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Foreword 
 
 
 
 

The main focus of the research reported here is the development of appropriate 
concept of coherent risk measures which can be used in flood risk management.  The 
proposed concept of polyhedral risk measures practically includes all well known 
coherent risk measures.  The attractive feature of polyhedral measures is their simplicity 
from computational point of view: similar to Conditional Value-at-Risk, polyhedral risk 
measures require only linear programming methods.  In this report important properties 
of polyhedral risk measures are discussed, the connections of these measures with well 
known coherent risk measures are analyzed and an example of investment allocation 
under catastrophic floods is considered. 
 

Vladimir Kirilyuk was a key participant of joint IME and LUC projects on 
“Integrated system for hazardous flood modeling and risk reduction: case study for Tisza 
(Ukraine), and Riony (Georgia) rivers” supported by System Analysis Committee of the 
National Academy of Sciences of Ukraine, and Science and Technology Center in 
Ukraine, Project G3127 in 2006 - 2007. 
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Abstract 
 
 
The class of polyhedral coherent risk measures that could be used in decision- making 
under uncertainty is studied. Properties of these measures and invariant operations are 
considered. Portfolio optimization problems on the return–risk ratio using these risk 
measures are analyzed.  

The developed mathematical technique allows to solve large-scale portfolio 
problems by standard linear programming methods as an example of applications, 
investment allocation problems under risk of catastrophic floods are considered.    
 
Keywords: coherent risk measure, polyhedral coherent risk measure, conditional value-
at-risk, second order stochastic domination, portfolio optimization, linear programming, 
catastrophic flood. 
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Polyhedral Coherent Risk Measures, Portfolio 

Optimization and Investment Allocation Problems 
 

Vladimir Kirilyuk (kirilyuk@d130.icyb.kiev.ua) 

1. Introduction 

Making effective decisions in risky situations is often irrational in practice. Impacts 
of incorrect decisions can be huge, involving catastrophic losses and consequences. How 
should resources for protection against accidents and for mitigation of their consequences 
be distributed? How should economic activity be performed in regions which are under 
threat of natural disasters and cataclysms? How should effective financial decisions be 
made? Quite often such decisions have a long-term character, and their consequences 
crucially depend on future uncertainties.  

 
Let us note that in situations where results have no critical consequences and 

decisions are made frequently, it is possible to use traditional statements of optimization 
problems, e.g., to optimize some average values (return, efficiency, etc). Otherwise, it is 
necessary to consider some risk measures as well. For example, it is necessary to design an 
investment portfolio in which not only total future returns, but also corresponding risks 
should be taken into account, in particular, catastrophic flood risks. 

 
Often, financial decisions are made by two criteria: the average return value and a 

risk measure. The second criterion allows a decision-maker to choose decisions which are 
more reliable (robust) with regard to their potential consequences. The main 
methodological question is concerned with the choice of an appropriate risk measure. 
Inadequate choice of the measure can lead to wrong decisions. 

 
Recently, various functions were used for risk measure, for instance, deviation, semi-

deviation, Value-at-Risk (VaR), and others [1–4]. An important step was made in [5], 
where four axioms were proposed for risk functions. Functions which satisfy the axioms 
were called coherent risk measures. In particular, such a measure is CVaR (Conditional 
Value-at-Risk) [6, 7] or shortfall [8] that can be considered as competitor of VaR in 
numerous financial applications. The concept of a spectral coherent risk measure (SCRM), 
which was proposed in [9], generalizes CVaR; it is, in essence, a convex combination of 
CVaRα measures with various values of parameter α. As a result, SCRM preserves all 
attractive properties of CVaR. 

 
A class of polyhedral coherent risk measures (PCRM), which is an important subset 

of the class of coherent measures, was introduced in [10]. It contains well-known coherent 
risk measures and guarantees a possibility of reducing portfolio optimization problems to 
linear programming (LP) problems.  

 
In this paper, we consider properties of this class of risk measures, invariant 

operations on the class, interpretation of such risk measures, their consistency with second 
order stochastic domination and the reduction of portfolio optimization to appropriate LP 
problems. Also some generalizations of PCRM are proposed. We also analyze situations 
with unknown probability distributions. 
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As an example of application, investment allocation problems under risk of 
catastrophic floods are considered. 

 
Our presentation is restricted by a consideration of discretely distributed random 

variables (on a finite set of elementary scenarios-events) since this allows us to simplify 
the presentation and is sufficient for modeling financial applications. Results can be 
extended to more general probabilistic spaces after refinement of appropriate technical 
details. 

2. Definitions and some examples of risk measures  

Consider only discrete random variables defined by n scenarios and a vector of scenario 
probabilities  

∑ ==>= n
iin pnipppp 1
0000

10 1,,...,1,0),,...,( .  

Let us introduce the following notations: 1 = (1, …, 1) and 0 = (0,…, 0) are n-dimensional 
vectors that consist of unities and zeros, respectively, Sn = {x= (x1,…,xn): Σxi≤1, xi≥0, 
i=1,…, n} is a unit simplex, co M ={Σλixi: λi ≥0, Σλi=1, xi ∈M, i=1,2,…} is the convex 
hull of a set M, and ri M and cl M are, respectively, the relative interior and closure of the 
set M. By the relation x1 ≥ x2 for x1, x2 ∈ Rn

 we understand the corresponding component 
wise inequality. 

