1) ⇔ nt = A(nt+1).
Thus emerges a tree with node set N = ∪T

t=0Nt that features a directed branch from n to
c iff c ∈ C(n).

Calling this construct a tree is justified by letting an oriented branch lead from Pt ∈ Pt

to Pt+1 ∈ Pt+1 iff Pt ⊇ Pt+1, t < T ; see figure of (a fallen over) tree below. The pictorial
representation thus obtained is a directed graph that springs from the root n0 and stretches
via intermediate nodes up to the leafs nT ∈ NT . As in nature, the tree never recombines.
Thus, from the root to each subsequent node leads exactly one directed path.

root n0 =

 s
s′

s′′

 ↗

↘

[
s
s′

]
[s′′]

↗
→
→

[s]
[s′]
[s′′]

 leafs

Legend: A tree with 3 stages/states/scenarios and 6 nodes.

The probability distribution Pr, if any, plays from here on no chief role. It serves merely to
identify the set S as support, comprising precisely those states that always carry positive
probability (likelihood or belief).

Any (non-degenerate) probability measure µ over S amounts to have the same over
NT . On deeper nodes n /∈ NT it recursively induces probability µ(n) := µ(C(n)) :=∑

c∈C(n) µ(c). If µ(n) > 0 and n /∈ NT , there is a transition probability µ(c|n) :=

µ(c)/µ(n) from parent node n to child c ∈ C(n). To convey that µ and Pr are positive on
the same states we write µ ∼ Pr .

Traded assets: Central and fixed here is a non-empty finite set J of primitive traded
assets. At node n ∈ N a share of asset j ∈ J commands nominal price pjn (cum div-
idend if any). No conditions are imposed on these. While merely defined at the nodes,
prices can be: driven by multiple factors, strongly affected by the preceding path, and
come rather jumpy in nature. The investor has no impact on prices, and he watches their
evolution along the tree.

A special paper, henceforth called a ”bond” (or numeraire), is singled out and labeled
b ∈ J. It has pbn > 0 at each node n. If pbc remains constant across c ∈ C(n), paper b
is declared predictable (or previsible) at n.1 In terms of the bond define discount factors

1Constancy of pbc across c ∈ C(n) points to b as locally riskless at node n /∈ NT .
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δn := pbn0/pbn.
2

Some remarks on filtrations and adapted variables: Most presentations of finance are
probabilistic in form or flavor.3 Specifically, let the field Ft comprise all possible unions
of parts Pt ∈ Pt. Progressive acquisition of knowledge reflects in the string

{∅, S} := F0 ⊆ F1 ⊆ · · · ⊆ FT := 2S,

called a filtration. Accordingly, no state-dependent price, when realized at time t, should
unveil more information than already imbedded inFt. In other words: the entities pjt(s), j ∈
J, must all be Ft-measurable, meaning known or knowable at time t. Under that proviso,
the price process is declared adapted.

Clearly, a variable defined on S is Ft-measurable iff constant on each Pt ∈ Pt, these
parts being the atoms of Ft. Therefore, the one-one correspondence Pt ↔ nt, described
above, ensures that adapted prices pjt(s) = pjt(s0, ..., st) = pjn are defined quite simply
and merely in terms of nodes.

A stochastic process t 7→ θt, indexed by time, is adapted - or progressively measurable
- iff θt is defined on Nt. Then, instead of θt(s) we simply write θn, tacitly understanding
that node n ∈ Nt points to part Pt(s) ∈ Pt. Henceforth we use 0 as shorthand for the root
node n0.

3 Arbitrage
Denote by θjn ∈ R the number of shares an investor holds in paper j ∈ J upon leaving
node n. Suppose he buys (outgoing) portfolio θn := (θjn) ∈ RJ at n 6= 0 and liquidates
there the (incoming) portfolio θA(n) bought at the ancestor node. Absent transaction costs,
those operations bring him nominal, current gain

Gn(θ) := pn · θA(n) − pn · θn.

(The dot always denotes the standard inner product.) At the root node naturally n = 0 let
G0(θ) := −p0 · θ0. The investor might ask: Can the market be milked for money? That
simple question motivates the following

Definition: The market allows arbitrage iff the system

Gn(θ) ≥ 0 for all n and pn · θn ≥ 0 for each leaf , (1)

admits a solution θ = (θn) with at least one strict inequality. Otherwise the market is
declared arbitrage-free.4 �

2One may interprete pbn as the face value of a zero-coupon bond that matures at node n. Thus the
spot rate (pbc − pbn)/pbn, c ∈ C(n), of a predictable bond is perfectly known at node n. The mapping
n 7→ δn = pb0/pbn is often called the term structure. It may well be random [29].

3See for instance the excellent text [11].
4Customary but weaker definitions of arbitrage require that θ be self-financing in that Gn(θ) = 0 for all

n 6= 0 (or for all n); see e.g. [18].
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The fundamental theorem of asset pricing: The market is arbitrage-free iff there ex-
ists a strictly positive probability measure µ on NT such that the transition probabilities,
induced by µ on N , satisfy the martingale condition

δnpn = Eµ [δcpc|n] =
∑

c∈C(n)

δcpcµ(c |n) for all n /∈ NT . (2)

In particular, whenever the bond is predictable at some n /∈ NT , and δ(n) := δc/δn,
c ∈ C(n), denotes the local discount factor there, the corresponding equation in (2)
amounts to

pn = δ(n)Eµ [pc|n] = δ(n)

∑
c∈C(n)

pcµ(c |n).

Proof. Fix any probabilities πn > 0 across n ∈ NT , and use the induced probabilities πn

at nonterminal nodes n /∈ NT . Consider the homogeneous linear program

max
θ

∑
n

δnπnGn(θ) +
∑

n∈NT

δnπnpn · θn s.t. (1). (3)

Clearly, the market is arbitrage-free iff the optimal value of (3) is 0. Associate multiplier
δnyn ≥ 0 to inequality Gn(θ) ≥ 0, and δnYn ≥ 0 to leaf constraint pn·θn ≥ 0. Maximizing
the resulting Lagrangian∑

n

δn(πn + yn)Gn(θ) +
∑

n∈NT

δn(πn + Yn)pn · θn =

∑
n/∈NT

 ∑
c∈C(n)

δc(πc + yc)pc − δn(πn + yn)pn

 · θn +
∑

n∈NT

δn(Yn − yn)pn · θn (4)

with respect to the free variable θ we see that the dual of (3) amounts to solve

δn(πn + yn)pn =
∑

c∈C(n)

δc(πc + yc)pc for all n /∈ NT with y ≥ 0.

Suppose the latter system is indeed solvable. In that case, by LP duality, problem (3) has
0 as optimal value, and there are no arbitrage opportunities. Then consider component
b of the last equation to get πn + yn =

∑
c∈C(n)(πc + yc). Therefore µ(c |n) := (πc +

yc)/(πn + yn) defines strictly positive transition probabilities that satisfy (2).
Conversely, suppose some strictly positive measure µ onNT suits (2). In (4) let π = µ

and each yn, Yn = 0 to get

∑
n

δnµnGn(θ) +
∑

n∈NT

δnµnpn · θn =
∑

n/∈NT

 ∑
c∈C(n)

δcµcpc − δnµnpn

 · θn = 0

for all θ. Thus arbitrage is impossible. �

For subsequent reference let M denote the (bounded convex) set of all probability mea-
sures µ ∼ Pr on S that satisfy (2). Clearly, M depends only on the price process
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p = (pjn) ∈ RJ×N . By the fundamental theorem, M = ∅ iff there are arbitrage op-
portunities. Any µ ∈ M is called an equivalent martingale measure.

When b is predictable at some node n /∈ NT , construe δ(n)µ(c|n) as the price there
of an elementary Arrow-Debreu like paper that pays 1 unit of account in contingency
c ∈ C(n) and nil otherwise. Viewed from that perspective, component j of (2) regulates
consistent and arbitrage-free prices of paper j at any non-terminal node. In probabilistic
jargon: under any µ ∈ M the discounted price process becomes a martingale.

4 Asset Pricing and Super-replication
Besides the given ensemble J of primary securities, consider next another asset, fully
described by its ”dividend process” D = (Dn)n6=0 ∈ RN�0. The latter derives from
payouts on some special paper or exogenous project. We assume that introduction of D
doesn’t affect price process p.

Now, if ownership to D is thinly traded, or not traded at all, one naturally asks: how
much is it worth at node 0? More precisely, at that node, above what value v̄ should D be
sold?

For an answer, this section recalls some known results, following [18], [19], [23] and
[24]. The answer - or the value estimate v̄ - typically comes by super-replicating D via
iterated trades in existing papers j ∈ J . In that business, called dynamic portfolio choice,
optimization has the great advantage of aiming expressly at net gains or efficient choices.

Specifically, the investor might ask: what up-front expense p0 · θ0 and subsequent
portfolio choices θn would suffice to gain Gn(θ) ≥ Dn at each node n 6= 0 - and avoid
terminal debt as well? That question amounts to state linear problem

P [D] :
minimize p0 · θ0

subject to pn · θA(n) − pn · θn ≥ Dn for n 6= 0 (*)
with pn · θn ≥ 0 for each leaf n ∈ NT .