 
We recall [5] that a function ρ: Rn → R is called a coherent risk measure if the 

following axioms are fulfilled: 

A1) ρ(x+c1) = ρ(x) – c for c ∈ R (translation equivariance); 
A2) ρ(0) = 0, ρ(λx) = λ ρ(x)  (positive homogeneity); 
A3) ρ(x1+ x2) ≤ ρ(x1) + ρ(x2) (subadditivity); 
A4) ρ(x1) ≤ ρ(x2) if x1≥ x2 (monotonicity). 

In this case [5], the function is of the form 

ρ(x) = sup{Ep[–X] / p∈P},                         (1) 

where P is some closed convex set of probability measures (for discrete finite distributed 
random values it is a set of scenario probabilities), i.e., we have P ⊆ Sn. Since there exists a 
one-to-one correspondence between the function ρ(·) and the set P, a specification of the 
set P by relation (1) actually specifies a coherent measure ρ(·). This fact was used to define 
the following class of risk measures in [10].  

Definition 1. Functions of the form (1) for which the set P is representable as a 
convex hull consisting of a finite number of points are called by polyhedral coherent risk 
measures (PCRM).  

More precisely, if the set P is specified in the form  

           P = co{pi: i=1,…, k}, 

or, in the equivalent form 
  P ={p: B p ≤ c, p ≥ 0},                          (2) 

where B and c are a matrix and a vector (of corresponding dimensions), then relations (1) 
and (2) uniquely specify a polyhedral coherent risk measure. 
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We first consider some examples of PCRM that are well known in financial 
applications. Let a distribution x = (x1,…, xn) describe a return obtained as a result of 
realization of scenarios with the corresponding probabilities . ),...,( 00

10 nppp =
 
Example 1. Worst-case risk (WCR) is the case of worst losses [11]. Then we have 

WCR(x) = max {–xi: i=1,…, n}, and the set P is of the form 

  PWCR ={p=(p1,..., pn): pi ≥0, i=1,…, n,∑n
ip

1
=1}.                       (3) 

 
Example 2. Conditional value-at-risk (CVaRα) is the conditional mean of losses on 

α-tail of the distribution [6]. To avoid technical details, we consider the following 
interpretation of this notion for discrete distributions: 

)(xCVaRα = 
1

1
0 0 0

1 1 1

1max 1 ( ) ( ) : .
j k j j j
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In the case, appropriate set P from the unit simplex is described as  

              ={p = (p1,…, pn): pi ≤αCVaRP α0
ip  , pi ≥0, i=1,…, n,∑n

ip
1

=1},            (4) 

where p0 = ( )00
1 ,..., npp  is the vector of initial scenario probabilities. 

Note that, when α ≤ min{ , i=1,…, n}, CVaRα coincides with WCR since, as it is 
easily seen, the sets P described by relations (3) and (4) are identical in this case. 

0
ip

Example 3. Worst conditional expectation (WCEα ) from [5] is described as 

WCEα(x) = 
⎪⎭

⎪
⎬
⎫
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Therefore, we have  

    = co{(p1,…, pn)/ for , 
αWCEP αpm

i j
>∑1

0 mjpmjppp
jjjj i

m
iii >=≤= ∑ ,0;,/

1
00 }.   (5) 

Note that the coherent risk measures from Examples 1–3 are polyhedral. However, 
in Example 3, in contrast to Examples 1-2, it is rather difficult to write the set P in the form 
of explicit relation (2). The reason is that the implicitly described set from the right side of 
relation (5) should be presented in the form of extreme supports. 

3. Interpretation of the PCRM 

In paper [5], an appropriate set P used in definition (1) was called as a set of generalized 
probabilities of scenarios, or testing probabilities. However, risk measure (1) requires some 
interpretation in order to justify the construction and use of adequate risk measures in 
modeling. 

 
It was assumed [12] that in decision-making, investors, estimating actual 

probabilities p0 of scenarios perform monotone transformation π(⋅) of them. Therefore 
actual decisions are made on the basis of π(p0) rather than on actual probabilities p0. 
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Various attempts have been made to explain numerous cases where different investors who 
observe the same distributions act as if these distributions are different. Based on similar 
considerations, we can propose the following interpretation of construction of the measure 
by relation (1). 

 
There is a vector of actual probabilities (scenarios) p0  estimated by a decision-

maker as the set of admissible scenario probabilities P depending on initial p0. Then a risk 
measure described by (1) estimates the risk of random value x as the maximal (worst) 
average loss for x over the set probabilities P(p0). Therefore, 

        ρ(x) = max{Ep[–x] / p∈ P(p0)},                                (6) 

where P(p0) is a set of estimations of  p0 by a decision-maker. 
 

This interpretation of P in constructing a coherent risk measure as a set of estimates 
of the vector of actual probabilities p0 makes construction (1) better understandable. This 
approach can also be used irrespective of motives for choice of such P(p0), i.e., irrespective 
of the fact whether a decision-maker really estimates p0 by P(p0) or it guarantees against 
some unlikely but possible case.  

 
In particular, in Example 1 we have P(p0) = Sn, i.e., any p from Sn is possible (the 

complete uncertainty of p0) and, in Example 2 the set P(p0) contains all the conditional 
probabilities of the α-tail of worst losses of a distribution for some fixed α. Hence, in 
Example 1 a person guarantees against the worst-case scenario, whereas, in Example 2 the 
one guarantees against the case of realizing conditional probabilities of the α-tail of worst 
losses. 