Any feasible portfolio process θ = (θn) for problem P [D] is said to super-replicate or
super-hedge D. Such a process represents an information-adapted investment strategy
that stays on the upper safe side, eliminating all downside risk. In optimum, if any, one
may posit θn = 0 at each leaf.

Note that problem P [D] is free of preference and probability. It involves no utility
function, no risk aversion parameters, and no ad hoc probability measure.5 Let v̄ =
v̄(D) = inf P [D] denote the optimal value. Suppose D is demanded for price V > v̄
at node 0. A seller or supplier can there pocket positive profit V − v̄ right away, pay
v̄ = p0 · θ0 for an optimal super-hedge θ of D, and still look forward to net payment
process G(θ)−D ≥ 0 with no terminal debt.

The instance D = 0 is particularly interesting because P [0], being homogeneous, has
optimal value v̄(0) ∈ {0,−∞} . Clearly, v̄(0) = −∞ iff the system

p0 · θ0 < 0, Gn(θ) ≥ 0 for n 6= 0, and pn · θn ≥ 0 at each leaf,

is solvable. Absent arbitrage, no solution exists but, by the fundamental theorem, there is
least one equivalent martingale measure. This observation motivates what is called

5For a relation to utility maximization see [4] and references therein.
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Martingale Pricing: Assign a Lagrange multiplier δnµn ≥ 0 to restriction (*). Sim-
ilarly, couple a multiplier δnµ̄n ≥ 0 to the constraint pn · θn ≥ 0, n ∈ NT . Thereby
emerges a real-valued Lagrangian

L(θ, µ, µ̄) := p0 · θ0 +
∑
n6=0

δnµn

[
Dn + pn · θn − pn · θA(n)

]
−

∑
n∈NT

δnµ̄npn · θn (5)

=



(
∑

n6=0 δnµnDn) +
[
p0 −

∑
c∈C(0) δcµcpc

]
· θ0+

∑
n/∈0∪NT

[
δnµnpn −

∑
c∈C(n) δcµcpc

]
· θn+

∑
n∈NT

δn(µn − µ̄n)pn · θn.

As customary, for given µ ∈ RN�0
+ and µ̄ ∈ RNT

+ , minimize L(θ, µ, µ̄) with respect to
θ = (θn). That operation, when finite-valued, associates to P̄ [D] a corresponding dual
problem, namely:

maximize
∑

n6=0 δnµnDn

subject to δnµnpn =
∑

c∈C(n) δcµcpc ∀n /∈ NT , µ ≥ 0, and µ0 = 1.

(The vector µ̄ ∈ RNT
+ disappeared here because µn = µ̄n for n ∈ NT .) Considering

component b of the last constraint we get µn =
∑

c∈C(n) µc at each n /∈ NT . Since
µ0 = 1 and µ ≥ 0, it follows that µ defines a probability measure over NT ↔ S, and the
preceding problem reads

D̄ [D] :
maximize Eµ

∑
n6=0 δnDn over probability all measures µ

such that δnµnpn =
∑

c∈C(n) δcµcpc at each non-terminal node n. (**)

One may regard optimal solutions to D̄ [D] as risk-neutral, equivalent probability dis-
tributions that depict the expected present value of process D as favorably as possible.
When an optimal µn is unique, it supports a standard interpretation. To wit, if the investor
withdraws wealth wn ≈ 0 at node n 6= 0 subject to the reasonable restriction

pn · θA(n) − pn · θn − wn ≥ Dn,

the up-front investment cost increases by δnµnwn. Thus the contingent ”shadow price”
µn ≥ 0 reports the value of money made available only at node n.

Clearly, when all µn > 0, condition (**) coincides with (2). In case the market is
arbitrage-free, and M ⊆ M̂ ⊆ clM, problem D̄ [D] can be restated as supµ∈M̂ Eµ

∑
n6=0 δnDn.

Proposition (On the ask value v̄). Suppose the market is arbitrage-free. Then the op-
timal value v̄ = inf P [D] is finite and attained, and

v = v(D) := sup
µ∈M

Eµ

∑
n6=0

δnDn = max
µ∈clM

Eµ

∑
n6=0

δnDn.

The function D 7→ v̄(D) is convex, piecewise linear and positively homogenous.
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Proof. By linear programming duality, v(D) = sup D̄ [D]. Positive homogeneity de-
rives directly. The closure clM of M is a non-empty compact polyhedron, having a finite
set ext(clM) of extreme points. Therefore v̄(D), being the maximum of linear functions
µ 7→ Eµ

∑
n6=0 δnDn, µ ∈ ext(clM), comes out convex and piecewise linear. �

Problem P [D] didn’t embody the constraint G0(θ) ≥ 0 in (1). Also, its objective dif-
fers from (3). Therefore v may be finite even when there are arbitrage opportunities.

Absent arbitrage, only non-degenerate measures µ ∼ Pr need be considered. To argue
differently for non-degeneracy, suppose some market agent maximizes a separable ”util-
ity” criterion

∑
n∈N δnun(dn) in decision variables d, θ ∈ RN subject to−p0 ·θ0 ≥ d0 and

the constraints of P̄ [d] . Then, in terms of conjugates u
(∗)
n (µn) := supdn

{un(dn)− µndn},
the dual problem reads:

minimize
∑
n∈N

δnu
(∗)
n (µn) s.t. µ ≥ 0 and δnµnpn =

∑
c∈C(n)

δcµcpc for all n /∈ NT .

At each leaf n naturally assume u
(∗)
n (µn) = +∞ whenever µn ≤ 0. Consequently, the

very last problem is infeasible unless µn > 0 at every n ∈ NT . This suffices to have all
µn positive.

5 Bid Pricing and Completeness
Problem P [D] approximates D within the market, but from above and as cheaply as pos-
sible. Alternatively, D might be approximated from below and as expensively as possible.
Thus, a prudent buyer of D, who prefers conservative estimates of present values, could
choose to formulate the following problem:

P [D] :
maximize p0 · θ0

subject to Dn ≥ pn · θA(n) − pn · θn for n 6= 0,
with pn · θn ≤ 0 when n ∈ NT .

In optimum, if any, one may posit θn = 0 at each leaf. The optimal value v = v(D)
of P [D] is the maximal amount of current cash an investor can extract from the market
at node 0 when allowed terminal debt but no gain Gn(θ) > Dn at any node n 6= 0. If
process D is offered for value V < v at node 0, a buyer could choose any minimizing
θ, cash in v − V > 0 at once, and thereafter still enjoy the subsequent payment process
D −G(θ) ≥ 0.

The Lagrangian of P [D] assumes the same form (5). So, arguing exactly as above,
the associated dual now reads:

D [D] : minimize Eµ

∑
n6=0 δnDn over probability all measures µ s.t. (**).

It follows likewise a

Proposition (On the bid value v). Suppose the market is arbitrage-free. Then the op-
timal value v:= supP[D] is finite and attained, and

v = v(D) := inf
µ∈M

Eµ

∑
n6=0

δnDn = min
µ∈clM

Eµ

∑
n6=0

δnDn.
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The function D 7→ v(D) is concave, piecewise linear and positively homogenous. More-
over, v(D) = −v̄(−D). �

Proof. Only the very last assertion requires justification. For this, simply note that θ
is feasible for P[D] iff −θ is feasible for P̄ [−D]. �

Again, because the constraint set and objective of P[D] differ from counterparts (1),(3), it
may happen that v is finite even under arbitrage opportunities.

Anyway, the upshot is that two valuation schemes v(·), v(·) operate on dividend pro-
cesses. When these schemes differ, both are nonlinear. It turns out that linearity, when in
vigor, relates to what is called

A complete market. Any price outside the bid-ask interval [v, v] creates an arbitrage
opportunity. Indeed, D is undervalued at a price < v and overvalued at a price > v̄. So,
when is the appropriate value unique? That is, when is the interval [v, v] degenerate?

The answer comes in terms of the marketable space D, consisting of all dividend
processes D = (Dn)n6=0 ∈ RN�0 that satisfy

Dn = pn · θA(n) − pn · θn (6)

for some portfolio process θ = (θn) with θn = 0 at each leaf. One says that process
D ∈ D is attainable - or replicable, or made redundant - by dynamic portfolio choice.
Accordingly, the market is declared complete iff D = RN�0.

Theorem (On unique values and a complete market). Suppose the market is arbitrage-
free. Then,
• a process D ∈ RN�0 has a unique value v(D) = v(D) = v̄(D) iff D ∈ D;
• the asset market is complete iff there is only one equivalent martingale measure.

Proof. Suppose θ = (θn) replicates D ∈ D in that (6) holds for all n 6= 0 with θn = 0 on
NT . Because θ is feasible for both P̄(D) and P(D), it follows that

v̄(D) ≤ p0 · θ0 ≤ v(D).