 
Note that if a coherent risk measure is polyhedral, then the corresponding P(p0) 

describes the set of scenario probabilities as a convex polyhedron, i.e. the set is estimated 
by some extreme points of scenario probabilities and their convex combinations. It seems 
likely that, in practice, this is a way to construct these sets that take into account some 
numerous but finite set of extreme points of these probabilities and all their possible 
convex combinations. Henceforth, we assume that  

                      P(p0) = {p: B(p0) p ≤ c(p0), p≥ 0}.                         (7) 

4. Some invariant operations of PCRM 

Since coherent risk measures are convex functions of the form (1), it is natural to introduce 
some elementary operations that save this type of functions. We assume that there are m 
coherent risk measures represented in the form (1), i.e., we have 

 ρi(x) = max{<–x, p> / p∈Pi }, i=1,…, m,  

and consider the following operations defined on these measures, 

(1) the operation of convex combination,  
(2) the maximum function,  
(3) the infimal convolution , ⋅ 

: as f2(x) f1(x), functionsconvex for  defined is  by    denotedoperation   thewhere ⋅  
.  x}  x2 /x1f2(x2) {f1(x1)inf f2(x) f1(x)   =++=⋅  
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The following theorems can be easily obtained by use of a standard technique of convex 
analysis, for instance from [13]. 

Theorem 1. A convex combination, the maximum function, or infimal convolution 
of coherent risk measures is also a coherent risk measure and, besides, the following 
relations are also true: 

                     ∑  for ;              (8) ∑∈>−<=
m m

iiii Pppxx
1 1

}:,max{)( λρλ 1,0
1

=≥ ∑
m

ii λλ

          max{ρi(x), i=1,…, m}=max{<–x, p>: p∈co(Pi, i=1,…, m)};                      (9) 

                       cl(ρ1(x),…,ρm(x))=max{<–x, p>: p∈ } for ,                     (10) I
m

iP
1

∅≠I
m

iP
1

the closure sign “cl” in the last equality can be eliminated if  
1

m

iriP ≠ ∅I . 

These operations can be refined if they are performed on polyhedral measures, i.e. 
ρi(x)  = max{<–x, p> / Bi p ≤ ci, p≥0}, i=1,…,m. 

 

Theorem 2. A convex combination, the maximum function, or infimal convolution 
of PCRM are risk measures. Besides, λi Pi = {p: Bi p ≤ λi ci, p≥0}, i=1,…,m in (8), and the 
closure sign “cl” in equality (10) can be eliminated. 

 

Corollary 1. If polyhedral coherent risk measures are described by identical 
matrices, i.e., we have Bi = B, i=1,…, m, then the following relation is true: 

   for       (11) }0,:,max{)(
11

≥≤>−<= ∑∑ pcBppxx i

m

ii

m

i λρλ .1,0
1

=≥ ∑
m

ii λλ

Let us consider one more example of a coherent risk measure. 

 

Example 4. A spectral coherent risk measure (SCRM) was introduced in [9] as 
follows: 

  .                        (12) ∫ ←−=
1

0

)()()( dppFpXM Xϕϕ

In this case, we have  
})(/inf{)( αα ≥≡← yFyF XX = –VaR1-α(X), )(~)()( ppcp ϕδϕ += ,  

where δ(.) is the Dirac delta-function,  с∈[0,1],  and a function ϕ~ : [0,1]→ R satisfies the 
following conditions: 

   1) pp ∀≥ 0)(~ϕ ; 2) )(~)(~
2121 pppp ϕϕ ≥⇒< ; 3) . ∫ −=

1

0
1)(~ cdppϕ

As it is well known from [9], the measure Mϕ(.) can be represented for discrete 
distributions as a convex combination of CVaRα measures (for different parameters α), 
i.e., for some , we have ∑ ==≥

m
jj m

1
1,,...,1j,0 λλ
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1

xCVaRxM
j

m

j αϕ λ∑= .                             (13) 

Taking into account Example 2 and Theorem 2, it is easy to see that a spectral 
measure is a PCRM, and its representation in form (1)-(2) can easily be obtained from (4) 
and (13) by relation (11). We formulate this fact in the form of the following corollary. 

 

Corollary 2. For discrete distributions, SCRM can be presented in form (1), (2) 
and, in this case, the corresponding set of scenario probabilities P from (2) has the 
following form: 

         PSCRM={p=(p1,…, pn): pi≥0, i=1,…, n, },           (14) ,)/( 0

1
i

m

jji pp ⎟
⎠

⎞
⎜
⎝

⎛
≤ ∑ αλ 1

1
=∑

n

ip

where p0 = ( )00
1 ,..., npp  is the vector of initial scenario probabilities. 

 
Thus, the class of PCRM is wide enough since it contains these well-known 

coherent risk measures and is invariant with respect to the above-mentioned three 
operations. 

5. Consistency of second order stochastic dominance with PCRM 

The concept of the second order stochastic dominance (SSD) is fundamental in a theory of 
decision-making in economics [14]. A random value X dominates a random value Y in the 
sense of SSD that is denoted by X ≥SSD Y, if the inequality E[u(X)] ≥ E[u(X)] is true 
corresponding expectations of any concave nondecreasing function u(.). This concept 
guarantees that the expected utility of X in the sense of Neumann–Morgenstern [15] will be 
not less than that of Y for any concave nondecreasing utility function u(·) , i.e., when a 
person is avoiding of risk. This concept was found to be important since, in practice, it is 
almost impossible to construct such a utility function in an explicit form, especially if it is 
necessary to find the consensus of opinions of a group of investors who have different 
ideas of utility. 