Also, since M is non-empty, v̄(D) ≥ v(D). Thus, v(D) = v̄(D) = p0 · θ0, and this
takes care of the necessity in first bullet. For the second bullet, note that each martingale
measure µ generates a node-based function n 7→ µn, whence a linear mapping

〈µ,D〉 := Eµ

∑
n6=0

δnDn =
∑
n6=0

µnδnDn

on dividend processes D = (Dn)n6=0 ∈ RN�0. The functional 〈µ, ·〉 is thus defined on all
RN�0 - and naturally called the µ-valuation.

If more than one martingale measure exists, then some asset has different martingale-
valuations. That asset can’t belong to D, and then the market must be incomplete.

If indeed the market is incomplete, consider any D /∈ D. Let D̄ be its closest ap-
proximation (alias projection) in D, using the inner product 〈D∗,D〉 :=

∑
n6=0D∗

nδnDn

already mentioned above. Then D∗ := D−D̄ is orthogonal on D, and µ̂ := µ+ εD∗ > 0
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for small enough ε > 0. The particular dividend process D̂ that first and last pays 1/δn at
leaf n, is marketable; that is, D̂ ∈ D. Therefore,

1 =
∑

n∈NT

µn =
∑

n∈NT

µnδnD̂n =
〈
µ, D̂

〉
=

〈
µ + εD∗, D̂

〉
=

〈
µ̂, D̂

〉
=

∑
n∈NT

µ̂.

This string of equalities tells that µ̂ also constitutes a non-degenerate probability distri-
bution across the leafs. The orthogonality of D∗ on D entails that µ̂ generates a mar-
tingale measure with 〈µ, ·〉 = 〈µ̂, ·〉 on D. However, because 〈D∗,D〉 > 0, we get
Eµ

∑
n6=0 δnDn < Eµ̂

∑
n6=0 δnDn. �

Some comments on extensions and reductions briefly conclude this section. For exten-
sions, θn could comprise long and short positions θ+

n , θ−n ∈ RJ
+ traded at corresponding

prices p+
n , p−n . Also there might be node-dependent transaction costs or taxes Tn(θA(n), θn).

And clearly, there might be constraints on various branches and nodes.
For reductions, consider merely the sub-tree that emanates from a non-terminal node

n 6= 0. Pricing the corresponding part of D only within that sub-tree, as described above,
gives values vn ≤ v̄n, node n now figuring as root. Finally, for up-front asset pricing,
the sub-tree may thereafter be erased, leaving only node n as a new leaf with dividend
Dn + [vn, v̄n] .

When vn = v̄n, numerous textbooks illustrate this procedure, in one form or another,
under various headings called backward recursion, dynamic programming or portfolio
replication. If vn < v̄n, the said sub-tree features incompleteness.

6 Pricing Partly Manufactured Assets
Many a dividend process is exogenous, meaning totally unaffected by the investor. Often
though, he has great impact on its evolution. In particular, such is the case when pay-outs
become nil beyond some deliberately chosen stopping time.6 More generally, there might
be opportunities to revise positions prior to their time of expiration. To model instances
of that sort suppose the dividend process is partly manufactured - or largely influenced -
by the investor in that adapted dividends have the form

Dn = Dn(xn0 , xn1 , ..., xn). (7)

Here x = (xn) is an underlying process, affected by uncertainty, but controlled by the
investor who responds to changing opportunities. The said x must reside in a prescribed,
non-empty set X ⊆ Πn∈NXn. In (7) n0, n1, ..., n is the unique path of adjacent nodes
that leads from the root up to n. To simplify notations write ~xn for the corresponding part
(xn0 , xn1 , ..., xn) of x. Denote by D(x) the resulting dividend process, and assume that∑

n6=0 δnDn(~xn) is finite for each x ∈ X.
The preceding results apply immediately. To wit, for fixed x ∈ X , the inner problem

V̄ (x) := inf P̄ [D] amounts to find an optimal super-hedge for D = D(x). The outer
problem v̄ := supx∈X V̄ (x) first chooses x, to be followed by an optimal super-hedge.
Together these decisions generate a max-min saddle problem: supx∈X infθ P̄ [D(x)].

6As an example consider purchase of a physical asset, before or at the expiration of a lease.
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The interpretation is pretty much as before but depends on wether the seller owns D
or not. I consider only the upper problem P̄ [D]. Suppose a buyer offers value V > v̄ for
D and plans to implement x ∈ arg max V̄ . If the owner of D accepts the offer, and opts
for an optimal solution θ of P̄ [D(x)] , he immediately gets V − v̄ > 0, thereafter payoff
profile G(θ)−D(x) ≥ 0, and finally no debt. These arrangements leave him no liabilities.