 
As it is well known from [16], the relation X ≥ SSD Y is equivalent to the following 

one  

                  E[(η–X) +] ≤ E[(η–Y)+]  ∀ η ∈ R,                     (15) 

where E [·] is the expectation and (.)+ are nonnegative components. 
 

For the case of discretely distributed random variables on a set of elementary 
scenarios-events with initial probabilities p0, relation (15) is written in the form (16): 

                   < (η 1 – x)+, p0> ≤ < (η 1 – y)+, p0>   ∀η ∈ R,                                 (16) 

where (z=(z1,…, zn))+  denotes vector (max{0, z1},…, max{0, zn}). 

 

Some sufficient conditions of consistency of SSD with PCRM can be described by 
the following proposition [17].  
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Theorem 3. Let the matrix B and vector c from the representation of a PCRM in 

the form (1), (2) be of the form,  

      ,                               (17) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

2

0

2

  ,
c
βp

c
S
I

B

 where I is the identity matrix (dimension n×n), S2 is matrix with identical columns 
(dimension n×k,  k ≥2) ,  β p0 is vector p0 multiplied by some number  β ≥0, and c is an 
arbitrary vector of dimension k. Then measure (1), (2) is consistent with SSD. 
 

Corollary 3. WCR, CVaR, and SCRM measures from Examples 1–2 and 4 are 
consistent with SSD. 

 
As a proof, we note that, condition (17) is true for all these measures. 
 

Note that the property of consistency of CVaR with SSD was firstly mentioned in 
[18]. Using this fact, it is easy to obtain similar properties for the other two measures. In 
this case, reasoning in [18] was based on the following representation of CVaR, proved in 
[6]: 

 ⎥⎦
⎤

⎢⎣
⎡ −+−= + ])[(1min)CVaR(CVaR xEx ζ

α
ζζαα .                                     (18)         

Consider a necessary condition of consistency of coherent risk measure with SSD [17]. 

 
Theorem 4. The necessary condition of consistency of a coherent risk measure 

represented in the form (1) with SSD is the following condition 

               p0 ∈ P.                                    (19) 

6. Portfolio optimization problems with PCRM 

Portfolio optimization problem is considered to be a basic classical problem of financial 
mathematics of great interest for financial applications. In the pioneering paper [1], the 
following two criteria of constructing an efficient portfolio are considered: the portfolio 
expected return and its dispersion as a risk measure. Later on, other risk functions were 
studied instead of dispersion in a number of works (see, for example, [2–4]). After 
publishing [5], the great interest was shown in portfolio optimization problems in which a 
coherent risk measure would be used as the risk factor since this measure has theoretically 
attractive properties. For example, CVaR was used in [6, 7]. Moreover, in these papers, the 
optimal portfolio problem was reduced to some LP problem by representation of CVaR in 
the form (18). This allows for efficient solving large-scale problems required for practical 
applications. 
 

Next, as it is shown in [10], portfolio optimization problems based on return-risk 
ratio can also be reduced to the corresponding LP problems for the class of PCRM. This is 
true for both types of such problems: the portfolio PCRM minimization under guaranteed 
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return expectation and the portfolio return expectation maximization under PCRM 
constraint. 

 
Let us consider these results. Let the set of distributions of returns for all possible 

assets zj, j=1,…, k of a portfolio be represented in the form of n×k matrix H, whose j-th the 
column describes return distribution of the j-th asset. A vector u= (u1,…, uk) that describes 
the structure of the portfolio is considered as a variable and, therefore, we have , 

ui ≥ 0, i=1,…,k. 

1
1

=∑k
iu

Consider a portfolio PCRM minimization problem under guaranteed return 
expectation.  If the expectation should be not less than μ, a set of constraints M imposed on 
the structure of the portfolio u is defined by 

M ={<u, 1> =1, <Hu, p0> ≥ μ, u ≥ 0},   

where p0 is a vector of scenario probabilities. As is easily seen, M={u: Au≤b, u≥ 0}, where 
matrix A and vector b are of the form 

          .                          (20) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−−=

μ
1

1
  ,1...11

1...11

0

b
Hp

A
T

Let a PCRM be given in the form (1)-(2), where the set of scenario probabilities is P = {p: 
Bp ≤ c, p ≥ 0} and 

 

    .                            (21) 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−−=

00

1
1

  ,1...11
1...11

c
c

B
B

 
Note that, in equalities (20) and (21), the first two rows represent standard constraints on 
structural components of the portfolio and the corresponding probabilities: , 

. A matrix B0 and a vector c0 describe the set P that corresponds to a concrete risk 
measure. 

1
1

=∑k
iu

∑ =
n

ip
1

1

 
As it is easily seen from the previous discussion and relations (3), (4), and (14), for 

the cases of WCR, CVaRα, and SCRM, they are, respectively, of the form: 

               B0, c0 are absent (WCR),                                           (22) 

             B0 = I, c0 = (1/α) p0 (CVaRα),                   (23) 

                       (SCRM).                             (24) ,)/(  c I,  B 0
1

00 p
m

jj ⎟
⎠
⎞

⎜
⎝
⎛== ∑ αλ

The problem of minimization of a polyhedral coherent risk measure under constraints on 
expected guaranteed return can be formulated in the following form 

      ><
≥≤≥≤

= 
≥≤

p Hu,
0,

max  
0,

min   
0,

min
pcBpubAuubAu

ρ ,           (25) 
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where component (–Hu) describes a distribution of portfolio losses, the inner subproblem 
of the right side of the equality describes the portfolio risk measure, and the outer 
subproblem describes minimization of the measure on the portfolio structure that takes into 
account the constraint on the portfolio return expectation. This problem can be reduced to a 
LP problem for all class of PCRM [10]. 
 