By contrast, consider somebody who doesn’t own D but decides to sell it short. Ad-
mittedly, this situation is somewhat more intricate. Recall that any x ∈ X is a strat-
egy, implemented as a contingent plan. To hedge his position, suppose the seller im-
mediately requires, by contractual agreement, that the buyer commits to some strategy
x ∈ X, decided by the latter. Next, upon choosing θ ∈ arg min P̄ [D(x)] the seller gets
V − V̄ (x) ≥ V − v̄ > 0 up front. Thereafter his gain process G(θ) covers his liabilities
D(x), and finally he exits without debt.

Selling D short thus resembles a Stackelberg game [21]: The leader (alias buyer) first
commits a strategy x ∈ X; thereafter the follower (alias seller) responds with θ. Plainly,
such a setting isn’t always satisfactory or convincing. Why should the leader reveal his
strategy ex ante, play open loop, and forego all sorts of discretion or opportunism?

Duality again proves useful by pointing to the equivalent optimization problem:
supx∈X supµ∈M D̄ [D(x)] in which both variables x, µ are oriented towards supremum.
Moreover, these interact only in the objective. The upshot is that saddle problems are
avoidable, as described next:

Proposition (On max-min price estimates). Suppose the market is arbitrage-free.
• Then the optimal value v̄ := v̄(D) := supx∈X inf P [D(x)] of the upper price problem
equals

sup
x∈X

sup
µ∈M

{
Eµ

∑
n6=0

δnDn(~xn)

}
.

• Similarly, the optimal value v := v(D) := supx∈X supP[D(x)] of the lower price
problem equals

sup
x∈X

inf
µ∈M

{
Eµ

∑
n6=0

δnDn(~xn)

}
.

• Provided X be closed convex, and x 7→
∑

n6=0 δnDn(~xn) upper semicontinuous con-
cave, there exists µ̄ ∈ clM such that

v = inf
µ∈M

sup
x∈X

{
Eµ

∑
n6=0

δnDn(~xn)

}
= sup

x∈X

{
Eµ̄

∑
n6=0

δnDn(~xn)

}
.

Proof. Only the last bullet needs justification. Since the objective

(µ, x) ∈ (clM)×X 7→ Eµ

∑
n6=0

δnDn(~xn)

is convex in µ and concave in x, the result follows from the lopsided minimax theorem in
Chap. 6 of [2]. �

Clearly, the operation supµ∈M Eµ amounts to maxµ∈clM Eµ, and similarly for infimum.
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Anyway, the preceding proposition underscores the convenience of having a unique mar-
tingale measure µ whence a complete market. Problems

sup
x∈X

sup
µ∈M

Eµ

∑
n6=0

δnDn(~xn) and sup
µ∈M

sup
x∈X

Eµ

∑
n6=0

δnDn(~xn)

amount, in essence, to one and the same. Also, for any µ ∈ M , it follows from dynamic
programming, starting at leafs and proceeding recursively towards deeper nodes, that

sup
x∈X

Eµ

∑
n6=0

δnDn(~xn) = Eµ sup
x∈X

∑
n6=0

δnDn(~xn).

When solving for v or v one naturally inquires what curvature the intermediate, reduced
objectives might have. To that end, recall that the pointwise supremum of convex func-
tions remains convex. Also, the maximum, if any, of a convex function occurs at an
extreme point of its domain [20]. (Quite similar properties hold for concave functions,
infimum then replacing the role of supremum.) By an extreme point of a set, contained in
a real vector space, is understood an element that can’t equal a proper convex combination
of other set members.

In the special case when X = Πn∈NXn, with each Xn convex, extremality of x =
(xn) means that xn must be an extreme point of Xn ∀n. Reverting to scenario s ∈ Pt ↔
n ∈ Nt we see that xn = xt(s) is an extreme point in the Ft-measurable set Xn = Xt(s).

Proposition (On curvature of objectives, and extreme solutions).
• If x 7→

∑
n6=0 δnDn(~xn) is convex continuous, then so is the reduced upper objective

sup
µ∈M

{
Eµ

∑
n6=0

δnDn(~xn)

}
.

In that case, with X compact convex, an optimal solution to the upper pricing problem
supx∈X inf P [D(x)] is realized at an extreme point x ∈ X .

• Similarly, if x 7→
∑

n6=0 δnDn(~xn) is concave, then so is the reduced lower objec-

tive infµ∈M

{
Eµ

∑
n6=0 δnDn(~xn)

}
.

• The objective µ 7→ supx∈X

{
Eµ

∑
n6=0 δnDn(~xn)

}
is convex. Consequently, the up-

per value v, if realized, is attained at an extreme point µ ∈ clM. �

7 Pricing Options that feature Discrete Decisions
A surprisingly wide class of financial decision problems fit the format of continuous op-
timization - as exemplified here above. An even larger class comes on stage when some
variables are integers; see [22], [30].