Theorem 5. The solution of optimal portfolio problem (25) is the component u of 
the solution (v, u) of the following LP problem: 

0,0

0

,min ),(

≥≥
≤

≤−−

><

uv
bAu

HuvB

vc
T

uv

                       (26) 

In this case, taking into account expressions (22)–(24), problem (26) can be 
immediately written in an explicit form for the cases of WCR, CVaR, and SCRM. We note 
that a similar result was obtained for the WCR measure in [11]. In [6, 7], problem (25) for 
the case of CVaR is reduced to the same LP problem (in a different form).  

 
As has been already mentioned, although the WCE from Example 3 belongs to the 

class of PCRM, the main difficulty in studying this risk measure consists of the 
representation of implicitly described set (5) in the form of a set of extreme supports (2). If 
such a reduction (sufficiently labor-consuming) is obtained, then Theorem 5 can be used 
for studying the problem of minimization of this risk measure. Otherwise, it can be 
formulated in the form of a problem of fractional-linear programming with integer 
variables and then can be solved by the branch and bound method [19]. 

 
Remark 1. It may be shown that risk measures based on the absolute deviation and 

the semideviation from the average return from [3, 4] under some conditions also belong to 
the class of polyhedral coherent risk measures. In this case, by analogy with (22)–(24), the 
matrix B0 and vector c0 can be explicitly written for these measures. 

 
Let us consider the portfolio return expectation maximization problem when values 

of the risk measure being used are constrained by some level ρ0 > 0.  

                                                      (27) 
,)(
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Huρ
uu
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i
n

i

where, as before, u describes the structure of a portfolio, Hu is a portfolio return, and a 
PCRM is represented in the form (1), (2). Then the following proposition holds [10]. 

Theorem 6. The solution of problem (27), (1), (2) is the component u of the 
solution (v, u) of the following LP problem 
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A similar situation also takes place for several constraints on polyhedral coherent 
risk measures. For example, if m such measures   

,,...,1 ,0
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>−<= ρ

                                         (29) 

are given and the optimal portfolio problem is considered in the form 
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Theorem 7. The solution of problem (30), (29) is a component u of a solution (v1, 
v2,…, vm, u) of the following LP problem. 

                                            (31) 
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In this case, taking into account (22)–(24), problems (26), (28) and (31) are 
explicitly written for cases of WCR, CVaR, and SCRM.  

 
Note that similar problem with CVaR constraints was already considered in [6, 7] 

and was reduced to appropriate LP problems.  Theorems 6 and 7 are applicable to the 
entire class of PCRM. To use them we need to represent the corresponding risk measure in 
the form (1)-(2). 

 
In [20], for problems that use the WCE risk measures from Example 3 when an 

explicit description of the set P in the form (2) is absent, a combined algorithm is given 
that also solves LP problems, estimates obtained solutions, adds new constraints, etc. It can 
be used to solve similar problems.   
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7. Some generalization of PCRM and portfolio optimization  

Generally speaking, reducing portfolio optimization problems to appropriate LP problems 
does not demand a coherent property of risk measures, polyhedral property is sufficient 
[21].  

Definition 2. Function  
                    δ(x) = <–x, a> +σ(x),                                 (32) 

                                         σ(x) = max{<–Ax, p> / Bp≤ c, p≥0},                                      (33) 

is called polyhedral risk measure (PRM), where <⋅,⋅> is scalar multiplication, A and B – 
some matrixes of dimensions n×n and n×m respectively, a and c are some vectors, a∈Rn, 
c∈Rm, and set {p ≥ 0: Bp ≤ c} is nonempty and bounded,. 

Remark 2. Condition p ≥ 0 in (33) is not essential. A more general situation can be 
reduced to the case by appropriate transformation of variables.  

This definition permits to expand a class of risk measures in comparison with 
PCRM one, since PCRM class is a special case of the current one under conditions a = 0, A 
= I and {B p ≤ c, p ≥ 0} ⊆ Sn.   

Example 5. Consider functions of the form: 

                 d (x; r) = –E [x] + rρ(x),                        (34)  

where r ≥ 0, and ρ(x) is PCRM from (1)-(2). Then its parameters also are described as:  
a = p0, A = r I, and B and c are inherited from (2). 

Risk measures designed by the absolute deviation and by the semideviation on 
return expectation [3]-[4] are in the class.  

Example 6. Consider a risk measure designed by the semideviation on return 
expectation [4]:  

             δS(x; r) =  –E[x] + r E[(E[x] –x)+] =  <–x, p0> + rρS(x),                          (35) 

where 
                    ρS(x) = max {<–A1 x, p> / I p ≤ p0, p≥0}, 

.                                         (36) ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−=≥ ≤ /> ,{<=

T

T

S

p

p
IAppIppxAx

0

0

1001 ...,0,max)(ρ

Then parameters from (35)-(36) are described as: a = p0, A = r A1, B =I, c= p0.  