Such variables could stem from set-up costs or indivisibilities. Other, more chal-
lenging instances correspond discrete interventions at judiciously chosen times [7]. Ex-
amples include contingent closure/opening of fishing grounds/seasons - or of oil/mineral
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deposits. Also covered are rotation problems in forestry. Common to these is presence
of at least one stopping time, meaning a mapping τ : S →{0, ..., T} ∪ {+∞} such that
{s : τ(s) ≤ t} ∈ Ft for every t ∈ {0, ..., T} .

To accommodate such objects, recall the one-one correspondence between nodes and
partitions: n ↔ Pt(s) - and the resulting identification xt(s) ↔ xn. So, to highlight the
time aspect, write now x = (xt) for the decision process, indexed by time, with the tacit
understanding that xt be Ft-measurable, t ∈ {0, ..., T}. In short, only adapted processes
are allowed. Further, to elaborate on discrete choices, assume henceforth that each com-
ponent xt be purely integral.7

Examples of stopping times in finance: Numerous financial derivatives yield dividend
of the form Dt = Dt(S0, ..., St, x0, ..., xt) at time t. Underlying is then the price process
(St) on a specified stock. For instance, a call option

Ct := max
τ∈T (t)

{Sτ −Kτ , 0} = max
τ∈T (t),xτ∈{0,1}

{xτ (Sτ −Kτ ), 0}

or a put option

Pt := max
τ∈T (t)

{Kτ − Sτ , 0} = max
τ∈T (t),xτ∈{0,1}

{xτ (Kτ − Sτ ), 0}

with strike price Kτ , exercised or not at time τ ∈ T ⊆ {0, ..., T} , is named
American if T (t) = {t} and T = {0, ..., T} ,
Bermudan if T (t) = {t} and T ⊂{0, ..., T} ,
European if T (t) = {t} and T = {T} ,
Russian if T (t) = {0, ..., t} and T = {0, ..., T} .
Each option is exercised at most once. Correspondingly, in case of a unique martingale
measure µ, one should

maximize Eµ

∑
t≥1

δtDtxt

subject to (xt) adapted, all xt ∈ {0, 1},∑
t/∈T

xt = 0, and
∑
t∈T

xt ≤ 1, (8)

with either Dt = Ct or Dt = Pt for all t as the case may be. Some comparative statics
deserve mention here, briefly limited to call options:

Proposition (On comparative statics of call options).
• Any first- or second-order increased uncertainty in some stock-price St, causes the call
option value to increase.
• Everything else equal, if δt or St increases, or if Kt decreases, for some t, then the
optimal response xt cannot decrease for a call option.

7One may envisage that continuous components, if any in x, have already been optimized away, leaving
a reduced objective. The remaining variables could correspond to stopping times.
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Proof. Because Ct is non-decreasing and convex in St the first bullet follows immedi-
ately from stochastic dominance [31]. The second bullet derives from supermodularity
[28] and

∂2

∂St∂xt

Ct ≥ 0 and
∂2

∂(−Kt)∂xt

Ct ≥ 0. �

It’s natural to probe beyond simple restrictions like (8). This motivates a look at

Linearly constrained instances: Hereafter, for simplicity, consider the convex poly-
hedron

C :=
{
x = (xt) : b ≤ Ax ≤ b, x ≤ x ≤ x̄

}
(9)

with bounds b ≤ b and x ≤ x̄. The matrix A is random, lower triangular stochastic, and it
comes in the block form:

A =


A00 0 · · ·
A10 A11 0 · · ·

...
...

...
...

AT0 AT1 · · · ATT


The block entry s 7→ Atτ (s) is constant on each part Pt ∈ Pt for t ≥ τ, and it has exactly
as many columns as xτ has components. The bounding vectors

b =


b0

b1
...

bT

 , b̄ =


b0

b1
...

bT

 , x =


x0

x1
...

xT

 , x =


x0

x1
...

xT


are of compatible measurability and size. For example, the part bt is observable at time
t, and it has exactly as many rows as Atτ for t ≥ τ. When all these qualifications are
in vigor, data (A, b, b, x, x) is certified as adapted. Henceforth suppose x ∈ X ⇔ x is
adapted and belongs to polyhedron C defined in (9).