Example 7. Consider now a measures designed by the absolute deviation [3], 

                            δA(x; r) = –E[x] + r E[ |x–E[x]| ] =  <–x, p0> + rρA(x),                        (37) 

where ρA(x) = max {<– A1x, p> / –p0≤ Ip ≤ p0}, r≥0. 
It’s obvious representation is: 
 ρA(x) = 2ρS(x). Then the following equality holds 

δA(x; r) = δS(x; r) + rρS(x) = <–x, p0> + 2 rρS(x),                      (38) 

where function ρS (x) is described by (36). Then  a= p0, A=2rA1, B =I, c= p0. 

Obvious properties of the measure follow directly from the definition of PRM. 
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Theorem 8. PRM satisfies axioms A2 and A3, i.e., it is positively homogeneous 
and subadditive. 
 Introduce the following notations: M = {p≥ 0: Bp ≤ c} is the appropriate admissible 
set, M(x) = {p ∈ M: δ(x)= <–x, a> + <–Ax, p>} is a set of those p on which the maximum 
is attained. Consider now conditions of performance of axioms A1 and A4 [21]. 
 

Theorem 9. A necessary and sufficient condition of coherent property of PRM is 
described by the following relation 

AT M + a ⊆ Sn.            (39) 

Axiom A4 is fulfilled under the following condition: 

     AT M + a ⊆ .                       (40) nR+

Corollary 4. Function d (x; r) from (34) satisfies to axioms A2-A4. Function δ(x) = 
– λ E[x] + (1– λ)ρ(x), where 0≤λ≤1 and ρ(⋅) is PCRM, is PCRM as well. 

Corollary 5. δS(x; r) = –E[x] + rE[(E[x]–x)+] from (35) at 0≤r≤1 is PCRM. 

Remark 3. As to δS(x; r) at r> 1 it, generally speaking, does not satisfy axiom A4 
since (39) is not true. Properties of function δA(x; r) easily follow from properties δS (x; r) 
by known equality δA(x; r/2) = δS(x;r).   

Remark 4. Functions δ(⋅) from Corollary 1 and δS (x; r) for 0≤r≤1 can be presented 
as PCRM in standard form of (1)-(2).  

Consider now some operations for PRM.  
 

Theorem 10. Multiplication to non-negative numbers, addition, operation of 
maximum and the infimal convolution are invariant for PRM class, and the following 
calculation holds: 

λδ(x) = <–x, λa> + max{<–Ax, p> / Bp≤ λc, p≥0};   

               δ1(x) +δ2(x) = <–x, a1+ a2> + max{<–x, q> / q ∈ M1 + M2};         (41) TA1
TA2

               max{δ1(x),δ2(x)}= max{<–x, q> / q ∈ co{ M1 + a1, M2+ a2}};               (42) TA1
TA2

                      δ1(x) �δ2(x)=max{<–x, q>/ q∈{ M1+ a1}∩{ M2+ a2}},         (43) TA1
TA2

if { M1+ a1}∩{ M2+ a2}}≠ ∅. TA1
TA2

The theorem can be easily proven by using a standard technique of the convex 
analysis.  

Consider now portfolio optimization problems using PRM (32)-(33). As before, 
return distributions of portfolio components zj, j=1,…, k are presented by matrix H of 
dimension n×k, which j-th column describes return distribution of j-th component. A vector 
u= (u1,…, uk) describes portfolio structure: 1

1
=∑k

iu , ui ≥ 0, i=1,…, k. Let also constraints 

on a portfolio return expectation by μ0 and a portfolio PRM by δ0 be given. Then the 
following theorems hold [21]. 

Theorem 11. The solution of the portfolio PRM minimization problem under 
guaranteed return expectation by μ0 is the component u of the solution (u, v) of the 
following LP problem: 
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      (44)                   

 
Theorem 12. The solution of the portfolio return expectation maximization 

problem under PRM constraint by δ0 is the component u of the solution (u, v) of the 
following LP problem: 

                                   (45) 
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Theorem 13. The following reformulation of problem (45) is true under m PRM 
constraints: 
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where matrixes Ai, Bi and vectors ai, ci are parameters of measures δi (⋅) for i=1,…, m. 
 

8. Induced uncertainty and portfolio optimization problems 

In representation of ρ(⋅) as (1)-(2), an interpretation of set P from (2) is important. If vector 
p0 of scenario probabilities is known, and decisions are made on the basis of expected 
return – risk measure ρ(X) then the set P from (2) is used, more likely for 
reinsurance from possible losses. The example of such situation is CVaR measure when a 
decision-maker is guided by conditional probabilities α-tail of the return distribution (for 
some α).  

][
0

XEp

 
Essentially different situation occurs when matrix H of component distributions for 

scenarios remains known, but vector  of scenario probabilities is not (only  
its estimation by inclusion p0 ∈ P is available). As a rule, determining probabilities of 
future scenarios is an essentially more complicated problem than developing scenarios of 
future events. Especially it is true for rare events [22]. Sometimes it is possible to estimate 

0
0 1( ,..., )np p p= 0
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such probabilities of scenarios with in some bounds, or, more mathematically, as inclusion: 

p0 ∈ P, where P is a polyhedron.  
However such a situation adds basic difficulties to the problem because when 

probabilities p0 are unknown, it is impossible to operate even with average return 
values . Consider  a formal technique suitable for studying such situations.   P and 
Q. be two formal sets of scenarion probabilities. 

][
0

XEp

 

Definition 3. The following values are called lower and upper estimations of 
random variable X on sets of scenario probabilities P and Q:  

    LEP(X) = inf{Ep[X] / p∈P},            (46) 

  UEQ(X) = sup{Ep[X] / p∈Q}.            (47) 

The following interval could be called estimation of X on sets of scenario 
probabilities P and Q: 

    ESP,Q(X) = [LEP(X), UEQ(X)].       

We will estimate a random variable X by ratio of parameters LEP (X) and UEQ (X), 
or, in previous terms, by ratio  

(UEQ(X), – LEP(X)) = (g(X), ρ(X)), where  

                     ρ(X) = max{Ep[–X] / p∈P}= – min{Ep[X] / p∈P},                     (48) 

     g(X) = max{Ep[X] / p∈Q}.            (49) 

Remark 5. It is obvious, that if Q = {p0} in (49) and P in (48) are from (1), the 
problem is reduced to estimation of ( , ρ(X)) ratio, i.e. expected return and risk 
measure. If P = Q and it is an estimation of unknown scenario probabilities by the set, X is 
estimated by pair (LEP(X), UEP(X)). 

][
0

XEp

 
  Definition 4. Functions g(X) and ρ(X) are called return and risk functions of 
random variable X respectively. They are polyhedral if sets P and Q are polyhedral, i.e. 
described as a convex hull of finite number of points.  

 
Theorem 14. Function g(X) satisfies the following axioms: 

A1 ”) g(X+c1) = g(X) + c for c ∈ R; 

A2) g(0)=0, g(λX) = λ g(X) (positive uniformity); 

A3) g(X + Y) ≤ g(X) + g(Y) (subadditivity); 

A4) g(X) ≤ g(Y) if X ≤ Y (monotony). 
 

The proof  follows from representation g(⋅) by (49) and appropriate properties of set 
Q.  

Note that properties of function g(⋅) are practicable. In particular, its subadditivity 
means that a portfolio diversification, reducing risk of a financial stream, also reduces a 
potentially possible return as well.  

We will formulate now return-risk portfolio optimization problems by functions 
g(⋅) and ρ(⋅), and reduce them to LP problems.  

Recall that functions g(⋅) and ρ(⋅) from (48), (49) are polyhedral if the sets of 
scenario probabilities P and Q are of the following type: 
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                                      P ={p: B p ≤ c, p ≥ 0} = co {pi, i =1,…, l}.                              (50)  

                                     Q ={p: C p ≤ d, p ≥ 0} = co {qi, i =1,…, s}                               (51) 

 

Remark 6. A technique for designing risk measures induced by an initial 
polyhedral coherent risk measure and an estimation of unknown scenario probabilities by a 
set, i.e. appropriate Pi and Q sets can be found in [22]. 

 
As before, return distributions of portfolio components zj, j=1, …, k are given by 

matrix H of dimension n×k, which j-th column describes return distribution of j-th 
component. According to an available information about the process modeled, a set of 
scenario probabilities P and Q be given, and risk ρ(⋅) and return g(⋅) functions be 
calculated by (48)-(51). 

 
Consider now portfolio optimization problem by return g(⋅) and risk ρ(⋅) ratio. We 

start with portfolio risk minimization problem under guaranteed return g(⋅) ≥ g0:  
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                             (52) 

Theorem 15. The solution of optimal portfolio problem (52) is the component u of 
the solution (v, u) of the following problem: 

,,
,0

,0,0,1

},,{minmin

0

),(1

gqHu
HuvB

vuu

vc

i

T
i

vusi

>≥<
≤−−

≥≥∑ =

><
≤≤

                                                  (53) 

where  qi, i =1,…, s are extreme points of set Q from (51) and agreement: 

0
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if admissible set of the subproblem is empty. 

 
The proof of the theorem is similar to previous ones. We should proceed from 

initial LP problem  
ρ(Hu) = max{Ep[–Hu] / p∈P} 
 to its dual and perform simple transformations of standard LP technique. Besides, 

the following reasonings are used for reduction of nonlinear constraints from the left part 
of equality (53) to linear constraints:  

            C p ≤ d, p ≥ 0, < H u, p > ≥ g0 ⇔ ∃ λi  ≥ 0, Σ λi =1, < H u, Σ λi pi > ≥ g0  ⇔ 
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       ⇔ ∃ qi : < H u, qi > ≥ g0. 

Therefore, problem (52) is reduced to an LP problem. 

Portfolio return maximization problem under constraint of portfolio risk as ρ(⋅) ≤ ρ0 
is formulated as: 

                                   (54) 
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uu
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 Theorem 16. The solution of optimal portfolio problem (54) is the component u of 
the solution (v, u) of the following problem: 
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               (55) 

 
where  qj, j =1, …,s are extreme points of set Q from (51). 

The proof of Theorem 16 is similar to the previous one. We should proceed from 
the initial LP problem  

ρ(Hu) = max{Ep[–Hu] / p∈P} 
 to its dual and perform simple transformations. Besides, the internal problem from 

the right part of (55) is concave, therefore, the maximum is reached on extreme points of 
set P. Therefore, problem (54) is reduced to LP problems. 

 
In some situations, we can have different measures of risk ρi(.) which use  different 

sets Pi constructed by an initial set P for various reasons, for example reinsurance (see 
above described interpretation of PCRM). 