Unimodularity: A matrix A is declared totally unimodular if for any integer bound-
ing vectors b, b, x, x, of suitable dimensions, all extreme points of the convex polyhedron
C, defined in (9), become integral. This happens iff every square sub-matrix of A has
determinant −1, 0 or +1. Then, necessarily, every entry of A must be either −1, 0 or +1;
see [16]. Sufficient for total unimodularity of a matrix A, having but entries −1, 0 or +1,
is that
• no more than two nonzero entries appear in each column;
• the rows can be partitioned into two subsets such that if a column contains two nonzero
elements of the same (opposite) sign, then the corresponding row indices belong to the
opposite (respectively, same) subset [13].

Proposition (On integer extreme solutions). Suppose (A, b, b, x, x) is adapted and in-
tegral. Also suppose that every diagonal block Att is totally unimodular. Then every
adapted, extreme solution x is integer-valued in each component.
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Proof. x0 must satisfy

b0 ≤ A00x0 ≤ b0 and x0 ≤ x0 ≤ x0.

It follows that every extreme x0 must be integer. Next, an extreme x1 must satisfy

b1 − A10x0 ≤ A11x1 ≤ b1 − A10x0 and x1 ≤ x1 ≤ x1

hence be integral as well. Continue in this manner to conclude. �

Proposition (On integer solutions). Suppose (A, b, b, x, x) adapted and integral. Further
suppose that every diagonal block Att is totally unimodular. If

x 7→
∑
t≥1

δtDt(x0, ..., xt)

is convex, then so is the reduced upper objective

V̄ (x) := sup
µ∈M

{
Eµ

∑
t≥1

δtDt(x0, ..., xt)

}
.

In that case an optimal solution, if any, to the upper pricing problem supx∈X inf P [D(x)]
is realized at an integral extreme point x ∈ X . �

Proof. V̄ (·), being the supremum of convex functions, must itself be convex. Therefore,
as argued above, if arg max V̄ is non-empty, it must intersect the set extX of extreme
points in X. By the preceding proposition each x ∈ extX is integral. �

Quite often dividends depend on the path. Examples include American, Bermudan and
barrier options [1], [19], [23], [25], [27]. Common to these are restrictions on when and
how often the investor may exercise contracted rights. Considered in conclusion is

An example with American-like options: Suppose exercise happens at most once. For
computational purposes construct a flow problem in the following capacitated network
[26]: Let exN ⊆ N�0 denote the set nodes at which the option can be exercised. For
each node n ∈ exN create a duplicate node n′ and the directed link (n, n′). From each
said duplicate n′ - and from each original leaf n ∈ NT - introduce a link towards a com-
mon, auxiliary node, called sink to reflect its absorbing role. Denote by E the resulting
set of edges; see figure below.

In the oriented network so constructed, let each edge that leads into the sink have
capacity interval [0, 1] . This means that the amount which flows through that edge is
bounded below by 0 and above by 1. Other edges impose no upper restrictions; they all
have [0, +∞) as capacity interval.

The root is the only source of flow. Endow that special node with integer supply |S| =
|NT |. That same amount is demanded at the unique sink. Any other node serves merely
for transshipment: what flows in there equals precisely what flows out. Let y = (ye)
denote any feasible flow pattern along the directed edges e ∈ E in the extended network
just laid out.
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So far, this was all physical design. Economic data enter next. At the duplicate n′ of
original node n ∈ exN let Dn′ equal the dividend if the option is exercised at n. At each
leaf n ∈ NT let Dn equal the value of not exercising there. The reduced objective

y 7→ sup
µ∈M

Eµ

{ ∑
n∈exN

δnDn′y(n′ ,sink) +
∑

n∈NT

δnDny(n,sink)

}
is convex. Thus the upper value v̄, if realized, is at attained at an extreme point of the
polytope comprised of all feasible flows. Such points have integral coordinates [20].

L E A F’

L E A F

leaf

leaf ’

sinkroot

exercise

don’ t

don’ t

exercise

Figure 1: A capacitated network for a simple American option.

8 Concluding Remarks
To have something for free - that is, to make arbitrage - motivates much of finance. Re-
lated activities include asset evaluation and portfolio choice. For such purposes optimiza-
tion helps a lot and is often indispensable. Yet surprisingly few finance books make much
out of optimization technology. And conversely, financial problems are rare or absent in
most texts devoted to optimization.

In fact, mathematical finance has very much become a field for specialists in stochastic
processes, optimal control, partial differential equations, or numerical analysis. Mathe-
matical programming, although a close relative, stays somewhat at distance. In my opin-
ion that discipline may gain and offer much by connecting closer to finance. Reflecting on
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this, the present paper has advocated that popular algorithms be brought to bear on some
chief financial issues. On a didactical note, it emphasized the great convenience and gen-
erality of scenario trees. On a more substantial note, it observed that integral constraints,
stemming from indivisibilities or exercise times, can often be relaxed.
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