Consider the problem statement if return function g(.) is described by (49), (51), 
and risk measures are described as  

     ρi(x) = max{Ep[–X] / p ∈ Pi },                       (56) 
where  
         
 

          Pi = {p: Bi p ≤ ci, p ≥ 0} = co { , j =1,…, si }, 1 ≤ i ≤ m,                                  (57) i
jp

 

 

and constraints of these risk measures are given by , 1≤ i ≤ m respectively. 0
iρ

 

 Then an appropriate portfolio return maximization problem under constraints on these risk 
functions is formulated as follows: 
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Then the following theorem  can be formulated, and proved similarly to previous ones. 

 
 
Theorem 17. The solution of optimal portfolio problem (49), (51), (56)-(58) is the 

component u of the solution (u, v1, …, vm) of the following problem: 
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                                   (59) 

 
where  qj, 1 ≤ j ≤ s are extreme points of set Q from (51). 

 
 

9. Investment allocation problems under risk of catastrophic floods 

Let us consider the applicability of the proposed mathematical technique for 
optimal investment under catastrophic floods. In particular, here we follow the 
methodology for catastrophic risk management developed at IIASA on the basis of 
stochastic programming modeling and search technique [23-28]. 

 
Let consideer a collection of  base scenarios S, which are inputs in modeling system 

of floods occurrence and inundations characterized by  probabilities p0. For such scenarios 
in regions of a river basins, the historical data on occurrence of flooding and their 
distribution, or a collection of events triggering the flooding, with their further modeling 
on corresponding systems and regional models can be used.  

 
Consider the following problem. Let there be a number of investment objects that 

have not only different returns, but also different damage levels caused by flooding and 
inundation. Moreover, their returns as well as their damages essentially depend on location 
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of these objects in a region. For instance, closeness to water of recreation objects is 
appealing to tourists (correspondingly, their investment returns) but in two cases their 
potential damages by flooding.  

 
Which objects should be chosen and how should these objects be located in region 

in order to optimize the total investment portfolio with respect to return-risk ratio? 
  
           We assume similar to [23-28] that the region is divided into cells, and a set of all 
potential investment objects (indexed by, k) located in each possible cells (indexed by, m) 
is considered as portfolio components (k × m components). 
 
 Now for each portfolio component i ∈ 1,..., k × m and each scenario j ∈ 1,..., s, 
determine (by analysis of economic data, expert estimating, etc.) its return rij and its 
potential damage dij from flooding as shares of investment cost. According to scenario j  to 
determine dij, it is necessary to simulate its flooding zone, water levels, flooding duration, 
etc., then according to characteristics of object i (its classification: 1, …, k) and its location 
(1, …, m) to estimate the damage level dij from flooding as a share of the cost of object i.  
 

For the estimation of probabilistic damage distributions and estimation of the 
efficiency of flood mitigation plans special computer systems are developed. The examples 
of such systems are: freely disseminated HEC-FDA [29] and MIKE 11 GIS – FAT system 
[30]. HEC-FDA system supports integrated probabilistic hydrological and economic 
analysis flood mitigation plans. Usually the system uses flood scenarios of 50 %, 20 %, 10 
%, 4 %, 2 %, 1 %, 0.4 %, 0.2 % probability of exceeding. Profiles of corresponding flood 
waves are imported from the system of calculation of high waters HEC-RAS (or Mike-11) 
through a database. For the calculation of damages catalogues of «depth – damage (percent 
of the lost value)» functions, defined for certain classes of economic structures (residential, 
commercial, industrial, agricultural, infrastructure) are used.  

 
Thus, let for each component i ∈ 1,..., k × m and for each scenario j ∈ 1,..., s return 

rij and potential damages dij from flooding be known. Then, matrix H of distributions of 
portfolio components has the following form [31]: 

            H = R – D,                                         (60) 

where R = {rij}i =k×m, j=s, D = {dij}i =k×m, j=s. 
 Now this is a situation which completely falls under the technique of portfolio 
optimization according to theorems 5-7 and 15-17.  
 

In the case, of known very long historical data on flooding, and climatic, 
hydrological, and landscape changes small enough to be neglected to a certain extent, the 
situation corresponds to optimal investment decisions with known distributions of random 
variables. Then optimal portfolio decision by return-risk ratio is described by theorems 5-7. 

 
A more realistic is the case of incomplete information:  only inclusion p0 ∈P is 

available. This situation is described by theorems 15-17, which allow  solving 
corresponding problems by LP technique although they demand some additional 
calculations. 

 
A number of calculations have been performed for investment allocation problems 

in Ukrainian part of Tisza river basin. Optimal portfolio decisions were effectively found 
by LP tools of the MATLAB 7 system. 
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10. Conclusions 

The class of PCRM, sufficiently broad because it contains well-known coherent 
risk measures and is invariant for some operations, is described in this paper. The use of 
risk measures from this class allows reducing portfolio optimization problems to  LP 
problems. The study of this class allows to systematize a number of results obtained earlier 
as special cases, and to obtain new results for portfolio optimization problems within a 
unified approach. Some generalization of PCRM notion is considered as well. 

 
 The reduction of portfolio optimization problems to LP models makes it possible to 
efficiently solve them by standard LP methods even for practically important large-scale 
problems. 
 

As an example of applications, investment allocation problems under risk of 
catastrophic floods are considered. Appropriate portfolio decisions were effectively found 
by using data for the Ukrainian part of the Tisza river basin. 
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